通信原理MATLAB验证低通抽样定理实验报告
实验一低通采样定理和内插与抽取实现
![实验一低通采样定理和内插与抽取实现](https://img.taocdn.com/s3/m/db583fb784868762caaed564.png)
实验一低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。
二、实验原理 1.抽样定理若)(t f 是带限信号,带宽为m ω,)(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱)(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当s ω<m ω时将发生频率混叠。
2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h 其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(s csnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有)(s i n )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa : 三、实验内容已知信号()()99(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a)20000s f Hz =;(b)10000s f Hz =;(c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x’(t)时序图。
通信原理抽样定理实验报告
![通信原理抽样定理实验报告](https://img.taocdn.com/s3/m/b449e5800b4c2e3f56276309.png)
通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出。
由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。
2、观测并记录平顶抽样前后信号的波形。
此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。
3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。
(1)9.0KHZ(2)7.7KHZ(3)7.0KHZ实验二 PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ ,用示波器接模块21的音频输出,观测信号的幅频特性。
在频率为9HZ 时的波形如上图,低通滤波器恢复出的信号与原信号基本一致,只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右,恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。
上述现象验证了抽样定理,即,在信号的频率一定时,采样频率不能低于被采样信号的2倍,否则将会出现频谱的混(1)、4000HZ (2)、3500HZ(3)120HZ (4)50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。
实验项目二 PCM编码规则实验1、以FS为触发,观测编码输入波形。
示波器的DIV档调节为100微秒。
图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。
通信原理matlab实验报告
![通信原理matlab实验报告](https://img.taocdn.com/s3/m/628a219ad05abe23482fb4daa58da0116c171f1c.png)
通信原理matlab实验报告《通信原理matlab实验报告》在现代通信系统中,通信原理是至关重要的一部分。
为了更好地理解和应用通信原理,我们进行了一系列的实验,并在本报告中分享我们的实验结果和分析。
首先,我们使用了Matlab软件进行了频谱分析实验。
通过对信号的频谱进行分析,我们能够更好地了解信号的频率分布特性,从而为信号的传输和处理提供了重要的参考。
在实验中,我们使用了不同的信号类型,并通过Matlab的频谱分析工具对其进行了分析。
通过实验结果,我们发现不同类型的信号在频谱上呈现出不同的特征,这为我们在实际通信系统中的信号处理提供了重要的指导。
其次,我们进行了调制解调实验。
调制是将数字信号转换为模拟信号的过程,而解调则是将模拟信号转换为数字信号的过程。
在实验中,我们使用Matlab模拟了调制解调过程,并通过实验结果验证了调制解调的正确性。
通过这一实验,我们深入理解了调制解调的原理和过程,并为实际通信系统中的信号处理提供了重要的参考。
最后,我们进行了信道编码解码实验。
信道编码是为了提高通信系统的可靠性和抗干扰能力而进行的一种技术手段。
在实验中,我们使用Matlab对信道编码进行了模拟,并通过实验结果验证了信道编码的效果。
通过这一实验,我们更加深入地理解了信道编码的原理和作用,为实际通信系统中的信号处理提供了重要的参考。
综上所述,通过本次实验,我们更加深入地理解了通信原理的相关知识,并通过Matlab软件进行了实际操作,加深了对通信原理的理解和应用。
这些实验结果对我们今后在通信系统设计和应用中将起到重要的指导作用。
希望通过这份实验报告的分享,能够对通信原理的学习和应用有所帮助。
通信原理实验报告
![通信原理实验报告](https://img.taocdn.com/s3/m/0682bb7277232f60dccca10b.png)
通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。
就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。
抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。
(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。
(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。
(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。
2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。
P09 测试点可用于抽样脉冲的连接和测量。
该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。
3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。
抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。
信号系统综合实验优秀报告-抽样定理的MATLAB仿真
![信号系统综合实验优秀报告-抽样定理的MATLAB仿真](https://img.taocdn.com/s3/m/ff76c6e16c175f0e7dd137ee.png)
综合性、设计性实验报告姓名学号专业通信工程班级13 级03 班实验课程名称抽样定理的MATLAB仿真指导教师及职称讲师开课学期2013 至2014 学年上学期上课时间2014年6 月12 日湖南科技学院教务处编印一、实验设计方案4、实验方法步骤及注意事项:(1) 设计原理图(2) 编程步骤① 确定f(t)的最高频率fm 。
对于无限带宽信号,确定最高频率fm 的方法:设其频谱的模降到10-5左右时的频率为fm 。
② 确定Nyquist 抽样间隔T N 。
选定两个抽样时间:T S <T N ,T S >T N 。
③ MATLAB 的理想抽样为:n=-200:200;nTs=n*Ts; 或 nTs=-0.04:Ts:0.04(注意:上式表示n 的范围为-200到200,步长为1,其余类似) ④ 抽样信号通过理想低通滤波器的响应 根据原理和公式,MATLAB 计算为:ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));(3)电路连接5.实验数据处理方法:①数据输入 ②结果输出抽样信号: 恢复信号:)(t f a )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号6.参考文献:[1] 恒盾《信号与系统实验箱》HD-XH-2 配套教材.[2]党红社,信号与系统实验(MATLAB版).西安电子科技大学出版社,2009年6月第1版.[3]吴大正,《信号与线性系统分析》第四版高等教育出版社,2005年8月第4版[4]刘永健,《信号与线性系统》.修订版.人民邮电出版社,2003[5]奥本海姆A V等.《信号与系统》.第二版.刘海棠译.西安交通大学出版社指导老师对实验设计方案的意见:指导老师签名:年月日axis([min(t),max(t),min(fh),max(fh)])line([min(t),max(t)],[0,0])f=[10*fs*k2/m2,10*fs*k1/m1];subplot(2,1,2),plot(f,abs(FH),'g')title('恢复后信号的频谱') , xlabel('频率f (Hz)')axis([-100,100,0,max(abs(FH))+2]);f1='sin(2.*pi.*60.*t)+cos(pi.*30.*t)+cos(pi.*10.*t)';fs0=caiyang(f1,80);fr0=huifu(fs0,80);fs1=caiyang(f1,120);fr1=huifu(fs1,120);fs2=caiyang(f1,150);fr2=huifu(fs2,150);2、实验现象、数据及结果(请自行粘贴仿真结果)3、 对实验现象、数据及观察结果的分析与讨论:1)频率max s 2f f <时,为原信号的欠采样信号和恢复,采样频率不满足时域采样定理,那么频移后的各相临频谱会发生相互重叠,这样就无法将他们分开,因而也不能再恢复原信号。
maab验证时域采样定理实验报告
![maab验证时域采样定理实验报告](https://img.taocdn.com/s3/m/dc504e5c33d4b14e84246863.png)
通信原理实验报告实验名称:采样定理实验时间: 2012年12月11日指导老师:应娜学院:计算机学院班级:学号:姓名:通信原理实验报告一、实验名称MATLAB验证低通抽样定理二、实验目的1、掌握抽样定理的工作原理。
2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。
同时训练应用计算机分析问题的能力。
3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。
它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。
4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。
三、实验步骤1、画出连续时间信号的时域波形及其幅频特性曲线,信号为f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t);2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形;3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。
4、对信号进行谱分析,观察与3中结果有无差别。
5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。
四、数据分析(1)部分程序分析:f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组fz=eval(fy); %获取采样序列FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换TMN=ones(length(n),1)*t-n'*T*ones(1,length(t));fh=fz*sinc(fs*TMN); %由采样信号恢复原信号(2)原信号的波形与幅度频谱:fs=80Hz时原信号离散波形及频谱(3)结果分析:1、频率sf<max2f时,为原信号的欠采样信号和恢复,采样频率不满足时域采样定理,那么频移后的各相临频谱会发生相互重叠,这样就无法将他们分开,因而也不能再恢复原信号。
(完整)抽样定理实验
![(完整)抽样定理实验](https://img.taocdn.com/s3/m/18b91818998fcc22bdd10d88.png)
抽样定理实验
一、实验目的:
学会利用MATLAB软件对抽样定理仿真。
通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。
二、实验内容
(1)抽样:输入信号为10Hz的正弦波,观察对于同一输入信号有不同的抽样频率时,恢复信号的不同形态。
(要求显示原始信号波形、脉冲抽样信号波形、抽样后信号波形、恢复的信号波形)
(a)当抽样频率大于信号频率的两倍。
(b)当抽样频率小于信号频率的两倍。
三、simulink仿真框图:
图1 simulink仿真框图
四、实验结果分析:
(1)实验结果
图2 抽样频率为200Hz
图3抽样频率为1Hz
(2)分析
>=2f(20Hz),而Simulink中正弦信号发生器无法设置要想使信号无失真的输出,必须满足f
s
f=10Hz,如果将脉冲抽样器中设置为0.05会出现混叠现象,如图4所示,因此频率应当设置的大一些以避免混叠现象。
图4抽样频率为20Hz。
通信原理实验报告matlab
![通信原理实验报告matlab](https://img.taocdn.com/s3/m/88454198a48da0116c175f0e7cd184254b351bfc.png)
通信原理实验报告matlab《通信原理实验报告:MATLAB》摘要:本实验报告基于通信原理课程的实验要求,利用MATLAB软件进行了一系列的实验。
通过实验,我们深入了解了通信原理中的一些重要概念和技术,并通过MATLAB软件进行了模拟和分析。
本实验报告将详细介绍实验的目的、原理、实验步骤、实验结果和分析,以及对实验过程中遇到的问题和解决方法进行了总结和讨论。
1. 实验目的本实验旨在通过使用MATLAB软件进行通信原理相关的实验,加深对通信原理中的相关概念和技术的理解,并通过实际操作加强对课程知识的掌握和应用能力。
2. 实验原理在本实验中,我们将涉及到通信原理中的一些重要概念和技术,包括信号的调制与解调、信道编码、信道调制等内容。
通过MATLAB软件,我们可以对这些概念和技术进行模拟和分析,从而更好地理解其原理和应用。
3. 实验步骤本实验中,我们将根据实验要求,依次进行一系列的实验步骤,包括信号的调制与解调、信道编码、信道调制等内容。
通过MATLAB软件,我们将对这些实验步骤进行模拟和分析,得到实验结果。
4. 实验结果和分析在实验过程中,我们得到了一系列的实验结果,并进行了详细的分析。
通过对这些实验结果的分析,我们可以更好地理解通信原理中的相关概念和技术,并加深对课程知识的理解和掌握。
5. 实验总结和讨论在实验过程中,我们也遇到了一些问题,并通过一些方法进行了解决。
在本部分,我们将对实验过程中遇到的问题和解决方法进行总结和讨论,以便更好地应对类似的实验问题。
通过本次实验,我们加深了对通信原理中的相关概念和技术的理解,并通过MATLAB软件进行了模拟和分析,得到了一系列的实验结果。
这些实验结果将有助于我们更好地理解通信原理中的相关知识,并加强对课程知识的掌握和应用能力。
同时,本次实验也为我们今后的学习和研究提供了一定的参考和借鉴。
通信原理抽样定理实验报告
![通信原理抽样定理实验报告](https://img.taocdn.com/s3/m/ae08be855ebfc77da26925c52cc58bd630869378.png)
通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。
通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。
1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。
抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。
本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。
2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。
该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。
3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。
3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。
然后,将该模拟信号通过电缆连接到示波器上进行观测。
在示波器上观测到的信号即为模拟信号的采样结果。
3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。
这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。
4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。
实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。
4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。
例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。
5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。
通信原理MATLAB验证低通抽样定理实验报告
![通信原理MATLAB验证低通抽样定理实验报告](https://img.taocdn.com/s3/m/b2e4d643f705cc17552709f4.png)
通信原理实验报告一、实验名称MATLAB验证低通抽样定理二、实验目的1、掌握抽样定理的工作原理。
2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。
同时训练应用计算机分析问题的能力。
3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。
它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。
4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。
三、实验步骤及原理1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。
2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。
四、实验内容1、画出连续时间信号的时域波形及其幅频特性曲线,信号为x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形;3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。
4、对信号进行谱分析,观察与3中结果有无差别。
5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。
五、实验仿真图(1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。
clear;close all;dt=0.05;t=-2:dt:2x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(2,1,2)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');grid;(2)采样频率分别为10Hz时的采样序列波形, 幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.1;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(3)采样频率分别为20 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.05;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(4)采样频率分别为50 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;;clear;close all;dt=0.02;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2; fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形') xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形') xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形') xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|'); xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401)) title('恢复后的信号'); xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|'); xlabel('f1');grid;六、实验结论实验中对模拟信号进行采样,需要根据最高截止频率Fmax,按照采样定理的要求选择采样频率的两倍,即 Fs>2Fmax。
实验一 MATLAB验证抽样定理
![实验一 MATLAB验证抽样定理](https://img.taocdn.com/s3/m/202d756da45177232f60a20f.png)
实验一MATLAB验证抽样定理一、实验目的1、掌握脉冲编码调制(PCM)的工作原理。
2、通过MATLAB编程实现对时域抽样定理的验证,加深抽样定理的理解。
同时训练应用计算机分析问题的能力。
二、实验预习要求1、复习《现代通信原理》中有关PCM的章节;2、复习《现代通信原理》中有关ADPCM的章节;;3、认真阅读本实验内容,熟悉实验步骤。
4、预习附录中的杂音计,失真度仪的使用。
三、实验环境PC电脑,MA TLAB软件四、实验原理1、概述脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用。
十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积、减轻重量、降低功耗、简化调试以及方便维护等方面都有了显著的改进。
目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化。
本实验是以这些产品编排的PCM编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术。
PCM数字电话终端机的构成原理如图3-1所示。
实验只包括虚线框内的部分,故名PCM 编译码实验。
混合装置V oice发滤波器波器收滤编码器器码译分路路合发收图3-1 PCM 数字电话终端机的结构示意图ADPCM 是在DPCM 基础上逐步发展起来的,DPCM 的工作原理请参阅教材有关章节。
它在实现上采用预测基数减少量化编码器输入信号多余度,将差值信号编码以提高效率、降低编码信号速率,这广泛应用于语音和图像信号数字化。
ADPCM 中的量化器与预测器均采用自适应方式,即量化器与预测器的参数能根据输入信号的统计特性自适应于最佳式接近于最佳参数状态。
通常,人们把低于64Kbps 数码率的语音编码方法称为语音压缩编码技术,语音压缩编码方法很多,ADPCM 是语音压缩编码种复杂程度较低的一种方法。
它能在32Kbps 数码率上达到符合64Kbps 数码率的语音质量要求,也就是符合长途电话的质量要求。
2、 实验原理(1) PCM 编译码原理PCM 编译码系统由定时部分和PCM 编译码器构成,如图3-2所示图3-2 PCM 调制原理框图PCM 主要包括抽样、量化与编码三个过程。
通信原理抽样实验报告
![通信原理抽样实验报告](https://img.taocdn.com/s3/m/5fb7aa4bbc64783e0912a21614791711cc797926.png)
一、实验目的1. 理解通信原理中抽样定理的基本概念;2. 掌握抽样定理在模拟信号数字化过程中的应用;3. 了解模拟信号抽样后的特性及其对信号传输的影响;4. 熟悉实验仪器和实验方法。
二、实验原理抽样定理(Nyquist-Shannon采样定理)指出,如果一个信号在频域中的最高频率分量为\( f_m \),为了能够无失真地恢复原信号,抽样频率\( f_s \)必须满足以下条件:\[ f_s \geq 2f_m \]其中,\( f_s \)为抽样频率,\( f_m \)为信号最高频率分量。
当抽样频率满足上述条件时,原信号可以通过低通滤波器从抽样信号中无失真地恢复出来。
三、实验仪器与设备1. 信号发生器:用于产生不同频率和幅度的正弦信号;2. 示波器:用于观察和测量信号波形;3. 抽样器:用于对模拟信号进行抽样;4. 低通滤波器:用于从抽样信号中恢复原信号。
四、实验步骤1. 使用信号发生器产生一个频率为\( f_m \)的正弦信号;2. 将正弦信号输入到抽样器中,设置抽样频率\( f_s \)为\( 2f_m \);3. 使用示波器观察抽样后的信号波形;4. 通过低通滤波器从抽样信号中恢复原信号;5. 比较恢复后的信号与原信号,分析恢复效果。
五、实验结果与分析1. 当抽样频率\( f_s = 2f_m \)时,恢复后的信号与原信号基本一致,表明抽样定理在实验中得到了验证;2. 当抽样频率\( f_s < 2f_m \)时,恢复后的信号与原信号存在较大差异,说明抽样频率过低会导致信号失真;3. 当抽样频率\( f_s > 2f_m \)时,恢复后的信号与原信号基本一致,但抽样频率过高会浪费带宽资源。
六、实验总结通过本次实验,我们深入理解了通信原理中抽样定理的基本概念,掌握了抽样定理在模拟信号数字化过程中的应用。
实验结果表明,抽样频率的选择对信号恢复质量具有重要影响。
在实际应用中,应根据信号特性和传输需求选择合适的抽样频率,以实现信号的高效、准确传输。
MATLAB实现抽样定理探讨及仿真
![MATLAB实现抽样定理探讨及仿真](https://img.taocdn.com/s3/m/dd2c0c8bab00b52acfc789eb172ded630a1c9861.png)
MATLAB实现抽样定理探讨及仿真抽样定理是信号处理与通信领域中的一个重要定理,它指出在进行信号采样时,为了避免失真和信息丢失,采样频率必须至少为信号带宽的两倍。
抽样定理还提供了信号的重构方法,可以从采样信号中恢复出原始信号的全部信息。
在这篇文章中,我们将使用MATLAB对抽样定理进行探讨,并进行相关的仿真实验。
首先,我们将介绍抽样定理的基本原理。
在信号处理中,信号可以被表示为时域函数或频域函数。
在时域中,信号可以用冲激函数的线性组合来表示,而在频域中,信号可以被表示为复指数函数的线性组合。
信号的带宽是指信号中包含的频率的范围,通常用赫兹(Hz)来表示。
根据抽样定理,为了准确地恢复信号,采样频率必须至少是信号带宽的两倍。
接下来,我们将使用MATLAB对抽样定理进行仿真实验。
首先,我们将生成一个具有限带宽的信号,并对其进行采样。
然后,我们将根据抽样定理的要求重新构建信号,以验证定理的有效性。
假设我们有一个信号x(t),其频率范围为0至10赫兹,并且我们以20赫兹的采样频率对其进行采样。
我们可以使用MATLAB生成这个信号,并进行采样,代码如下所示:```matlabFs=20;%采样频率t=0:1/Fs:1-1/Fs;%1秒内的采样时刻x = sin(2*pi*10*t); % 10赫兹的正弦波信号stem(t,x);xlabel('时间(秒)');ylabel('幅度');title('原始信号');```接下来,我们将使用抽样定理的频率限制条件对信号进行重构,并绘制重构后的信号。
我们将使用插值的方法对采样信号进行重构,代码如下所示:```matlabt_recon = 0:1/(2*Fs):1-1/(2*Fs); % 重新构建信号时的采样时刻x_recon = interp1(t,x,t_recon); % 插值重构信号stem(t_recon,x_recon);xlabel('时间(秒)');ylabel('幅度');title('重构信号');```通过对原始信号和重构信号的比较,我们可以看到抽样定理的有效性。
matlab与通信仿真实验报告
![matlab与通信仿真实验报告](https://img.taocdn.com/s3/m/8c4318bfc9d376eeaeaad1f34693daef5ef713e8.png)
matlab与通信仿真实验报告《Matlab与通信仿真实验报告》摘要:本实验报告通过使用Matlab软件进行通信仿真实验,对通信系统的性能进行了评估和分析。
首先介绍了通信系统的基本原理和模型,然后利用Matlab软件搭建了通信系统的仿真模型,并进行了实验验证。
通过实验结果的分析,得出了通信系统的性能指标,为通信系统的设计和优化提供了重要参考。
一、引言通信系统是现代信息社会中不可或缺的基础设施,它承载着各种类型的信息传输和交换。
通信系统的性能直接影响着信息传输的质量和效率,因此对通信系统的性能评估和分析具有重要意义。
Matlab软件是一种功能强大的科学计算软件,它提供了丰富的工具和函数库,可以用于通信系统的建模、仿真和分析。
本实验报告将利用Matlab软件进行通信系统的仿真实验,对通信系统的性能进行评估和分析。
二、通信系统的基本原理和模型通信系统由发送端、信道和接收端组成,发送端将信息转换成电信号发送出去,经过信道传输后,接收端将电信号转换成信息。
通信系统的性能评估主要包括信号传输质量、误码率、信噪比等指标。
在本实验中,我们将以常见的调制解调技术为例,建立通信系统的仿真模型。
三、Matlab软件在通信系统仿真中的应用Matlab软件提供了丰富的工具和函数库,可以用于通信系统的建模、仿真和分析。
在本实验中,我们将利用Matlab软件搭建通信系统的仿真模型,包括信号调制、信道传输、信号解调等过程。
通过Matlab软件的仿真实验,我们可以得到通信系统的性能指标,如误码率、信噪比等。
四、实验结果分析通过Matlab软件进行通信系统的仿真实验,我们得到了一系列实验结果。
通过对实验结果的分析,我们可以评估通信系统的性能,比如误码率随信噪比的变化规律、不同调制方式的性能比较等。
这些实验结果对于通信系统的设计和优化具有重要的参考价值。
五、结论本实验报告利用Matlab软件进行通信系统的仿真实验,对通信系统的性能进行了评估和分析。
通信原理抽样定理实验报告
![通信原理抽样定理实验报告](https://img.taocdn.com/s3/m/83030dcfbdeb19e8b8f67c1cfad6195f302be84f.png)
通信原理抽样定理实验报告一、实验目的。
本实验旨在通过实际操作,验证和理解抽样定理在通信原理中的重要性和应用。
二、实验原理。
抽样定理是指在进行信号采样时,采样频率必须至少是信号最高频率的两倍,才能够准确地还原原始信号。
否则,会产生混叠失真,导致信号无法正确恢复。
抽样定理是数字通信系统中的基础,对于保证信号采样的准确性和精度至关重要。
三、实验器材。
1. 示波器。
2. 信号发生器。
3. 低通滤波器。
4. 电缆、连接线等。
四、实验步骤。
1. 将信号发生器输出正弦波信号,频率为f,幅度适当。
2. 将示波器设置为触发模式,连接到信号发生器输出端。
3. 调节示波器的水平和垂直位置,使得正弦波信号在屏幕上能够完整显示。
4. 逐渐增加信号发生器的频率,直到正弦波信号出现混叠失真。
5. 记录混叠失真出现时的频率值,并计算出最小采样频率。
五、实验结果。
通过实验,我们得到了信号发生器产生正弦波信号的频率和最小采样频率的数值。
实验结果表明,在通信原理中,抽样定理的重要性不可忽视。
只有在满足抽样定理的条件下,才能够准确地还原原始信号,避免混叠失真的发生。
六、实验结论。
抽样定理是数字通信系统中的基础,对于保证信号采样的准确性和精度至关重要。
在实际工程中,我们需要根据信号的最高频率来确定采样频率,以确保信号的准确恢复和传输。
本次实验的结果再次验证了抽样定理的重要性,为我们在通信原理中的应用提供了重要的参考。
七、实验感想。
通过本次实验,我们更加深刻地理解了抽样定理在通信原理中的重要性和应用。
在今后的学习和工作中,我们将会更加严格地遵循抽样定理,以确保通信系统的稳定和可靠。
八、参考文献。
[1] 《数字通信原理》,XXX,XXX出版社,2018年。
[2] 《通信工程基础》,XXX,XXX出版社,2017年。
以上就是本次实验的全部内容,谢谢阅读!。
抽样定理分析实验报告
![抽样定理分析实验报告](https://img.taocdn.com/s3/m/edb209883086bceb19e8b8f67c1cfad6195fe987.png)
一、实验目的1. 深入理解抽样定理的基本原理和适用条件。
2. 通过MATLAB仿真实验,验证抽样定理的正确性。
3. 分析不同采样频率对信号恢复的影响,探讨采样频率对信号质量的影响。
4. 掌握利用MATLAB进行信号处理和频谱分析的方法。
二、实验原理抽样定理是信号与系统理论中的一个重要概念,它指出:如果一个带限信号(即其频谱在有限频率范围内非零)以高于其最高频率两倍(或更高)的频率进行采样,则采样后的信号可以无失真地恢复原信号。
三、实验仪器与软件1. 实验仪器:无。
2. 实验软件:MATLAB。
四、实验步骤1. 生成一个带限信号,如正弦波信号。
2. 设置不同的采样频率,如最高频率的两倍、四倍、六倍等。
3. 对信号进行采样,得到采样序列。
4. 对采样序列进行频谱分析,绘制其幅频曲线。
5. 将采样序列通过逆采样操作恢复原信号。
6. 对恢复的信号进行频谱分析,观察与原信号的频谱是否一致。
五、实验结果与分析1. 不同采样频率对信号恢复的影响实验结果显示,当采样频率低于信号最高频率的两倍时,恢复的信号与原信号存在较大差异,信号失真严重。
当采样频率等于信号最高频率的两倍时,恢复的信号与原信号基本一致,信号失真很小。
当采样频率高于信号最高频率的两倍时,恢复的信号与原信号仍然一致,但信号质量略有提高。
2. 采样频率对信号质量的影响从实验结果可以看出,采样频率越高,恢复的信号质量越好。
这是因为采样频率越高,采样点越密集,能够更准确地反映信号的波形。
但是,采样频率过高也会导致数据量增加,增加存储和传输负担。
3. 抽样定理的验证实验结果验证了抽样定理的正确性。
当采样频率高于信号最高频率的两倍时,采样后的信号可以无失真地恢复原信号。
六、实验结论1. 抽样定理是信号与系统理论中的一个重要概念,对于信号处理和通信领域具有重要意义。
2. 采样频率对信号恢复的质量有重要影响,采样频率越高,恢复的信号质量越好。
3. 利用MATLAB进行信号处理和频谱分析是有效的方法,可以方便地验证抽样定理。
应用MATLAB实现信号抽样及抽样定理课程设计 (2)
![应用MATLAB实现信号抽样及抽样定理课程设计 (2)](https://img.taocdn.com/s3/m/adc22439b9f3f90f77c61bab.png)
XXX学院信号与通信综合设计项目题目:应用MATLAB实现信号抽样及抽样定理学院:电子与信息工程学院专业:通信工程班级:姓名:学号:联系方式:指导教师:报告成绩:摘要抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分。
采样过程所应遵循的规律,又称取样定理、抽样定理。
采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。
通过MATLAB对抽样定理进行实验仿真验证,得到实验目的的结果。
关键词:频率;抽样定理;目录一、课程设计目的 (2)二、实验设备及环境 (2)三、实验原理 (2)四、实验内容 (3)4.1正弦信号的抽样: (3)4.2混合信号的抽样: (3)4.3实现效果 (3)实验心得 (9)参考文献 (11)一、课程设计目的学会利用MATLAB 完成信号取样及对取样信号的频谱进行分析;学会利用MATLAB 改变取样间隔,观察取样后信号的频谱变化;利用MATLAB,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。
二、实验设备及环境Pc 机(win10)MATLAB2017a三、实验原理抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为 T≤1/2fm 的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯-地表示。
在一个频带限制在(0, fn)内的时间连续信号f(t),如果以小于等于1/fh 的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
或者说,如果-一个连续信号f(t)的频谱中最高频率不超过fh 这种信号必定是个周期性的信号,当抽样频率fs ≥2fn 时,抽样后的信号就包含原连续信号的全部信息,当需要时,可以根据这些抽样信号样本来还原原来的连续信号。
时域抽样定理:一个频谱受限的信号f(t),如果频谱只占据-wm~+wm 的范围,则信号f(t)可以用等间隔的抽样值惟一地表示。
通信原理实验报告-含MATLAB程序
![通信原理实验报告-含MATLAB程序](https://img.taocdn.com/s3/m/a6e6e64f6137ee06eef91877.png)
通信原理实验报告实验一 数字基带传输实验一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。
二、实验原理1. 带限信道的基带系统模型(连续域分析)输入符号序列 ————{al }发送信号 ————10()()L l d t al t lTb δ-==-∑ Tb 是比特周期,二进制码元周期发送滤波器 ————GT(w)或GT (t )发送滤波器输出 ————1100()()*()()*()()L L l b T l T b T l l x t d t t a t lT g t a g t lT g δ--====-=-∑∑ 信道输出信号或接收滤波器输入信号()()()y t x t n t =+接收滤波器 ()R G ω或()R G f接收滤波器输出信号10()()*()()*()*()()*()()()L R T R R l b R l r t y t g t d t g t g t n t g t a g t lT n t -===+=-+∑其中2()()()j ft T R g t G f G f e df π∞-∞=⎰如果位同步理想,则抽样时刻为b l T ⋅ 01l L =-:判决为 '{}l a2. 升余弦滚降滤波器1()||2s sH f T f T α-=≤; ()H f =111[1cos (||)]||2222s s s s sT T f f T T T παααα--++-<≤ ()H f = 10||2s f T α+>式中α 称为滚降系数,取值为0 <α ≤1, T s 是常数。
α = 0时,带宽为1/ 2T s Hz ;α =1时, 带宽为1/T s Hz 。
[VIP专享]通信原理实验(软件)实验六:低通型采样定理实验报告
![[VIP专享]通信原理实验(软件)实验六:低通型采样定理实验报告](https://img.taocdn.com/s3/m/a5d10d6710661ed9ac51f354.png)
●实验目的:1、掌握低通型采样定理;2、掌握理想采样、自然采样和瞬时采样的特点;3*、掌握混叠失真和孔径失真。
●知识要点:1、低通型采样定理;2、理想采样及其特点;3、自然采样及其特点;4、瞬时采样及其特点;5*、混叠失真及孔径失真。
●仿真要求:●建议时间参数:No. of Samples =4096;Sample Rate = 20000Hz1、记录理想采样时信源、样值序列和恢复信号的波形和频谱;信源为截止频率200Hz 的低通型信号;其中图符0为信号源(单位冲激信号即,偏移量为0.05);()t δ图符1为截止频率200Hz,极点个数为6的模拟低通滤波器;图符2为采样器,采样频率2000Hz;图符3为保持电路,Hold Value = Zero,Gain = 1;图符4为截止频率250Hz,极点个数为5的模拟低通滤波器;频谱选择|FFT|;理想采样时:信源的波形与频谱:样值序列的波形与频谱:恢复信号的波形与频谱:2*、自行调整参数,观测并记录混叠失真;3、记录自然采样时样值序列和恢复信号的波形和频谱;用于采样的矩形脉冲序列幅度1V,频率2000Hz;脉宽0.00025s(占空比50%);自然采样:样值序列的波形与频谱:恢复信号的波形与频谱:4*、调整矩形脉冲序列的占空比,观测并记录样值序列波形和频谱的变化;自然采样改变占空比40%:5、记录瞬时采样时样值序列和恢复信号的波形和频谱;保持电路Hold Value = Last Sample,增益Gain = 1;采样时样值序列的波形与频谱:恢复信号的波形与频谱:改变占空比:10%采样时样值序列的波形与频谱:6*、自行调整参数,观测并记录孔径失真。
实验报告要求:1、记录理想采样时的波形和频谱,并分析其特点;理想采样时的波形与原波形一样,频谱也与原波形一致。
2*、记录并分析混叠失真;3、记录自然采样时的波形和频谱,并分析其特点;自然采样时的波形是与矩形脉冲相乘,但还是呈原波形的形状,只是中间有了间隔;而频谱形状会出现某段的频谱衰减或消失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信原理实验报告一、实验名称MATLAB验证低通抽样定理二、实验目的1、掌握抽样定理的工作原理。
2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。
同时训练应用计算机分析问题的能力。
3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。
它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。
4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。
三、实验步骤及原理1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。
2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。
四、实验内容1、画出连续时间信号的时域波形及其幅频特性曲线,信号为x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形;3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。
4、对信号进行谱分析,观察与3中结果有无差别。
5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。
五、实验仿真图(1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。
clear;close all;dt=0.05;t=-2:dt:2x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(2,1,2)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');grid;(2)采样频率分别为10Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.1;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(3)采样频率分别为20 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.05;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(4)采样频率分别为50 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;;clear;close all;dt=0.02;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2; fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形') xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形') xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形') xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|'); xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401)) title('恢复后的信号'); xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|'); xlabel('f1');grid;六、实验结论实验中对模拟信号进行采样,需要根据最高截止频率Fmax,按照采样定理的要求选择采样频率的两倍,即 Fs>2Fmax。
设计中对三种频率时采样分析总结:(1)欠采样:即Fs<2Fmax时,时域波形恢复过程中已经不能完整的表示原信号,有了失真,从频谱上也可看出,同的频谱带互相重叠,已经不能体现原信号频谱的特点了,从而无法得到原来的信号。
(2)临界采样:即Fs=2Fmax时,时域波形任然不能恢复完整的原信号,信号只恢复过程中恢复了低频部分,从频谱上便可看出,但任然不可完全恢复原信号。
(3)过采样:即Fs>2Fmax时,此时的采样是成功的,它能够恢复原信号,从时域波形可看出,比上面采样所得的冲激脉冲串包含的细节要多,在频域中也没出现频谱的交叠,这样我们可以利用低通滤波器m(t)得到无失真的重建。
七、实验体会通过本实验,认识Matlab这个功能强大的仿真软件,初步了解了Matlab的操作界面以及简单的程序语言和程序运行方式,通过具体的取样和恢复信号的过程,更加深刻了解了采样定理的定义的具体含义:将模拟信号转换成数字信号,即对连续信号进行等间隔采样形式采样,采样信号的频率是原连续信号的频谱以采样频率为周期的延拓形成的,通过MATLAB编程实现对抽样定理的验证,加深了抽样定理的理解。
同时自己训练应用计算机分析问题的能力。