数理统计习题

合集下载

数理统计期末练习题

数理统计期末练习题

数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,(μN 的样本,问n 多大时才能使得95.0)1|(|≥<-μx P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(|>-y x P .5.设161,,x x 是来自),(2δμN 的样本,经计算32.5,92==s x ,试求)6.0|(|<-μx P .6.设n x x ,,1 是来自)1,(μN 的样本,试确定最小的常数c,使得对任意的0≥μ,有α≤<P )|(|c x .7. 设随机变量 X~F(n,n),证明 =<P )1(X9.设21,x x 是来自),0(2σN 的样本,试求22121⎪⎪⎭⎫ ⎝⎛-+=x x x x Y 服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221=⎪⎪⎭⎫ ⎝⎛>++-+P k x x x x x x11.设n x x ,,1 是来自),(21σμN 的样本,m y y ,,1 是来自),(22σμN 的样本,c,d 是任意两个不为0的常数,证明),2(~)()(2221-+-+-=+m n t s y d x c t md n c ωμμ其中22222,2)1()1(yx y x s s m n s m s n s 与-+-+-=ω分别是两个样本方差.12.设121,,,+n n x x x x 是来自),(2σμN 的样本,11,n n i i x x n ==∑_2211(),1n n i n i s x x n ==--∑试求常数 c 使得1n nc nx x t cs +-=服从t 分布,并指出分布的自由度 。

概率论与数理统计练习题及答案

概率论与数理统计练习题及答案

概率论与数理统计习题一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2<x<4}=___ (A)0.8543 (B)0.1457 (C)0.3541 (D)0.2543 2.设)4,1(~N X ,且6179.0)3.0(=Φ,6915.0)5.0(=Φ,则P{0<x<1.6}=____ (A)0.3094 (B)0.1457 (C)0.3541 (D)0.25433.设随机变量的概率密度21()01qxx f x x -⎧>=⎨≤⎩,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/24.事件A ,B 为对立事件,则_____不成立。

(A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____(A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____A .B A ⊂ B . A B ⊂ C.A B -=Φ D.0)(=-B A P7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的是_____A . 0()1F x ≤≤B .0()1f x ≤≤ C.{}()P X x F x ==D.{}()P Xx f x ==8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____A.4114i i X X ==∑ B.142X X μ+- C.42211()ii K XX σ==-∑D.4211()3i i S X X ==-∑9.设,A B 为两随机事件,且B A ⊂,则下列式子正确的是_____ A .()()P A B P A += B .()()P AB P A =C. ()()|P B A P B = D. ()()()P B A P B P A -=- 10. 设()2~,,X N μσ那么当σ增大时,{}-P X μσ<=A .增大B .减少C .不变D .增减不定11. 设()()()()~,E X-1X 21,X P poission λλ-==⎡⎤⎣⎦分布且则___ A.1 B. 2 C .3 D .0 12.设 ()2~,X Nμσ,其中μ已知,2σ未知,123X , X ,X ,为其样本, 下列各项不是统计量的是____A. 123X X X ++ B. {}123min X ,X ,X C.23i 2i 1X σ=∑ D.1X μ-13.对于事件,A B ,下列命题正确的是_____ A .若,A B 互不相容,则.A 与B 也互不相容B .若,A B 相容,则.A 与B 也相容C.若,A B 互不相容,则.A 与B 也相互独立 D.若A 与B 相互独立, 那么.A 与B 相互独立14.假设随机变量X的分布函数为()F x ,密度函数为()f x .若X与-X有相同的分布函数,则下列各式中正确的是_____A .()F x =()F x -;B .()F x =()F x --;C .()f x =()f x -;D .()f x =()f x --; 15若()~X t n ,那么2~X ____A . (1,)F n ; B.(,1)F n ; C. 2()n χ; D. ()t n .二、填空题(在每个小题填入一个正确答案,填在题末的括号中)1.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.4P X >=2.设有7件产品,其中有1件次品,今从中任取出1件为次品的概率为 3.设AB φ=,()0.3,()0.4,P A P B ==则=⋃)(B A P4.设2~(,)X N μσ~X5 .设A 、B 、C 、是三个随机事件。

数理统计教程课后重要答案习题

数理统计教程课后重要答案习题

第一章:统计量及其分布19.设母体ξ服从正态分布N(),,2σμξ和2n S 分别为子样均值和子样方差,又设()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量111+--+n n S nn ξξ的抽样分布. 解: 因为ξξ-+1n 服从⎪⎭⎫⎝⎛+21,0σn n N 分布. 所以()1,0~121N nn n σξξ+-+ 而()1~222-n nS nχσ且2n S 与ξξ-+1n 独立,, 所以()1~1111--÷+--+n t S n n n n S nnn σξξ分布. 即111+--+n n S nn εε服从()1-n t 分布. 20.(),,,1,,n i i i =ηξ是取自二元正态分布N()ρσσμμ222121,,,的子样,设()∑∑∑===-===n i i i ni n i i n S n n 12111,1,1ξξηηξξξ2,()2121∑=-=n i i n S ηηη和 ()()()()∑∑∑===----=ni i ni ii ni ir 12211ηηξξηηξξ试求统计量()122221--+---n S rS S S ηξηξμμηξ的分布.解: 由于().21μμηξ-=-E ()()=-+=-ηξηξηξ,c o v 2D D D nn nn2122212σσρσσ-+.所以()()n 212221212σρσσσμμηξ-+---服从()1,0N 分布 .()()()()()()()[]211212121222122ηξηξηηξξηηξξ---=----+-=-+∑∑∑∑====i ini i i ni i ni i ni S rS S S ni i ηξ-是正态变量,类似于一维正态变量的情况,可证ηξηξS rS S S 222-+与ηξ-相互独立.()()1~22221222122--+-+n S rS S S n χσρσσσηξηξ, 所以 统计量()122221--+---n S rS S S ηξηξμμηξ()()()()1)2(222122212221222121--+-+-+---=n S rS S S n nσρσσσσρσσσμμηξηξηξ服从()1-n t 分布.第二章:估计量1. 设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 3. 对容量为n 的子样,求密度函数()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量. 解: ()322adx x a ax E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i i x ∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫⎝⎛⋅++=∏=n i i x n L ααα令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα, 得 ∑=--=ni iL xn1ln 1ˆα。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

《概率论与数理统计》习题第五章数理统计的基本概念

《概率论与数理统计》习题第五章数理统计的基本概念

第五章 数理统计的基本概念一. 填空题1. 设X 1, X 2, …, X n 为来自总体N(0, 2), 且随机变量)1(~)(221χ∑==ni iX C Y , 则常数C=___.解.∑=ni iX1~ N(0, n 2),)1,0(~1N n Xni iσ∑=所以21,1σσn c n c ==.2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且243221)43()2(X X b X X a Y -+-=,则a = ______, b = ______时, Y 服从2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100))1,0(~20221N X X -, )1,0(~1004343N X X -201,201==a a ; 1001,1001==b b . Y 为自由度2的2分布.3. 设X 1, X 2, …, X n 来自总体2(n)的分布,则._____)(______,)(==X D X E解. 因为X 1, X 2, …, X n 来自总体2(n), 所以E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n),)(n X E = 22)()(221=⋅==∑=nnn nX D X D ni i二. 单项选择题1. 设X 1, X 2, …, X n 为来自总体N(0, 2)的样本,则样本二阶原点矩∑==n i i X n A 1221的方差为 (A)2 (B) n 2σ (C) n 42σ (D) n4σ 解. X 1, X 2, …, X n 来自总体N(0, 2), 所以,1)(),1(~)(222=σχσiiX E X 2)(2=σiX Dnn nn X D nX D A D ni ini i4242214212222))(()()(σσσσ=⋅===∑∑==. (C)是答案.2. 设X 1, X 2为来自正态总体N(,2)的样本, 则X 1 + X 2与X 1-X 2必 (A) 线性相关 (B) 不相关 (C) 相关但非线性相关 (D) 不独立 解. 假设 Y 1 = X 1 + X 2, Y 2 = X 1-X 2 所以 E(Y 2) = E(X 1)-E(X 2) = 0.cov(Y 1, Y 2) = E(Y 1Y 2)-E(Y 1)E(Y 2) = E(0)()()22212221=-=-X E X E X X . (B)是答案.3. 设X 服从正态分布N(0, 22), 而X 1, X 2, …, X 15为来自总体X 的简单随机样本, 则随机变量)(221521121021X X X X Y ++=所服从的分布为 (A) 2(15) (B) t(14) (C) F(10, 5) (D) F(1, 1)解.)10(~4221021χX X +, )5(~42215211χX X + 所以 )5,10(~204021521121021F X X X X ++++ , 即 )5,10(~)(221521121021F X X X X Y ++= (C)是答案.三. 计算题1. 设X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本,求∑=>1012)44.1(i iXP .解. 因为X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本, 所以)10(~3.0101222∑=i i X χ ()44.1(1012P X P i i=>∑=1.0)16)10(()09.044.13.0101222=>=>∑=i i P X χ 2. 从一正态总体中抽取容量为10的一个样本, 若有2的样本均值与总体均值之差的绝对值在4以上, 试求总体的标准差. 解. 因为总体X 服从N(,2),所以)1,0(~10/N X σμ-. 由02.0)4|(|=>-μX P 知 02.0)104|10/(|=>-σσμX P即 99.0)104(,01.0)104(=Φ=-Φσσ查表得.43.533.2104,33.2104===σσ3. 设总体X ~N(72, 100), 为使样本均值大于70的概率不小于0.95 , 问样本容量至少应取多大?解. 假设样本容量为n, 则)1,0(~1072),100,72(~N nX nN X -由 95.0)70(≥>X P 得P(n X 1072->95.0)107270≥-n 所以 0625.68,65.15,95.0)5(≥≥≤Φn nn.4. 设总体X 服从N(, 4), 样本(X 1, X 2, …, X n )来自X, X 为样本均值. 问样本容量至少应取多大才能使i. 1.0)|(|2≤-μX E ii. 95.0)1.0|(|2≥≤-μX P解. i. 1.04)(1)()|(|2≤===-nX D n X D X E μ 所以 n ≥ 40. ii. )1,0(~2),4,(~N nX nN X μμ-. 所以 P X P =≤-)1.0|(|μ(95.0)21.0|2|≥≤-nnX μ975.0)201(≥Φn , 查表得 ,96.1201≥n n ≥ 1537 5. 设∑==ni i X n X 11, 证明:i.∑=-ni iX12)(μ=∑=---ni i X n X X 122)()(μ;ii.∑∑==-=-ni ni i iX n X X X12122)()(.解. i.=-∑=ni iX12)(μ∑=-+-ni iX X X12)(μ=2)(12+-∑=ni iX X∑=+--ni i X X X 1))((μ∑=-ni X 12)(μ=2)(12+-∑=ni iX X∑=+--ni i X n X X 1))((μ2)(μ-X n=∑=---ni iX n X X122)()(μii.=-∑=ni i X X 12)(21121222)2(X n X X X X X X X ni i ni ini i i+-=+-∑∑∑====22122X n X n Xni i+-∑==212)(X n X ni i ∑=-。

数理统计习题(汇总)

数理统计习题(汇总)

150 162 175 165
(1) 求 Y 对 X 的线性回归方程; (2) 检验回归方程的显著性; (3) 求回归系数 b 的 95%的置信区间; (4) 取 x 0 =90,求 y 0 的预测值及 95%的预测区间。 8. 为了考察影响某种化工产品转化率的因素 , 选择了三个有关因素: 反应温度 (A)、反应时 间( B)、用碱量(C),而每个因素取三种水平,列表如下: 水平 因子 温度(A) 时间(B) 用碱量(C) 1 80℃( A1 ) 90 分( B1 ) 5%( C1 ) 2 90℃( A2 ) 120 分( B2 ) 6%( C2 ) 3 90℃( A3 ) 150 分( B3 ) 7%( C3 )
X ________, E ( X ) ______, D( X ) ______ .
3. 设 X 1 , X 2 , , X n 相互独立,且 X i N (0,1).(i 1, 2, , n) 则 的________分布。
2 4. 设 X N (0,1).Y ( n). X 与 Y 独 立 ,则 随 机 变 量 T
2
9. 某厂生产一种乐器用的合金弦线,按以往的资料知其抗拉强度(单位: kg cm 2 )服从 正态分布 N (10560,802 ) ,今用新配方生产了一批弦线,欲考察这批弦线的抗拉强度是 否有提高,为此随机抽取 10 根弦线做抗拉试验,测得其抗拉强度均值为 x 10631.4 , 均方差 s 81.00 。 (检验水平 0.05 ) 。 10. 某厂生产一种保险丝,规定保险丝熔化时间的方差不能超过 400。今从一批产品中
2 2 2 sB 1024( h2 ) ,取置信水平为 0.99 ,试求:
(1)
2 1 的区间估计。 2 2

数理统计期末练习题

数理统计期末练习题

数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于,则n 至少为多少2.设n x x ,,1 是来自)25,( N 的样本,问n 多大时才能使得95.0)1|(| x P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(| y x P .5.设161,,x x 是来自),(2 N 的样本,经计算32.5,92 s x ,试求)6.0|(| x P . 6.设n x x ,,1 是来自)1,( 的样本,试确定最小的常数c,使得对任意的0 ,有)|(|c x .7. 设随机变量 X~F(n,n),证明 )1(X9.设21,x x 是来自),0(2 N 的样本,试求22121x x x x Y 服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221 k x x x x x x11.设n x x ,,1 是来自),(21N 的样本,m y y ,,1 是来自),(22 N 的样本,c,d 是任意两个不为0的常数,证明),2(~)()(2221m n t s y d x c t md nc 其中22222,2)1()1(y x yx s s m n s m s n s 与分别是两个样本方差.12.设121,,, n n x x x x 是来自),(2N 的样本,11,n n i i x x n _2211(),1n n i n i s x x n 试求常数c 使得1n nc nx x t cs 服从t 分布,并指出分布的自由度 。

13.设从两个方差相等的正态总体中分别抽取容量为15,20的样本,其样本方差分别为,,2221s s 试求).2(2221 S S p14. 某厂生产的灯泡使用寿命)250,2250(~2N X ,现进行质量检查,方法如下:随机抽取若干个灯泡,如果这些灯泡的平均寿命超过2200h,就认为该厂生产的灯泡质量合格,若要使检查能通过的概率不低于,问至少应检查多少只灯泡?15.设 )(171x x 是来自正态分布),(2N 的一个样本,_x 与 2s 分别是样本均值与样本方差。

数理统计习题

数理统计习题

抽样分布一、 填空题1.设),,,(21n X X X ⋯是取自总体X 的简单随机样本,则n X X X ,,,21⋯必须满足(1) ;(2) 。

2.设总体X 服从参数为)0(>θθ的指数分布,),,,(21n X X X ⋯是来自X 的一个样本,X 、2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。

3.设),,,(21n X X X ⋯为来自正态总体),(2σμN 的一个随机样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。

4.设),,,(21n X X X ⋯为来自区间)8,2(上的均匀分布)8,2(U 的一个随机样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。

5.设总体X 服从自由度为n 的2χ分布,),,,(21n X X X ⋯是来自X 的一个样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。

6.设总体X 服从参数为)0(>λλ的泊松分布,),,,(21n X X X ⋯是来自X 的一个样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。

7.设),,,(21n X X X ⋯为来自参数为p n ,的二项分布的一个样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。

8.设随机变量(,)XF m n ,则函数1X。

9.设),,,(21n X X X ⋯为来自总体2(,)XN μσ的样本,则样本均值X。

10.设),,,(21n X X X ⋯为来自总体2(,)X N μσ的样本,2S 是样本方差,则22)1(σS n -服从的分布是 。

11.设随机变量()X t n ,若αλ=>}{X P ,则=-<}{λX P 。

12.设),,,(21n X X X ⋯为来自总体(0,1)X N 的样本,则∑=ni i X 12服从的分布为 。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

数理统计习题及答案

数理统计习题及答案

1一批出厂半年的人参营养丸的潮解率为8%,从中抽取20丸,求恰有一丸潮解的概率。

32816.0)1()1(,20,08.0=-====-k n kk n p p C k P n p2.设X ~N (μ,σ2),试求P{ |X-μ| ≤1.96σ}=?95.0025.0975.0)96.1()96.1()96.1()96.1()96.1()96.1()96.196.1(}96.1{=-=-Φ-Φ=--Φ--+Φ=--+=+≤≤-=≤-σμσμσμσμσμσμσμσμσμF F X P X P3.已知某药品中某成份的含量在正常情况下服从正态分布,标准差σ=0.108,现测定9个样本,其含量的均数X=4.484,试估计药品中某种成份含量的总体均数μ的置信区间(α=0.05)。

3、解:置信区间为)55456.4,41344.4(9108.096.1484.42_=⨯±=±nu x σα4.某合成车间的产品在正常情况下其收率X ~N (μ,σ2),通常收率的标准差σ=5%以内就可以认为生产是稳定的,现生产9批,得收率(%)为:73.2,78.6,75.4,75.7,74.1,76.3,72.8,74.5,76.6。

问此药的生产是否稳定?(α=0.01) 4、解:H 0:σ≤5 H 1:σ>5n=9,s=1.81873,选择统计量058489.125484.26)1(222==-=σχs n令α=0.01,查临界值表得6465.1)8(201.0=χ,0902.20)8(299.0=χ比较统计量的数值和临界值,1.<1.6465,从而不能否定原假设H 0,即总体的标准差在5%以内,生产是稳定的。

5 中药研究所,用中药青兰试验其在改变兔脑血流图所起的作用,测得数据如下: 用药前 2.0 5.0 4.0 5.0 6.0 用药后3.06.04.55.58.0试用配对比较的t 检验说明青兰对兔脑血流图的作用(α=0.05)。

(完整版)数理统计课后习题答案—杨虎

(完整版)数理统计课后习题答案—杨虎

习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他 4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ 2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表1 0.9 0.8 0.7 0.6 0.5 0.4 0.30.2 0.11 2 3 4 xy5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().niX i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ 10.解:1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)nii DXX n σ=∴-=-∑ 11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u e du u du +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎛⎫⎛=Φ-Φ-=Φ-≥⎪⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-((12(2(12P T P T pP T p p P T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=-又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N nnσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P XP X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m n i i m X n χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m n i i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P c T P c S X P c S X P c X S P μμμ27.解:22cov(,)(,))(1()()1cov(,)()1(,)1j i j j i j i j i j i j i j X X X X r X X X X D X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=---=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:00ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x txEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰ Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ====极大似然估计:()()/1111exp ,ln ln i nx ni n L enx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫⎛== ⎪⎝⎝⎭∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。

数理统计复习题

数理统计复习题

数理统计习题集一、单选题1.设随机变量X 服从二项分布B(n,p),则DXEX=( ) A. n B. p C.11p- D. 1-p 2. 设X ~N (0,1) Y ~x 2(n ),且X 与Y( ) A. 正态分布 B. χ2分布 C. t 分布D. F 分布3. 在假设检验中,原假设H 0,备择假设H 1,则称( )为犯第二类错误。

A.H 0为真,接受H 1 B.H 0不真,接受H 0 C.H 0为真,拒绝H 1D.H 0不真,拒绝H 04. 无论σ2是否已知,正态总体均数μ的置信度为1-α的置信区间的中心都是( ) A. μ B. X C.σ2D.S 25. 对两变量的散点图拟合最好的回归线,必须满足一个基本条件是( ) A.1()niii y y =-∑最小B.1()niii y y =-∑最大C.1()niii y y =-∑2最小 D.1()niii y y =-∑2最大6.设X ~N(μ,σ2),X 1,X 2…Xn 是它的一个简单随机样本,则∑==ni iX n X 11服从( )。

A N(μ,σ2/n) B N(μ,σ2) C N(μ,σ/n) D N(μ,σ2/n 2) 7. 比较身高和体重两组数据变异度大小宜采用( )A 极差B 方差C 标准差D 变异系数 8. 单因素方差分析的备择假设H 1是( )。

A 两组均数全相同B 两组均数不全相同C 多组均数不全相同D 多组均数全相同9. 设X~N(μ1, 21σ),Y~N(μ2,22σ))为两独立总体,X,Y 的样本方差分别是2221,S S ,两样本容量分别是n 1和n 2,在H 0∶σ1=σ2为真时,统计量F=2221S S 服从的分布是( )A.F(n 1,n 2)B.F(n 1-1,n 2-1)C.F(n 2,n 1)D.F(n 2-1,n 1-1)10. 在《伤寒论》中使用桂枝的36张处方中,桂枝的用量服从正态分布,总体标准差σ=3g ,现取36张处方得样本均数χ=8.14,试以α=0.05估计桂枝用量均数μ的置信区间为( )A (7.20,9.08)B (-1.96,1.96)C (7.20,9.12)D (7.16,9.12)11. 分析某药有效成分的提取萃率,不同工艺对该药主要成分含量的影响,工艺中涉及到4因素,每因素有2水平。

数理统计习题数理统计练习题

数理统计习题数理统计练习题

数理统计习题数理统计练习题数理统计⼀、填空题1.设n X X X ,,21为母体X 的⼀个⼦样,如果),,(21n X X X g ,则称),,(21n X X X g 为统计量。

2.设母体 ),,(~2N X 已知,则在求均值的区间估计时,使⽤的随机变量为 3.设母体X 服从⽅差为1的正态分布,根据来⾃母体的容量为100的⼦样,测得⼦样均值为5,则X 的数学期望的置信⽔平为95%的置信区间为。

4.假设检验的统计思想是。

⼩概率事件在⼀次试验中不会发⽣5.某产品以往废品率不⾼于5%,今抽取⼀个⼦样检验这批产品废品率是否⾼于5%,此问题的原假设为。

6.某地区的年降⾬量),(~2N X ,现对其年降⾬量连续进⾏5次观察,得数据为:(单位:mm) 587 672 701 640 650 ,则2的矩估计值为。

7.设两个相互独⽴的⼦样2121,,,X X X 与51,,Y Y 分别取⾃正态母体)2,1(2N 与)1,2(N , 2221,S S 分别是两个⼦样的⽅差,令22222121)(,S b a aS ,已知)4(~),20(~222221 ,则__________, b a 。

8.假设随机变量)(~n t X ,则21X 服从分布。

9.假设随机变量),10(~t X 已知05.0)(2X P ,则____ 。

10.设⼦样1621,,,X X X 来⾃标准正态分布母体)1,0(N ,X为⼦样均值,⽽01.0)( X P ,则____11.假设⼦样1621,,,X X X 来⾃正态母体),(2N ,令 161110143i i i iX XY ,则Y 的分布12.设⼦样1021,,,X X X 来⾃标准正态分布母体)1,0(N ,X 与*2S 分别是⼦样均值和⼦样⽅差,令2*210X Y S ,若已知01.0)( Y P ,则____ 。

13.如果,?1 2都是母体未知参数的估计量,称1? ⽐2? 有效,则满⾜。

数理统计期末练习题

数理统计期末练习题

数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,(μN 的样本,问n 多大时才能使得95.0)1|(|≥<-μx P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(|>-y x P .5.设161,,x x 是来自),(2δμN 的样本,经计算32.5,92==s x ,试求)6.0|(|<-μx P .6.设n x x ,,1 是来自)1,(μN 的样本,试确定最小的常数c,使得对任意的0≥μ,有α≤<P )|(|c x .7. 设随机变量 X~F(n,n),证明 =<P )1(X9.设21,x x 是来自),0(2σN 的样本,试求22121⎪⎪⎭⎫ ⎝⎛-+=x x x x Y 服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221=⎪⎪⎭⎫ ⎝⎛>++-+P k x x x x x x11.设n x x ,,1 是来自),(21σμN 的样本,m y y ,,1 是来自),(22σμN 的样本,c,d 是任意两个不为0的常数,证明),2(~)()(2221-+-+-=+m n t s y d x c t md n c ωμμ其中22222,2)1()1(yx y x s s m n s m s n s 与-+-+-=ω分别是两个样本方差.12.设121,,,+n n x x x x 是来自),(2σμN 的样本,11,n n i i x x n ==∑_2211(),1n n i n i s x x n ==--∑试求常数 c 使得1n nc nx x t cs +-=服从t 分布,并指出分布的自由度 。

数理统计期末练习题

数理统计期末练习题

数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,( N 的样本,问n 多大时才能使得95.0)1|(| x P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(| y x P .5.设161,,x x 是来自),(2 N 的样本,经计算32.5,92s x ,试求)6.0|(| x P .6.设n x x ,,1 是来自)1,( 的样本,试确定最小的常数c,使得对任意的0 ,有 )|(|c x .7. 设随机变量 X~F(n,n),证明 )1(X9.设21,x x 是来自),0(2N 的样本,试求22121 x x x x Y 服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221k x x x x x x11.设n x x ,,1 是来自),(21N 的样本,m y y ,,1 是来自),(22 N 的样本,c,d 是任意两个不为的常数,证明),2(~)()(2221m n t s y d x c t md nc 其中22222,2)1()1(y x yx s s m n s m s n s 与分别是两个样本方差.12.设121,,, n n x x x x 是来自),(2N 的样本,11,n n i i x x n _2211(),1n n i n i s x x n 试求常数 c 使得1n nc nx x t cs 服从t 分布,并指出分布的自由度 。

13.设从两个方差相等的正态总体中分别抽取容量为15,20的样本,其样本方差分别为,,2221s s 试求).2(2221S S p14. 某厂生产的灯泡使用寿命)250,2250(~2N X ,现进行质量检查,方法如下:随机抽取若干个灯泡,如果这些灯泡的平均寿命超过2200h,就认为该厂生产的灯泡质量合格,若要使检查能通过的概率不低于0.997,问至少应检查多少只灯泡?15.设 )(171x x 是来自正态分布),(2N 的一个样本,_x 与 2s 分别是样本均值与样本方差。

(完整版)数理统计课后习题答案—杨虎

(完整版)数理统计课后习题答案—杨虎

习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他 4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ 2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表1 0.9 0.8 0.7 0.6 0.5 0.4 0.30.2 0.11 2 3 4 xy5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().niX i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ 10.解:1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)nii DXX n σ=∴-=-∑ 11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u e du u du +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎛⎫⎛=Φ-Φ-=Φ-≥⎪⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-((12(2(12P T P T pP T p p P T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=-又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N nnσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P XP X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m n i i m X n χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m n i i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P c T P c S X P c S X P c X S P μμμ27.解:22cov(,)(,))(1()()1cov(,)()1(,)1j i j j i j i j i j i j i j X X X X r X X X X D X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=---=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:00ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x txEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰ Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ====极大似然估计:()()/1111exp ,ln ln i nx ni n L enx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫⎛== ⎪⎝⎝⎭∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。

数理统计第六章(习题)

数理统计第六章(习题)

~
15S2 2
~
(15)
2
2 S2 15 S p 2 2.04 p 2.0415 2
p (15) 30.6 0.99

2


4:分别从方差为20和35的正态总体抽取容量为8和9
两个样本,求第一个样本修正方差不小于第二个样本
2 1 n 2 2 2 2 b Yi 2abY a b Y 2abY a 2 n i 1 2
n 1 2 2 2 2 b Yi b Y n i 1
n 2 1 2 2 2 2 b [ Yi Y ] b S y n i 1
练习6.2
2. 2 ~ 2 (15),T ~ t (25), F ~ F (8,15),求x满足 (1)P(2 x) 0.025 (2)P( T x) 0.10
2
n2
X
j 1
n2
2 j
n2 S 2 n2 X 2
2
n1S1 n1 X 1 n2 S2 n2 X 2 n1 X 1 n2 X 2 2 S ( ) n1 n2 n1 n2
2
2
2
2
2
n1S1 n2 S 2 (n1 X 1 n2 X 2 )(n1 n2 ) S 2 n1 n2 (n1 n2 )
(3)P(T x) 0.025 (4)P(F x) 0.01 解: (1)P(2 x) 1 P(2 x) 0.025 2 2 x ) 27.5 P( x) 0.975 0.975 (15
(2)P( T x) 1 P{ T x} 1 [2P{T x} 1] 2 2P{T x} 2 2P{T x} 0.1 P{T x} 0.95 x t 0.95 (25) 1.7081 (3)P(T x) 0.025 1 P(T x) 0.025

数理统计习题

数理统计习题

1、 事件A 表示“甲药品畅销,乙药品滞销”,则A 的对立表示
2、 从0,1,2,……,9十个数中任意选3个不同的数字,试求下列事件概率
A=“三个数字中不含0和5”;
B=“三个数字中不含0或5”;
C=“三个数字中不含0但含5”;
3、 在11张卡片上写probability 这11个字母,从中任意抽取7张进行排列,求排列结果为
ability 的概率。

4、 考虑一元二次方程02=++C Bx x ,其中B,C 分别表示将一枚骰子连续掷两次先后出
现的点数,求该方程有实根的概率p 和有重根的概率q 。

5、 A,B 为随机事件,P (A )=0.7,P (A-B )=0.3,则=)(AB P
6、 0)(,41)()()(==
==AB P C P B P A P ,16
1)()(==BC P AC P ,则A,B,C 全部发生的概率为?
7、 已知A,B 仅发生一个的概率为0.4,且6.0)()(=+B P A P ,则A,B 至少一个不发生的概
率为?
8、 假定10个不同规格的零件中混入了3个次品,线逐个检查,查完9个零件时正好查出3
个次品的概率?
9、 甲袋中有9个乒乓球,3个白球6个黄球,乙袋中也有9个乒乓球,5个白球4个黄球,
首先从甲袋任取一球放在乙袋,再从乙袋任取一球放入甲袋,则甲袋中白球数量不变的概率?
10、 设10件产品中有4件次品,从中任取2件,已知所取两件产品中有一件是次品,
则另一件也是次品的概率?
11、 从数1,2,3,4中任取一个数,记为X ,再从1,……,X 中任取一个数为Y ,则 P (Y=2)的概率?
12、n 个人排成一队,已知甲总排在乙前面,求乙恰好紧排在甲后面的概率?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从而拒绝,即在=0.05的水平下认为该地区当前的鸡蛋售价不低于往年
三、(8分)解: 置信水平为0.95的的区间估计为
, ----------4分
其中,,
,,区间估计为:--8分
四、(10分)解:(1)因为,所以
----------2分
所以,时
----------5分
(2) --10分
五、(8分)解:因为
1
5
1
25
5
2
17
4
289
34
3
24
9
576
72
4
33
16
1089
132
5
41
25
1681
205
=15
=120
=3660
这里x是一般变量,Y是随机变量,试求 (1) 变量Y关于x的回归方程 (2)检验方程的有效性
八. (20分) 设为总体的一个样本,.
(1)求参数的矩估计量与极大似然估计量, (2)求可估计函数的有效估计量,和信息量
已知, =0.64,n=17, 算得 ―9分
从而拒绝,即在=0.05的水平下认为该地区当前的鸡蛋售价低于往年
解法2:本问题是在下检验假设
----------2分
――10分
由于未知,所以在成立的条件下拒绝域为,

----------------------6分
已知, =0.64,n=17, 算得 -―9分
九、(10分)
解:
--------------2分
―――――4分
―――――――――――6分
方差分析表
方差来源
平方和
自由度
均方和
F值
组间
6.8
2
3.4
0.32
组内
223.7
21
10.7
――10分
总和
230.5
23
由于接受原假设,即认为不同切除方法对小麦单株粒重的影响在0.05水平 --------------10分
为所求方程.
――――――――7分
(2)
―――――9分
――――――――11分
回归方差分析表
方差来源
平方和
自由度
均方和
F值
回归
774.4
1
774.4
414.1
剩余
5.6
3
1.87
总和
780.0
4
---12分
八. (25分)解:
-------------5分
---------10分
---------20分
()
A. B. C. D. 二、(10分)现对某地区17个集市的鸡蛋价格进行调查,已知这17个集 市的平均价格为元/500克,样本方差为=0.64。已知往年的平均售价一 直稳定在3.25元左右且服从正态分布,能否认为该地区当前的鸡蛋售价 低于往年?(=0.05) 三、(8分)设总体服从正态分布,为其样本观察值,已知 试求置信水平为0.95的的区间估计。 四、(10分)设为取自总体的样本,求 (1)常数,使得服从分布,并指出自由度。 (2)求 七.(12分)大豆栽培实验中,测得株龄(x)与树高(Y)数据,
九、(10分)用一定数量的小麦品种进行切胚乳实验,设计分三种处 理:为整粒小麦,为切去一半胚乳,为切除全部胚乳。同期播种于条件 较为一致的花盆内,成熟后进行单株考察,每株粒重结果如下表,试检 验三种不同方法对每株粒重的影响(取0.05)
小麦切胚乳实验单株粒重
1 2 3 4 5 6 7 8 9 10
21 29 24 22 25 30 27 26
204 25.5
20 25 25 23 29 31 24 26 20 21 244 24.4
24 22 28 25 21 26
146 24.3
=2题,选择题9分,每空3分)
2.(B)
二、(10分)解法1:本问题是在下检验假设 ----2分
解法1:由于未知,所以在成立的条件下拒绝域为, ,--6分
所以且当时,取达最大值,即

--------4分
从而对给定的,得
即,因为当成立时,,查表得
,所以,即所求拒绝域为
.
------------------8分
七.(12分) 解:(1)设回归方程为
-----------------2分
―――――4分
------------------------------6分
2008-2009学年第 1学期
考试科目: 数理统计
考试类型:(闭卷)考试 考试时间: 120 分钟
学号
姓名
年级专业
题号 一 二 三 四 五 六 七 八 九 总分
得分
评阅 人 已知: [ 附 正态分布、分布、分布、分布数值表 ]

一、(填空题,选择题9分,每空3分) 2.设是取自总体的样本,为样本均值,又记,,,,则服从分布的统计量为
相关文档
最新文档