发酵罐温度控制系统讲解

合集下载

关于发酵罐的控制系统

关于发酵罐的控制系统

关于发酵罐的控制系统关于发酵罐的控制系统一 参数控制参数控制1温度控制a 信号输入为4-20mA 电流,对应输出为0-150℃温度℃温度b 输出温度需通过校对调整,输出温度需通过校对调整,可编在程序内,可编在程序内,可编在程序内,也可以做个人机界面,也可以做个人机界面,也可以做个人机界面,使用人调整使用人调整(a+bx )c 工作温度设定,通过人机界面由使用人输入工作温度设定,通过人机界面由使用人输入d 控制温度设定,分上限和下限,可采用工作温度加偏差温度(如0.5℃、1℃等)由使用人设定,也可以采用直接的温度值由使用人设定,也可以以0.50.5℃的偏℃的偏差直接写入程序差直接写入程序e 控制方式:控制方式:低于下限温度自动启动加热,低于下限温度自动启动加热,低于下限温度自动启动加热,高于上限温度自动启动冷却;高于上限温度自动启动冷却;高于上限温度自动启动冷却;加热和加热和冷却过程需分别由使用人通过人机界面设定参数,冷却过程需分别由使用人通过人机界面设定参数,参数为:参数为:参数为:加热时间加热时间加热时间(热水阀(热水阀开启的时间,范围0-5分钟)和加热间隔时间(可设置为两次加热的间隔时间,也可以设置为热水阀关闭的时间,可以0-10分钟,由于加热过程中,热水进入发酵罐夹套后,入发酵罐夹套后,发酵罐的温度上升要滞后一段时间,发酵罐的温度上升要滞后一段时间,发酵罐的温度上升要滞后一段时间,所以,所以,所以,关闭热水阀后要关闭热水阀后要等一段时间,避免频繁启动而温度波动过大;同理,冷却过程也需要设置“冷却时间”和“冷却间隔时间”却时间”和“冷却间隔时间”2 酸碱度(pH )控制a 信号输入为4-20mA 电流,对应输出为0-14的pH 值b 输出pH 需通过校对调整,需通过人机界面,使用人调整(a+bx )c pH 值设定,通过人机界面由使用人输入值设定,通过人机界面由使用人输入d 控制pH 值设定,分上限和下限,分上限和下限,可采用工作可采用工作pH 值加偏差pH 值(如0.1、0.2等)由使用人设定,也可以采用直接的pH 值由使用人设定,值由使用人设定,e 控制方式:低于下限pH 值自动启动加碱,高于上限温度自动启动加酸;加碱和加酸过程需分别由使用人通过人机界面设定参数,和加酸过程需分别由使用人通过人机界面设定参数,参数为:参数为:参数为:加碱时间加碱时间加碱时间(加碱(加碱蠕动泵开启的时间,蠕动泵开启的时间,范围范围0-5分钟)分钟)和加碱间隔时间和加碱间隔时间和加碱间隔时间(可设置为两次加碱的间(可设置为两次加碱的间隔时间,隔时间,也可以设置为加碱蠕动泵也可以设置为加碱蠕动泵也可以设置为加碱蠕动泵 关闭的时间,关闭的时间,可以可以0-10分钟,由于加碱过程中,氨水进入发酵罐后,发酵罐的pH 值上升要滞后一段时间,所以,关闭加碱蠕动泵后要等一段时间,避免频繁启动而pH 值波动过大;同理,加酸过程也需要设置“加酸时间”和“加酸间隔时间”程也需要设置“加酸时间”和“加酸间隔时间”3 溶氧值(Do )控制a 信号输入为4-20mA 电流,对应输出为0-100的Do 值b 输出Do 需通过校对调整,需通过人机界面,使用人调整(a+bx )c Do 值设定,通过人机界面由使用人输入值设定,通过人机界面由使用人输入d 控制Do 值设定,分上限和下限,可以采用直接的Do 值由使用人设定,值由使用人设定,e 搅拌电机的转速可设定为手动和自动,手动时由使用人通过人机界面直接输入,自动时则需要设定一个初始值和最低值,然后与溶氧(入,自动时则需要设定一个初始值和最低值,然后与溶氧(Do Do Do)相关联)相关联)相关联f 控制方式:低于下限Do 值自动启动搅拌电机加速,高于上限Do 值自动启动搅拌电机减速;加速和减速过程需分别由使用人通过人机界面设定参数,参数为:加速的速度值(范围可50转/分钟)和加速间隔时间(可设置为0-5分钟,由于加速过后,溶氧的提高要滞后一段时间,所以,关闭加速后要等一段时间,如Do 值符合要求则维持在调整后的转速工作,如Do 值仍偏低,则继续提高一档转速,直至达到最高转速,避免频繁启动而Do 值波动过大);同理,减速过程也需要设置“减速的速度值”(也可以50转/分钟一档)和“减速间隔时间”,转速减到最低值就不再减速,转速减到最低值就不再减速4 消泡控制a 信号为开关量信号为开关量b 控制参数为自动状态下的消泡剂添加量(以毫升显示,实际对应为1毫升/秒种)和间隔时间(0-5分钟)分钟)c 控制方式为手动/自动切换,手动时钮子开关人工确定添加量,自动时控制蠕动泵的添加时间(添加量)和间隔时间,考虑消泡剂作用的滞后时间动泵的添加时间(添加量)和间隔时间,考虑消泡剂作用的滞后时间 5 补料控制补料控制全部为人工设定,设定参数两个:补料的时间(按绝对时间,即×月×日×时×分)和补料量(以毫升显示,按1毫升/秒种控制),每次可设定3个时间点(即每次进入补料的人机界面可预设定3次补料)次补料)二 报警报警报警可以直接写入报警值,每个参数设一个报警上限值和一个报警下限值报警可以直接写入报警值,每个参数设一个报警上限值和一个报警下限值 三 记录记录采用表格和曲线两种方式,查询和输出的时间段由使用人选择,表格的输出还需要使用人确定时间间隔,默认时间间隔为10分钟,消泡和补料控制不需要曲线输出要曲线输出。

发酵工艺控制(温度控制)

发酵工艺控制(温度控制)
温度对发酵的影响及控制
温度对发酵的影响及其调节控制是影响有机体生长繁殖最重要的因素之一,因为任何生物化学的酶促反应与温度变化有关的。温度对发酵的影响是多方面且错综复杂的,主要表现在对细胞生长、产物合成、发酵液的物理性质和生物合成方向等方面。
一、温度对发酵的影响
(一)、温度影响微生物细胞生长
随着温度的上升,细胞的生长繁殖加快。这是由于生长代谢以及繁殖都是酶参加的。根据酶促反应的动力学来看,温度升高,反应速度加快,呼吸强度增加,最终导致细胞生长繁殖加快。但随着温度的上升,酶失活的速度也越大,使衰老提前,发酵周期缩短,这对发酵生产是极为不利的。
(二)、温度影响产物的生成量。
(三)、温度影响生物合成的方向。例如,在四环类抗生素发酵中,金色链丝菌能同时产生四环素和金霉素,在30℃时,它合成金霉素的能力较强。随着温度的提高,合成四环素的比例提高。当温度超过35℃时,金霉素的合成几乎停止,只产生四环素。
I1、I2:进出发酵罐的空气的热焓量,J/kg(干空气)
4、 辐射热
由于发酵罐内外温度差,通过罐体向外辐射的热量。辐射热可通过罐内外的温差求得,一般不超过发酵热的5%。辐射热的大小取决于罐内外的温差,受环境温度变化的影响,冬天影响大一些,夏季影响小些。
5、显热 (Q显)
S—温度上升速率(℃/h)。
四、最适温度的选择与发酵温度的控制
(一)温度的选择
最适温度是一种相对概念,是指在该温度下最适于菌的生长或发酵产物的生成。选择最适温度应该考虑微生物生长的最适温度和产物合成的最适温度。最适发酵温度与菌种,培养基成分,培养条件和菌体生长阶段有关。
在抗生素发酵中,细胞生长和代谢产物积累的最适温度往往不同。例如,青霉素产生菌生长的最适温度为30℃,但产生青霉素的最适温度是24.7℃。至于何时应该选择何种温度,则要看当时生长与生物合成哪一个是主要方面。在生长初期,抗生素还未开始合成,菌丝体浓度很低时,以促进菌丝体迅速生长繁殖为目的时,应该选择最适于菌丝体生长的温度。当菌丝体浓度达到一定程度,到了抗生素分泌期时,此时生物合成成为主要方面,就应该满足生物合成的最适温度,这样才能促进抗生素的大量合成。在乳酸发酵中也有这种情况,乳酸链球菌的最适生长温度是34℃,而产酸的最适温度不超过30℃。因此需要在不同的发酵阶段选择不同的最适温度。

发酵罐的操作及控制

发酵罐的操作及控制

发酵罐的操作及控制一、实验目的1、学习发酵过程中发酵控制、取样、流加等一般操作过程。

2、了解和学习自动发酵罐的操作过程和注意事项。

二、实验原理(一)发酵控制1、发酵温度的控制一般来说,接种后应适当提高培养温度,以利于孢子的萌发或加快微生物的生长、繁殖,而且此时发酵的温度大多数是上升的。

随着发酵液的温度逐渐上升,发酵液的温度应该控制在微生物的最适生长温度;到主发酵旺盛阶段温度的控制可比最适生长温度低些,即控制在微生物代谢产物合成的最适温度;到发酵的后期,温度出现下降的趋势,直至发酵成熟即可放罐。

工业发酵过程一般无须加热,因为释放的发酵热常常超过微生物的最适生长温度,所以需要冷却阶段较多。

通常是利用发酵罐的热交换装置进行降温(如采用夹套或蛇形管进行调温),冬季发酵时空气还需进行加热处理,以便维持发酵的正常温度。

2、发酵pH值控制首先应根据不同微生物的特性,不仅要控制原始培养基的pH值,而且在整个发酵过程中,必须随时检测pH值的变化情况,根据发酵过程中的pH值变化规律,选用适当的方法对pH值进行调节和控制。

3、提高溶解氧的措施控制溶解氧的工艺手段主要是从供氧和需氧两方面来考虑。

影响溶解氧效果的主要因素有:(1)通气流量(通风量);(2)搅拌速度;(3)气体组分中的氧分压;(4)罐压;(5)温度;(6)培养基的物理性质等。

而影响需氧的则是菌体的生理特性,诸如不同菌龄的呼吸强度差别,基质加入时菌丝耗氧的增加等。

4、二氧化碳浓度控制CO2在发酵液中的浓度变化受到许多因素的影响,如细胞的呼吸强度、发酵液的流变学特性、通气搅拌程度;罐压大小、设备规模等。

对CO2浓度的控制主要看其对发酵的影响,如果对发酵有促进作用,应该提高其浓度;反之应设法降低其浓度。

5、泡沫的控制泡沫产生的原因:通气和搅拌、培养基成分、培养基的灭菌方法、培养液的温度、酸碱度、浓度等对发酵过程的泡沫形成也有一定的影响泡沫的消除和防止:了解发酵过程中泡沫的消长规律,方可有效的控制泡沫。

发酵罐温度单回路控制系统

发酵罐温度单回路控制系统

1.概述发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。

发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。

现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶以及维生素和单细胞蛋白等。

发酵反应器(发酵罐)是发酵企业中最重要的设备。

发酵罐式必须具有适宜于微生物生长和形成产物的各种条件,促进微生物的新陈代谢,使之能在低消耗下获得较高产量。

例如,发酵罐的结构应尽可能简单,便于灭菌和清洗;循环冷却装置维持适宜的培养温度;由于发酵时采用的菌种不同、产物不同或发酵类型不同,培养或发酵条件又各有不同,还要根据发酵工程的特点和要求来设计和选择发酵罐的类型和结构。

通风发酵设备要将空气不断通入发酵液中,供给微生物所需的氧,气泡越小,气泡的表面积越大,氧的溶解速率越快,氧的利用率也越高,产品的产率就越高。

通风发酵罐有鼓泡式、气升式、机械搅拌式、溢流喷射自吸式等多种类型。

机械搅拌通风发酵罐是发酵工厂常用的类型之一,它是利用机械搅拌器的作用,使空气和賿液充分混合促使氧在賿液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气,同时强化热量传递。

无论是微生物发酵、酶催化或动物植物细胞培养的微生物工程工厂都应用此类设备,占目前发酵罐总数的70%~80%,常用语抗生素、氨基酸、有机酸和酶的发酵生产。

机械搅拌通风发酵罐是属于一种搅拌釜式反应器,除用作化学反应和生物反应器外搅拌反应器还大量用于混合、分散、溶解、结晶、萃取、吸收或解吸传热等操作。

搅拌反应器由搅拌容器和搅拌机两大部分组成。

加班容器包括筒体、换热原件及内构件、搅拌器、搅拌轴及其密封装置、传动装置等统称为搅拌机。

1.1温度对发酵的影响微生物药品发酵所用的菌体绝大多数十中温菌,如丝状真菌、放线菌和一般细菌。

基于PLC的发酵罐温度控制系统

基于PLC的发酵罐温度控制系统
tn tm p r tr a k e e au e. K e o ds:e e tto tnk: yw r f r n ain a m PLC ; uzy F z PI ; n f av D o -o v le
随着 生 物 技 术 的 不 断 发 展 ,发 酵 技 术 越 来 越
Ab t a t A c r i g t t e h r ce it s f t mp r t r c n r1 h f r n ain a k e ea u e o to s se sr c : c o d n o h c aa trsi o e e au e o to.T e e me tt tn tmp r t r c n rl y tm c o w s d sg e a e n Se n L 2 .Du o t e o 一0fv l e i r e o fc l ae P C 2 6 i l me t t n. e a e i n d b s d o ime s P C 2 6 e t h n f a v 。 o d r t a i t t L 2 mp e n ai t n i o h
模 块 。本 系统 于 2 1 0 1年 8月 在 山 西卫 氏鱼康 实 业
有 限公 司投 入使 用 , 经过一 段 时间运 行 , 系统 运行 该 可靠 . 完全 满足控 制 系统要 求 。
阀 调节 与调 节 阀相 比 , 能够 控 制 热水 和 冷水 的大 不
小 , 而不 易实 现温 度 的连 续调 节 。因此 , 出基 于 从 提 模 糊 P D思 想 的双位 阀 温度 控制 方 法 过该 方 法 I 通
受 到 人们 的关 注 。发 酵 罐 是 生 物 制 品 的 主 要 生 产 场 所 『]发 酵过 程 中温 度 是其 最 重要 的参 数 , 求 l, - 2 要 发酵罐 温度 保持 在 2 8℃~ Oc± . ,如何 保 持发 3 05℃ I 二 酵 罐 温 度稳 定 正 常 ,是 发 酵 过 程 中 的一 个 重 要 环 节 。 由于发 酵 过程 是周 期 性 的 , 荷变 化 不 大且 不 负 剧烈 , 发酵 罐容量 大 , 因此 采用 双位 阀调节 。但 双位

发酵罐温度控制系统课程设计

发酵罐温度控制系统课程设计

专业课程设计报告题目:发酵罐温度控制课程:MATLAB学生姓名:任晨曦学生学号:1714010117年级:17级专业:自动化班级:1班指导教师:贾文晶机械与电气工程学院制2020年5月目录1、概述 (3)1.1温度对发酵的影响 (3)1.2发酵对温度的控制要求 (3)2、设计任务与要求 (4)2.1设计任务 (4)2.2设计要求 (4)3、控制方案设计 (5)3.1控制系统的选择 (5)3.2控制参数的选择 (5)3.3控制系统的方框图 (5)3.4调节规律的选择 (6)3.5调节器作用方式的选择 (7)4、simulink建模及仿真实验 (7)4.1Matlab简介 (7)4.2控制系统simulink建模 (7)4.2.1发酵罐温度数学模型的建立 (7)4.2.2执行器与温度检测变送器建立 (8)4.2.3主、副回路控制器建模 (8)4.3系统simulink仿真结果 (9)4.4系统优化及稳定性分析 (10)5、总结与体会 (10)六、参考文献 (11)1、概述1.1温度对发酵的影响微生物的生长繁殖及合成代谢产物都需要在合适的温度下才能进行。

温度的变化影响各种酶反应的速率和蛋白质的性质。

温度对菌体生长的酶反应和代谢产物合成的酶反应的影响往往是不同的。

温度能改变菌体合成代谢产物的方向。

并且发酵液的粘度、基质和氧气在发酵液中的溶解度和传递速率、某些机制的分解吸收速率等都受温度变化的影响,进而影响发酵动力学特性和产物的生物合成。

而温度的变化是发酵过程热能产生和散失的综合效应。

产生的因素有生物热、搅拌热,散热的因素有蒸发热、辐射热——向大气辐射的热、以及显热——水的蒸汽热和废弃因温度差异排放时所带走的热量。

1.2发酵对温度的控制要求开始可适当升高温度,以利于孢子萌发和菌体的生长繁殖,待发酵温度开始上升后,应保持在菌体的最适生长温度,到主发酵旺盛阶段,温度应控制在比最适生长温度低一些,既代谢产物合成的最适温度,到发酵后期,温度下降,此时适当升温可提高产量。

400-名词术语-发酵罐温度的控制

400-名词术语-发酵罐温度的控制

发酵罐的温度控制
发酵罐的温度控制分为人工控制和自动控制。

人工控制是指操作人员根据发酵罐温度表的变化,随时开关冷带进口阀门控制冷媒进出量达到降温目的。

而自动控制是在发酵罐体适当高度处安装温度传感器,在冷带进口处安装电磁阀,并设定控温参数。

当测量值高于设定值时,说明罐温高需要降温,控制器发出开阀信号,发酵罐冷媒电磁阀打开,冷媒从发酵罐冷带低端进入环绕一圈从高端流出,此时冷媒在冷带的流动过程中,将罐内的热量带出;反之,当检测值低于设定值时,控制器发出关闭信号,发酵罐冷媒电磁阀关闭,冷带冷媒停止流动。

同时冷带与罐内物料的热交换停止。

原理图如图1。

图1 发酵罐温控系统图。

发酵罐的基本结构及功能

发酵罐的基本结构及功能

发酵罐的基本结构及功能
发酵罐是一种用于进行微生物发酵的设备,它由罐体、进出料口、排气装置、搅拌器、温度控制系统和pH控制系统等部件组成。

罐体通常由不锈钢制成,具有优异的耐腐蚀性和耐高温性能。

进出料口用于加入和取出材料,排气装置能够排出二氧化碳等发酵产生的气体,以保证发酵过程中的氧气不会被过多地消耗。

搅拌器则可以让混合材料均匀加热和混合,使微生物得到更好的生长条件。

温度控制系统和pH控制系统是非常重要的组成部分,它们可以确保发酵罐内环境的稳定性和适宜生长条件。

温度控制系统可以通过加热或冷却来控制发酵罐内部的温度,使微生物在适宜的温度范围内进行发酵。

pH控制系统可以调节发酵罐内的酸碱度,确保微生物能够在适宜的pH值下进行发酵。

发酵罐的主要功能是促进微生物的生长和发酵,生产出需要的发酵产物。

在实际应用中,它被广泛应用于食品、药品、生物质能等领域。

例如,发酵罐可以用来生产酸奶、酵母、酒精、酢酸、抗生素等产品。

在使用发酵罐时,还需要注意保持罐体内的清洁卫生,以免杂菌或病菌的污染影响生产效果。

此外,及时检查和更换罐体内的配件和维护系统,也是确保发酵罐正常运转和延长寿命的关键措施。

综上所述,发酵罐是进行微生物发酵的重要设备,它的基本结构和功能对于生产出优质发酵产品至关重要。

同时,在使用发酵罐的过程中,需要合理运用控制系统和注意卫生维护问题,以保证生产过程的顺利进行和更好地保护人的健康和安全。

发酵工艺的控制--温度

发酵工艺的控制--温度
二、 温度对发酵的影响及其控制
(一)温度对发酵的影响
微生物发酵所用的菌体绝大多数是中温菌,如霉菌、 放线菌和一般细菌。它们的最适生长温度一般在20~ 40℃。 在发酵过程中,需要维持适当的温度,才能使菌体生 长和代谢产物的合成顺利进行。 温度会影响各种酶反应的速率,改变菌体代谢产物的 合成方向,影响微生物的代谢调控机制。影响发酵液的 理化性质(对氧的溶解),进而影响发酵的动力学特性和 产物的生物合成。
• 发酵热就是发酵过程中释放出来的净热量。
• ①生物热: • 定义:生物热是生产菌在生长繁殖时产生的大量热 量。培养基中碳水化合物,脂肪,蛋白质等物质被 分解为CO2,NH3时释放出的大量能量。 • 用途:合成高能化合物,供微生物生命代谢活动, 热能散发。 • 影响生物热的因素:生物热随菌株,培养基,发酵 时期的不同而不同。一般,菌株对营养物质利用的 速率越大,培养基成分越丰富,生物热也就越大。 发酵旺盛期的生物热大于其他时间的生物热。生物 热的大小还与菌体的呼吸强度有对应关系。 • 实验发现抗生素高产量批号的生物热高于低产量批 号的生物热。说明抗生素合成时微生物的新陈代谢 十分旺盛。
2. 温度的控制
工业生产上,所用的大发酵罐在发酵过程中一般不需要加热,因发酵中释 放了大量的发酵热,需要冷却的情况较多。 利用自动控制或手动调整的阀门,将冷却水通入发酵罐的夹层或蛇行管中, 通过热交换来降温,保持恒温发酵。 如果气温较高(特别是我国南方的夏季气温),冷却水的温度又高,就可 采用冷冻盐水进行循环式降温,以迅速降到最适温度。因此大工厂需要建立 冷冻站,提高冷却能力,以保证在正常温度下进行发酵。
• 四环素发酵中, • <30℃,产生金霉素 • 金色链霉菌 • > 35℃,只产生四环素

发酵罐工作原理

发酵罐工作原理

发酵罐工作原理
发酵罐是一种用于进行发酵过程的设备,其工作原理主要涉及温度、湿度和氧气等因素。

在发酵过程中,微生物通常是通过代谢来产生所需的产物。

以下是发酵罐的工作原理:
1. 控制温度:发酵罐内部的温度对微生物的生长和代谢过程至关重要。

因此,发酵罐通常配有温度控制系统,以确保罐内保持适宜的温度。

这可以通过加热或冷却罐内的介质来实现,以维持理想的温度范围。

2. 调节湿度:湿度是维持发酵过程中微生物正常生长和代谢所必需的。

因此,发酵罐通常具有湿度控制功能,以确保罐内的湿度处于适宜的范围内。

这可以通过增加或减少罐内的湿度源来实现,以满足微生物生长的要求。

3. 调节氧气供给:微生物在发酵过程中需要氧气进行代谢。

为了提供足够的氧气,发酵罐通常配有气体供给系统,以确保罐内保持适宜的氧气水平。

这可以通过通入空气或其他纯化的氧气源来实现,以满足微生物代谢的需求。

4. 混合和搅拌:发酵过程中,混合和搅拌是必要的,以保持罐内微生物和培养基的均匀分布。

发酵罐通常配有搅拌装置,以确保培养基中的微生物和营养物质均匀混合,并促进氧气的分散。

5. 监测和控制系统:为了确保发酵过程的稳定和控制,发酵罐通常配备监测和控制系统。

这些系统可以实时监测和记录发酵
过程中的温度、湿度、氧气和pH值等关键参数,并自动调节系统操作,以维持最佳条件。

总之,发酵罐通过控制温度、湿度和氧气等因素,为微生物的生长和代谢提供了合适的环境,并通过混合和搅拌来促进物料的均匀分布,以实现发酵过程的有效进行。

啤酒发酵过程中的温度特性及采用的控制

啤酒发酵过程中的温度特性及采用的控制

温度控制:发酵罐控制冷带上的阀门以调节不同的供冷量,使大罐内温度在不同的工艺阶段按工艺要求呈不同的温度梯度状态。

目前国内啤酒厂家发酵较普遍采用低温(9~10℃)发酵,高温(12~14℃)还原双乙酰,0~-1℃贮酒成熟的工艺温度曲线。

在此温度控制曲线中,可分为自然升温期、主发酵期和双乙酰还原期、酵母回收期、降温保温期及贮酒期,温度控制应针对各阶段特点进行。

自然升温期(12-18小时)糖化冷麦汁分锅次经过麦汁充氧和酵母添加进发酵罐后自然升温,每锅的进罐温度应当逐渐递增,满罐温度的确定应考虑麦汁分锅次进罐后酵母繁殖使温度上升因素的影响,一般以满罐后低于主酵温度1℃较适宜,满罐后的自然升温段使酵母尽快增殖。

主发酵期:(4 - 5天)主发酵阶段酵母大量繁殖产生较多的热量,生成大量CO2,使罐内中下部酒体密度发生变化,为使酵母活动性增强,利于发酵,通过控制温度,促进罐内液体的循环更加充分,自下而上的对流更强。

因此,控制时,以罐内中部温度为基准,通过程序控制达到大罐内上部和靠罐壁的发酵液因温度低而下沉,下部和中间的发酵液因温度高而上升,形成合理的循环对流 (如图二所示) 。

双乙酰还原期:(2 - 3天)主发酵期结束后的保温期。

主要任务是控制双乙酰的还原情况,我们定义为双乙酰还原期。

双乙酰还原阶段发酵速度趋缓,热量产生少,对流慢,控温应缓慢、慎重,不可急剧冷却,防止罐内温度出现较大幅度下滑,酵母大量沉淀,影响双乙酰还原。

降温期(2-3天)可能包含降温段和低温保温段。

此阶段原CO2上升拖拉力等形成的自下而上对流大为减弱,酒液在不同温度下密度差形成对流的作用渐占主导,根据啤酒最大密度温度(TMD)计算公式TMD(℃)=4-(0.65E-0.24A)(A 为酒精含量,E为真正浸出物)可知,酒液最大密度时温度约3℃, 3℃上、下的酒液对流方向相反,控温时应据此区别对待。

本期有两点要注意:·在降温的末端要考虑到系统惯性太大造成的过冲,使用预估方法使温度平稳过度到保温状态;·在保温段不可采用长时期、大开度的降温措施,防止局部结冰。

如何设计罐类设备温度控制系统[图文]

如何设计罐类设备温度控制系统[图文]

如何设计罐类设备温度控制系统[图文]罐类设备温度控制简而言之就是让物料升温或降温符合预期温度的过程控制,本文对比分析几种罐类设备温度控制方案优缺点,为罐类设备温度控制提供参考。

罐类设备中物料的温度调节通常有几种方式:①直接将加热或冷却介质直接与物料接触;②通过罐体的夹套传热;③使用换热器。

在温度调节过程中,温控仪根据温度传感器反馈的温度信号,控制加热或冷却介质的通入时间和强度来实现对罐内物料温度的控制,以满足工艺的要求。

通常由罐类设备结构、工艺条件和投资来决定采用哪一种温度控制方案。

介绍几种常见的罐类设备温度控制方案供大家借鉴。

1、罐体夹套通入加热或冷却介质的温度控制系统该系统设计的原理为间壁式换热,其特点是冷热流体被一固体壁隔开,通过固体壁进行传热。

该设计中,蒸汽和冷媒直接通入夹套,因为与罐内物料的温度不同,会通过罐壁发生热量传递,使物料的温度升高或降低。

系统利用通入蒸汽或冷媒的持续时间和强度大小,来实现对罐类物料的温度控制。

罐体夹套通入加热或冷却介质的温度控制系统普遍使用于溶液配制罐和物料储存罐,以及一些反应罐的温度控制。

①冷媒不回吹的温度控制系统冷媒不回吹的温度控制系统如图1,当物料不需要温度控制时,夹套内不通入蒸汽或冷媒。

当罐内物料需要升温或维持高温时,蒸汽从夹套的上部界面通入,接触到温度较低的罐壁时,蒸汽放热并凝成液体,在重力作用下沿壁面留下,同时热量通过罐壁传递给罐内物料,使其升温或维持高温。

温度控制结束时,停止蒸汽的通入,从夹套上部通入压缩空气对夹套内剩余的蒸汽和冷凝水进行吹扫,待吹扫干净后关闭压缩空气。

当罐内物料需要降温或维持低温时,冷媒从夹套的下部界面加入,接触到温度较高的罐壁时,冷媒通过热传递吸收热量,并随着冷媒的不断通入和排出而使物料降温。

降温热结束时,停止冷媒的通入,从夹套上部通入压缩空气将夹套内剩余的冷媒吹扫进排污管道,待吹扫干净后关闭压缩空气。

夹套管路中需要设置安全阀,防止夹套的压力过大造成安全事故。

最新发酵罐的温度控制系统

最新发酵罐的温度控制系统

发酵罐的温度控制系统内蒙古科技大学信息工程学院测控专业生产实习报告引言啤酒的原料是大麦。

大麦是世界上种植最早的谷物之一,它的产量在谷物排名上,位于小麦、玉米、稻谷之下,位居第四,并且大麦不是人类的主食,习惯上用作饲料。

啤酒是酒类中酒精含量最低的饮料,而且营养丰富,人们适量饮用时对身体是影响相对较小。

在1972年世界第九次营养食品会议上,曾推荐啤酒为营养食品,也有人把啤酒称作营养食品、可口食品、卫生食品、方便食品等。

而本次去雪鹿啤酒厂,了解了啤酒的生产过程。

而啤酒发酵,是放热放应的过程,随着反应的进行,罐内的温度会逐渐升高,随着二氧化碳等的产物不断升高,密闭罐内的压力也会随着升高,然而为了使啤酒有更好的品质,需要让发酵罐的温度根据工艺温度曲线变化。

随着微处理器等的发展,PLC已经在工业领域得到广泛应用,根据PLC技术,利用PID控制算法设计了发酵罐温度自动控制系统……一、总论1、企业背景雪鹿啤酒厂:燕京啤酒(包头雪鹿)股份有限公司作为中西部地区第一大啤酒生产企业, 占地面积14.15万平方米,是内蒙古自治区首家通过质量管理体系,环境管理体系及食品安全管理体系,“三标一体”化认证的啤酒生产企业,产品取得了国家绿色食品和QS认证标志,是自治区高新技术企业。

在2010年中国酒类流通协会、中华品牌战略研究院共同主办的,“华樽杯” 中国酒类品牌价值评议中,其品牌价值为17.39亿,在国内啤酒类行业位于第15位。

在内蒙古酒类行业里品牌价值名列第二。

"华樽杯"酒类品牌价值评议是酒类行业里最有最权威,最专业的无形资产评估。

2、酿造啤酒的原料酿造啤酒的主要原料是大麦,水,酵母,酒花。

3、工艺流程啤酒生产工艺流程可分为制麦、糖化、发酵、包装四个工序。

现阶段常用生产工艺流程如下:1)制麦过程:大麦必须通发芽过程将内含的难溶性淀料转变为用于酿造工序的可溶性糖类。

大麦收获后储存2至3个月,经风选或筛选除杂,永磁筒去铁,比重去石机除石,精选机分级,才能进麦芽车间进行麦芽制造。

发酵罐系统的操作方法和维护详解

发酵罐系统的操作方法和维护详解

发酵罐系统的操作方法和维护详解2016-02-23东方酵主发酵工程一、灭菌操作1. 关闭所有供水管路及空气管路。

开启蒸汽管路阀门。

同时稍开启发酵罐夹套的排气阀门,排放夹套剩水。

2. 开启发酵罐搅拌电机,转速至200rpm,使发酵液受热均匀。

当温度升到95℃以上时,即可停止搅拌。

然后待温度升至121℃(罐压在0.1~0.12Mpa)时即可计时开始。

3. 当计时开始后,发酵时间一般为20-30分钟。

在此时间内应保证温度不低于120℃.同时可进行空气过滤器及空气管道的灭菌。

4. 空气过滤器及空气管道的灭菌:稍开过滤器的排水阀门,及空气管道的隔膜阀,保证空气管道的蒸汽灭菌。

但不能开的太大,以免蒸汽大量进入罐内,而稀释培养基。

5. 出料、采样阀的蒸汽阀门及出口阀稍开,保证该管路灭菌。

在发酵罐的盖上的接种口,同样需要放气,使其达到灭菌要求。

6. 当保温结束时,应先把空气管路中的隔膜阀关闭。

把空气过滤器排水阀关闭,以及关闭取样阀出口阀门和接种口螺帽。

然后再关闭各路蒸汽阀门。

7. 打开冷却水阀门及排水阀门,同时打开空气流量计和空气放空阀门,把空气过滤器吹干。

此时必须注意罐压的变化。

绝对不能让罐压低于0.02Mpa。

及当罐压达到0.05Mpa时,立即将空气管路打开,保证发酵罐的罐压在0.05Mpa左右。

8. 当温度降到95℃时,即可打开搅拌。

当温度低于50℃后,即可切入自动控温状态,使培养基达到接种温度,灭菌过程即告结束。

二、发酵过程的操作1. 接种:接种方法可采用火焰接种法或差压接种法。

(1)火焰接种法:在接种口用酒精火圈消毒,然后打开接种口盖,迅速将接种液倒入罐内,在把盖拧紧。

(2)差压法:在灭菌前放入垫片,接种时把接种口盖打开,先倒入一定量的酒精消毒。

待片刻后把种液瓶的针头插入接种口的垫片。

利用罐内压力和种液瓶内的压力差,将种液引入罐内,拧紧盖子。

2. 罐压发酵过程中须手动控制罐压,即用出口阀控制罐内压力。

通用式发酵罐的基本结构和作用原理

通用式发酵罐的基本结构和作用原理

通用式发酵罐的基本结构和作用原理一、引言发酵是一种常见的生物过程,广泛应用于食品、制药、化工等领域。

而发酵罐作为发酵过程的核心设备,其基本结构和作用原理对于发酵过程的控制和优化至关重要。

本文将从基本结构和作用原理两个方面进行阐述。

二、通用式发酵罐的基本结构通用式发酵罐通常由罐体、搅拌装置、温度控制系统、通气系统等部分组成。

1. 罐体罐体是发酵罐的主体,通常采用不锈钢材料制成,具有良好的耐腐蚀性和密封性能。

罐体内部通常设置有搅拌装置,并具有一定的容积,以容纳发酵物料和发酵产物。

2. 搅拌装置搅拌装置是发酵罐中起到混合和均质化作用的关键部分。

常见的搅拌装置包括机械搅拌器和气体搅拌装置。

机械搅拌器通常由电机、转子、叶片等组成,通过转动叶片将发酵物料进行混合。

气体搅拌装置则通过通气系统引入气体,在罐体内部形成气流,从而实现混合效果。

3. 温度控制系统温度对于发酵过程的进行具有重要影响,因此发酵罐通常配备有温度控制系统。

该系统通常由传感器、控制器和加热装置组成。

传感器用于实时监测罐内温度,控制器根据设定的温度范围自动调节加热装置的工作状态,以保持罐内温度在适宜的范围内。

4. 通气系统通气系统是发酵罐中的重要组成部分,用于提供适量的氧气和排除产生的二氧化碳。

通气系统通常包括进气口、出气口和气体过滤器。

进气口用于引入氧气,出气口用于排除二氧化碳,而气体过滤器则起到过滤杂质的作用,确保进入罐内的气体纯净。

三、通用式发酵罐的作用原理通用式发酵罐的作用原理主要涉及发酵物料的供应、菌种的生长和代谢、发酵产物的产生和收集等过程。

1. 发酵物料的供应发酵罐通过进料口将发酵物料引入罐内。

发酵物料通常包括碳源、氮源、矿物盐等,这些物料为微生物的生长提供所需的营养物质。

2. 菌种的生长和代谢发酵罐内的菌种在适宜的温度、pH值和氧气供应条件下进行生长和代谢。

菌种通过代谢过程将发酵物料转化为所需的发酵产物,并产生能量和废物。

3. 发酵产物的产生和收集发酵罐中的菌种通过代谢过程产生的发酵产物通常是所需的目标物质,如酒精、乳酸等。

啤酒发酵温控原理

啤酒发酵温控原理

啤酒发酵温控原理1. 控温的原理1.1. 啤酒的温度与密度关系众所周知,水在4℃时的密度为最大,当水的温度大于4℃时,水的密度随着温度的上升而减小;当水的温度小于4℃时,水的密度随着温度的上升而增大。

啤酒的温度与密度也存在类似的关系。

啤酒最大密度时的温度(简称TMD)可通过下式计算[1]:TMD(℃)=4 - (0.65ωp- 0.24ω)式中ωp——啤酒浓度(op)ω—酒精浓度(g/100g)啤酒的TMD 大体在3℃左右,因品种不同而稍有差异。

图1 标示出了啤酒冷却时,温度、密度与酒液运动的关系。

图1 啤酒温度与密度关系1.2. 主酵段和双乙酰还原段的温度控制在此阶段,罐内酒液温度一般在10℃(主酵)到12℃(双乙酰还原)之间,而冷媒温度在-6 到-3℃之间。

经过热交换后,发酵罐壁附近的酒液被降至3℃左右。

如图1 示,3℃左右的酒液密度最大,因此罐壁附近的酒液会顺着罐壁由上向下运动。

也就是说,发酵罐上部冷带的冷量不光会对上温起到抑制上升的作用,同时也会影响到中温。

发酵罐中部冷带的冷量同样也会对下温有抑制上升的作用。

此时酵母作用旺盛,产生大量热量和CO2。

由于酵母的自身重力及流体的静压作用,使得发酵罐内下部酵母数量高于中、上部,即CO2 的浓度在罐内形成梯度,下部酒液中CO2 浓度高于中、上部。

随着CO2 在罐内部由下向上运动,酒液也被带着由下向上流动。

整个大罐内的酒液在罐内形成一个大循环。

如图2 示:图2 主酵段和双乙酰还原段罐内酒液运动方向CO2 的上升力是本阶段酒液对流运动的主动力,控制温度时以上部冷带为主给冷控温、中部配合给冷、锥部不供或微供冷的方式去抑制酒液温度上升的趋势,就可以很好地控制罐内温度。

当然,这里值得一提的是,进入双乙酰还原段后,酒液中的糖份和氧气已基本被酵母耗尽。

酵母在缺氧的条件,进行酒精发酵,CO2 的产生已不像主酵段那样旺盛,大罐内酒液的循环变得缓慢下来。

此时所需的冷带冷量也远没有主酵段的多了。

谷氨酸发酵过程控制—发酵罐温度的控制

谷氨酸发酵过程控制—发酵罐温度的控制
子情境:谷氨酸发酵条件的控制-发酵罐温度的控制
(一)温度的影响
1、温度对生长的影响 温度影响微生物生长的机理 (1)影响酶活性。(2)影响细胞膜的流动性。(3)影响物质 的溶解度。
不同微生物的生长对温度的要求不同,根据它们对温度的 要求大致可分为四类:嗜冷菌适应于0~26℃生长,嗜温菌适 应于15~43℃生长,嗜热菌适应于37~65℃生长,嗜高温菌 适应于65℃以上生长。
1.生物热Q生物
在发酵过程中,菌体不断利用培养基中的营养物质,将其 分解氧化而产生的能量,其中一部分用于合成高能化合物(如 ATP)提供细胞合成和代谢产物合成需要的能量,其余一部分 以热的形式散发出来,这散发出来的热就叫生物热。
微生物进行有氧呼吸产生的热比厌氧发酵产生的热多。 在不同生长阶段,微生物的呼吸、发酵作用的强度不同, 所产生的热量也不同。发酵周期内生物热的产生具有明显的阶 段性。
②利用温度变化率S(℃/h):先使罐温恒定,再关闭冷却
水,测定发酵液温度随时间上升的速度,
Q发酵 =
(m1c1
+m2c2
)?S
·S
V
③热力学方法:
根据盖斯定律:“在恒压和横容条件下,一个反应不论是 一步完成或几步完成,其反应热是相同的”。这实际上是 热力学第一定律的必然推论,因为焓(H)是状态函数, 过程的焓变与途径无关,只决定于过程的始态和终态。发 酵热可根据标准燃烧热或标准生成热来计算。
发酵过程中,发酵液温度变化取决于上面几个因素:
Q发酵 = Q生物 + Q搅拌 - Q蒸发 - Q辐射 发酵过程中,随着微生物对培养基中的营养物质的利 用、机械搅拌的作用,将会产生一定的热量;同时由于 发酵罐壁的散热、水分的蒸发等将会带走部分热量。习 惯上将发酵过程中释放出来的引起温度变化的净热量称 为发酵热。

发酵罐工艺参数的控制要点及其系统使用问题探讨

发酵罐工艺参数的控制要点及其系统使用问题探讨

发酵罐工艺参数的控制要点及其系统使用问题探讨引言发酵罐的控制系统主要是通过控制热工和生化参数,从而达到控制整个发酵罐的工艺参数的目的。

发酵罐的控制系统大致经历了仪表控制、仪表PLC控制(早期的逻辑控制)、PLC控制及其组成的DCS(分散)控制的发展过程。

在整个发酵罐的工艺控制中,可分为模拟量控制、开关量控制及各参数的关联控制。

发酵罐的控制参数可分为温度、压力、流量、搅拌转速、液位、pH值、DO值(溶氧量)、排气O2和排气CO2、菌丝密度及CIP中的电导率等。

『声明:本订阅号通过了微信原创审核』如果您觉得本文好,请转发1、发酵罐的发展历程发酵罐从碳钢制造到不锈钢制造的变化进程中,除了一次性发酵罐多采用磁力搅拌和部分部件采用一次性仪表,通气管从上部移到了侧部,并且将一次性袋子固定在容器中以外,其他控制部件的形式均与原来相同。

发酵控制的DCS系统除了采集、显示下位机的所有数据外,还能够修改和控制参数对象。

早期发酵罐控制系统采用数据采集器,将模拟量信号分别采集,在模块中进行模数转换后,用计算机的232接口与上位机通讯。

后期发酵罐控制系统是采用PLC与上位机通讯的方式,有的控制器上还采用SCADA系统,可以对现场的运行设备进行监视和控制,以实现数据采集、设备控制、测量、参数调节以及实现各类信号报警等各项功能。

此外,还将PLC 与通用监控软件MCGS组态软件应用到发酵类生物反应器控制系统中,可实时监控现场的环境参数和各执行部件的控制状态,能够满足不同的工艺要求,大大提高了系统的可靠性和灵活性。

1 发酵罐工艺参数的控制要点1.1 、罐温控制1.1.1 参数作用罐温会影响发酵过程中酶反应的速率及氧在培养液中的溶解度,其与菌体生长、抗生素合成及溶解氧都有密切关系。

1.1.2 罐温控制罐温控制主要包括控制加热量与冷却量。

其中,加热量是由工艺计算而得;冷却量是指在加热或灭菌后,且在规定的冷却时间下所需要的冷量。

罐温控制装置由一个加热器和冷却水电磁阀组成,当发酵罐内温度低于(或高于)某个设定值时,系统将自动开启加热器(或冷却水电磁阀),以达到控制发酵罐温度的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:发酵罐温度控制系统设计课程设计(论文)任务及评语院(系):教研室:Array注:成绩:平时40% 论文质量40% 答辩20% 以百分制计算摘要本题要设计的是温度控制系统,发酵是放热反应的过程。

随着反应的进行,罐内的温度会逐渐升高。

而温度对发酵过程具有多方面的影响。

因此,对发酵过程中的温度进行检测和控制就显得十分重要。

本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。

本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。

关键词:温度控制;PID控制器;V/I转换;比较机构目录第1章绪论 (1)第2章课程设计的方案 (2)2.1 概述 (2)2.2 系统组成总体结构 (2)2.3 传感器选择 (2)第3章电路设计 (4)3.1 传感器电路 (4)3.2 比较机构电路 (7)3.3 PID调节器并联实现电路 (7)3.4 V/I转换电路 (8)3.5 直流稳压电源电路 (9)第4章仿真与分析 (10)4.1 传感器电路仿真 (10)4.2 PID控制器电路 (11)4.3 V/I转换电路 (12)第5章课程设计总结 (14)参考文献 (15)附录Ⅰ (16)附录Ⅱ (18)附录Ⅲ (20)第1章绪论在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中,温度控制也越来越重要。

在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉、发酵罐和锅炉中的温度进行检测和控制。

本次课设要求设计发酵罐的温度控制系统。

发酵是放热反应的过程。

随着反应的进行,罐内的温度会逐渐升高。

而温度对发酵过程具有多方面的影响:它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制,除这些直接影响外;温度还对发酵液的理化性质产生影响,如发酵液的粘度;基质和氧在发酵液中的溶解度和传递速率。

某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。

并且现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子等。

而发酵过程是酵母在一定的条件下,利用可发酵性物质而进行的正常生命活动。

发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。

发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。

在发酵罐温度控制系统中应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器是工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其他技术也难以采用,系统控制器的结构和参数必须依靠经验和现场调试来确定时,应用PID控制技术最为方便。

采用PID算法进行温度控制,它具有控制精度高,能够克服容量滞后的特点,特别适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。

本次课设要求自行设计模拟式PID控制器,通过与前面传感器测定的发酵罐温度产生的电压信号进行比较,转换为输出时的4~20mA电流信号来对冷水阀门开度进行控制,采用冷水法对发酵罐进行降温,以达到对发酵罐温度进行控制的目的。

参数要求测定范围是30℃~50℃,测量精度为±0.5℃,以此作为对温度传感器的选择依据。

第2章 课程设计的方案2.1 概述本次设计主要是综合应用所学知识,并联系实际,设计模拟式PID 控制器(包括比较机构,即减法器),通过输出4~20mA 电流信号对冷水阀门开度进行控制,采用冷水降温法来控制发酵罐的温度。

2.2 系统组成总体结构图2.1 温度控制系统总框图如图2.1所示,本控制系统由传感器、比较机构、PID 控制器、执行机构和发酵罐五部分组成,通过比较机构,使设定标准温度与传感器通过检测反应罐内当前温度所产生的电压信号进行比较,然后将比较结果输入PID 调节器内,通过输出4~20mA 的电流信号来控制冷水阀门的开度,通过冷水降温以达到控制发酵罐温度的目的。

2.3 传感器选择本次课设对传感器的测温要求为30℃~50℃,测量精度要求±0.5℃,而本温度控制系统选用的是Cu100热电阻,Cu100参数如下: 测温范围:-50℃~150℃;精度为0.1℃~0.3℃;电阻比(100℃):1.428电阻变化范围:78.6Ω~164.27Ω并且其具有良好的线性,经济适用性好等优点,Cu100的参数都很好的满足了本次课设的要求,因此我们选用Cu100作为本温度控制系统的敏感元件。

第3章电路设计3.1传感器电路图3.1 传感器电路传感器电路由前面的三线制电桥电路和后面的差动放大电路和二阶低通滤波电路构成,而电桥电路中的电位器是我们所选用的热电阻Cu100的替代品。

可以通过使电阻变化,模拟温度的变化。

传感器电路的作用:首先,通过电桥电路将发酵罐温度转换为微弱的电压信号;然后,通过差动低通滤波电路,将电桥输出的微弱的电压信号进行放大、滤波,最后将其输入到比较机构。

3.1.1三线制电桥电路电路图如下图所示,本电桥电路采用的是热电阻的三线制接法,因为三线制有线路电阻补偿,可以消除引线电阻的影响,测量精度高于2线制,并且成本低廉。

图3.2 热电阻三线制接法电路其中其它三个桥臂的电阻应与热电阻为0℃时的电阻相同(忽略导线电阻),这时电桥的输出电压为0V ,所以选为100Ω,而Cu100的测温范围是-50℃~150℃,根据公式:()t R R O α+=1t (3^10*28.4~3^10*25.4--=∂) (3-1)我们可以算出Cu100的电阻变化范围为78.6Ω~164.27Ω,因此我们只需选用200Ω的电位器代替Cu100受温度影响变化阻值的过程即可。

3.1.2差动放大电路图3.3 差动放大电路本电路为差动放大电路,其中运放OP07与各电阻构成了差动放大电路,由于需要将电桥输出的弱电压信号放大-22倍,而此差动放大电路的增益2k 19⨯=R R , 因此我们又考虑到实验室拥有元件选择Ω===Ω=k 1k 4481239R R R R ,。

3.1.3二阶滤波电路图3.4 二阶低通滤波电路因为本次输入电压为低频信号,所以应该选用低频滤波电路,所以该电路为二阶低通滤波电路,起到对高频干扰信号进行过滤,提高测量精度的作用。

由于该电路是二阶低通滤波电路,并且我们需要HZ f c 160=、1-=p k ,而根据公式:c c f C C R R πω2121723=⨯⨯⨯=(3-2)1623p R R -k = (3-3) 并结合实验室现有器材可以确定各器件参数:Ω====k 11571623R R R R ,F C C μ121==。

()Sk T S T S DD D+++=1T 1k s 1p ω3.2 比较机构电路图3.5 比较机构电路如图3.5所示,温度控制系统的比较机构电路,同时也是PID 控制器的输入电路,目的是为了将传感器部分反馈回去的当前反应罐温度所对应的经过放大的电压信号与设定温度(本次设定温度为40℃)的对应放大电压(本次为4.216V )进行减法运算,得到差值电压。

因为不需要对二者差值电压进行放大,因此各部分电阻阻值相等即可,结合实验室元件可取都为5KΩ3.3 PID 调节器并联实现电路PID 调节器电路图如下图:PID 控制器具有原理简单,使用方便;适应性强;其控制品质对被控对象的变化不太敏感,非常适用于环境恶劣的工业生产现场等优点,而本次设计中PID 控制器的会将经过比较机构所输出的电压信号进行进一步处理,最后输出的为1~5V 的稳定电压信号。

PID 调节电路由P 、I 、D 三部分电路组成,整个电路的传函: (3-4)其中 p k =滑变总电阻/连入的电阻*5,d T 根据经验一般取5~10,这里取10。

并且31k 1913-==R R D (3-5) 所以取13R =5KΩ,19R =15KΩ。

其它电阻因为对增益没有太大影响,因此都根据实验室常用器件选择5KΩ的电阻。

图3.6 PID 调节器并联实现电路3.4 V/I 转换电路V/I 转换电路如下图:将PID 电路输出的1~5V 的电压信号转化为4~20mA 的电流信号。

对冷水阀门进行控制。

当温度=50℃时,要求输出电流=20mA ,又因为当R R R R ===363435时,我们可以通过调节37R 的阻值来控制输出的电流值,所以经过计算可知:当37R =500Ω时,输出的电流信号=20mA 。

而R 的值根据实验室常用的电阻型号取47KΩ。

图3.7 V/I转换电路3.5直流稳压电源电路图3.8 直流稳压电源电路此电路为本次设计中的各运放提供稳定的直流稳压电源,图中LM7812CT是三端稳压集成电路IC芯片元器件,它可以将220V交流电源转换为稳定的12V直流稳压电源,其中U+=12V,U- = -12V。

第4章仿真与分析4.1传感器电路仿真图4.1 传感器部分仿真电路由图中两个万用表示数可知,放大电路的增益K=4.189V/-186.179mV=-22.5,与设计初衷(K=-22)基本相符,所以本电路符合设计。

图4.2 热电阻输出上下限如图4.2,为当热电阻分别为164.2Ω和78.6Ω时,电桥电路的输出电压值。

电桥的输出电压范围是-607.487mV~283.995mV。

4.2PID控制器电路图4.3 PID控制电路(温度=50℃)经过计算可知,当反应罐温度为50℃时,电阻值为121.4Ω,此时的输出电压如图=4.989V。

图4.4 PID控制电路(温度=40℃)经过计算可知,当反应罐温度为40℃时,电桥中的电位器的电阻值为117.12Ω,此时PID控制电路的输出电压由图可知:输出电压=1.015V。

设计电路时,理论上通过计算可知PID控制器的输出应为1V~5V的电压信号,而通过仿真可知,实际上PID的输出电压范围是1.015V~4.989V,与设计初衷基本相符,所以设计方案合理。

4.3V/I转换电路图4.5 V/I转换电路(温度=40℃)由图可知,当温度=40℃(正好为设定温度)时,温度控制系统的输出电流值=4.054mA。

图4.6 V/I转换电路(温度=50℃)由图可知,当温度=50℃(发酵罐温度最高)时,温度控制系统的输出电流值=19.945mA。

相关文档
最新文档