第9章-方差分析与线性回归

合集下载

第9章 方差分析

第9章 方差分析



Dependent List:weight Factor:fodder Contrasts选项: 多项式比较(AD与BC比较和AC与BD比较) Post Hoc选项: 均值多重比较LSD和Tamhane’s T2 ,一致性子集 检验Duncan(各种方法的使用条件-方差齐或不齐) Options选项:Descriptive描述统计量,Homogeneity-ofvariance方差齐次性检验,Means plot均值分布图 结果除了方差分析表,还有很多选项相应的结果 结论:四种饲料对猪体重增加的作用有显著性差异,还可得知 ABCD四种饲料对猪平均体重增加多少(越来越多)。

9.3.2 单因变量多因素方差分析的菜单和选择项
菜单:Analyze->General Linear Model-> Univariate 选项:


选择分析模型Model: 默认全模型Full Factorial:包括所有因素变量的主效应、所有 协变量的主效应、所有因素与因素的交互效应,不包括协变量与 其他因素的交互效应。 自定义模型Custom:主效应(Main effects及其因素变量)、交 互变量(有交互效应维数之分) 选择分解平方和的方法(默认为TYPE III) Include Intercept in model:系统默认截距包括在回归模型中。 选择对照方法Contrasts 选择分布图形Plots 选择多重比较分析Post Hoc 保存运算结果的选择项Save 选择输出项Options

零假设H0:组间均值无显著性差异(即四种饲料对 猪体重增加的平均值无显著性差异);
9.2.2--9.2.3 单因素方差分析的选择项和例子
使用选择项的单因素方差分析:

方差分析与回归分析的原理

方差分析与回归分析的原理

方差分析与回归分析的原理方差分析和回归分析是统计学中常用的两种数据分析方法,它们都用于研究变量之间的相互关系,但是基于不同的背景和目的,其原理和应用也有所不同。

首先,我们来了解一下方差分析。

方差分析是一种用于比较两个或多个群体均值差异的统计方法。

它基于对总体方差的分解来分析不同因素对群体之间差异的贡献程度。

具体来说,方差分析将总体方差分解为组内变异和组间变异两部分,然后通过计算F统计量来判断组间变异是否显著大于组内变异。

方差分析可以用于很多场景,比如医疗研究中分析不同药物对疾病治疗效果的差异、教育研究中比较不同教学方法对学生成绩的影响等。

在进行方差分析时,需要明确一个自变量(也称为因素或处理)和一个因变量(也称为响应变量)。

自变量是被研究者主动操作或选择的变量,而因变量是根据自变量的不同取值而发生变化的变量。

方差分析的基本原理是通过对不同组之间的变异进行比较,来判断组间是否存在统计显著差异。

方差分析的核心思想是使用F统计量来判断组间变异与组内变异的比例是否显著大于1。

通过计算F值并与临界值进行比较,可以得出结论是否存在显著差异。

如果F值大于临界值,则可以拒绝原假设,表明不同组之间存在显著差异;如果F值小于临界值,则接受原假设,认为组间差异不显著。

接下来,我们来了解一下回归分析。

回归分析是统计学中用于研究变量之间关系的一种方法。

它研究的是一个或多个自变量对因变量的影响程度和方向。

回归分析可以用于预测未来趋势、解释变量之间的关系、探究因果关系以及确定主要影响因素等。

回归分析分为线性回归和非线性回归两种。

线性回归是最常用的一种回归方法,它假设自变量与因变量之间存在线性关系。

以一元线性回归为例,我们假设因变量Y可以用一个自变量X的线性函数来表示,即Y = β0 + β1X + ε,其中β0和β1是回归系数,ε是误差项,代表了未被自变量解释的因素。

通常,回归分析的目标是估计出回归系数的值,并利用这些系数来解释因变量与自变量之间的关系。

方差分析与回归分析

方差分析与回归分析
有因素A是显著的,即浓度不同对产量有显著性影响,而温度
以及浓度和温度的交互作用对产量无显著性影响,也就是说为
了提高产量必须控制好浓度。
2 、双因素无重复试验的方差分析 在双因素试验中,对每一对水平组合只做一次试验,即不 重复实验,得到
上一页 下一页 返回
上一页 下一页 返回
总平方和 误差平方和
例9.3 某化工企业为了提高产量,选了三种不同浓度、四种不同 温度做试验。在同一浓度与温度组合下各做两次试验,其数据如
下表所示,在显著性水平α=0.05下不同浓度和不同温度以及它们
间的交叉作用对产量有无显著性影响?
B A
A1 A2 A3
B1
14,10 9,7 5,11
B2
11,11 10,8 13,14
检验温度对该化工产品的得率是否有显著影响。
解: 计算各个水平下的样本均值,得
上一页 下一页 返回
计算 ST=106.4, SA=68.4, SE =38.0
单因素试验的方差分析表:
方差来源 平方和 自由度 F值 临界值
显著性
因素A 误差
总计
68.4 4 38.0 10
106.4 14
4.5 F0.05(4,10)=3.48 ※ 4.5 F0.01(4,10)=5.99
变量Y服从正态分布
,即Y的概率密度为
其中
,而 是不依赖于x的常数。
上一页 下一页 返回
在n次独立试验中得到观测值(x1,y1),(x2,y2),… (xn,yn),利用极大似然估计法估计未知参数a1, a2,… ak,时,
有似然函数
似然函数L取得极大值,上式指数中的平方和
取最小值。
即为了使观测值(xi , yi)(i=1,2,…,n)出现的可能性最大,应当选 择参数a1,a2,…,ak,使得观测值yi与相应的函数值

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析在统计学中,方差分析(ANOVA)和回归分析(Regression Analysis)都是常见的统计分析方法。

它们广泛应用于数据分析和实证研究中,有助于揭示变量之间的关系和影响。

本文将对方差分析和回归分析进行介绍和比较,让读者更好地理解它们的应用和区别。

一、方差分析方差分析是一种统计方法,用于比较两个或更多组别的均值是否存在显著差异。

它通过计算组内变异和组间变异的比值来判断不同组别间的差异是否具有统计显著性。

在方差分析中,通常有三种不同的情形:单因素方差分析、双因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个自变量的情况。

例如,我们想要比较不同教育水平对收入的影响,可以将教育水平作为自变量分为高中、本科和研究生三个组别,然后进行方差分析来检验组别之间的收入差异是否显著。

双因素方差分析适用于有两个自变量的情况。

例如,我们想要比较不同教育水平和不同工作经验对收入的影响,可以将教育水平和工作经验作为自变量,进行方差分析来研究其对收入的影响程度和相互作用效应。

多因素方差分析适用于有多个自变量的情况。

例如,我们想要比较不同教育水平、工作经验和职位对收入的影响,可以将教育水平、工作经验和职位作为自变量,进行方差分析来探究它们对收入的联合影响。

方差分析的基本原理是计算组内变异和组间变异之间的比值,即F 值。

通过与临界F值比较,可以确定差异是否显著。

方差分析的结果通常会报告组间平均差异的显著性水平,以及可能存在的交互作用。

二、回归分析回归分析是一种统计方法,用于研究自变量与因变量之间的关系。

它通过建立一个数学模型来描述自变量对因变量的影响程度和方向。

回归分析分为简单线性回归和多元线性回归两种类型。

简单线性回归适用于只有一个自变量和一个因变量的情况。

例如,我们想要研究体重与身高之间的关系,可以将身高作为自变量、体重作为因变量,通过拟合一条直线来描述二者之间的关系。

多元线性回归适用于有多个自变量和一个因变量的情况。

统计学中的方差分析与回归分析比较

统计学中的方差分析与回归分析比较

统计学中的方差分析与回归分析比较统计学是以搜集、整理、分析数据的方法为研究对象的一门学科,随着现代科技的不断进步,统计学在许多领域中都扮演着至关重要的角色。

在统计学的研究中,方差分析和回归分析都是两种常见的方法。

然而,这两种方法之间的区别是什么?它们各自的优缺点又是什么呢?本文将就这些问题进行探讨。

一、方差分析是什么?方差分析,也称为ANOVA (analysis of variance),是一种用于分析各个因素对于某一变量影响力大小的方法。

在统计数据分析中,可能有多个自变量(影响因素),这时我们需要检验这些因素中哪些是显著的,即在该因素下所得的计算值与总计算值之间是否存在显著性差异。

因此,方差分析的基本思想是对总体方差进行分析,检验各个因素是否会对总体造成显著影响。

二、回归分析是什么?回归分析则是研究两个变量之间关系的一种方法。

一个自变量(independent variable)是已知的、独立的变量,一个因变量(dependent variable)是需要预测或解释的变量。

回归分析的主要目的是利用自变量对因变量进行预测,或者解释自变量与因变量之间的关系。

回归分析一般有两种,即简单线性回归和多元回归。

三、方差分析与回归分析的比较1. 适用范围方差分析适用于多个自变量之间的比较;回归分析则适用于对单个因变量的预测。

2. 关心的变量在方差分析中,我们关心的是各个自变量对总体造成的显著影响程度;在回归分析中,我们关心的是自变量与因变量之间的相关性。

3. 变量类型方差分析和回归分析处理的数据类型也不相同。

在方差分析中,自变量通常为分类变量(catogorical variable),而因变量通常为连续量(continuous variable)。

而在回归分析中,自变量和因变量都为连续量。

4. 独立性假设方差分析的独立性假设要求各组之间是相互独立、没有相关的,而回归分析的独立性假设要求各个观测或实验之间是独立的。

统计学中的ANOVA与线性回归的比较与选择

统计学中的ANOVA与线性回归的比较与选择

统计学中的ANOVA与线性回归的比较与选择统计学是一门与数理逻辑相结合的学科,旨在通过收集和分析数据来解释现象,预测未来,以及做出合理的决策。

ANOVA(方差分析)和线性回归是统计学中常见的两种数据分析方法。

本文将对这两种方法进行比较,并讨论在不同情境下如何选择适合的方法。

一、ANOVA(方差分析)方差分析是一种用于比较两个或多个组之间差异的统计方法。

它的主要目的是确定组之间是否存在显著差异,特别是在处理离散型因变量和一个或多个分类自变量的情况下。

方差分析通过计算组间差异所占总差异的比例来评估差异的显著性。

在进行ANOVA分析时,需要满足以下假设:1. 观测值之间是独立的。

2. 每个组内的观测值是来自正态分布的。

3. 方差齐性:每个组的观测值具有相同的方差。

ANOVA方法的计算复杂度较高,需要进行多个参数的估计和显著性检验。

它的结果可以得出组之间的差异是否显著,但并不能提供具体解释这种差异的原因。

二、线性回归线性回归是一种用于建立自变量和因变量之间线性关系的统计方法。

它可以帮助我们了解自变量对于因变量的影响程度,并进行预测。

线性回归可以处理连续型因变量,并适用于一个或多个连续型或离散型自变量。

在线性回归中,我们假设因变量与自变量之间存在线性关系,并使用最小二乘法来估计回归方程的参数。

通过评估回归方程的显著性以及各个自变量的系数,我们可以判断自变量对于因变量的影响是否显著。

然而,线性回归方法也有其局限性。

它假设因变量与自变量之间存在线性关系,但在实际情况中,线性关系并不总是存在。

此外,线性回归还要求各项观测值之间相互独立,误差项为常数方差,以及误差项服从正态分布。

三、比较与选择在选择ANOVA还是线性回归方法时,需要考虑以下几个因素:1. 因变量的类型:如果因变量是离散型变量,可以考虑使用ANOVA方法。

如果是连续型变量,可以考虑使用线性回归方法。

2. 自变量的类型:如果自变量是分类变量,可以使用ANOVA方法进行比较。

张厚粲《现代心理与教育统计学》(第4版)配套题库【考研真题精选+章节题库】

张厚粲《现代心理与教育统计学》(第4版)配套题库【考研真题精选+章节题库】

目 录第一部分 考研真题精选一、单项选择题二、多项选择题三、简答题四、综合题第二部分 章节题库第1章 绪 论第2章 统计图表第3章 集中量数第4章 差异量数第5章 相关关系第6章 概率分布第7章 参数估计第8章 假设检验第9章 方差分析第10章 χ2检验第11章 非参数检验第12章 线性回归第13章 多变量统计分析简介第14章 抽样原理及方法第一部分 考研真题精选一、单项选择题1已知某小学一年级学生的体重平均数21kg,标准差3.2kg,身高平均数120cm,标准差6.0cm,则下列关于体重和身高离散程度的说法正确的是( )。

[统考2019研]A.体重离散程度更大B.身高离散程度更大C.两者离散程度一样D.两者无法比较【答案】A【解析】计算体重和身高的变异系数,CV体重=(3.2/21)×100%=15.2%,CV身高=(6/120)×100%=5%。

由此可知体重离散程度更大。

2已知某正态总体的标准差为16,现从中随机抽取一个n=100的样本,样本标准差为16,则样本平均数分布的标准误为( )。

[统考2019研]A.0.16B.1.6C.4D.25【答案】B【解析】总体正态,且方差已知,则样本平均数的分布为正态分布,标准误SE=σ/sqr(n)=16/10=1.6。

3如果学生参加压力量表测试的分数服从正态分布,平均数为5,标准差为2,那么分数处在5和9之间的学生百分比约为( )。

[统考2019研]A.34%B.48%C.50%D.68%【答案】B【解析】计算原始分数为5的标准分数Z1=0,原始分数为9的标准分数Z2=2,已知±1.96包含95%的个体,则可估计p(0<Z<2)=0.48。

4对样本平均数进行双尾假设检验,在α=0.10水平上拒绝了虚无假设。

如果用相同数据计算总体均值的置信区间,下列描述正确的是( )。

[统考2019研]A.置信区间不能覆盖总体均值B.置信区间覆盖总体均值为10%C.置信区间覆盖总体均值为90%D.置信区间覆盖总体均值为0.9%【答案】C【解析】置信度即置信区间覆盖总体均值的概率,题干说明置信度为1-α=0.90。

方差分析和回归分析

方差分析和回归分析

方差分析和回归分析方差分析和回归分析是统计学中常用的两种数据分析方法。

它们分别用于比较多个样本之间的差异以及建立变量之间的函数关系。

本文将对方差分析和回归分析进行介绍和比较。

一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较多个样本均值是否存在差异的统计方法。

方差分析通过比较组间和组内的方差来判断样本均值是否存在显著差异。

方差分析需要满足一些基本假设,如正态分布假设和方差齐性假设。

方差分析可以分为单因素方差分析和多因素方差分析。

单因素方差分析是指只有一个自变量(因素)对因变量产生影响的情况。

多因素方差分析则包含两个或两个以上自变量对因变量的影响,可以用于分析多个因素交互作用的效应。

方差分析的步骤包括建立假设、计算各组均值和方差、计算F值和判断显著性等。

通过方差分析可以得到组间显著性差异的结论,并进一步通过事后多重比较方法确定具体哪些组之间存在显著差异。

二、回归分析回归分析(Regression Analysis)是一种用于分析自变量和因变量之间关系的统计方法。

回归分析通过建立一种数学模型,描述自变量对因变量的影响程度和方向。

回归分析可用于预测、解释和探索自变量与因变量之间的关系。

回归分析可以分为线性回归和非线性回归。

线性回归是指自变量和因变量之间存在线性关系的情况,可以用一条直线进行拟合。

非线性回归则考虑了自变量和因变量之间的非线性关系,需要采用曲线或其他函数来进行拟合。

回归分析的步骤包括建立模型、估计参数、检验模型的显著性、预测等。

回归模型的好坏可以通过拟合优度、回归系数显著性以及残差分析等指标进行评估。

三、方差分析与回归分析的比较方差分析和回归分析都是常用的统计方法,但它们有一些区别。

主要区别包括:1. 目的不同:方差分析用于比较多个样本之间的差异,判断样本均值是否存在显著差异;回归分析则用于建立自变量和因变量之间的函数关系,预测和解释因变量。

2. 自变量个数不同:方差分析一般只有一个自变量(因素),用于比较不同组别之间的差异;回归分析可以包含一个或多个自变量,用于描述自变量对因变量的影响关系。

方差分析线性回归

方差分析线性回归

1.单因素方差分析:
第十一章第四节例1
结果分析:因为F=5.327697>F临界值2.246408,故拒绝H0,即认为各实验室测量的扑尔敏的有效含量的均值有明显差异.
2.双因素无重复试验的方差分析
第九章第二节例3
结果分析:因素A的F=10.72241>3.490295,因素B的F=13.23929>3.259167,故拒绝H01和H02,即认为不同时间下颗粒状物含量的均值有显著差异,认为不同地点的颗粒状物的含量的均值也有显著差异。

即时间和地点两个因素对颗粒状物的含量均有显著影响。

3.双因素等重复试验的方差分析
第九章习题第六题
结果分析:因素A的F=4.09>3.89,因素B的F=0.71<3.49,所以在显著水平位0.05下,拒绝H01,接受H02,即认为在不同因素A(浓度)下均值有显著差异,而在不同因素B(温度)下均值没有显著差异,又A与B的交互效应的F=0.83<2.99,即接受H03,所以交互作用的效应也没有显著差异.
4.线性回归
第九章第三节例1
结果分析:
(1)由Intercept可以知道a与b的估计值分别为-1.97222,0.478333,于是可以得到Y%(产
品得率)关于x(温度)的回归方程Y=-1.97222+0.478333x
(2)因为2.38E-09<0.05,故认为回归效果是显著的,即Y与x的线性关系显著。

(3)从上限95.0%和下限95.0%可以知道,置信水平为0.95的置信区间为
(0.448381,0.508286)。

应用统计学(第九章 协方差分析)

应用统计学(第九章 协方差分析)
➢ 均积与均方具有相似的形式,也有相似的性质: 一个变量的总平方和与自由度可按变异来源进行剖分,
从而求得相应的均方; 两个变量的总乘积和与自由度也可按变异来源进行剖分
而获得相应的均积; 把两个变量的总乘积和与自由度按变异来源进行剖分并
获得获得相应均积的方法称为协方差分析。
在随机模型的方差分析中,根据均方MS和期望均方的关 系,可以得到不同变异来源的方差组分的估计值;
b* SP / SP
e
ex
回归关系的显著性可用F检验或t检验,这时误差项目回
归自由度dfeU=1,回归平方和:
U SS b*SP SP2 / SP
e
ey
e
e
ex
误差项离回归平方和:
Q SS U SS SP2 / SS
e
ey
Байду номын сангаасey
ey
e
ex
离回归自由度:
df df df k(n 1) 1
矫正平均数的计算
yi.(xx..) yi . by / x ( xi . x..)
矫正平均数的多重比较
LSD0.05=0.8769, LSD0.01 =1.1718 食欲添加剂配方1、2、3号与对照比较, 其矫正50 日 龄平均重间均存在极显著的差异,配方1、2、3号的矫正50 日龄平均重均极显著高于对照。
回归关系的显著性检验:
变异来源 df 误 差回 归 1 误差离回归 43 误 差 总 和 44
SS 47.49 37.59 85.08
MS 47.49 0.87
F 54.32**
F0.01 7.255
F检验表明,误差项回归关系极显著,表明哺乳仔猪 50 日龄重与初生重间存在极显著的线性回归关系

简单回归分析(4)

简单回归分析(4)

30
y1 y2 y3
y变异程度为S y
Xp
31
总体回归线的95%置信带*
yp hat的变异不仅决定于y的均数( ),同y 时也取决于回归系数的作用
(
yˆp yb(xp)x)
根据方差的特性:
Var[y b(xp x)]Var(y)Var[b(xp x)]
Var(
y)
Var(
y)
/
n
S2 y.x
如果两个变量间的回归关系的确存在,则变异度减少将十 分之“显著”,即SS回归大于SS残,大到何种程度才认为 具有统计学意义?
计算以下统计量:
对于简单线F 性= 回S S 归S S残 回 ,//有ν ν回 残 tb2~ =FF(ν回 =1,ν残 =n-2)
27
决定系数(Coefficient of determination)
y—— 因变量,响应变量:尿肌酐含量(mmol/24h)
(dependent variable, response variable)
x ——自变量,解释变量:体重(kg)
(independent variable, explanatory variable)
b —— 回归系数,斜率(mmol/24h*kg)
R2=SS回/SS总 取值介于0~1,表示回归解释了因变量变异的比
例;其值越大表示回归预测效果越好 在实际应用中,通常需要用决定系数反映回归的
实际效果 对于简单线性回归,有r2=决定系数
28
五、总体回归线的95%置信带*
通过样本资料得到的回归直线为: yˆ abx
其中y hat为相应的总体条件均数my|x的估计值,
上述例题中,回归系数的95%的可信区间为: 0 . 1 3 9 2 2 . 4 4 7 0 . 0 3 0 4 ( 0 . 0 6 4 8 ,0 . 2 1 3 6 )

线性回归分析与方差分析.ppt

线性回归分析与方差分析.ppt
下面说明这一检验的方法.
若假设Y=a+bx+ 符合实际,则b不应为零 因为如果b=0,则Y=a+ 意味着Y与x无关
所以Y=a+bx是否合理,归结为对假设:
H0: b=0 H1 : b 0
进行检验
下面介绍检验假设H0的二种常用方法.
1.t检验法
若H0成立,即b=0,由定理7.1知,

~ N (0,1)
yˆ0 aˆ bˆx0
作为y0的预测值.可以证明
T
y0 yˆ0
~ t(n 2)
n ˆ
n2
1 1 n
(x0 x)2
n
(xi x)2
i1
从而可得
P | T | t (n 2) 1
2
所以,给定置信概率 1 ,Y0的置信区间为
( y0 (x0 ), y0 (x0 ))
其中
第九章 线性回归分析与方差分析
第一节 一元线性回归分析 第二节 可线性化的非线性回归 第三节 多元线性回归简介 第四节 方差分析
第一节 一元线性回归分析
在许多实际问题中,我们常常需要研究多 个变量之间的相互关系。 一般来说,变量之间的关系可分为两类: 一类是确定性关系,确定性关系是指变量之间的关 系可以用函数关系来表达,例如电流I电压V电 阻R之间有关系式V=IR。 另一类是非确定性关系,有些变量之间的关系是非 确定性的关系,这种关系无法用一个精确的函数 式来表示。
直线附近.但各点不完全在一条直线上,这是由于Y
还受到其他一些随机因素的影响.
这样,Y可以看成是由两部分叠加而成,一部
分是x的线性函数a+bx,另一部分是随机因素引起的
误差 ,即
y
Y=a+bx+

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析方差分析与回归分析是统计学中常用的两种分析方法,用来研究变量之间的关系和影响。

本文将分别介绍方差分析和回归分析的基本原理、应用场景以及相关注意事项。

**方差分析**方差分析(ANOVA)是一种用来比较两个或多个总体均值是否相等的统计方法。

它主要用于处理两个或多个组之间的变量差异性比较。

方差分析将总体方差分为组间方差和组内方差,通过比较组间方差与组内方差的大小来判断组间均值是否存在显著差异。

方差分析的应用场景包括但不限于医学研究、实验设计、市场调研等领域。

通过方差分析,研究者可以判断不同组之间是否存在显著差异,从而得出结论或制定决策。

在进行方差分析时,需要注意一些问题。

首先,要确保各组数据符合方差分析的假设,如正态性和方差齐性。

其次,要选择适当的方差分析方法,如单因素方差分析、多因素方差分析等。

最后,要正确解读方差分析结果,避免误解导致错误结论。

**回归分析**回归分析是一种用来研究自变量与因变量之间关系的统计方法。

通过构建回归方程,可以预测因变量在给定自变量条件下的取值。

回归分析主要包括线性回归和非线性回归两种方法,用于描述自变量与因变量之间的相关性和影响程度。

回归分析的应用领域广泛,包括经济学、社会学、医学等。

通过回归分析,研究者可以探究变量之间的复杂关系,找出影响因变量的主要因素,并进行预测和控制。

在进行回归分析时,需要考虑一些重要问题。

首先,要选择适当的回归模型,如线性回归、多元回归等。

其次,要检验回归方程的拟合度和显著性,确保模型的准确性和可靠性。

最后,要谨慎解释回归系数和预测结果,避免过度解读和误导性结论。

综上所述,方差分析与回归分析是统计学中常用的两种分析方法,分别用于比较组间差异和探究变量关系。

通过正确应用这两种方法,可以帮助研究者得出准确的结论和有效的决策,推动学术研究和实践应用的发展。

回归分析方差分析

回归分析方差分析
( yi b0 b1x1i b2 x2i bn xni )2 min
分别对b0,b1,…,bn求导,并令其一阶导数为0,可 求出各个系数
二、回归方程得数学模型
估计标准误差 就是估计y与对应观测值之间得离差平方和
SST Lyy ( yi yi )2
^
^
( yi yi )2 ( yi y)2
• ⑦“Influence Statistics” 统计量得影响。 “DfBeta(s)”删除一个特定得观测值所引起得回归系数得 变化。 “Standardized DfBeta(s)”标准化得DfBeta值 。 “DiFit” 删除一个特定得观测值所引起得预测值得变 化。“Standardized DiFit”标准化得DiFit值。 “Covariance ratio”删除一个观测值后得协方差矩阵得行 列式和带有全部观测值得协方差矩阵得行列式得比率。
Leverage values: 杠杆值。 • ③“Prediction Intervals”预测区间选项:
Mean: 区间得中心位置。 Individual: 观测量上限和下限得预测区间。
• ④“Save to New File”保存为新文件: 选中“Coefficient statistics”项将回归系数保存到指定得 文件中。
Unstandardized 非标准化预测值。在当前数据 文件中新添加一个以字符“PRE_”开头命名得变 量,存放根据回归模型拟合得预测值。 Standardized 标准化预测值。 Adjusted 调整 后预测值。S、E、 of mean predictions 预测 值得标准误。
• ②“Distances”距离栏选项: • Mahalanobis: 距离。 Cook’s”: Cook距离。

方差分析线性回归

方差分析线性回归

1线性回归要研究最大积雪深度X与灌溉面积y之间的关系,测试得到近10年的数据如下表:使用线性回归的方法可以估计x与y之间的线性关系。

线性回归方程式:对应的估计方程式为线性回归完成的任务是,依据观测数据集仗l,yl),仗2,y2),...,仗n,yn)使用线性拟合估计回归方程中的参数a和b。

a,b都为估计结果,原方程中的真实值一般用a 和P表示。

为什么要做这种拟合呢?答案是:为了预测。

比如根据前期的股票数据拟合得到股票的变化趋势C、勺然股票的变化可就不是这么简单的线性关系了)。

线性回归的拟合过程使用最小二乘法,最小二乘法的原理是:选择a,b的值,使得残差的平方和最小。

为什么是平方和最小,不是绝对值的和?答案是,绝对值也可以,但是,绝对值进行代数运算没有平方那样的方便,4次方乂显得太复杂,数学中这种“转化化归”的思路表现得是那么的优美!残差平方和Q ,求最小,方法有很多。

代数方法是求导,还有一些运筹学优化的方法(梯度下降、牛顿法),这里只需要使用求导就0K 了,为表示方便,引入一些符号,最终估计参数a与b的结果是:自此,针对前•面的例子,只要将观测数据带入上面表达式即可汁算得到拟合之后的d和b。

不妨试一试?从线性函数的角度,b表示的拟合直线的斜率,不考虑数学的严谨性,从应用的角度,结果的b可以看成是离散点的斜率,表示变化趋势,b的绝对值越大,表示数据的变化越快。

线性回归的估计方法存在误差,误差的大小通过Q衡量。

1 -2误差分析考虑获取观测数据的实验中存在其它的影响因素,将这些因素全部考虑到e~N(0QA2)中,回归方程重写为y = a + bx + e由此汁算估计量a与b的方差结果为,a与b的方差不仅与6和x的波动大小有关,而且还与观察数据的个数有关。

在设计观测实验时,x的取值越分散,佔汁ab的误差就越小,数据量越大,佔计量b的效果越好。

这也许能为设计实验搜集数据提供某些指导。

1.3拟合优度检验及统计量拟合优度检验模型对样本观测值的拟合程度,其方法是构造一个可以表征拟合程度的指标,称为统汁量,统讣量是样本的函数。

线性回归与方差分析

线性回归与方差分析

线性回归与方差分析线性回归和方差分析是统计学中常用的两种数据分析方法。

虽然它们在数据处理和分析的角度有所不同,但都有助于我们理解变量之间的关系,从而做出科学的推断和预测。

本文将就线性回归和方差分析进行深入探讨。

一、线性回归线性回归是一种用于建立两个或多个变量之间关系的统计模型的方法。

它通过拟合最佳拟合直线,以便预测一个变量(因变量)与一个或多个其他变量(自变量)之间的关系。

对于简单线性回归,我们考虑一个自变量和一个因变量的情况。

我们使用最小二乘法来找到最佳拟合直线,以使预测值与实际观测值的误差平方和最小化。

最佳拟合直线可以通过回归方程来表示,其中自变量和系数之间存在线性关系。

例如,假设我们想研究身高与体重之间的关系。

我们可以收集一组数据,其中身高是自变量,体重是因变量。

通过拟合最佳拟合直线,我们可以预测给定身高的人的体重。

二、方差分析方差分析是一种用于比较三个或更多组之间差异的统计方法。

它将观测值的总变异分解为组内变异和组间变异,以确定组间的差异是否显著。

在方差分析中,我们将一组观测值分成几个组,并计算每个组的观测值的平均值。

然后,我们计算总平均值,以检查组间和组内的差异。

如果组间差异显著大于组内差异,我们可以得出结论认为不同组之间存在显著差异。

例如,假设我们想研究不同施肥处理对植物生长的影响。

我们将植物分成几个组,分别施用不同类型的肥料。

通过测量植物生长的指标(如高度或质量),我们可以使用方差分析来比较各组之间的差异。

三、线性回归与方差分析的联系尽管线性回归和方差分析是两种不同的统计方法,但它们在某些方面也存在联系。

首先,线性回归可以被视为方差分析的特例。

当我们只有一个自变量时,线性回归与方差分析的目标是相同的,即确定因变量与自变量之间的关系。

因此,我们可以将简单线性回归模型看作是方差分析的一种形式。

其次,线性回归和方差分析都涉及到模型建立和参数估计。

线性回归通过拟合回归方程来建立模型,并估计回归系数。

统计学中的方差分析与回归分析

统计学中的方差分析与回归分析

统计学中的方差分析与回归分析近年来,随着统计学在各个领域的应用越来越广泛,方差分析与回归分析也成为了许多领域中经常使用的统计学方法。

本文将从理论和实践两个方面,对方差分析与回归分析进行介绍与分析。

一、方差分析方差分析是一种统计学方法,用于分析不同来源引起的差异。

具体来说,方差分析可以用于比较两个或多个群体之间的平均值,以确定它们之间是否存在显著性差异。

这种方法在社会学、心理学、教育、医学、工程等领域中广泛应用。

1.单因素方差分析单因素方差分析是最基本和最常用的方差分析方法。

它是用于比较两个或多个群体在一个变量上的平均值是否有显著性差异的方法。

举个例子,如果我们想要比较两个不同品牌汽车的平均油耗量,我们可以通过单因素方差分析来确定它们之间是否存在显著性差异。

2.双因素方差分析双因素方差分析是用于比较两个或多个群体在两个变量上的平均值是否有显著性差异的方法。

这种方法通常用于比较不同品牌汽车在不同路况下的平均油耗量。

这种方法的优点是可以通过分析不同变量之间的交互作用来确定显著性差异的原因。

二、回归分析回归分析是一种用于预测或确定两个或多个变量之间关系的统计方法。

它通常用于分析因果关系或描述不同变量之间的相关性。

回归分析可以分为线性回归和非线性回归。

1.线性回归线性回归是最常用的回归分析方法之一。

它通常用于分析两个变量之间的线性关系。

举个例子,如果我们想要了解一个国家的人均收入和医疗费用之间是否存在线性相关性,我们可以通过线性回归来预测这种相关性的强度。

2.非线性回归非线性回归是一种用于分析两个变量之间非线性关系的方法。

它通常用于分析高维数据和偏斜数据。

这种方法的优点是可以对复杂的数据进行建模和预测。

结论方差分析与回归分析是统计学中经常应用的两种方法。

它们可以用于比较不同群体之间的差异以及分析不同变量之间的相关性。

在实际应用中,我们需要选择适当的方法来分析我们的数据,以便得出准确的结论并制定相应的策略。

方差分析与回归分析

方差分析与回归分析

不同行业被投诉次数的散点图
行业
1. 随机误差
▪ 因素的同一水平(总体)下,样本各观察值之间的差异 ▪ 比如,同一行业下不同企业被投诉次数是不同的 ▪ 这种差异可以看成是随机因素的影响,
2. 系统误差
▪ 因素的不同水平(不同总体)下,各观察值之间的差异 ▪ 比如,不同行业之间的被投诉次数之间的差异
▪ 这种差异可能是由于抽样的随机性所造成的,也可
a.画散点图
较强的线性正相关关系
b. 求r
• 样本容量n=14,查教材附录540页《相关系数 检验表》,当显著性水平为1%时,r0.01=0.661。 显然,样本相关系数r> r0.01 ,因此线性回归效果 显著,认为抗拉强度y与含碳量x之间存在高度显 著的正相关关系。
c.求抗拉强度y关于含碳量x 的线性回归方程
无线性相关
完全正相关
-1.0 -0.5 0 +0.5 +1.0
r
负相关程度增加 正相关程度增加
非线性回归
• 在许多实际问题中,变量之间并不一定是 变量的关系,而是某种非线性相关关系, 称为一元非线性回归。许多有价值的非线 性回归方程,可以利用适当的变换,转换 为线性回归方程,例如,倒数变换、半对 数变换、双对数变换、多项式变换等;然 后再利用线性回归分析的最小二乘法进行 估计和检验。
k
ni
k
k
xij x 2 ni xi x 2
ni
xij x 2
i1 j1
i1
i1 j1
SST = SSA + SSE
▪ 前例的计算结果:
4164.608696=1456.608696+2708
关系强度的测量
1. 拒绝原假设表明因素(自变量)与观测值之间有

第9章方差分析与一元回归分析

第9章方差分析与一元回归分析

第九章 方差分析与一元线性回归分析
[系统(条件)误差]:
概率统计
在方差分析中,凡是由于试验因素的变异而引起的 试验结果的差异,称为“系统误差”或“条件误差”.
[随机(试验)误差]:
在试验中,当我们把所有能控制的试验条件都控 制在固定的状态下,进行多次重复试验,所得的的试 验结果也不会完全一致,仍存在一定程度的差异.
r ni
ST
( Xij X )2
i1 j1
r ni
SE
( Xij Xi )2
i1 j1
r ni
r
SA
( Xi X )2 ni (Xi X )2
i1 j1
i1
ST反映了样本的总变动幅度. SE反映了为从r个总体中选取一个容量为ni的样本所进行的 重复试验而产生的误差. S A反映了从各不同水平总体中取出的各个样本之间的差异.
r i1
1 ni
(
ni j 1
X ij
)2
1 n
(
r i1
ni
Xij )2
j 1
概率统计
第九章 方差分析与一元线性回归分析
概率统计
(3) 若令Y aX b (a 0),有Y aX b SY2 a2SX2
Y
1 n
n i 1
Yi
1 n
n i 1
(aX i
b)
1 n
n
aX i
i 1
第九章 方差分析与一元线性回归分析
教学要求
1.掌握单因素试验的方差分析 2.掌握一元线性回归分析 学时 4- 6
概率统计
第九章 方差分析与一元线性回归分析
第一节、方差分析
一、方差分析的基本原理 二、单因素方差分析的方法 三、单因素方差分析的步骤 四、双因素方差分析的方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.
§9.1单因素方差分析
例:为了比较三种不同类型日光灯管的寿命 (小时), 现将从每种类型日光灯管中抽取 8 个, 总共 24 个日光灯管进行老化试验,根据 下面经老化试验后测算得出的各个日光灯 管的寿命(小时),试判断三种不同类型日光
检验假设 H0 : 1 2 ... s H1 : 1, 2,..., s不全相等。

1 n
s
njj
j 1
s
— —总平均, 其中 nj
j 1
n
j j ——水平Aj的效应, j 1, 2,..., s
此时有 n11 n22 ... nss 0
模型为:Xij j ij
方差来源 平方和 自由度
均方
F比
因素A 误差
s-1
SA
SA SA s 1
SA
SE
n-s
SE SE n s
SE
总和
ST
n-1
计算ST
,
S
A
,
S
的简便公式:
E
nj
s nj
记T• j Xij , j 1, 2, , s, T••
X ij
i1
j1 i1
ST
s j 1
nj i1
Xij2 nX 2
因素中各个不同状态称为 水平, 如日光灯管三 个不同的类型, 即为三个水平.
单因素方差分析 仅考虑有一个因素A对试验指 标的影响. 假如因素 A有r 个水平, 分别在第 i 水平下进行了 多次独立观测, 所得到的试验指 标的数据
A1 : N 1, 2
X11 X 21
A2 : N 2, 2
灯管的寿命是不是有存在差异.
日光灯管的寿命(小时)
类型
寿命(小时)
类型I 5290 6210 5740 5000 5930 6120 6080 5310 类型II 5840 5500 5980 6250 6470 5990 5470 5840 类型.III 7130 6660 6340 6470 7580 6560 7290 6730
j 1
s
误差平方和 SE
nj
2
Xij X• j
j1 i1
性质1:ST SA SE
s
证明: ST
nj
2
s
Xij X
nj
2
Xij X• j X• j X
j1 i1
j1 i1
s nj
2
s nj
2
s nj
Xij X• j
X•j X 2
Xij X• j X• j X
n j
2 j
s
1
2
j 1
定理9.1.1
性性质质33 ((11)) SSAA与与SSEE相相互互独独立立;;
((22))
SSEE
22
~~ 22((nns)s;);
(3)当H
为真时,S
0
A 2
~
2 (s 1)。
而,当H0为真时,F
SA SE
(s 1) (n s)
~
F (s 1, n s).
单因素试验方差分析表
j1 i1
j1 i1
j1 i1
SA SE
s nj
s
nj
Xij X• j X• j X X• j X
Xij X• j 0
j1 i1
j 1
i 1
s
性质2:E ST
n
j
2 j
n
1
2
j 1
s
E SA
n
j
2 j
s
1
2
j 1
ESE n s 2
证明:E 明:E ST E
二个部分: 一部分是由于因素 A引起的差异, 即
效应平方和 S另A 一部分则由随机误差所引起
的差异, 即误差平方和 S。E
s
义:总偏差平方和 ST
nj
2
Xij X
j1 i1
效应平方和 SA
s
nj
X•j X
2s
n
j 1
j 1
A
s
nj
X•j X
2
s
nj
X

2 j
nX
2
j 1
j1 i1
s j 1
nj i1
[
2
(
j
)2 ]
2
n[ n
2]
s
s
n 2 n 2 2
nj j
n j
2 j
2
n 2
j 1
j 1
s
n j
2 j
n
1
2
j 1
E(SE )
s
E
nj
X ij X • j
2
j1 i1
sபைடு நூலகம்
(nj 1) 2 (n s) 2 j 1
s
E(SA ) E(ST SE )
s j 1
nj i1
X ij2
T••2 n
SA
s
nj
X•
2 j
nX
2
j 1
T s 2 •j
n j1 j
T••2 n
SE ST SA
例1 设有5种治疗荨麻疹的药,要比较它 们的疗效。假设将30个病人分成5组,每 组6人,令同组病人使用一种药,并记录 病人从使用药物开始到痊愈所需时间, 得到下面的记录:(=0.05)
引起日光灯管寿命不同的原因有二个方面:
其一, 由于日光灯类型不同,而引起寿命不同.
其二,同一种类型日光灯管,由于其它随机因 素的影响, 也使其寿命不同.
在方差分析中, 通常把研究对象的特征值, 即所 考察的试验结果( 例如日光灯管的寿命)称为 试验指标.
对试验指标产生影响的原因称为 因素, “日光 灯管类型” 即为因素.
相关文档
最新文档