粉体的表面物理化学性质
粉体复习总结
第一张绪论颗粒密集态常见的形式:颗粒堆积体颗粒填充体粉体压缩体(或压制体)颗粒沉积体颗粒浓缩体颗粒离散态常见的形式悬浮体、气溶胶、水溶胶颗粒密集态考虑固体性;颗粒分散态考虑流动性颗粒密集态和颗粒离散态之间可相互转化:当粉体中的流体介质增加到足以使颗粒间互不接触时,颗粒密集态就转化为颗粒离散态;当粉体中的流体介质减少到足以使颗粒间相互接触时,颗粒离散态就转化为颗粒密集态。
第二章颗粒的几何特征与表征常用的粒径度量方式有:轴径:以颗粒某些特征线段,通过平均的方式来表征单颗粒的尺寸大小。
球当量径:用与颗粒具有相同特征参量的球体直径来表征单颗粒的尺寸大小。
圆当量径:用与颗粒具有相同投影特征参量的圆的直径来表征单颗粒的尺寸大小。
定向径:粒度分布的函数表示法,除正态分布是对称其余函数峰值都偏向小粒径方向正态分布:某些气溶胶和沉淀法制备的粉体对数正态分布:大多数粉体(尤其是粉碎法制备的粉体)Rosin-Rammler分布:对于粉体产品或粉尘,如煤粉、水泥等粉碎产品GGS分布:对于某些粉碎产品,如颚式破碎机、辊式破碎机和棒磨机等粉碎产品产品种类对性质的要求对颗粒形状的要求涂料哦、墨水、化妆品固着力、反光效果好片状颗粒橡胶填充料增强、增韧和耐磨性非长形颗粒、球形颗粒塑料填充料搞冲击强度针状、长形颗粒炸药、爆燃材料(固体推进剂)稳定性光滑球形颗粒洗涤剂和食品添加剂流动性球形颗粒磨粒研磨性棱角状抛光剂抛光性球形颗粒形状系数:以颗粒几何参量的比例关系来表示颗粒与规则体的偏离程度。
形状指数:以颗粒外截形体几何参量的无因次数组来表示颗粒的形状特征。
^越复杂的图形分数维越高液体——表面光滑固体——表面粗糙、不规则原因:液体抗剪切形变能力远小于固体,实质是液体分子间作用力远小于固体液体表面张力>剪切强度光滑的液体表面固体表面张力<<剪切强度表面张力不能改变体积比表面积质量比表面积的定义第四章颗粒的堆积结构与致密堆积松散堆积——在自身重力作用下,通过自由流动形成的堆积。
无机粉体材料
无机粉体材料
无机粉体材料是一类具有微米尺度的颗粒形态的无机材料,其应用广泛,涉及到材料科学、化工、电子、医药等多个领域。
无机粉体材料的制备方法多种多样,包括物理方法、化学方法、生物方法等。
在本文中,我们将主要介绍无机粉体材料的特性、制备方法以及应用领域。
首先,无机粉体材料具有独特的物理化学性质,如颗粒尺寸小、比表面积大、化学活性高等特点。
这些特性使得无机粉体材料在催化剂、吸附剂、纳米材料等领域有着重要的应用。
同时,由于其特殊的形态和结构,无机粉体材料还常常被用于制备复合材料,以改善材料的性能和功能。
其次,无机粉体材料的制备方法多种多样。
物理方法包括研磨、气相沉积、溶胶-凝胶法等;化学方法包括沉淀法、水热法、溶剂热法等;生物方法则利用生物体系合成无机颗粒。
不同的制备方法会影响到无机粉体材料的形貌、结构和性能,因此选择合适的制备方法对于获得所需的无机粉体材料至关重要。
最后,无机粉体材料的应用领域非常广泛。
在催化剂领域,无机粉体材料常被用于提高反应速率、改善选择性和稳定性;在电子领域,无机粉体材料被应用于制备导电材料、光电器件等;在医药领域,无机粉体材料被用于制备药物载体、医用材料等。
可以说,无机粉体材料已经成为现代材料科学中不可或缺的一部分。
总之,无机粉体材料具有独特的特性,制备方法多样,应用领域广泛。
随着材料科学的不断发展,相信无机粉体材料将会有更广阔的应用前景。
粉体性质
2020/8/9
二、粉体工程研究的内容、意义
人类赖以生存、活动、利用的资源,除水、石油、空 气等单相流体外都存在“粒度化小”和“颗粒处理”的问 题,前者构成“粉体工程学”(Powder Technology or Powder Engineering),后者构成“颗粒学”(Particulate) 。例如矿产资源从开采到各有价成分的分离、回收和利用 都属于粉体工程范畴。水泥、玻璃、陶瓷以及耐火材料等 的生产同样离不开粉体处理。粉碎是粉体工程中的主要研 究内容,此外还有颗粒性质、颗粒传输、固液(气)分离 等。
2020/8/9
一、开课目的
科学技术发展至近代,几乎所有的工业部门均涉 及到粉粒体处理过程。人类赖以生存、活动、利用的 资源,除水、石油、空气等单相流体外都存在“粒度 化小”和“颗粒处理”的问题,例如矿产资源从开采 到各有价成分的分离、回收和利用都离不开粉体制备 技术与设备。水泥、玻璃、陶瓷以及耐火材料等的生 产同样离不开粉体处理。各种材料的性能在很大程度 上取决于材料粒度、形状、表面特性等性质,而这些 又与粉体制备技术和设备有关。
在定义中用“相近”一词,使定义更有一般性; (4)将待测颗粒的某种物理特性或物理行为与同质球体 作比较时,有时能找到一个确定的直径的球与之对应, 有时则需一组大小不同的球的组合与之对应,才能最相 近(例如激光粒度仪)。
由于所采用的测定方法不同,目前出现的表示方法 主要有以下几种(详见表1-2)。 (1)用指定的特征线段表示;如定方向径dF,定方向等 分径(Martin径)dM,定向最大径 (2)用算术平均直径表示; (3)用几何特征的平均值表示; (4)用等效直径表示,即某种图形的当量直径;
粉体表面改性
粉末进行表
面改性,推测在CH4
和H2
的共同作用下TiO2
表
面将形成Ti-C-O结构,使其导电性与TiC类
似。Yamada等〔12〕先后用Ar和N2
等离子体改性
处理TiO2
膜,在通入N2
之前首先进行Ar处理以
除去吸附在TiO2
表面的水分子、清洁表面,最后
得到的掺氮TiO2
不同,得到的涂层组成也会不同。文献〔23-24〕中还指
出,经无机表面沉积改性以后,粉体的性能提高了,
在基体中分散性较好。章金兵〔25〕用液相沉积法对
纳米ZnO/TiO2
进行表面改性,改性后的粉体表面存
在致密的Al2O3
膜,产物经充分分散后在有机介质
或水中的稳定时间明显提高,紫外线透过率则由改
性前的大于8.5%降低到小于7%。
粉体表面改性
前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。
因此小尺寸颗粒有如下几个特征:
1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。
粉体的团聚现象减少了,分散性提高
了,并且改性后的纳米SiO2
粉体与有机基体聚氨
酯弹性体( PUE)的相容性增强了,PUE材料的力学
性能也有较大的改善,能同时达到增强增韧的效
果。余江涛等〔9〕利用阴离子表面活性剂对钛白粉
进行改性,结果表明粉体的疏水性有所改善,其中
使用十二烷基苯磺酸钠与硬脂酸的复配体系其接
向排列,使其表面性质或界面性质发生显著变化;
粉体工程
透过流动:流体在固定颗粒床层空隙中的流动,即颗粒静止,流体绕颗粒流 颗粒流态化: 颗粒与运动的流体介质接触时, 在运动流体介质的粘性力和惯性力作用下, 克服颗粒剩余重力,而表现出流体的特征,即颗粒像流体一样流动。 流化床结构:床体容器,固体颗粒,步风板,空气室,测压器。
五、
粉体的物理特性
2
粉体的热学性质
������������ :颗粒堆积体表观密度(容积密度)������������ :颗粒真密度 2.堆积率 λ:颗粒堆积体中颗粒所占的容积率亦称填充率。λ=1-ε 3.表观密度������������ :单位颗粒堆积体的表观体积所具有的颗粒质量。������������ =(1-ε )������������ 4.配位数:某个颗粒与其周围的其他颗粒相接触的接触点数目。 影响堆积结构的主要因素 (1) 颗粒本身的几何特性:颗粒大小,粒度分布及颗粒性状 (2) 颗粒间作用力和颗粒堆积条件:颗粒间接触点作用力形式,堆积空间的形状与大 小,堆积速度好外力施加方式与强度等。 三、流变特性 颗粒接触点上的作用力:密集态粉体形成一定强度的力,或者说能抵抗粉体变形、流动 的力。 粉体颗粒间的内聚力:范德华力、静电吸引力、液体桥联力、固体桥联力 固体表面摩擦力:一个固体对抗与其接触的另一个固体相对运动或欲运动的力 粉体层极限应力状态:产生破坏时的应力状态;作用力达到某一极限值时,粉体层将产 生突然的滑移或崩塌破坏。 莫尔圆应力分析粉体层应力计算
1
粉体工程
粉体的摩擦特性是用摩擦角来表征的包括: 内摩擦角:反映的是粉体在密实堆积状态下颗粒间摩擦特性 休止角:反映的是粉体在松散状态下的颗粒间摩擦特性 粉体屈服轨迹:确定最大、最小主应力。 四、颗粒流体力学 重力沉降运动:当受重力作用时,颗粒自上而下运动。 离心沉降运动:当受离心力作用是,颗粒沿离心力方向运动。 颗粒自由沉降速度的计算
粉体工程试题与答案
粉体工程一、粉末的性能与表征1.粒径:粉末体中,颗粒的大小用其在空间范围所占据的线性尺寸表示,称为粒径。
2.粒径的表示方法:①几何学粒径②投影粒径③筛分粒径④球当粒径。
3.粉体粒径的分布常表示成频率分布和累积分布:①粒径分布的表格、直方图、曲线可直观地反映粉体粒径的分布特征。
②数字函数表达式有:正态分布;对数正态分布;Rosin—Rammler分布;RRB方程能较好地反映工业上粉磨产品的粒径分布特征。
4.平均粒径:若将粒径不等的颗粒群想象成自由径为D的均一球形颗粒组成,那么其物理特性可表示为f(d)=f(D),D即表示平均粒径。
5.粉末的测量方法:显微镜法;激光衍射法;重力沉降光透法;筛分法。
平均粒径测量方法:比表面法。
6.粉末的性质:堆积性质;摩擦性质;压缩性质与成形性(压制性)。
安息角:又称休止角、堆积角,它是指粉体自然堆积时的自由表面在静止平衡状态下与水平面所成的最大的角度。
(用来衡量与评价粉体的流动性)。
在0.2mm以下,粒径越小而休止角越大,这是由于微细粒子间粘附性增大导致流动性降低的缘故。
粉体颗粒形状愈不规则安息角愈大,颗粒球形愈大粉体流动性愈好其安息角就愈小。
二、粉体表面与界面化学1.粉末颗粒的分散:①在气相中,主要受范德华力、静电力、液桥力,分散方法,机械分散、干燥分散、颗粒表面改性分散、静电分散、复合分散;②在液相中,主要受范德华作用力、双电层静电作用力、空间位阻作用力、熔剂化作用力、疏液作用力,分散调控有,介质调控、分散剂调控、机械调控和超声调控。
2.颗粒表面改性:粉末颗粒表面改性:用物理,化学,机械方法对颗粒表面进行处理,根据应用的需要有目的的改变颗粒表面的物理化学性质,如表面晶体结构和官能团,表面能、界面润湿性,电性,表面吸附性和反应特性等,以满足现代新材料,新工艺和新技术发展的需要。
3.改性方法:①表面化学改性:偶联剂表面改性、表面活性剂改性、高分子分散剂改性、接枝改性;②微胶囊包覆——化学法、物理法、物理化学法;③机械化学改性;④原位聚合改性——无皂乳液聚合包覆法、预处理乳液聚合法、微乳液聚合法。
粉体表征和制备技术
溶胶-凝胶法制备纳米材料
溶胶-凝胶法
通过溶胶的形成和凝胶的固化过 程,制备出具有纳米结构的材料。
制备过程
将原料在溶剂中溶解形成溶胶,然 后通过加热、蒸发等手段使溶胶转 变为凝胶,最后经过干燥、煅烧等 处理得到纳米材料。
应用
用于制备陶瓷、玻璃、纳米复合材 料等,具有纯度高、均匀性好、可 控制备等优点。
分析颗粒形状
不同形状的颗粒在液体中 的沉降行为不同,因此可 以通过沉降法分析颗粒的 形状。
确定粉体密度
结合颗粒粒径和沉降速度, 可以计算得到粉体的密度。
筛分法
分离不同粒径颗粒
通过不同孔径的筛网,可以将不同粒径的颗粒分离出来。
确定颗粒分布
将分离出来的不同粒径颗粒分别称重,可以得到颗粒的质量分布曲 线。
02
粉体表征方法
显微镜法
观察粉体颗粒形貌
通过显微镜可以直接观察粉体颗粒的形状、大小 和表面结构。
分析颗粒分布
利用显微镜的图像分析功能,可以统计不同粒径 颗粒的数量,进而得到颗粒分布曲线。
辅助其他表征手段
显微镜法可以与其他表征手段相结合,提供更全 面的粉体信息。
沉降法
01
02
03
测定颗粒粒径
通过测量颗粒在液体中的 沉降速度,可以间接得到 颗粒的粒径信息。
改善粉体的分散性、润湿性等。
表面物理改性
02
通过物理方法在粉体表面形成涂层或改变表面结构,以改善粉
体的耐磨性、耐候性等。
表面复合改性
03
综合运用化学和物理改性方法,对粉体表面进行多层次、多功
能的改性处理。
复合增强途径
颗粒增强
向基体材料中添加硬质颗粒,提高复合材料的强度和硬度。
第三章、粉体表面
粉体表面吸附:当气相或液相中的分子(或 原子、离子)碰撞在粉体表面时,由于它们 之间的相互作用,使一些分子(或原子、离 子)停留在粉体表面,造成这些分子(或原 子、离子)在粉体表面上的浓度比在气相或 液相中的浓度大的现象。
物料 碳酸钙 石墨 磷灰石 玻璃 云母
表面能 65~70 100 190 1200 2400~25 00
高能表面(100~1000mJ/m2),金属及氧化物、玻璃、 硅酸盐等;
低能表面(小于100mJ/m2 ),石蜡和各种塑料等。
3.4粉体与水的相互作用
3.4.1粉体表面离子的水合作用
颗粒排开周围水分子; 水分子与颗粒表面的晶格阳离子、阴离子发生
பைடு நூலகம் 3.2粉体的晶体和晶体表面
根据晶体中质点的键型,主要存在四种晶体 类型:
离子型:ZnS、TiO2、CaCO3 共价型:金刚石 金属型:自然Au、自然Cu 分子型:石蜡、硫、石墨(层间)
固体表面力
晶体中的每个质点周围都存在着一个力场。由于晶 体内部质点排列是有序和周期重复的,故每个质点 力场是对称的。但在固体表面,质点排列的周期重 复性中断,使处于表面边界上的质点力场对称性破 坏,表现出剩余的键力,这就是固体表面力。
O2-+H2O
2OH-
表面
溶液
于是OH-和H+成为它们的定位离子。如石英、 锡石、刚玉、金红石、赤铁矿等。
pH小于零电点时,矿物表面荷正电; pH大 于零电点时,矿物表面荷负电。
例如,石英的零电点pH=1.8,pH=1时, Ψ 0=0.047伏;pH=7时, Ψ 0=-0.305伏。
粉体表面改性及分散技术
1、纳米粉体的分散重要性
纳米粉体稳定分散在各种液相介质形成的分散体本身往往 就是十分重要的产品。如将某些具有特殊电磁性的纳米粉 体分散在液相介质中可制成导电料浆或磁性浆料;将纳米 TiO2粉体分散在水中或有机溶剂中可以制成具有抗紫外、 自清洁或光催化等特殊功能的涂料;这些产品的性能与纳 米粉体的分散状况密切相关。
3、粉体表面改性的目的
4、环境保护
某些公认的对健康有害的原料,如石棉,对人体健康有害主要 在于其生理活性;一是细而长的纤维形状(长度为5-100微米, 直径3微米以下的纤维)在细胞中特别具有活性;二是石棉表面 的极性点(这些极性点主要是OH-官能团)容易与构成生物要素 的氨基酸蛋白酶的极性基键合。如果这两个因素在细胞中起主导 作用的话,那么就可以认为表面改性有可能改变石棉的生理活性。 可用对人体无害和对环境不构成污染,又不影响其使用性能的其 他化学物质覆盖、封闭其表面的活性点OH-。
1、粉体的用途
在橡胶、塑料、涂料、胶粘剂等高分子材料工业及高 聚物基复合材料领域中,无机粉体填料占有很重要的 地位。如碳酸钙、高岭土、氢氧化铝、云母、石棉、 石英、硅藻土、白碳黑等等,不仅可以降低材料成本, 还能提高材料的硬度、刚性和尺寸稳定性,改善材料 的力学性能并赋予材料某些特殊的物理化学性能,如 耐腐蚀性、耐侯性、阻燃性和绝缘性等。
2、纳米粉体分散改性的目的
粉体表面改性及分散技术
主要内容
一.粉体表面改性 二.纳米粉体表面改性 三.超分散剂
超细粉体分类
分类
直径
原子数目
微米粉体
>1m
>1011
亚微米粉体 100nm~1 m 108
特征 体效应 体效应
纳米粉体 100nm~10nm 105 尺寸与表 1nm
《粉体材料表面改性》课程教学大纲
《粉体材料表面改性》课程教学大纲课程代码:050542002课程英文名称:SurfaceModificationofpowder(A2)课程总学时:24讲课:24实验:0上机:0适用专业:粉体科学与工程专业大纲编写(修订)时间:2017.3一、大纲使用说明(一)课程的地位及教学目标粉体表面改性是粉体科学与工程专业方向课,为选修课。
本门课程讲授粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、各行业典型粉体及纳米粉体饿表面改性方法、实践及改性产品的检测及表征方法。
通过本课程的学习,不仅让学生掌握粉体表面改性的相关理论,同时培养学生发现、分析与解决问题的能力和精密进行科学研究的技能。
为学生将来从事粉末材料、粉体工程领域的生产、科研打下坚实的理论和实践基础。
通过本课程的学习,学生将达到以下要求:1.掌握粉体材料表面改性工艺的方法和原理;2.使学生掌握目前工业表面改性典型设备;3.使学生了解表面改性剂的种类、性质、使用条件;4.掌握粉体改性前后的物性变化及相关的检测方法;5.进一步结合创新创业培养目标,加强学生创新能力的培养,使学生具备独立进行粉体表面原位修饰工艺设计与设备选型的能力。
(二)知识、能力及技能方面的基本要求1.基本知识:掌握粉体表面改性一般知识,包括粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、改性产品的检测及表征方法等。
2.基本理论和方法:掌握粉体表面的物性,粉体表面改性的基本原理、掌握粉体表面改性工艺设计和设备;了解常见工业粉体的表面改性方法及应用。
3.基本技能:掌握粉体改性工艺设计计算、独立进行设备选型的技能等。
了解特种粉体的生产工艺、制备技术及行业发展趋势。
具备制备、加工特种粉体的必要的基础知识和基本技能。
(三)实施说明本课程安排在第七学期学习,共24学时,其中理论讲课24学时。
根据教学的需要,有针对性地对教学内容适当增减,各部分学时数可适当调整2学时。
粉末冶金 -第三章 粉体表征
第三章 粉末的性能及其测定
§3.2 粉末及粉末性能
3.2.1 粉体粒径和粉末体的定义 Fine particle 颗粒 从个体颗粒出发,称为颗粒学
Powder 粉体 从集合粉体出发,称为粉体工程学
星蓝海学习网
第三章 粉末的性能及其测定
§3.2 粉末及粉末性能
3.2.2 粉末颗粒构造和表面状态 粉末颗粒实际构造的复杂性还表现为晶体的严重不完整性, 即存在许多结晶缺陷,如空隙、畸变、夹杂等。因此,粉末 总是贮存有较高的晶格畸变能,具有较高的活性。
星蓝海学习网
第三章 粉末的性能及其测定
§3.3 金属粉末的取样和分样
3.3.3 颗粒形状
粉末的形状
规则形状 不规则形状
星蓝海学习网
第三章 粉末的性能及其测定
§3.3 金属粉末的取样和分样
3.3.3 颗粒形状
(a)
(b)
(c)
(d)
(e)
(f)
(g)
粉末颗粒的形状
(h) 星蓝海学习网
第三章 粉末的性能及其测定
§3.3 金属粉末的取样和分样
3.3.5 颗粒粒度的测定方法
沉降分析法
黏性阻力区Re<1;
24
Re Re dv
v 4gd(s )
3 0
v d 2g(s ) 18
星蓝海学习网
第三章 粉末的性能及其测定
§3.3 金属粉末的取样和分样
3.3.5 颗粒粒度的测定方法
沉降分析法
黏性阻力区Re<1;
v d2g(s ) 18
d 18v (s 0)g
1.355 h (s 0 )t
18h (s 0 )gt
粉末的性能和检验
活性
总结词
活性是指粉末的反应能力。
详细描述
某些粉末具有较高的化学活性,能够与其他 物质发生反应。活性粉末在化学反应中起到 催化剂、氧化剂或还原剂等作用。了解粉末 的活性有助于开发新的化学反应和材料制备
方法。
Part
03
粉末的工艺性能
可塑性
要点一
总结词
可塑性是指粉末在一定温度和压力下,能够被塑造成所需 形状的性质。
烧结过程中,粉末颗粒间的空隙逐渐缩小,最终形成连 续的固体材料。烧结特性是粉末冶金和陶瓷等材料制备 的关键工艺参数,影响材料的性能和应用。
熔点和相变特性
总结词
熔点和相变特性是指粉末在加热过程中,发生相变和 熔融的温度和条件。
详细描述
粉末的熔点和相变特性对于材料的制备和加工非常重 要。了解和控制这些特性有助于优成分分析
通过化学分析方法测定粉 末中各元素的含量,如使 用原子吸收光谱、质谱等 方法。
纯度
检测粉末中杂质和有害元 素的含量,以确保粉末的 质量和安全性。
稳定性
检测粉末在储存和使用过 程中化学性能的变化,以 确保其稳定性和可靠性。
工艺性能的检验
可塑性
粉末的可塑性决定了其是否易于 压制和成形,可通过观察粉末在 压制过程中的流动性和可压性来 评估。
空航天、能源等领域。
粉末冶金铸件具有高精度、复杂 度高、质量稳定等特点,广泛应 用于机械制造、石油化工等领域。
电池和电子材料
电池和电子材料是粉末应用的 又一重要领域,粉末冶金技术 可用于制备高性能的电池材料 和电子元件。
电池粉末可用于制备锂离子电 池、镍氢电池等,具有高能量 密度、长寿命等特点。
电子材料粉末可用于制造电子 元件、集成电路等,具有高纯 度、高密度、低电阻等特点。
粉末的性能与表征
二、形状指数(shape index)和形状系数(shape factor)
• 形状因子--表示颗粒形状的数值。 形状系数—反映颗粒的体积、表面积乃至在一定方向上的投影 面积与某种规定的粒度的相应次方的关系。 与颗粒的物理性质有关。 (表面积形状系数、体积形状系数、比表面积形状系数、 卡门形状系数 ) 形状指数—用各种数学式表达颗粒外形。 与颗粒的物理现象无关。 均齐度( proporation ) 充满度( space filling factor ) 球形度( degree of sphericity )
实验二:粉体真密度的测定—比重瓶法 实验三:粉体比表面积的测定 参考书 伍洪标. 无机非金属材料实验.北京:化学工业出版社
1.3 粉末体的性质
• 1.3.1 粉末体的堆积性质
•
一、 空隙率
V VP VC
VV
填充率
VP 1
V
• 注意区分:表观体积、实际体积与空隙体积 理论密度与表观密度
1. 形状指数(shape index)
(1)与外形尺寸有关的形状指数 均齐度:以长方体为颗粒的基准几何形状,根据三轴径 之间的比值导出的指数。
(2)与表面积和体积有关的形状指数 : 体积充满度、面积充满度、球形度
(3)与颗粒投影周长相关的形状指数: 圆形度、表面粗糙度
• 2. 形状系数:修正系数。
q1 Dp
1 M
dm dDp
Q0
q Dp
00
Dp
Dp 1 dn 0 N dDp
Q1
Dp
1 Dp dm 0 M dDp
• 频率分布和累计分布的关系:微分和积分的关系。
• 表征粒度分布的特征参数: 中位粒径D50 — 粉体物料的样品中,把样品的个数(或质量) 分成相等两部分的颗粒粒径。
粉体的表面物理化学性质
1
➢ 物相的表面:接触的两相之间约几个分子厚度的过渡区 所形成的界面,当其中一相为气体时,这种界面通常称 为表面。
➢ ——— 液-气界面;固-气界面 ➢ 粉体的表面:粉体中所有集合的固体颗粒的表面。 ➢ 粉体的表面物理化学性质:由于表面现象引起粉体,即
属丝不再滑动。
这时
F2σl
l是滑动边的长度,因膜有两个面, 所以边界总长度为2,σ就是作用于 单位边界上的表面张力。
2l
7
表面张力(surface tension)
2l
8
表面张力(surface tension)
如果在金属线框中间系一线圈,
一起浸入肥皂液中,然后取出,上面
形成一液膜。
(a)
由于以线圈为边界的两边表面张 力大小相等方向相反,所以线圈成任 意形状可在液膜上移动,见(a)图。
保持温度、压力和组成不变,每增加单位表面积 时,Gibbs函数的增加值称为表面Gibbs函数,或 简称表面自由能或表面能,用符号γ或 表示,单 位为J·m-2。
5
表面张力(surface tension)
在两相(特别是气-液)界面上,处 处存在着一种张力,它垂直于表面的 边界,指向液体方向并与表面相切。
如果刺破线圈中央的液膜,线圈 内侧张力消失,外侧表面张力立即将 (b) 线圈绷成一个圆形,见(b)图,清楚的 显示出表面张力的存在。
9
表面张力(surface tension)
(a)
(b)
10
影响表面张力的因素
(1)分子间相互作用力的影响 对纯液体或纯固体,表面张力决定于分子间形成
粉体未修改版
1、粉体的表面改性:是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的地改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、表面能、表面润湿性、电性、光性、吸附和反应特性,等等,以满足现代新材料,新工艺和新技术发展的需要。
2、粉体表面改性的目的:(1)使无机矿物填料由一般增量填料变为功能性填料;(2)提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;(3)在无机/无机复合材料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;(4)通过对层状粉体进行插层改性,制备新型的层间插层矿物材料(5)对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能:(6)超细和纳米粉体制备中的抗团聚;(7)健康与环境保护3、化学包覆:是采用有机化合物作为表面改性剂,利用有机物分子中的官能团在无机粉体表面的吸附或化学反应对颗粒表面进行包覆以改变颗粒表面性质的方法。
影响因素:颗粒的表面性质;表面改性剂的种类、用量及用法;工艺设备及操作条件等4、粉体的无机改性(沉淀反应):是通过无机化合物在颗粒表面的沉淀反应,在颗粒表面形成一层或多层“包覆”,以达到改善粉体表面性质,如催化、色泽、着色力、遮盖力、抗菌性、耐候性、电、磁、热性能和体相性质等目的的粉体表面无机改性方法,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方法。
5、粉体的机械力化学改性:是利用超细粉碎过程及其它强烈机械作用有目的地对粉体表面进行激活,在一定程度上改变颗粒表面的晶体结构和物理化学性质、化学吸附和反应活性(增加表面活性点或活性基团)等。
6、粉体的插层改性:是指利用层状结构的矿物粉体颗粒晶体层之间结合力较弱(如分子键或范德华键)或存在可交换阳离子的特性,通过离子交换反应或化学反应改变粉体的界面性质和其它性质的改性方法。
粉体工程技术手册
粉体工程技术手册1. 简介粉体工程技术手册是一本系统介绍粉体工程的专业手册,旨在为从事粉体工程相关领域的工程师、科研人员和学生提供全面而详细的技术指导。
本手册将涵盖粉体的基本理论、工艺和应用,深入探讨粉体的特性、制备、处理和分析等方面知识,帮助读者全面了解粉体工程技术的最新进展及实践应用。
2. 粉体特性2.1 粉体的定义和分类粉体是指固体颗粒的集合体,具有特定的粒径和表面特性。
根据颗粒大小,粉体可分为颗粒、微粉和纳米粉体等。
不同颗粒大小对粉体的特性和应用有着重要影响。
2.2 粉体性质表征粉体的性质表征是粉体工程研究的基础,包括粒径分布、粒形和比表面积等参数。
常用的表征方法有激光粒度分析仪、电子显微镜和比表面积测试仪等。
2.3 粉体流动性粉体流动性对于粉体的输送、混合和包装等工艺过程至关重要。
松装密度、堆积角和流动性指数是评价粉体流动性的重要参数,其测定和改善方法是粉体工程研究的重点之一。
3. 粉体制备技术3.1 粉体制备方法粉体制备方法多种多样,包括物理法、化学法和物理化学法等。
常见的粉体制备方法有机械合成、溶胶-凝胶法和气相法等,每种制备方法都有其适用的粉体类型和工艺条件。
3.2 粉体表面处理技术粉体表面处理技术的目的是改善粉体的表面性能,提高粉体的分散性和稳定性。
常见的表面处理方法有涂覆、改性和包覆等,这些方法能够改变粉体粒子的性质和相互之间的相互作用。
3.3 粉体纳米化技术粉体纳米化技术是粉体工程领域的前沿研究方向,通过控制合适的制备条件和工艺参数,将粉体转化为纳米颗粒。
纳米粉体具有特殊的物理和化学性质,广泛应用于电子、材料和生物医药等领域。
4. 粉体工艺与应用4.1 粉体混合与分散技术粉体混合和分散技术是工业生产中常用的工艺,其目的是将不同粉体均匀混合或将粉体分散于基体中。
常见的混合和分散设备有搅拌器、球磨机和超声波分散器等。
4.2 粉体造粒技术粉体造粒技术是将粉体颗粒进行成型和固化的过程,常见的造粒方法有压片法、喷雾干燥法和烧结法等。
粉体粒度的定义
粉体粒度的定义
粉体粒度是指粉体中粒子大小的分布情况。
粉体粒度的测量可以用许多方法,包括机械分析、光学显微镜、激光粒度分析仪等。
粉体粒度的测量和控制是很重要的,因为粉体的物理化学性质和加工性能很大程度上与其粒度大小有关。
粉体的物理化学性质包括比表面积、孔隙率、流动性、堆积密度等。
比表面积是指单位质量粉体的表面积,通常用m2/g来表示,是一个反映粉体表面性质的重要参数。
孔隙率是指粉体中孔隙所占的体积比例,与粉体的流动性和密实度密切相关。
流动性是指粉体在外力作用下的流动性能,流动性好的粉体能够降低热量的损失,并提高加工效率。
堆积密度是指粉末在充实料仓中堆积时所占据的体积,通常用g/ml来表示,也是一个反映粉末密度的重要参数。
粉体的加工性能包括流动性、压实性、散配性等。
流动性好的粉体易于进行输送、包装和灌装等操作;压实性好的粉体易于成型和烧结成物;散配性好的粉体能够均匀地分散到基体中,提高制品的质量和性能。
粉体粒度的控制可以通过粒度分级和粉体处理等方法进行。
粒度分级是指将粉体按照粒度大小分为不同的级别,通常采用筛分或空气分级法。
粉体处理包括机械研磨、化学添加剂改性等方法,可以改善粉体的流动性、润湿性、分散性等性能。
总之,粉体粒度的测量和控制是粉体工程中的一个重要问题,对于提高产品质量、降低生产成本和提高资源利用率都有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 对物质表面张力产生强烈影响的其它组分称为表面活化剂
。
14
固体表面能测定方法
15
固体表面能测定方法
4. 接触角法:液体在固体上接触角的大小,与固体表面能有关。
s l cos ls
16
第二节 表面润湿性
•润湿的类型
• 润湿是一种流体从固体表面置换另一种流体的过程。 最常见的润湿现象是一种液体从固体表面置换空气,如水在 玻璃表面置换空气而展开。
σ(金属键)>σ(离子键)>σ(极性共价键)>σ(非极性共价键)
两种液体间的界面张力,界于两种液体表面张力之间。
(2)温度的影响 温度升高,表面张力下降,当达到临 (3)压力的影响 界温度Tc时,界面张力趋向于零。
表面张力一般随压力的增加而下降。因为压力增 加,气相密度增加,表面分子受力不均匀性略有好转。 另外,若是气相中有别的物质,则压力增加,促使表 面吸附增加,气体溶解度增加,也使表面张力下降。
在与液面相切的方向上,垂直作 用于单位长度线段上的紧缩力,称 为表面张力
将一含有一个活动边框的金属线 框架放在肥皂液中,然后取出悬挂, 活动边在下面。由于金属框上的肥 皂膜的表面张力作用,可滑动的边 会被向上拉,直至顶部。
2l
6
如果在活动表边面框张上力挂(一sur重fac物e ,tension) 使重物质量W2与边框质量W1所产生 的重力F(F=(W1+W2)g)与总的 表面张力大小相等方向相反,则金 属丝不再滑动。
温度、压力和组成恒定时,可逆使表面积增加dA所需要对体系作的功, 称为表面功。用公式表示为:
W dA
式中σ为比例系数,它在数值上等于当T,P及组成恒定的条件下,增加单位 表面积时所必须对体系做的可逆非膨胀功。
4
表面吉布斯函数(surface free energy)
表面吉布斯函数的定义:
G
第四章 粉体的表面物理化学 性质
• 第一节、表面能 • 第二节、表面润湿性 • 第三节 、表面吸附特性
1
• 物相的表面:接触的两相之间约几个分子厚度的过渡区所 形成的界面,当其中一相为气体时,这种界面通常称为表 面。
• ——— 液-气界面;固-气界面 • 粉体的表面:粉体中所有集合的固体颗粒的表面。 • 粉体的表面物理化学性质:由于表面现象引起粉体,即颗
面形态的主要是形成固体表面时的条件以及它所经历的历 史。 4)固体表面能和表面张力的测定非常困难。
13
影响固体表面能的各种因素
• 表面能与键性:表面能反映的是质点间的引力作用,因此 具有强键力的金属和无机材料表面能较高。
• 表面能与温度:随温度升高表面能一般为减小。因为热运 动削弱了质点间的吸引力。
11
表面张力与表面能之间的关系
• 单位的关系:J/m2=N·m/m2=N/m • 表面张力与表面自由能在数值上是相等的。 • 对没有外力作用的表面系统,系统总表面能将自发趋向于最低化。 • 而一般固体表面能不等于固体表面张力,其差值与过程的弹性应变有
关。 • 原因为: • —固体是一种刚性物质,其表面质点流动性较差。 • —固体能够承受剪应力的作用,因此可以抵抗表面收缩的趋势。 • —固体的弹性变形行为改变了增加面积的做功过程,不再使表面能与
这时
l是滑动边的长度,因膜有两个面, 所以边界总长度为2,σ就是作用于 单位边界上的表面张力。
2l
7
表面张力(surface tension)
2l
8
如果在金属表线面框张中力间(s系ur一fac线e t圈en,sion)
一起浸入肥皂液中,然后取出,上面
形成一液膜。
(a)
由于以线圈为边界的两边表面张 力大小相等方向相反,所以线圈成任 意形状可在液膜上移动,见(a)图。
值易测。但是固体不用,虽然原则上可以用其表面张力来 描述,但固体的表面张力不一定等于其表面应力。这是因 为固体是一种刚性物质,流动性很差,能承受剪应力作用 来抵抗表面收缩的趋势。
3
面,由或于可表逆面的层增分加子表的面受积表力,情就面况必功与须(本克s体服u中r体fa不系c同e内,w部o因分rk此子)如之果间要的把作分用子力从,内对部体移系到做界功。
A p,T ,nB
保持温度、压力和组成不变,每增加单位表面积 时,Gibbs函数的增加值称为表面Gibbs函数,或 简称表面自由能或表面能,用符号γ或 表示,单 位为J·m-2。
5
在两相(特别表是面张气力-液()s界ur面fac上e t,en处sion) 处存在着一种张力,它垂直于表面的 边界,指向液体方向并与表面相切。
• 表面能与杂质:
• 物质中若含有少量表面张力较小的其它组分,则这些组分 便会在表面层中富积,使该物质表面张力大大减小,并显
著降低该物质表面能;
• 物质中若含有少量表面张力较大的其它组分,则这些组分 便倾向于在该物质的体积内部富积,即这些组分在体内的
浓度高于在表面层中的浓度,因为对该物质的表面张力只 有微弱的影响,即对该物质的表面能影响不大。
表面张力在数值上相等。 • 如果固体在较高的温度下能表现出足够的质点可移动性,则仍可近似
认为表面能与表面张力在数值上相等。
12
表面张力与表面能之间的关系
与液体相比: 1)固体表面能中包含了弹性能,所以表面张力在数值上不
等于表面能。 2)固体表面张力为各项异性。 3)实际固体的表面绝大多数处于非平衡状态,决定固体表
如果刺破线圈中央的液膜,线圈 内侧张力消失,外侧表面张力立即将 (b) 线圈绷成一个圆形,见(b)图,清楚的 显示出表面张力的存在。
9
表面张力(surface tension)
(a张影力响的因素 对纯液体或纯固体,表面张力决定于分子间形成
的化学键能的大小,一般化学键越强,表面张力越大。
粒表面发生的一切物理化学现象。
2
第一节 表面能
• 物质内部的原子因为有周围原子的吸引或排斥,总是保持 在平衡状态。但是,表面原子却处于只由内部原子向内的 吸引的状态。这意味着表面原子与内部原子相比处于较高 的能量状态。这一额外的能量只是在表相区内原子(或质 点)才有,所以叫表面能。
• 热力学中,又称为表面自由能。 • 对于液体,表面自由能在数值上等于液体的表面张力,其