人教版初中数学分式知识点训练附答案

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

人教版 初中数学八年级上册 第十五章 分式 复习习题 (含答案解析)

人教版 初中数学八年级上册 第十五章 分式 复习习题 (含答案解析)

人教版初中数学八年级上册第十五章分式复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.使代数式有意义的自变量x的取值范围是()A.x≥3B.x>3且x≠4C.x≥3且x≠4D.x>32.下列说法,你认为正确的是()A.0的倒数是0 B.3-1=-3C.π是有理数D.是有理数3.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠24.分式方程的解为()A.B.C.D.无解5.已知,则的值是A.60B.64C.66D.72在实数范围内有意义,则x的取值范围是( )6.若-A.x<B.x≤C.x≠D.x>7.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A.B.C.D.8.若分式的值为0,则x的值为()A.-2B.0C.2D.±29.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=10.若代数式在实数范围内有意义,则x的取值范围为()A . x >0B . x ≥0C . x ≠0D . x ≥0且x ≠1 11.关于x 的分式方程的解为非负数,且使关于x 的不等式组有解的所有整数k 的和为( )A . ﹣1B . 0C . 1D . 212.若x 取整数,则使分式的值为整数的x 值有 A . 3个 B . 4个 C . 6个 D . 8个13.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是 A . 2 B . 3 C . 4 D . 5 14.下列等式正确的是 ( ) ①0.000126=1.26×10-4②3.10×104=31000③1.1×10-5=0.000011 ④12600000=1.26×106A . ①②B . ②④C . ①②③D . ①③④15.若数a 使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a 的值之积为( ) A . 28 B . ﹣4 C . 4 D . ﹣2 16.若关于x 的方程无解,则m 的值为A .B .C .D . 17.如果成立,那么下列各式一定成立的是( )A .B .C .D .18.关于x 则实数m 的取值范围是( ) A . m<-6且m≠2 B . m >6且m≠2 C . m<6且m≠-2 D . m<6且m≠2 19.下列运算正确的是( ) A .11x y x y xy--= B .=-1b aa b b a +-- C . 21111a a a --=--+ D . 2111·1a a a a a--=-+20.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子的最小值是”.其推导方法如下:在面积是的矩形中设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是.模仿张华的推导,你求得式子的最小值是().A.B.C.D.二、填空题21.如果a+b=2,那么代数式(a﹣)÷的值是______.22.已知x为正整数,当时x=________时,分式的值为负整数.23.计算:=__.24.分式方程的解为__________.25.一个铁原子的质量是,将这个数据用科学记数法表示为__________.26.已知,则=_____.27.已知2n+2-n=k(n为正整数),则4n+4-n=____________.(用含k的代数式表示)28.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______________.29.请观察一列分式:﹣,,﹣,,…则第11个分式为_____.30.分式和的最简公分母是____________.31.若关于x的方程有增根,则a的值为________.32.对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=_____.33.要使关于x a的取值范围是___..34.当x 取_____时,分式有意义.35.已知a 1=,a 2=,a 3=,…,a n +1=(n 为正整数,且t≠0,1),则a 2018=______(用含有t 的式子表示). 36.对于正数x ,规定 f (x )=,例如:f (4)== ,f ( )==,则f (2017)+f (2016)+…+f (2)+f (1)+f ()+f ()+…+f ()+f ()= .37.如果关于x 的不等式组(){2432x mx x ->-<-的解集为,且关于的分式方程有非负整数解,则符合条件的所有m 的取值之积为( )A .B .C .D . 15-38.已知(x+3)2 - x =1,则x 的值可能是___________;39.若关于x 的方程=3的解是非负数,则b 的取值范围是_____. 40.若分式方程1x aa x -=+无解,则a =________.三、解答题41.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.) 42.解分式方程:2311xx x x +=--. 43.计算:.44.先化简,再求值:,其中 是不等式组的整数解.45.先化简,再求值:,其中m= +1.46.先化简,再求值:,其中 .47.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?48.计算:(1)3a5÷(6a3)•(﹣2a)2;(2)(3.14﹣π)0+0.254×44﹣()﹣149.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?50.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?51.先化简,再求值:(-其中52.已知,,求()的值.53.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?54.计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|55.(1)计算:;(2)化简并求值:,其中,.56.解方程:57.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A ,B 两种机械设备,每台B 种设备的成本是A 种设备的1.5倍,公司若投入16万元生产A 种设备,36万元生产B 种设备,则可生产两种设备共10台.请解答下列问题: (1)A 、B 两种设备每台的成本分别是多少万元?(2)若A ,B 两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A 种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A 种设备,航空运输每次运2台B 种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数. 58.计算:﹣12018﹣|1﹣ |+()﹣1+(3.14﹣π)0+ .59.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元? 60.计算:(2b ax )2÷(﹣3ax b)×38ab .61.(2017云南省,第18题,6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元. (1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和. 62.解方程(1)﹣1=.(2).63.某校计划在暑假两个月内对现有的教学楼进行加固改造,经调查发现,甲、乙两个工程队都有能力承包这个项目,已知甲队单独完成工程所需要的时间是乙队的2倍,甲、乙两队合作12天可以完成工程的;甲队每天的工作费用为4500元,乙队每天的工作费用为10000元,根据以上信息,从按期完工和节约资金的角度考虑,学校应选择哪个工程队?应付工程队费用多少元?64.我市向民族地区的某县赠送一批计算机,首批270台将于近期启运.经与某物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B型汽车比A型汽车每辆车可多装15台,求A、B两种型号的汽车各能装计算机多少台?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元.若运送这批计算机同时用这两种型号的汽车,其中B型汽车比A型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆运费多少元?65.先化简,再求值:,其中.66.先化简,再求值:,其中x的值从不等式组的整数解中选取.67.解方程:68.先化简,再求值:,其中x满足x2-2x-2=0.69.某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.70.若关于的方程的解为正数,求的取值范围.71.计算题(1)先化简,再求值:÷(1+),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 72.已知关于x 的分式方程.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 73.已知关于x 的方程4433x mm x x---=--无解,求m 的值. 74.计算:(1)a (a +2b )﹣(a ﹣2b )(a +b )(2 75.阅读理解:把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131xx --表示成部分分式?设分式=将等式的右边通分得: =得: 3{ 1m n m n +=--=,解得: 1{ 2m n =-=-,(1m = ,n = ;(276.某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种运动休闲衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完. (1)商厦第一批和第二批各购进休闲衫多少件? (2)请问在这两笔生意中,商厦共盈利多少元? 77.先化简,再求值:,其中x=﹣3.78.A ,B 两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A ,B 两地同时出发匀速前往B ,A 45分钟. (1)求甲车速度;(2)乙车到达A 地停留半小时后以来A 地时的速度匀速返回B 地,甲车到达B 地后立即提速匀速返回A 地,若乙车返回到B 地时甲车距A 地不多于30千米,求甲车至少提速多少千米/时?79.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成; (B )乙队单独完成这项工程要比规定工期多用4天;(C )若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工. 为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由. 80.已知关于x 的分式方程2=+4m x x 与分式方程3121x x =-的解相同,求m 2-2m 的值.81.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?82,其中A 、B 为常数,求42A B -的值. 83.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.84.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?85.化简:.86.化简(+a﹣2)÷.87.先化简,再求值:,其中88.先化简再求值:÷(x﹣1﹣),其中x=(1)2017×(﹣)2018.89.先化简,再求值:﹣÷,其中x=2.90.已知,,,求的值.91.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则;等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.任何一个假分式都可以化成整式与真分式的和;(1)下列分式中,属于真分式的是:________(填序号);(2)________+________;(3)__________________. 92.先化简,再计算: 其中.93.为加快城市群的建设与发展,在A,B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.94.阅读思考:数学课上老师出了一道分式化简求值题目.题目:÷(x+1)·-,其中x=-.“勤奋”小组的杨明同学展示了他的解法:解:原式=- ..................第一步=-................ ..第二步 =..........................第三步=..................................第四步 当x =-时,原式=.......................第五步请你认真阅读上述解题过程,并回答问题:你认为该同学的解法正确吗?如有错误,请指出错误在第几步,并写出完整、正确的解答过程.95.湖州市在2017年被评为“全国文明城市”,在评选过程中,湖州市环卫处每天需负责市区范围420千米城市道路的清扫工作,现有环卫工人直接清扫和道路清扫车两种马路清扫方式.已知20名环卫工人和1辆道路清扫车每小时可以清扫20千米马路,30名环卫工人和3辆道路清扫车每小时可以清扫42千米的马路. (1)1名环卫工人和1辆道路清扫车每小时各能清扫多长的马路?(2)已知2017年环卫处安排了50名环卫工人参与了直接清扫工作,为保证顺利完成每日的420千米清扫工作,需派出多少辆道路清扫车参与工作(已知2017年环卫工人与清扫车每天工作时间为6小时)?(3)为了巩固文明城市创建成果,从2018年5月开始,环卫处新增了一辆清扫车参与工作,同时又增加了若干个环卫工人参与直接清扫,使得每日能够较早的完成清扫工作。

人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)

人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)

一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .129.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2<10.若分式()22222x y x y a x a yax ay+-÷-+的值等于5,则a 的值是( )A .5B .-5C .15D .15-11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.020*******)(0.125)8+⨯的结果是( )A B 2C .2D .013.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x+ D .21xx + 14.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<< B .012x x x -<<C .021x x x -<<D .120x x x -<<15.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题16.已知5a b +=,6ab =,b aa b+=______. 17.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 18.已知5,3a b ab -==,则b aa b+的值是__________. 19.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.20.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .22.计算:2120192-⎛⎫-= ⎪⎝⎭______. 23.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.24.已知(3)1a a -=,则整数a 的值为______. 25.方程11212x x =+-的解是x =_____. 26.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题27.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 28.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 29.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 30.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =.。

(完整版)初中数学分式章节知识点及典型例题解析

(完整版)初中数学分式章节知识点及典型例题解析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。

(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。

2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。

12+x x C 。

133+x x D 。

25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。

—1或—3 C 。

-1 D 。

3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。

初二数学上册(人教版)第十五章分式15.1知识点总结含同步练习及答案

初二数学上册(人教版)第十五章分式15.1知识点总结含同步练习及答案

x+1 2x + 3 ;(2) . 2x 3x − 5 x+1 解:(1) 要使 有意义,则分母 2x ≠ 0,即 x ≠ 0; 2x 2x + 3 5 (2) 要使 有意义,则分母 3x − 5 ≠ 0,即 x ≠ . 3x − 5 3 x+2 的值为 0 ? 2x − 3 x+2 解: = 0 ,即 x + 2 = 0 , 2x − 3 解得 x = −2 且 2x − 3 ≠ 0 . 所以当 x = −2 时,该分式值为 0 .
① 在分式 分式的基本性质 分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变,即
约分 约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分(reduction of a fraction). 一个分式的分子与分母没有公因式时,叫做最简分式.化简分式时,通常要使结果成为最简分式 或者整式. 通分 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分(reduction of fractions to a common denominator). 各分式分母中的系数的最小公倍数与所有字母(或因式)的最高次幂的积,叫做最简公分母.
当 x 取何值时,分式
5xy . 20y 2 5xy 5y ⋅ x x 解: . = = 2 5y ⋅ 4y 4y 20y
化简
2a c x , , . b ab 2ab 解:最简公母为 2ab . 2a 4a2 , = b 2ab c 2c , = ab 2ab x x . = 2ab 2ab
通分
四、课后作业
1. 使分式
(查看更多本章节同步练习题,请到快乐学)
2 有意义的 x 的取值范围是 ( x−2 A.x ⩽ 2 B.x ⩽ −2

分式知识点总复习含答案

分式知识点总复习含答案

分式知识点总复习含答案一、选择题1.下列各式从左到右变形正确的是( )A .13(1)223x y x y ++=++ B .0.20.03230.40.0545a b a d c d c d --=++ C .a b b a b c c b--=-- D .22a b a b c d c d --=++ 【答案】C【解析】【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】 A 、该式子不是方程,不能去分母,故A 错误;B 、分式中的分子、分母的各项没有同时扩大相同的倍数,故B 错误;C 、a-b b-a =d-c c-d故C 正确; D 、分式中的分子、分母的各项没有同时除以2,故D 错误.故选C .【点睛】本题考查了分式的基本性质,解题的关键是熟练运用性质.2.若2250(0)a ab b ab ++=≠,则b a a b +=( ) A .5B .-5C .5±D .2± 【答案】B【解析】【分析】根据题意,先得到225a b ab +=-,代入计算即可.【详解】解:∵2250(0)a ab b ab ++=≠,∴225a b ab +=-, ∴2255b a a b ab a b ab ab+-+===-; 故选:B.【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.3.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0【答案】B【解析】【分析】 根据分式的值为零的条件可以求出x 的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=,∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.5.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +-D .44m m -+ 【答案】B【解析】【分析】根据分式的加减运算法则计算,再化简为最简分式即可.【详解】21644m m m+-- =2164m m -- =(4)(4)4m m m +-- =m+4.故选B.【点睛】 本题考查分式的加减.同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.熟练掌握运算法则是解题关键.6.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×105【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m ,这个数据用科学记数法表示7×10﹣5.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d【答案】B【解析】【分析】根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a ,b ,c ,d 的值,再比较大小即可.【详解】∵a =-0.22=-0.04,b =-2-2=14-,c =(-12)-2=4,d =(-12)0=1, -0.25<-0.04<1<4∴b <a <d <c故选B.【点睛】此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.8.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.9.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==- 【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.10.0000005=5×10-7故答案为:B.【点睛】本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.11.若115a b =,则a b a b -+的值是( ) A .25 B .38 C .35 D .115【答案】B【解析】【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】 解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.12.化简(a ﹣1)÷(1a ﹣1)•a 的结果是( ) A .﹣a 2B .1C .a 2D .﹣1 【答案】A【解析】分析:根据分式的混合运算顺序和运算法则计算可得.详解:原式=(a ﹣1)÷1a a-•a=(a ﹣1)•()1a a --•a =﹣a 2,故选:A . 点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.13.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.14.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y 【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式; B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式;D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.15.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 【答案】B【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【详解】 原式()211a a a =-+- 22111a a a a -=--- 11a =-. 故选B .【点睛】 本题考查分式的通分和分式的约分的运用,解题关键在于在解答的过程中注意符号的运用及平方差公式的运用.16.一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A .4510⨯﹣B .5510⨯﹣C .4210⨯﹣D .5210⨯﹣【答案】D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】150000=0.00002=2×10﹣5. 故选D .【点睛】 本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.已知1112a b -=,则ab a b -的值是 A .12 B .-12 C .2 D .-2 【答案】D【解析】分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可. 解答:解:∵, ∴a ab -=, ∴=, ∴=-2.故选D .18.把分式a a b+中的,a b 的值同时扩大为原来的10倍,则分式的值( ) A .不变 B .缩小为原来的110C .扩大为原来的10倍D .扩大为原来的100倍【答案】A【解析】【分析】 根据分式的基本性质,把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++,即可得到答案. 【详解】把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++, 即分式a a b+的值不变, 故选:A .【点睛】 本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键.19.已知23x y =,那么下列式子中一定成立的是 ( ) A .5x y +=B .23x y =C .32x y =D .23x y = 【答案】D【解析】【分析】 根据比例的性质对各个选项进行判断即可.【详解】A. ∵23x y =,∴3x =2y ,∴ 5x y += 不成立,故A 不正确; B. ∵23x y =,∴3x =2y ,∴ 23x y =不成立,故B 不正确; C. ∵23x y =,∴23x y =y ,∴ 32x y =不成立,故C 不正确; D. ∵23x y =,∴23x y =,∴ 23x y =成立,故D 正确; 故选D.【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a ,b ,c ,d ,且有b ≠0,d ≠0,如果a c b d=,则有a b c d =.20.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D【解析】。

分式专题(含答案)

分式专题(含答案)

.分式专题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。

1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( )个2.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( )个 二、分式基本性质1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( )A 不变B 扩大2倍C 扩大4倍D 缩小一半4、已知31=b a ,分式ba ba 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) 三、分式无意义与有意义,1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x ______时有意义.3.当x____时,分式||2x x -有意义.4.2(3)--x 的取值范围是_______.5. 当x_____________时,式子23+x x ÷322--x x 有意义 四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是x____.3.在分式2242x x x ---中,当x ____时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---, xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )个六、通分 1、分式222439xx x x --与的最简公分母是___ ___________. 2、分式yx 21,323x y,232xy x +的最简公分母是( ) 3、把下列各组分式通分 (1)243,2bac bd c (2),412-a 21-a七、分式运算 1、化简xy x x 1⋅÷的结果是( ) 2、22332p mn p n nm÷⎪⎪⎭⎫ ⎝⎛⋅; 3、aa a -+-21422; 4、112---x x x ; 5、⎪⎪⎭⎫ ⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.9、先化简,再求值:1312-÷+x xx x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝ ⎛⎭⎪⎫ 1 x -1 + 1 x +1 ÷ 6x ,其中x =1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x xxx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。

人教版初中数学方程与不等式之分式方程技巧及练习题附答案解析

人教版初中数学方程与不等式之分式方程技巧及练习题附答案解析

人教版初中数学方程与不等式之分式方程技巧及练习题附答案解析一、选择题1.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2C .x =﹣1D .无解【答案】D 【解析】 【分析】观察式子确定最简公分母为(x+1)(x ﹣1),再进一步求解可得. 【详解】方程两边同乘以(x+1)(x ﹣1),得: x (x+1)﹣(x 2﹣1)=2, 解方程得:x =﹣1,检验:把x =﹣1代入x+1=0, 所以x =﹣1不是方程的解. 故选:D . 【点睛】此题考查分式方程的解,掌握运算法则是解题关键2.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x 个零件,根据题意可列方程为( )A .60045025x x =- B .60045025x x =- C .60045025x x=+ D .60045025x x =+ 【答案】C 【解析】 【分析】原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程. 【详解】由题意得:现在每天生产(x+25)个,∴60045025x x =+, 故选:C. 【点睛】此题考查分式方程的实际应用,正确理解题意是列方程的关键.3.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.如果关于x 的不等式(a +1)x >2的解集为x <-1,则a 的值是( ). A .a =3 B .a ≤-3C .a =-3D .a >3【答案】C 【解析】 【分析】根据不等式的解集得出关于a 的方程,解方程即可. 【详解】解:因为关于x 的不等式(a +1)x >2的解集为x <-1, 所以a+1<0,即a <-1,且21a +=-1,解得:a=-3. 经检验a=-3是原方程的根 故选:C .【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.5.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案. 【详解】 解:211x kx x-=--Q, 21x kx +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.6.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x=- D .90606x x=+ 【答案】A 【解析】解:设甲每小时做x 个零件,则乙每小时做(x ﹣6)个零件,由题意得:90606x x =-.故选A .7.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0, 解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.8.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x=- D .120100x 10x=+ 【答案】A 【解析】 【分析】 【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100 x x10=-.故选A.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x天,则下面所列方程正确的是()A.4116xx x+=+-B.416xx x=-+C.4116xx x+=--D.4116xx x+=-+【答案】D 【解析】【分析】首先根据工程期限为x天,结合题意得出甲每天完成总工程的11x-,而乙每天完成总工程的16x+,据此根据题意最终如期完成了工程进一步列出方程即可.【详解】∵工程期限为x天,∴甲每天完成总工程的11x-,乙每天完成总工程的16x+,∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,∴可列方程为:4116xx x+=-+,故选:D.【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.1515112x x-=+B.1515112x x-=+C.1515112x x-=-D.1515112x x-=-【答案】B【解析】【分析】设小李每小时走x千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B . 【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+ B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y ky ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣6【答案】A 【解析】 【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案. 【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k ,∵不等式组只有4个整数解, ∴0≤﹣3k<1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选A . 【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.13.方程31144x x x --=--的解是( ) A .-3 B .3C .4D .-4【答案】B 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】去分母得:3-x-x+4=1, 解得:x=3,经检验x=3是分式方程的解. 故选:B . 【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34yy a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15C .﹣6D .﹣4【答案】D 【解析】 【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可. 【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4, 整理得:(a ﹣2)x =﹣12(a ﹣2≠0), 解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10, 当a =﹣2时,x =3,原分式方程无解, 所以a =1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9y a -⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4, ∴a =1,0,﹣1,﹣4,之和为﹣4, 故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.15.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x-= B .3030101.5x x-= C .3630101.5x x -= D .3036101.5x x+=【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.16.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.17.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B试题解析:设他上月买了x 本笔记本,则这次买了(x+2)本, 根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.18.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .60048040x x =+ C .60048040x x =+ D .60048040x x =- 【答案】B 【解析】 【分析】由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可. 【详解】解:设原计划每天生产x 台机器,根据题意得:48060040x x =+. 故选B . 【点睛】读懂题意,用含x 的代数式表达出原来生产480台机器所需时间为480x天和现在生产600台机器所需时间为60040x +天是解答本题的关键.19.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x ax -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( ) A .1个 B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.20.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,则可以列出方程为( )A .480360140x x =-B .480480140x x =-C .480360140x x +=D .360480140x x-= 【答案】A【解析】【分析】设甲每天做x 个零件,根据甲做480个零件与乙做360个零件所用的时间相同,列出方程即可.【详解】解:设甲每天做x个零件,根据题意得:480360140x x=-,故选:A.【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.。

分式的基本性质练习及答案

分式的基本性质练习及答案

分式的基本性质练习及答案分式的基本性质练及答案一、判断正误并改正:① y6a2-b2(-a-b)2/3 = y(6a2-b2)/(a-b)② (x+ax)/(x+2)(x-3)(x+y)+(x-y)/y+ay = -1/(2+x) = (x-y)/(x+y)(x-y)2二、认真选一选1.下列约分正确的是: C。

a/(b-a) = 2/(2b-a)2.下列变形不正确的是: D。

(6x+3)/(2x+1) ≠ -a-2/(a+2x+2) ≠ (2x+1)/(a(b+1))3.等式成立的条件是: A。

a ≠ 1 且b ≠ 14.如果把分式中的x和y都扩大10倍,那么分式的值不变。

5.不改变分式的值,使1-2x的分子、分母中最高次项的系数都是正数,则此分式可化为: B。

(-2x+1)/(x2-3x+3)6.下面化简正确的是: B。

(2a+1)/(x2+y2-2x+2y(a-1)) = -17.下列约分正确的有: A。

(2+xy)/(x12+1)(a+m) =1/2xy+2+ab+mb/(3x3)三、解答题:1.约分:① (m2-4x)/(4-1-36yz2) = (m-2x)/(2m+1-x6yz)② (a-4)/(a+48-2m) = (2x-y)/(10-15y)③ (2m-m)/(2a-4m-16) = -1/2④ (2x-y)/(10-15y) = (2x-y)/(5-3y)(5+y)⑤ (a-1)/(x-y)(x-y)2 = a-1/[(x-y)2(x+y)]⑥ -(x-y)/(x-y)(x+y)2 = (y-x)/(x-y)(x+y)22.先化简,再求值:① a2-8a+16/a2+ab = (a-4)/(a+b) = (5-4)/(5+2) = 1/7② a2-16a+2ab+b2/2 = [(a-8)2-60]/2 = (52-60)/2 = -43.已知 $a+2b=2$,求 $2a+ab+b^2$ 的值。

人教版八年级数学上册分式(含答案)

人教版八年级数学上册分式(含答案)

第十五章 分式15.1分式专题一 分式有意义的条件、分式的值为0的条件1.使代数式x -1有意义,那么x 的取值范围是( )A .x ≥0B .x ≠1C .x >0D .x ≥0且x ≠12.如果分式23273x x --的值为0,则x 的值应为 .3.若分式2299x x x --6+的值为零,求x 的值.专题二 约分4.化简222m mn n m mn -2+-的结果是( )A .2n 2B .m nm - C .m n m n -+ D .m nm +5.约分:29()2727a y x x y --=____________.6.从下列三个代数式中任选两个构成一个分式,并将它化简:4x 2-4xy +y 2,4x 2-y 2,2x -y .状元笔记【知识要点】1.分式的概念一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为:A B =CBCA⋅⋅,AB=A CB C÷÷(其中A,B,C是整式,C≠0).3.约分与通分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.【温馨提示】1.分式的值为0受到分母不等于0的限制,“分式的值为0”包含两层意思:一是分式有意义,二是分子的值为0,不要误解为“只要分子的值为0,分式的值就是0”.2.分式的基本性质中的A、B、C表示的都是整式,且C≠0.3.分子、分母必须“同时”乘C(C≠0),不要只乘分子(或分母).4.性质中“分式的值不变”这句话的实质,是当字母取同一值(零除外)时,变形前后分式的值是相等的.但是变形前后分式中字母的取值范围是变化的.【方法技巧】1.分式的符号法则可总结为:一个负号随意跑,两个负号都去掉.就是说,分式中若出现一个负号,则此负号可“随”我们的“意”(即根据题目要求)跑到分子、分母以及分式本身三者中的任何一个位置上;若分式中出现两个负号,则可以将这两个负号同时去掉.[来源:数理化网]2.分式的分子、分母系数化整问题的基本做法是分式的分子、分母都乘同一个“适当”的不为零的数,这里的“适当”的数又分两种情况:若分式分子、分母中的系数都是分数时,“适当”的数就是分子、分母中各项系数的所有分母的最小公倍数;若分式的分子、分母中各项系数是小数时,则“适当的数”就是10n,其中n是分子、分母中各项系数的小数点后最多的位数.最后根据情况需要约分时,则要约分.参考答案:1.D 解析:根据题意得:x ≥0且x -1≠0.解得x ≥0且x ≠1.故选D .2.-3 解析:根据分式值为0,可得⎩⎨⎧≠-=-0302732x x ,解得x =-3. 3.解:∵2299x x x --6+的值为0,∴x 2-9=0且x 2-6x +9≠0.解x 2-9=0,得x =±3.当x =3时,x 2-6x +9=32-6×3+9=0,故x =3舍去.当x =-3时,x 2-6x +9=(-3)2-6×(-3)+9=36.∴当分式2299x x x --6+的值为0时,x =-3.4.B 解析:222m mn n m mn -2+-=2()()m n m m n --=m nm -.故选B .5.3ax ay - 解析:29()2727a y x x y --=29()27()a x y x y --=()3a x y -=3ax ay-.6.解:答案不唯一,如:2222444x xy y x y -+-=2(2)(2)(2)x y x y x y -+-=22xyx y -+.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

初中数学分式和二次根式专题训练【含答案】

初中数学分式和二次根式专题训练【含答案】

分式和二次根式专题训练一、填空题:(每题 3 分,共 36 分)1、当 x____时,分式有意义。

2、当____时,有意义。

3、计算:-a-1=____。

4、化简:(x2-xy)÷=____。

5、分式,,的最简公分母是____。

6、比较大小:2____3。

7、已知=,则的值是____。

8、若最简根式和是同类根式,则 x+y=____。

9、仿照2=·==的做法,化简3=____。

10、当 2<x<3 时,-=____。

11、若的小数部分是 a,则 a=____。

12、若=++2成立,则 x+y=____。

二、选择题:(每题 4 分,共 24 分)1、下列各式中,属于分式的是()A、 B、 C、x+ D、2、对于分式总有()A、=B、=C、=D、=3、下列根式中,属最简二次根式的是()A、 B、 C、 D、4、可以与合并的二次根式是()A、 B、 C、 D、5、如果分式中的 x 和都扩大为原来的 2 倍,那么分式的值()A、扩大 2 倍B、扩大 4 倍C、不变D、缩小 2 倍6、当 x<0 时,|-x|等于()A、0B、-2xC、2xD、-2x或0三、计算:(每题 6 分,共 24 分)1、()3÷()0×(-)-22、(+)÷3、-+4、(3-2)2四、计算:(每题 6 分,共 24 分)1、-+2、÷(x+1)·3、-·4、4b+-3ab (+)五、解答题:(每题 8 分,共 32 分)1、某人在环形跑道上跑步,共跑两圈,第一圈的速度是 x 米/分钟,第二圈的速度是米/分钟(x>),则他平均一分钟跑的路程是多少?2、若菱形的两条对角线的长分别为 3+2和 3-2,求菱形的面积。

3、如图,是某住宅的平面结构示意图,图中标明了有关尺寸(墙体厚度忽略不计,单位:m),房主计划把卧室以外的地面都铺上地砖,如果他选用的地砖的价格是 a 元/m2,则买砖至少需要多少元?若每平方米需砖 b 块,则他应该买多少块砖?(用含 a,x,的代数式表示)。

人教版初中八年级数学上册第十五章《分式》知识点总结(含答案解析)

人教版初中八年级数学上册第十五章《分式》知识点总结(含答案解析)

一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定2.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253xx x-是最简分式 C .直角三角形的两个锐角互余 D .不是对顶角的两个角不相等3.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 5.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d ab d+++++=4,那么d a a b c b c d ++++++b ca c d ab d+++++的值为( )A .1B .12C .0D .46.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m =7.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .48.若x 2y 5=,则x y y+的值为( ) A .25 B .72C .57D .759.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -110.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( ) A .7500980020x x 10-=- B .9800750020x 10x-=- C .7500980020x x 10-=+D .9800750020x 10x-=+ 11.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 12.3333x a a y x y y x+--+++等于( ) A .33x y x y-+B .x y -C .22x xy y -+D .22xy +13.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( )A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<<14.计算a ba b a÷⨯的结果是() A .a B .2aC .2b aD .21a 15.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+C .1a 2- D .a 2-二、填空题16.已知5,3a b ab -==,则b aa b+的值是__________. 17.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.18.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________.19.若关于x 的方程1322m x x x-+=--的解是正数,则m =____________. 20.101()()2π-+-=______,011(3.14)2--++=______. 21.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________.22.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133a a-=;⑤()()321m m mm a a a -÷=-.其中运算正确的有______.(填序号即可)23.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________.24.计算:11|1|3-⎛⎫-= ⎪⎝⎭______. 25.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.26.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.三、解答题27.某社区为了落实“惠民工程”,计划将社区的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?28.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?29.鄂州市2020年被评为“全国文明城市”.创文期间,甲、乙两个工程队共同参与某段道路改造工程.如果甲工程队单独施工,恰好如期完成;如果甲、乙两工程队先共同施工10天,剩下的任务由乙工程队单独施工,也恰好能如期完成;如果乙工程队单独施工,就要超过15天才能完成.(1)求甲、乙两工程队单独完成此项工程各需多少天?(2)若甲工程队单独施工a 天,再由甲、乙两工程队合作______天(用含有a 的代数式表示)可完成此项工程.(3)现在要求甲、乙两个工程队都必须参加这项工程.如果甲工程队每天的施工费用为2万元,乙工程队每天的施工费用为1.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,能使施工费用不超过61.5万元? 30.计算 (1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭.。

人教版初中数学方程与不等式之分式方程技巧及练习题附答案

人教版初中数学方程与不等式之分式方程技巧及练习题附答案

人教版初中数学方程与不等式之分式方程技巧及练习题附答案一、选择题1.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )A.B.C.D.【答案】A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m.求该市今年居民用水的价格.设去年居民用水价格为x元/3m,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A 【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.3.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.下列说法中正确的是()A.顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A 【解析】 【分析】根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=,∵关于x 的分式方程的解为非负数,∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误; 故选:A . 【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.5.已知关于x 的分式方程12111m x x--=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6【答案】A 【解析】 【详解】方程两边同时乘以x -1得, 1-m -(x -1)+2=0, 解得x =4-m . ∵x 为正数,∴4-m >0,解得m <4. ∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3. 故选A .6.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案. 【详解】 解:211x kx x-=--Q, 21x kx +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.7.对于非零实数a 、b ,规定a ⊗b =21a b a-.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1 B .13 C .﹣1D .-13【答案】A 【解析】 【分析】 【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解,故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0, 解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.9.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( )A.240024008(120%)x x-=+B.240024008(120%)x x-=+C.240024008(120%)x x-=-D.240024008(120%)x x-=-【答案】A【解析】【分析】求的是原计划的工效,工作总量为2400,根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间-实际用的时间=8.【详解】原计划用的时间为:2400x,实际用的时间为:()2400120%x+.所列方程为:2400 x -()2400120%x+=8.故选A【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.10.为有效落实党中央“精准扶贫”战略决策,某市对农村实施“户户通”修路计划,已知该市计划在某村修路5000m,在修了1000m后,由于引入新技术,工作效率提高到原来的1.2倍,结果提前5天完成了任务.若设原来每天修路 mx,则可列方程为( )A.50004000100051.2x x x=+-B.50001000400051.2x x x+=+C.50004000100051.2x x x-=+D.50001000400051.2x x x-=+【答案】D【解析】【分析】本题依题意可知等量关系为原计划工作时间-实际工作时间=5,根据等量关系列出方程即可.【详解】设原来每天修路xm,引入新技术后每天修路1.2xm,实际工作天数为(100040001.2x x+),原计划工作天数为5000x天,根据题意得,50001000400051.2x x x-=+,故选D.【点睛】本题考查了由实际问题抽象出分式方程,理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( ) A .300300201.2x x-= B .300300201.260x x =- C .300300201.260x x x -=+ D .3002030060 1.2x x-= 【答案】D 【解析】 【分析】原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,原计划植300棵树可用时300x小时,实际用了3001.2x 小时,根据关键语句“结果提前20分钟完成任务”可得方程. 【详解】设原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,由题意得:3002030060 1.2x x-=, 故选:D . 【点睛】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.12.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2C .x =﹣1D .无解【答案】D 【解析】 【分析】观察式子确定最简公分母为(x+1)(x ﹣1),再进一步求解可得. 【详解】方程两边同乘以(x+1)(x ﹣1),得: x (x+1)﹣(x 2﹣1)=2, 解方程得:x =﹣1,检验:把x =﹣1代入x+1=0, 所以x =﹣1不是方程的解.故选:D . 【点睛】此题考查分式方程的解,掌握运算法则是解题关键13.“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原来计划提高了25%,结果提前30天完成了这任务,设原计划工作时每天绿化面积为x 万平方米,则下面所到方程中正确的是( )A .()006060-30x 125x =+ B .()6060-30125%x x=+ C .()60125%60-30x x⨯+=D .()60125%60-30x x⨯+= 【答案】A 【解析】 【分析】根据实际工作时每天的工作效率比原来计划提高了25%,结果提前30天完成了这任务,可列出方程. 【详解】解:设原计划工作时每天绿化面积为x 万平方米,则根据题意可得:()00606030125x x-=+, 故答案为:A . 【点睛】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系,列出方程.14.如果关于x 的方程2430ax x +-=有两个实数根,且关于x 的分式方程233x a a x x -+=--有整数解,则 符合条件的整数a 有( )个. A .2 B .3 C .4 D .5【答案】B 【解析】 【分析】由一元二次方程根的判别式求得a 的取值范围,再解分式方程,利用解为整数分析得出答案. 【详解】解:因为:关于x 的方程2430ax x +-=有两个实数根, 所以:244(3)0a -⨯-≥,且0a ≠,解得:43a ≥-且0a ≠,因为:233x a a x x-+=--, 所以:23x a ax a -+=-, 所以:(1)22a x a -=+,当1a =时,方程无解, 当1a ≠时,方程的解为224211a x a a +==+--, 因为x 为整数且3x ≠,所以1a -是4的约数,所以11,12,14,a a a -=±-=±-=± 所以a 的值为:3,1,0,2,3,5--, 又因为:43a ≥-且0a ≠,1,a ≠ 3x ≠,所以3,0,5a a a =-==不合题意舍掉, 所以a 的值为:1,2,3,-. 故选B . 【点睛】本题考查的是一元二次方程根的判别式,分式方程的解的情况,掌握知识点并能注意到分式方程的增根是解题关键.15.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y ky ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣6【答案】A 【解析】 【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案. 【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k ,∵不等式组只有4个整数解,∴0≤﹣3k<1, 解得:﹣3<k ≤0,解分式方程1k y -+1=1y k y ++得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选A . 【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.16.已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥-【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可 【详解】213x mx -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x mx -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤, 故选:A . 【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值17.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.18.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )A.30x=456x+B.30x=456x-C.306x-=45xD.306x+=45x【答案】A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.【详解】设甲每小时做 x 个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等可得30x=456x+.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.19.初二18班为课外体育活动购买了实心球和跳绳.已知跳绳的单价比实心球的单价贵40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳绳的数量多8个,求实心球的单价.设实心球单价为x 元,所列方程正确的是( ) A .16501610840x x -=+ B .16501610840x x -=+ C .16101650840x x -=+ D .16101650840x x -=+ 【答案】C【解析】【分析】设实心球单价为x 元,则跳绳单价为()40x +元,根据“购买实心球的数量比跳绳的数量多8个”即可得到方程.【详解】 解:设实心球单价为x 元,则跳绳单价为()40x +元,根据题意得,16101650840x x -=+. 故选:C【点睛】本题考查了分式方程的实际应用,解答本题的关键是审清题意,找到等量关系即可得解.20.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( )A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=- 【答案】D【解析】【分析】先用x 表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】 解:设前去观看开幕式的同学共x 人,根据题意,得:18018032x x-=-. 故选:D.【点睛】 本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.。

最新最新初中数学—分式的知识点训练及答案

最新最新初中数学—分式的知识点训练及答案

一、选择题1.如果把分式22a b ab +中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍2.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++3.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 4.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 5.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 26.把分式22x yx y -+中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的14 D .不变7.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或28.计算4-(-4)0的结果是( )A .3B .0C .8D .49.下列各式从左到右的变形正确的是 ( )A .220.220.33a a a a a a--=-- B .11x x x y x y +--=-- C .116321623a a a a --=++D .22b a a b a b -=-+ 10.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥311.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1 C .1- D .±1 12.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( )A .B .C .D . 13.函数中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2 14.如果把中的x 和y 都扩大到5倍,那么分式的值( )A .扩大5倍B .不变C .缩小5倍D .扩大4倍15.无论x 取何值,总是有意义的分式是( )A .21x x +B .221x x +C .331x x +D .21x x + 16.下列式子:22222213,,,,,x y a x x a b a xy yπ----其中是分式的个数( ). A .2B .3C .4D .5 17.若分式的值为0,则x 的值是( )A .3B -3C .4D .-418.化简﹣的结果是( )m+3 B .m-3 C .D . 19.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣220.若将分式(a ,b 均为正数)中a ,b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的C .不变D .缩小为原来的21.下列分式中是最简分式的是( )A .B .C .D .22.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有 A .1个 B .2个 C .3个 D .4个23.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是( ).A .aB .bC .2a b +D .2ab a b+24.下列4个分式:①;②;③;④中最简分式有( ) A .1个 B .2个 C .3个 D .4个25.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14 B .14- C .4 D .-4【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分式22a b ab+中的a 和b 都扩大了2倍,得: 4212822a b a b ab ab++=⨯, 所以是缩小了2倍.故选C.2.D解析:D【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为ab 3。

人教版初中数学分式全集汇编附答案解析

人教版初中数学分式全集汇编附答案解析

人教版初中数学分式全集汇编附答案解析一、选择题1.下列方程中,有实数根的方程是( )A .x 4+16=0B .x 2+2x +3=0C .2402x x -=-D 0= 【答案】C【解析】【分析】利用在实数范围内,一个数的偶数次幂不能为负数对A 进行判断;利用判别式的意义对B 进行判断;利用分子为0且分母不为0对C 进行判断;利用非负数的性质对D 进行判断.【详解】解:A 、因为x 4=﹣16<0,所以原方程没有实数解,所以A 选项错误;B 、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B 选项错误;C 、x 2﹣4=0且x ﹣2≠0,解得x =﹣2,所以C 选项正确;D 、由于x =0且x ﹣1=0,所以原方程无解,所以D 选项错误.故选:C .【点睛】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则2.若2250(0)a ab b ab ++=≠,则b a a b +=( ) A .5B .-5C .5±D .2± 【答案】B【解析】【分析】根据题意,先得到225a b ab +=-,代入计算即可.【详解】解:∵2250(0)a ab b ab ++=≠,∴225a b ab +=-, ∴2255b a a b ab a b ab ab+-+===-; 故选:B.【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.3.若化简22121b a b b a a a -⎛⎫-÷ ⎪+++⎝⎭W 的结果为1a a -,则“W ”是( ) A .a - B .b - C .a D .b【解析】【分析】根据题意列出算式,然后利用分式的混合运算法则进行计算.【详解】 解:由题意得:()()()()222111=1211111111b a a b a b a b b a b a b ab b a a a a a a a a a a W +-+--⋅=-⋅=+==+++-+-++++,故选:D .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.4.把0.0813写成a ×10n (1≤a <10,n 为整数)的形式,则a 为( )A .1B .﹣2C .0.813D .8.13【答案】D【解析】把0.0813写成a ×10n (1≤a <10,n 为整数)的形式,则a 为8.13,故选D .5.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.6.计算()22b a a -⨯的结果为 A .bB .b -C . abD .b a【答案】A【分析】先计算(-a )2,然后再进行约分即可得.【详解】()22b a a -⨯=22b a a ⨯=b ,故选A.【点睛】本题考查了分式的乘法,熟练掌握分式乘法的运算法则是解题的关键.7.若分式12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x >B .2x <C .1x ≠-D .2x ≠【答案】D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】由题意可知:x-2≠0,x≠2,故选:D .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.8.000 071 5=57.1510-⨯ ,故选D.9.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3B .1C .﹣1D .﹣3【答案】D【解析】【分析】 由11m n -=1利用分式的加减运算法则得出m-n=-mn ,代入原式=222m mn n m mn n--+-计算可得. 【详解】 ∵11m n-=1,∴n m mn mn -=1, 则n m mn-=1, ∴mn=n-m ,即m-n=-mn ,则原式=()22m n mn m n mn---+=22mn mn mn mn ---+=3mn mn -=-3, 故选D .【点睛】 本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.10.下列各数中最小的是( )A .22-B .C .23-D 【答案】A【解析】【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A .【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.11.已知112x y+=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.12.下列各式中,正确的是( )A .1a b b ab b++= B .()222x y x y x y x y --=++ C .23193x x x -=-- D .22x y x y -++=- 【答案】B【解析】【分析】根据分式的基本性质分别进行化简即可.【详解】解:A 、1b a+ab =b ab+ ,错误; B 、222x y x y =x y (x y )--++ ,正确; C 、2x 31=x 3x 9-+- ,错误; D 、x y x y =22-+-- ,错误. 故选:B .【点睛】本题主要考察了分式的基本性质,分式运算时要同时乘除和熟练应用约分是解题的关键.13.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.14.若x 取整数,使分式6321x x +-的值为整数的x 值有( ) A .2个 B .4个 C .6个 D .8个 【答案】B【解析】【分析】把分式转化为6321x +-,即可转化为讨论621x -的整数值有几个的问题. 【详解】解:6363663212121x x x x x +-+==+---, 当2x−1=±6或±3或±2或±1时,621x -是整数,即原式是整数, 当2x−1=±6或±2时,x 的值不是整数,当2x−1=±3或±1时满足条件,故使分式6321x x +-的值为整数的x 值有4个, 故选:B .【点睛】 本题主要考查了分式的性质,把原式化简为6321x +-的形式是解决本题的关键.15.分式可变形为( ) A . B . C . D .【答案】B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.16.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.17.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

(人教版)八年级上册第十五章分式知识点总结及练习【精美版】

(人教版)八年级上册第十五章分式知识点总结及练习【精美版】

第十五章 分式一、知识概念: 1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bccc±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cbbdbd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a cac b dbd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad bdb cbc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nn a a-=(0a ≠,n 是正整数)9. 分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式常考例题精选1.若分式2a+1有意义,则a 的取值范围是 ( ) A.a=0 B.a=1 C.a ≠-1D.a ≠02.把分式方程2x+4=1x 转化为一元一次方程时,方程两边需同乘以 ( ) A.xB.2xC.x+4D.x(x+4)3.分式方程12x −9-2x−3=1x+3的解为 ( ) A.3B.-3C.无解D.3或-34.今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获荔枝8 600kg 和9 800kg ,甲荔枝园比乙荔枝园平均每亩少60kg ,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg ,根据题意,可得方程 ( )A.8 600x= 9 800x+60B.8 600x= 9 800x−60C.8 600x−60=9 800xD.8 600x+60=9 800x5.若分式 2x−1 有意义,则x 的取值范围是 .6.若代数式 2x−1 -1的值为零,则x= ________.7.若关于x 的分式方程xx−1=3a2x−2-2有非负数解,则a 的取值范围是 .8.化简:(a −1a)÷a 2−2a+1a.9.先化简,再求值:(1m −1n )÷m 2−2mn+n 2mn,其中m=-3,n=5.10.某车队要把4000t 货物运到雅安地震灾区(方案定后,每天的运量不变). (1)从运输开始,每天运输的货物吨数n(单位:t)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.11.先化简,再求值:(x+2x−x−1x−2)÷x−4x −4x+4,其中x 是不等式3x+7>1的负整数解.12.某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题: 请求出篮球和排球的单价各是多少元?1.分式1x -1有意义,则x 的取值范围是( ) A .x>1 B .x ≠1 C .x<1 D .一切实数2.下列各分式与ba 相等的是( ) A .b 2a 2 B .b +2a +2 C .aba 2 D .a +b 2a3.下列分式的运算正确的是( ) A .1a +2b =3a +bB .(a +b c )2=a 2+b 2c 2C .a 2+b 2a +b =a +bD .3-a a 2-6a +9=13-a4.化简(a +3a -4a -3)(1-1a -2)的结果等于( ) A .a -2c B .a +2 C .a -2a -3 D .a -3a -25.若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( )A .5B .-5C .3D .-36.已知关于x 的分式方程m x -1+31-x =1的解是非负数,则m 的取值范围是( )A .m>2B .m ≥2C .m ≥2且m ≠3D .m>2且m ≠37.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x 本笔记本,则根据题意可列方程( )A .24x +2-20x =1B .20x -24x +2=1C .24x -20x +2=1D .20x +2-24x =18.当x =1时,分式x -b x +a 无意义;当x =2时,分式2x -b3x +a 的值为0,则a +b= .9.方程5x =7x -2的解是x = .10.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是 .11.关于x 的分式方程m x 2-4-1x +2=0无解,则m = .12.计算或化简:(1)38-2-1+|2-1|;(2)2xx2-4-1x-2;(3)3-a2a-4÷(a+2-5a-2).13.解分式方程:(1)1x-x-2x=1; (2)12x-1=12-34x-2.14.先化简(1+1x-2) ÷x-1x2-4x+4,再从1,2,3三个数中选一个合适的数作为x的值,代入求值;15.小明去离家2.4 km的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min,于是他立即步行(匀速)回家取票,在家取票用时2 min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?第1节探究电流与电压、电阻的关系实验(建议时间:20分钟)1. (2019铜仁)小李为了探究“电流与电压的关系”,请你与他合作并完成以下实验步骤.(1)请你在虚线框中设计出相应的电路图.第1题图(2)小李在探究电流与电压的关系时,要控制________不变.通过实验探究,得到以下数据,在进行数据分析时,小李发现表格中有一组错误的数据,请你找出第________组数据是错误的.序号 1 2 3 4 5电压U/V 0.8 1.2 1.6 2.0 2.4电流I/A 0.16 0.24 0.32 0.44 0.48(3)为了分析电流与电压的定量关系,请你利用正确的数据,在坐标中绘制出电流与电压关系的图像.2. (2019巴中)同学们想探究“导体中电流跟导体两端电压的关系”:(1)小明同学通过学习知道了________是形成电流的原因,因此做出了如下三种猜想:A. 电流跟电压成反比B. 电流跟电压成正比C. 电流跟电压无关(2)为了验证猜想,小明设计了如图甲所示的电路图,其中电源为三节新干电池,电阻R为10 Ω,滑动变阻器R标有“50 Ω 1 A”字样,电压表电流表均完好.第2题图实验次数 1 2 3电压U/V 2 2.6 3电流I/A 0.20 0.26 0.30第2题图丙①根据甲电路图将乙图实物电路连接完整;②闭合开关前,小明应将滑动变阻器滑片移到________阻值处(选填“最大”或“最小”);③他检查电路时发现电压表、电流表位置互换了,若闭合开关电流表________(选填“会”或“不会”)被烧坏;④排除故障后小明进行了实验,得到表格中的实验数据.分析数据,可得出的正确结论是:电阻一定时,________________________________.(3)小明还想用这个电路测量小灯泡的额定功率,于是他将电阻R换成一只额定电压是4 V 的小灯泡(阻值约为13 Ω),电阻一定时,并将电压表量程更换为15 V,闭合开关S后,调节滑片至电压表示数为4.0 V时,电流表示数如图丙所示为______A,小灯泡的额定功率为________W.3. (2019临沂)在“探究电流与电阻关系”的实验中,小明依次选用阻值为5 Ω、10 Ω、20 Ω的定值电阻进行实验.第3题图(1)图甲是实验的实物连线图,其中有一条导线连接错误,请在该导线上打“×”并画出正确连线.(2)改正错误后闭合开关,电流表有示数而电压表无示数,电路故障可能是________.(3)排除故障后闭合开关,移动滑动变阻器的滑片至某一位置,电流表的示数如图乙所示,此时电路中的电流为________A.(4)断开开关,将5 Ω的定值电阻换成10 Ω的并闭合开关,此时应将滑动变阻器的滑片向______(选填“左”或“右”)端移动,这一过程中眼睛要一直观察________表示数的变化.(5)下表是实验中记录的数据,分析数据可知:①10 Ω定值电阻的功率为________W.②当导体两端的电压一定时,通过导体的电流与导体的电阻成________比.参考答案第十五章欧姆定律第1节探究电流与电压、电阻的关系实验1. (1)如答图甲所示第1题答图甲(2)电阻 4 (3)如答图乙所示第1题答图乙2. (1)电压(2)①如答图所示②最大③不会④导体中的电流与它两端的电压成正比(3)0.3 1.2第2题答图3. (1)如答图所示(2)R短路 (3)0.4 (4)右电压(5)①0.4 ②反第3题答图第十五章电流和电路摩擦起电:摩擦过的物体具有吸引轻小物体的现象——带电体==本质:电荷的转移正电荷:被丝绸摩擦过的玻璃棒带的电荷种类电荷负电荷:被毛皮摩擦过的橡胶棒带的电荷性质:同种电荷互相排斥,异种电荷互相排斥检验:验电器——原理:同种电荷互相排斥电量:q 单位:库伦简称:库符号:CC元电荷:最小电荷:e=1.6×1019组成:电源、开关、导线、用电器电源:提供电能开关:控制电路通断作用用电器:消耗电能导线:传输电能的路径导体:金属、人体、食盐水两种材料绝缘体:橡胶、玻璃、塑料电流产生条件①电路闭合②保持通路定义:正电荷移动的方向电路电流的方向在电源中电源的正极→用电器→电源的负极1617单位:A −→−310mA −→−310A μ 工具:电流表 ○A测量 使用方法 ①电流表必须和被测的用电器串联 电流的大小(I ) ②看清量程、分度值,不准超过电流表的量程 ③必须正入负出④任何情况下都不能直接连到电源的两极 电路的连接:先串后并,就近连线,弄清首尾 通路:接通的电路 三种状态 断路:断开的电路短路:电流不经过用电器直接回到电源的负极 两种类型:一、电荷1、物体有了吸引轻小物体的性质,我们就说物体带了电荷;换句话说,带电体具有吸引轻小物体的性质。

人教版初中八年级数学上册专题分式及其运算习题及答案

人教版初中八年级数学上册专题分式及其运算习题及答案

x-1有意义,则x的取值范围是__________.例2:分式的运算:-6a解:原式=-6a1.下列各式:①x-1;②4x2;④+x;⑤x.a=-b+1aB.x+y=y-xy+xD.分式及其运算(习题)➢例题示范例1:若代数式x+2【思路分析】⎧x+2≥0由题意得,⎨⎩x-1≠0解得,x≥-2且x≠1aa2+2a-8+a-2.【过程书写】a(a+4)(a-2)(a+4)+(a-2)(a+4)=a2+4a-6a (a-2)(a+4)=a2-2a (a-2)(a+4)=a(a-2) (a-2)(a+4)=a a+4➢巩固练习15π-3;③x2-y215x2x其中属于分式的是_________________.(填写序号)2.下列运算正确的是()A.-b+1C.x-yx2+yx=x+y-x-yx+y=-13.下列各分式中,属于最简分式的是()85(x+y)B.D.x2-y2x2+1都有意义;x2-2x-3的值为0;x-2÷x+1x-1有意义,则x的取值范围是x≠2且x≠1;π-2是分式.x-1有意义,则x的取值范围是______________.x-1的值为0,则x=___________.A.34(x-y)y2-x2x+yC.x2+y2x2y+xy2(x+y)24.下列结论:①无论x取何值,分式2x②当x=-1时,分式x+1③若使x+1④x+1其中正确的是_____________.(填写序号)5.若代数式x【思路分析】(请参照例1填写)⎧_____________由题意得,⎨⎩_____________解得,_______________6.若分式x2-1【思路分析】(请参照例1填写)⎧_____________由题意得,⎨⎩_____________解得,____________7.计算:xy+y⋅x2+xx2y;a-2a2-3a+2;9-x2÷2x-6x2+3x;(4)16-m2m2+2m-8÷2m+4m+2;(5)x2+9xx2+3x+x2+6x+9;ab+ac;(1)x(2)a-1⋅2a-4(3)x2-6x+9m-4m-2⋅x2-9(6)a+b b-c c-abc+a2-2a+11-a2;x-1-x-1;-2(7)a-1a2+a+(8)122a2-9-a-3;(9)x2(10)xx+1x2-1-1.【参考答案】巩固练习1.①④⑤2.D(2) 23. C4. ①5. x ≥0 且 x ≠1⎧ x ≥ 0思路分析: ⎨⎩ x -1 ≠ 06. -1;x ≥0 且 x ≠1⎧ x 2 - 1 = 0思路分析: ⎨⎩ x - 1 ≠ 07. (1) 1y 2 a - 2 (3) - x2(4)-2 (5)2(6) 2a(7) -1(8) - 2a + 3 (9) 1x - 1(10) - 1x -1; x = -1。

最新初中数学—分式的知识点总复习附答案

最新初中数学—分式的知识点总复习附答案

一、选择题1.()()2323x y z x y z +++-的结果为( ) A .1B .33-+m m C .33m m +- D .33mm + 2.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 3.下列变形正确的是( ). A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 4.下列计算,正确的是( )A .2(2)4--=B .222()-=-C .664(2)64÷-=D .826-=5.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x= 6.已知a <b ,化简222a a ab b a b a-+-的结果是( )A .aB .a -C .a --D .a -7.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1- B .1a -C .()21a - D .11a- 8.如果把分式2xx y-中的x 与y 都扩大2倍,那么分式的值( ) A .不变B .扩大2倍C .缩小2倍D .扩大4倍9.把分式 2x-y2xy中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的16倍B .扩大到原来的4倍C .缩小到原来的14D .不变10.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个B .2个C .3个D .4个11.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定12.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+13.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限 A .一B .二C .三D .四14.使分式224x x +-有意义的取值范围是( ) A .2x =- B .2x ≠-C .2x =D .2x ≠15.分式b ax ,3c bx -,35a cx的最简公分母是( ) A .5cx 3B .15abcxC .15abcx 3D .15abcx 516.已知12x y-=3,分式4322x xy y x xy y +-+-的值为( )A .32B .0C .23D .9417.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( )A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m18.已知m ﹣1m ,则1m+m 的值为( )A .B C .D .1119.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事12a =--,则12a ≥-; 22a ba b -+是最简分式;其中正确的有()个.A .1个B .2个C .3个D .4个20.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1921.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y22.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯ B .90.710⨯C .8710-⨯D .710⨯823.计算21424m m ++-的结果是( ) A .2m + B .2m -C .12m + D .12m - 24.计算()22ab---的结果是( )A .42b a-B .42b aC .24a b -D .24a b25.(下列化简错误的是( )A )﹣1=2B =2C 52=± D )0=1【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先计算除法运算,然后进行减法运算即可得出答案. 【详解】 原式=3m m +-6(3)(33)m -+× 32m -= 3m m ++ 33m += 33m m ++=1故答案选A. 【点睛】本题考查的知识点是分式的混合运算,解题的关键是熟练的掌握分式的混合运算.2.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.3.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.4.C解析:C 【解析】 【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .5.A解析:A 【解析】试题解析:()1x y x y x y x y-+--==---. 故选A.解析:D 【解析】因为a-ba a b-=-故选D.,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.7.D解析:D 【解析】解:A .当a ≥1时,根式有意义. B .当a ≤1时,根式有意义. C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1. 故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.8.A解析:A 【解析】分析:解答此题时,可将分式中的x ,y 用2x ,2y 代替,然后计算即可得出结论.详解:依题意得:2222x x y ⨯-=222x x y ⋅⋅-()=原式.故选A . 点睛:本题考查的是对分式的性质的理解和运用,扩大或缩小n 倍,就将原来的数乘以n 或除以n .9.C解析:C 【解析】分析:把原分式中的x .y 都扩大到原来的4倍后,再约分化简.详解:因为()422441224416242x y x y x y x y xy xy ---⨯⨯==,所以分式的值缩小到原来的14.故选C .点睛:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式或公因数约去,这种变形称为分式的约分.解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.11.A解析:A 【解析】 试题分析:==;故选A.考点:分式的基本性质.12.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误;D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.13.A解析:A 【解析】 【分析】根据有理数的乘法判断出a ,b ,c 中至少有一个是负数,另两个同号,然后求出三个数都是负数时x 、y 、z 的大小关系,得出矛盾,从而判断出a 、b 、c 不能同时是负数,确定出点P 不可能在第一象限. 【详解】解:∵abc <0,∴a ,b ,c 中至少有一个是负数,另两个同号, 可知三个都是负数或两正数,一个是负数, 当三个都是负数时:若x yabc a-=, 则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立, 即a ,b ,c 不能同时是负数, 所以,P (ab ,bc )不可能在第一象限. 故选:A. 【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.14.D解析:D 【解析】 【分析】根据分式有意义分母不为零可得2x-4≠0,再解即可. 【详解】解:由题意得:2x-4≠0, 解得:x≠2, 故选:D . 【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.C解析:C 【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积. 【详解】最简公分母为3⨯5⨯a ⨯b ⨯c ⨯x 3=15abcx 3 故答案选:C. 【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.16.A解析:A 【解析】 【分析】先根据题意得出2x-y=-3xy ,再代入原式进行计算即可. 【详解】 解:∵12x y-=3, ∴2x-y=-3xy , ∴原式=()()2232x y xyx y xy-+-+,=633xy xyxy xy -+-+,=32xyxy --, =32, 故选A . 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.00000000005=5×10﹣11. 故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.18.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭,221m -2+=7m ∴, 221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=.故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.19.C解析:C 【解析】 【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断. 【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;4== ④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.20.D解析:D 【解析】 【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可. 【详解】(16)0×3﹣2=11199⨯=, 故选D .【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.21.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11 111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.22.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为8710-⨯.故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.23.D解析:D 【解析】 【分析】先通分,再加减.注意化简. 【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D【点睛】考核知识点:异分母分式加减法.通分是关键.24.B解析:B【解析】【分析】根据负整数指数幂和幂的乘方和积的乘方解答.【详解】原式=(-1)-2a -2b 4 =21a•b 4 =42b a. 故选B .【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A ﹣1,正确,不合题意;B ,正确,不合题意;C 52=,故此选项错误,符合题意;D 0=1,正确,不合题意;故选:C .【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学分式知识点训练附答案一、选择题1.0000005=5×10-7故答案为:B.【点睛】本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.2.化简2442x x x x ---得结果是( ) A .26x x -+B .2x x +C .2x x -+D .2x x - 【答案】C【解析】【分析】 先通分,再按照分式的减法法则化简出最简结果即可得答案.【详解】2442x x x x --- =4(2)(2)(2)(2)(2)x x x x x x x +-+-+- =242(2)(2)x x x x x --+- =(2)(2)(2)x x x x --+- =2x x -+. 故选:C .【点睛】 本题考查分式的减法,同分母分式相加减,只把分子相加减,分母不变;异分母分式相加减,先通分变为同分母分式,再按同分母分式相加减的法则运算.3.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM 2.5,PM 2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为( ) A .2.5×106B .2.5×10﹣6C .0.25×10﹣6D .0.25×107【答案】B【解析】【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】4.计算(a 2)3+a 2·a 3-a 2÷a -3的结果是( )A .2a 5-aB .2a 5-1aC .a 5D .a 6 【答案】D【解析】【分析】先分别进行幂的乘方、同底数幂的乘法、同底数幂的除法运算,然后再进行合并同类项即可.【详解】原式=a 2×3+a 2+3-a 2-(-3)=a 6+a 5-a 5=a 6,故选D.【点睛】本题考查了有关幂的运算,熟练掌握“幂的乘方,底数不变,指数相乘”、“同底数幂的乘法,底数不变,指数相加”、“同底数幂的除法,底数不变,指数相减”是解题的关键.5.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A . 考点:科学记数法—表示较小的数.6.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.7.计算()22b a a -⨯的结果为 A .bB .b -C . abD .b a【答案】A【解析】 【分析】先计算(-a )2,然后再进行约分即可得.【详解】()22b a a -⨯=22b a a ⨯=b ,故选A.【点睛】本题考查了分式的乘法,熟练掌握分式乘法的运算法则是解题的关键.8.若分式12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x >B .2x <C .1x ≠-D .2x ≠【答案】D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】由题意可知:x-2≠0,x≠2,故选:D .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.9.下列运算中,正确的是( )A .2+=B .632x x x ÷=C .122-=-D .325a a a ⋅=【答案】D【解析】【分析】根据实数的加法对A 进行判断;根据同底数幂的乘法对B 进行判断;根据负整数指数幂的意义对C 进行判断;根据同底数幂的除法对D 进行判断.【详解】解:A 、2不能合并,所以A 选项错误;B 、x 6÷x 3=x 3,所以B 选项错误;C 、2-1=12,所以C 选项错误; D 、a 3•a 2=a 5,所以D 选项正确.故选:D .【点睛】此题考查实数的运算,负整数指数幂,同底数幂的乘法与除法,解题关键在于掌握先算乘方,再算乘除,然后进行加减运算;有括号先算括号.10.如果把2x x y-中的x 与y 都扩大为原来的5倍,那么这个代数式的值( ) A .不变 B .扩大为原来的5倍 C .扩大为原来的10倍 D .缩小为原来的110【答案】A【解析】 由题意,得525x 5y x ⨯-=()525x y x ⨯-=2x x y- 故选:A.11.若把分式2x y xy+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍;B .缩小3倍;C .缩小6倍;D .不变; 【答案】B【解析】【分析】x ,y 都扩大3倍就是分别变成原来的3倍,变成3x 和3y .用3x 和3y 代替式子中的x 和y ,看得到的式子与原来的式子的关系.【详解】解:用3x 和3y 代替式子中的x 和y 得:()()33233x y x y +=()3x 18y xy +=13×x 2y xy+, 则分式的值缩小成原来的13,即缩小3倍. 故选:B .【点睛】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.12.下列各式从左到右变形正确的是( )A .13(1)223x y x y ++=++ B .0.20.03230.40.0545a b a d c d c d --=++ C .a b b a b c c b--=-- D .22a b a b c d c d --=++ 【答案】C【解析】【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】 A 、该式子不是方程,不能去分母,故A 错误;B 、分式中的分子、分母的各项没有同时扩大相同的倍数,故B 错误;C 、a-b b-a =d-c c-d故C 正确; D 、分式中的分子、分母的各项没有同时除以2,故D 错误.故选C .【点睛】本题考查了分式的基本性质,解题的关键是熟练运用性质.13.12×10−3=0.00612,故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.15.056用科学记数法表示为:0.056=-25.610⨯,故选B.16.下列方程中,有实数根的方程是( )A .x 4+16=0B .x 2+2x +3=0C .2402x x -=-D 0= 【答案】C【解析】【分析】利用在实数范围内,一个数的偶数次幂不能为负数对A 进行判断;利用判别式的意义对B 进行判断;利用分子为0且分母不为0对C 进行判断;利用非负数的性质对D 进行判断.【详解】解:A 、因为x 4=﹣16<0,所以原方程没有实数解,所以A 选项错误;B 、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B 选项错误;C 、x 2﹣4=0且x ﹣2≠0,解得x =﹣2,所以C 选项正确;D 、由于x =0且x ﹣1=0,所以原方程无解,所以D 选项错误.故选:C .【点睛】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则17.计算22222a b a b a b a b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭的结果是 ( ) A .1a b - B .1a b + C .a -b D .a +b【答案】B【解析】【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解: 2222a b a b a b a b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭=()()()2222a b a b a b a b a b ab +---⨯+-=1a b + 故选B .【点睛】本题考查分式的混合运算.18.分式可变形为()A.B.C.D.【答案】B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.19.化简2x xyy x y x---=()A.﹣x B.y﹣x C.x﹣y D.﹣x﹣y 【答案】A【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式=()2x x yx xyxy x y x--==---,故选A.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.000 071 5=57.1510-⨯ ,故选D.。

相关文档
最新文档