第二章_热力学第一定律公式总结
热力学第一定律总结
298 K时,H2(g)的∆cHmө = -285.83 kJ·mol-1, H2S(g)和 SO2(g)的∆fHmө分别为-20.63 kJ·mol-1和-296.83 kJ·mol-1。 求下列反应在498 K时的∆rUmө。已知水在373 K时的摩 尔蒸发焓∆vapHm (H2O, 373 K) = 40.668 kJ·mol-1. 2H2S (g) + 3O2 (g) = 2SO2 (g) + 2H2O(g)
其中,T2的值由理想气体绝热方程式(pVγ=C)求得。
3、Q的计算 、 的计算
• Q = ∆U – W • 如恒容,Q = ∆U • 如恒压,Q = ∆H
1. 绝热密闭体系里,以下过程的ΔU不等于零的是: A) 非理想气体混合 B) 白磷自燃 C) 乙醚挥发 D) 以上均为0 2.“爆竹声中一岁除,春风送暖入屠苏”。我国 春节有放鞭炮的习俗。在爆竹爆炸的过程中,以 下热力学量的符号表示正确的是(忽略点火时火柴 传递给引线的少量热量) ( ) A) Q<0,W<0,ΔU<0 B) Q<0,W=0,ΔU<0 C) Q=0,W<0,ΔU<0 D) Q=0,W=0,ΔU=0
nN2CV, m(N2)(T-T1) + nCuCV,误二: ∆U =∆UN2 + ∆UCu = 0
nN2CV, m(N2)*(T-T1) + nCuCV, m(Cu)*(T-T2) = 0
正确解法:
∆U =∆UN2 + ∆UCu = ∆UN2 + ∆HCu = 0 nN2CV, m(N2)*(T-T1) + nCuCp, m(Cu)*(T-T2) = 0
• 求火焰最高温度: Qp = 0, ΔH = 0 求火焰最高温度: • 求爆炸最高温度、最高压力:QV = 0, W = 0 求爆炸最高温度、最高压力: =0
天津大学物理化学第二章 热力学第一定律-2
U U(Ar,g) U(Cu,s)
U (Ar, g) n(Ar, g)Cv,m (Ar, g)(T2 - T1 )
U (Cu, s) H (Cu, s) n(Cu, s)C p,m (Cu, s)(T2 - T1 )
U n( Ar, g)Cv,m( Ar, g) n(Cu, s)C p,m (Cu, s) (T2 - T1 )
T
dVm
对上式两边恒压下除以dT以后,得:
( Um T
)p
( Um T
)v
(
U m Vm
)T
(
Vm T
)
p
代入上式有:
C p,m
Cv,m
(
U m Vm
)T
p
(
Vm T
)
p
对于理想气体:
(
Um V
) T
0,
(
Vm T
) p
R p
,
C p,m CV ,m R
单原子分子 双原子分子
C p,m
C p,m
=
1 δQ p n dT
对恒压过程 δQ p = dH p = ndH m,p
代入有
C p,m
1(H n T
) v
(
H m T
) v
—— C p,m定义式
单位为 J ·mol-1K-1
2、 应用——计算单纯pVT 过程 H
恒压过程: Qp H n C T2 p,mdT
T1
P1 P1 V1
P2
设活塞无质量,无摩擦
恒T下气体经不同过程由 同一始态变化到同一末态
(P1 ,V1)→ (P2 ,V2)
大学物理化学公式总结(傅献彩_南京大学第五版)
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
第二章热力学第一定律公式总结1
r
1
1
(
p2V2
p1V1)
nR(T2 T1) r 1
1 V
( V T
)p
J
( T V
)U
1 V
( V p
)T
J -T
(
T p
)H
1 Cp
H
p
T
可逆相变热: Qp H n Hm (B)
不可逆相变热:设计过程,其中要包含可逆相变
pdV
1
2
QV=△U
Q U nC dT
V
1
V ,m
Qp= H
Qp H
T2 T1
nC
p
,mdT
H= U+ (pV) = U+(p2V2-p1V1)
以公下式所列运公用式条只件适用于封闭体系和热力学平衡态。
(1)H=U+pV 是定义式,适用于任何处于热力学平衡
rUV + RT ni.g rUV + RT i.g
规定 : Hm(稳定单质,298.15K)=0i
推论: fHm(稳定单质,T)=0 fHm(B,298.15K)=Hm(B,298.15K)
由基础热数据求rHm(298.15K):
r
H
nB ( ) nB (0) B
QV rU, Qp r H
r H p rUV + RT i.g
i
r Hm rUm RT i.g
以上两式推导过程如下,可以看出应i 用了两个近似: (1)忽略了凝聚相体积的变化(2)将气体视为理想气体。
第二章-热力学第一定律-3
定义:
r H r H m ξ
2.7.3a
B
为摩尔反应焓。代入上式,
所以有: r H m
ν
B
H m (B)
2.7.4
因为对于同一个反应,不同写法的方程,νB 的值不同。所以 同一个反应,不同写法的方程,ΔrHm也不同。所以,谈到ΔrHm 时,不但要指明针对的反应,还应当指出方程式的具体形式。 3. 标准摩尔反应焓 (1)标准态 气体:任意温度T,标准压力pɵ=100 kPa下表现出理想气体性质 的纯气体状态。 液体或固体 :任意温度T,压力为标准压力pɵ=100 kPa的纯 液体或纯固体状态。
B H H
H 比相变焓为 h m
H H H
H H m n
说明:
H m Qp,m (1)
(恒压且无非体积功)
(常压下数据可查得) (2) H m f(T)
(3) H m - H m
T1 T2
H n C p,m dT nC p,m T2 - T1) (
T1
T2
§2.6 相变焓
相: 系统内物理性质、化学性质完全相同的均匀部分。
相与相之间在指定条件下有明显的界面,在界面上宏观性质 的改变是飞跃式的。
气体:不论有多少种气体混合,只有一个气相。 液体:按其互溶程度可以组成一相、两相或三相共存。 固体:一般有一种固体便有一个相。两种固体粉末无论混合 得多么均匀,仍是两个相(固体溶液除外,它是单相) 例如:某种固体盐与其饱和水溶液及水蒸气共存,系统共有 气、液、固三相。 相变:物质不同相态之间的转变。如蒸发、升华、熔化 和晶型 转变等。
总结: vapHm(T2) = H1+ H2+ H3 = vapHm(T1)+ {Cp,m(H2O,g) – Cp,m(H2O,l)} T = vapHm(T1) + Cp,m T T2 一般情况:
热力学第一定律主要公式
热力学第一定律主要公式1.U 与H得计算对封闭系统得任何过程U=Q+W(1) 简单状态变化过程1) 理想气体等温过程任意变温过程等容变温过程 ()等压变温过程绝热过程2)实际气体van derWa als 气体等温过程222111211()H U pV n a p V pV V V ⎛⎫ ⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程(3)无其她功得化学变化过程绝热等容反应绝热等压反应等温等压反应等温等压凝聚相反应等温等压理想气体相反应或由生成焓计算反应热效应由燃烧焓计算反应热效应由键焓估算反应热效应,,()(,(i m i i m i i i H T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:为种键得个数;为种键得键焓。
不同温度下反应热效应计算2、体积功W得计算任意变化过程任意可逆过程自由膨胀与恒容过程 W=0恒外压过程等温等压相变过程(设蒸气为理想气体)等温等压化学变化 (理想气体反应)(凝聚相反应)理想气体等温可逆过程理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程van der W aal s 气体等温可逆过程3、Q 得计算(1)简单状态变化过程等压变温过程等压变温过程(2) 等温等压相变过程Joule-Thomson 系数表示节流膨胀后温度升高。
表示节流膨胀后温度不变(理想气体得),时得温度成为倒转温度; 表示节流膨胀后温度降低(常用于气体得液化);表示节流膨胀后温度升高。
第二章 热力学第一定律 主要公式及使用条件
第二章 热力学第一定律主要公式及使用条件1. 1. 热力学第一定律的数学表示式W Q U +=Δ或'amb δδδd δdU Q W Q p V W =+=−+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 2. 焓的定义式pVU H +=3. 3. 焓变(1) )(pV U H Δ+Δ=Δ式中为乘积的增量,只有在恒压下)(pV ΔpV )()(12V V p pV −=Δ在数值上等于体积功。
(2) 2,m 1d p H nC Δ=∫T 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
2,m 1d V U nC Δ=∫T5. 5. 恒容热和恒压热(d V Q U =Δ0,'0)V W ==p Q H =Δ(d 0,'0)p W ==6. 6. 热容的定义式(1)定压热容和定容热容δ/d (/)p p C Q T H T p ==∂∂δ/d (/)V V C Q T U T ==∂∂V p V R 3(2)摩尔定压热容和摩尔定容热容,m m /(/)p p C C n H T ==∂∂,m m /(/)V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容),m //p p p c C m C M==式中m 和M 分别为物质的质量和摩尔质量。
(4),m ,m p V C C −=此式只适用于理想气体。
(5)摩尔定压热容与温度的关系2,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()T p p T C T T T C =−∫7. 7. 摩尔蒸发焓与温度的关系21v ap m 2vap m 1v ap ,m ()()d T p T H T H T C T Δ=Δ+Δ∫或 vap m vap ,m (/)p p H T ∂Δ∂=ΔC d amb ∑−=−−=−−=式中 = C (g) —C (l),上式适用于恒压蒸发过程。
热力学第一定律总结
热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =—p ΔV =-Δ(pV ),ΔU = Q —Δ(pV ) → ΔH = Q p 恒容+绝热(W '=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV )典型例题:3.11思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温:或或 如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等. C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:3。
18思考题第2,3,4题书2。
18、2.19三、 凝聚态物质的ΔU 和ΔH 只和温度有关或 典型例题:书2.15四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)U ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
101.325 kPa 及其对应温度下的相变可以查表。
ΔU = n C V , m d T T 2T 1∫ ΔH = n C p, md T T 2 T1∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1)ΔU ≈ ΔH = nC p, m d T T 2T 1∫ΔU ≈ ΔH = nC p, m (T 2-T 1)ΔH = Q p = n Δ H m αβ其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m计算。
热力学第一第二定律复习
热力学第二定律 一、重要概念 卡诺循环,热机效率,热力学第二定律,克劳修斯不等式 熵,规定熵,标准熵,标准摩尔反应熵,亥姆霍兹函数 ,吉布斯函数 二、主要公式与定义式 1. 可逆热机效率:η = -W / Q1 =(Q1+Q2)/ Q1 = 1 - T2 / T1 (T2 , T1 分别为低温,高温热源) 2.卡诺定理:任何循环的热温熵小于或等于0
(3) 对于凝聚相,状态函数通常近似认为只与温度有关, 而与压力或体积无关,即 d U≈d H= n Cp,m d T
(5) 相变过程 可逆相变:在温度T对应的饱和蒸气压下的相变,如水 在常压下的0℃ 结冰或冰溶解,100 ℃ 时的汽化或凝结等 过程。 由温度T1下的相变焓计算另一温度下的相变焓T T2 q q D Hm (T2)= D Hm (T1)+ D C dT
三、ΔS、ΔA、ΔG的计算 1.ΔS的计算(重点) 特例:恒温过程: ΔS = nRln(V2/V1) 恒容过程: ΔS =nCV,mln(T2/T1) 恒压过程: ΔS =nCp,mln(T2/T1) (2) 相变过程:可逆相变 ΔS =Δ H/T ; 非可逆相变 需设计路径计算 (3) 标准摩尔反应熵的计算 Δ rSmθ = ∑ vB Smθ (B,T) 2.Δ G的计算 (1) 平衡相变或反应达到平衡:Δ G=0 (2) 恒温过程:ΔG=Δ H-TΔS (3) 非恒温过程:Δ G=Δ H- ΔT S =Δ H -(T 2S2-T1S1) 注:题目若要计算Δ G,一般是恒温过程;若不是恒温, 题目必然会给出绝对熵。
(1) Δ S(隔离)>0,自发(不可逆); Δ S(隔离)=0,平衡(可逆)。 (2)恒T、恒p、W ’=0过程(最常用): dG<0,自发(不可逆);dG=0,平衡(可逆)。 (3) 恒T、恒V、W ’=0过程: dA<0,自发(不可逆); dA=0,平衡(可逆)。
第二章热力学第一定律概念及公式总结
第二章 热力学第一定律2.3热力学基本概念 1.系统:● 隔离系统:没有物质或能量的交换 ● 封闭系统:有能量交换● 敞开系统:有能量或物质的交换 2.热力学平衡态:(当系统的各种性质不随时间而改变,则系统就处于热力学平衡状态)热力学必须同时满足的条件平衡:热动平衡、力学平衡、相平衡、化学平衡。
2.3.1状态函数(当系统的状态发生变化时,它的一系列性质也随之变化,改变的多少取决于始态和终态)【异途同归,值变相等;周而复始,数值还原】 《m 、T 、、P 、V 、浓度、黏度、折光率、热力学能、焓、熵》 2.3.2 状态方程(),ν=T f p 与系统性质有关的函数2.3.3 过程和途径2.3.3.1 常见的变化过程有:● 等温过程:只有始终态温度不变● 恒温过程:在过程中温度一直持续不变 ● 等压过程:始终态压力相等且等于环境温度● 等容过程:系统变化过程中体积不变(刚性容器)● 绝热过程:系统与环境没有热交换(爆炸、快速燃烧)Q=0 ● 环状过程:系统经一系列变化又回到了原来的状态d 0∮ν= 、d 0∮=p 、d 0∮=U 、d 0∮=T状态函数的变化值仅取决于系统的始终态,而与中间具体的变化无关。
过程函数的特点:只有系统发生一个变化时才有过程函数 过程函数不仅与始终态有关还与途径有关没有全微分,只有微小量。
用δQ 、δw 表示环积分不一定为0 (不一定0∮δ=Q )2.3.4 热和功热的本质是分子无规则运动强度的一种体现,系统内部的能量交换不可能是热。
功和热都不是状态函数,其值与过程无关。
2.4热力学第一定律热力学能是指系统内分子运动的平动能、转动能、振动能、电子及核的能量,以及分子与分子之间相互作用的位能等能量的总和。
文字表述:第一类永动机是不可能造成的(既不靠外界提供能量,本身也不减少能量,却可以不断对外做功的机器称为第一类永动机)能量总量在转化过程中保持不变 系统热力学能的变化是:21∆=-=+U U U Q W系统发生微小变化,热力学能的变化d U 为:d δδ=+U Q W (状态函数)对于物质的量为定值的封闭系统,则微小变量的热力学能变化可以表示为:d d d ν⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭p TU U T p T p 2.5准静态过程与可逆过程2.5.1功与过程系统做的膨胀功为:e e d δ=-=-W F dl p V膨胀功分为 :✧ 自由膨胀(向真空膨胀)<W=0>:外压e p 为零的膨胀过程,由于e p =0所以,,10δ=e W ,系统对外不做功。
物理化学第二章总结
第二章 主要公式及适用条件热力学第一定律dU = δQ + δW 或 ∆U = Q + W一.体积功WdV p W amb -=⎰或 dV p W amb -=δ 适用于任何系统、任何过程的体积功的计算。
1.自由膨胀过程(向真空膨胀): W = 02.恒外压过程: )(12V V p W amb --=3.恒容过程:4. 恒压过程: )(12V V p W --= 一定量理想气体恒压过程 T nR W ∆-=5.一定量理想气体恒温可逆过程:1221ln ln p p nRT V V nRT W ==6.一定量理想气体绝热可逆过程W = ΔU = n C v.m (T 2-T 1) 或)11(1111211----=γγγγV V V p W(其中 γ = C p.m / C v.m 称为绝热指数 也称热容商。
)7.恒温恒压相变过程: W = - p (V β-V α )若β相为理想气体: W = - p V g = -nRT8.恒温恒压化学反应;且气体视为理想气体W = - R T(g ) (式中为反应计量系数,反应物为“-”,产物为“+”。
)二.热容热容定义 C = Q / ΔT = δQ / d TC v. m = δQ v / d T = (әU m / әT )vC p. m =δQ p / d T = (әH m /әT )p对理想气体 C p.m – C v.m = R单原子分子 C v.m = 3R /2 , C p.m = 5R / 2双原子分子 C v.m = 5R/2, C p.m =7R /2多原子分子 C v.m = 3 R , C p.m = 4 R三. 热1.封闭体系无非体积功恒容变温过程:dT nC Q T T m V V ⎰=21, 若常数=m V C ,,则)(12,T T nC Q m V V -=2.封闭体系无非体积功恒压变温过程: dT nC Q T T m p V ⎰=21,若常数=m p C ,,则)(12,T T nC Q m p p -=3.绝热过程及理想气体自由膨胀过程:Q = 04.恒温恒压无非体积功的相变过程:Q p = n ΔH m5.恒温恒压与恒温恒容化学反应 Q p 与Q v 关系:Q p –Q v = Δr H – Δr U = R T Δn或Q p.m –Q v.m = Δr H m – Δr U m = R T四.热力学能(内能):ΔU = Q + W1.一定量理想气体恒温过程或隔离体系任何过程 ΔU = 02.封闭体系无非体积功恒容变化或一定量理想气体任何过程dT nC U T T m V ⎰=∆21, 3.绝热过程:ΔU = W (Q =0)五.焓:定义: H = U + p V1. 封闭体系任何过程ΔH = ΔU + Δ(p V ) = ΔU + (p 2V 2 – p 2V 2 )2.封闭体系无非体积功的恒压变化或一定量理想气体任何状态变化过程dT nC H T T m p ⎰=∆21, 3.一定量理想气体恒温、实际气体节流膨胀及恒压无非体积功的绝热化学反应过程 ΔH = 0 。
热力学第一定律总结-精选.pdf
十二、本章重要英语单词
system 系统
surroundings 环境
state function 状态函数
equilibrium 平衡态
open/closed/isolated system开放 /封闭 /隔离系统
work 功
heat 热
energy 能量
expansion/non-expansion work 体积功 /非体积功
已知水蒸气的生成热
ΔrH
? m
(H
2O,
g)
= -242.67
27.20 J K·-1·mol-1, Cp ,m(H2O) = 31.38 J K·-1·mol -1.
kJ ·mol-1, Cp,m(H 2 ) = Cp ,m(O2) =
a) 求 298 K 时燃烧反应的 ΔcUm; b) 求 498 K 时燃烧反应的 ΔcHm;
ΔrHm (298.15 K)
生成物 yY + zZ ( 温度 T)
ΔH3
生成物 yY + zZ (298.15 K)
ΔU 和 ΔH 的关系: ΔU = ΔH –ΔnRT ( Δn:气体摩尔数的变化量。 )
典型例题:3.25 思考题第 2 题
典型例题: 见本总结“十、状态函数法。典型例题第 3 题”
典型例题: 3.18 作业题第 3 题
五、化学反应焓的计算 298.15 K:
ΔcH
?
(
反
)
反应物 aA + bB
Δf H?( 反 )
完全燃烧产物
ΔrH
? m
稳定单质
ΔcH?(生 )
生成物 yY + zZ
ΔfH
?
第二章 热力学第一定律
第二章热力学第一定律基本公式功: δW = -P外dV热力学第一定律: dU =δQ + δW ΔU = Q + W焓的定义: H ≡ U + PV热容的定义: C=limΔT→0δQ/ ΔT等压热容的定义: C P =δQ P /dT =(∂H/∂T)P等容热容的定义: C V =δQ V /dT =(∂U/∂T)V任意体系的等压热容与等容热容之差: C P - C V = [P + (∂U/∂V)T] (∂V/∂T)P 理想气体的等压热容与等容热容之差: C P - C V = nR理想气体绝热可逆过程方程: γ = C P / C VPVγ-1 =常数T Vγ-1 =常数P1-γTγ=常数理想气体绝热功: W =C V(T1 – T2 ) W = P1V1 – P2V2 /γ-1热机效率: η = W/Q2可逆热机效率: η = T2 – T1 / T2冷冻系数: β= Q1′/W可逆制冷机冷冻系数: β = T1 / T2 – T1焦汤系数: μ = ( ∂T/ ∂P)H = - (∂H/∂P)/C P反应进度: ξ= n B – n B0 / νB化学反应的等压热效应与等容热效应的关系: Q P = Q V + ΔnRT当反应进度ξ= 1 mol 时Δr H m= Δr U m +ΣBνB RT化学反应等压热效应的几种计算方法:Δr H m⊖=ΣBνBΔf H m⊖(B)Δr H m⊖=ΣB (єB )反应物 - ΣB(єB )产物Δr H m⊖= -ΣBνBΔC H m⊖(B)反应热与温度的关系: Δr H m(T2) =Δr H m(T1) + ∫21T TΔr C P dT表 1-1 一些基本过程的W 、Q、△U 、△H 的运算过程W Q △U △H 理想气体自由膨胀0 0 0 0 理想气体等温可逆 -nRTLnV2/V1 -nRTLnV2/V10 0任意物质等容可逆理想气体0∫C V dT∫C V dTQ v∫C V dT△U + V△P∫C P dT任意物质等压可逆理想气体-P外△V-P外△V∫C P dT∫C p dTQ P - P△V∫C V dTQ P∫C P dT理想气体绝热过程C V(T2 – T1)1/γ-1(P2V2-P1V1) 0 ∫C V dT ∫C P dT理想气体多方可逆过程PVδ=常数n R/1-δ(T2-T1) △U + W ∫C V dT ∫C P dT 可逆相变(等温等压) -P外△V Q P Q P -W Q P化学反应(等温等压) -P外△VQ PQ P – WΔr H m=Δr U m+ΣBνB RTQ PΔr H m⊖=ΣBνBΔf H m⊖(B) 例题例1 0.02Kg 乙醇在其沸点时蒸发为气体。
热力学第一定律和第二定律的公式
热力学第一定律和第二定律的公式嘿,咱今天就来好好唠唠热力学第一定律和第二定律的公式!要说这热力学定律啊,那可是物理学中的重要宝贝。
先来说说热力学第一定律,它的公式是:ΔU = Q + W 。
这其中,ΔU 表示系统内能的变化,Q 代表系统吸收或放出的热量,W 是系统对外界所做的功或者外界对系统所做的功。
我还记得有一次给学生们讲这个公式的时候,有个小家伙瞪着大眼睛一脸懵地问我:“老师,这到底啥意思呀?”我笑着跟他说:“你就想象咱们家里的空调,夏天的时候它把屋里的热气吸走,这就是 Q ,然后它呼呼地吹风,这就是在做功 W ,最后咱们屋里就凉快了,这屋里温度的变化就相当于ΔU 。
”那孩子听完,似懂非懂地点点头。
这热力学第一定律告诉我们,能量是守恒的,不会凭空产生也不会凭空消失,只会从一种形式转化为另一种形式。
就好比咱们每天的生活,你学习花费的精力,会转化为知识存在你的脑袋里;你运动消耗的能量,会让你的身体更健康、更强壮。
再来说说热力学第二定律,它的表达式有好几种,常见的克劳修斯表述是:热量不能自发地从低温物体转移到高温物体。
开尔文表述则是:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。
给你们讲讲我观察到的一件小事儿。
有次我去商场,看到卖冰淇淋的柜子,里面的冰淇淋冻得硬邦邦的,可周围的空气却是热的。
按照热力学第二定律,这热气里的能量可没法自己就跑到冰淇淋里让它更冷,除非有外界的力量帮忙,比如冰箱压缩机做功。
这热力学第二定律其实就是在告诉我们,自然界的很多过程都有个方向性,就像时间一样,只能向前走,没法倒回去。
比如说,你把一杯热水放在那,它会慢慢变凉,可这凉了的水不会自己又变热。
在实际生活中,热力学第二定律也很有用。
比如我们知道能源的利用不可能达到 100%的效率,所以我们要不断地改进技术,尽量减少能量的浪费。
像汽车发动机,就算再先进,也还是会有一部分能量以热能的形式散失掉。
总之,热力学第一定律和第二定律的公式虽然看起来有点复杂,但只要我们多联系生活中的实际例子,就能更好地理解它们。
物理化学重要概念公式总结
pB=kx,BxB=kb,BbB=k%,B[%B] ; pB=kx,Bax,B=kb,Bab,B=k%,Ba%,B 适用于 溶液中的溶质。 二、液态混合物和溶液中各组分的化学势
1、理想液态混合物 标准态为:同温下的液态纯溶剂。
2、真实液态混合物 标准态为:同温下的液态纯溶剂。 3、理想稀溶液 溶剂: 标准态为:同温下的液态纯溶剂。 溶质: 标准态为:同温下xB=1且符合亨利定律的溶质(假想状 态)。 4、真实溶液 溶剂: ;ax,A=fx,A x; 标准态为:同温下的液态纯溶剂。 溶质: ; ax,B=γx,B xB; 标准态为:同温下xB=1且符合亨利定律的溶质 (假想状态)。 ; ab,B=γb,B bB; 标准态为:同温下bB=1且符合亨利定律的溶质(假想 状态)。 ; a%,B=γ%,B[%B]; 标准态为:同温下[B%]=1且符合亨利定律的溶质 (一般为假想状态)。 三、各种平衡规律 1、液态混合物的气液平衡 pA=pax,A ; pA=pax,A ; p=pA+pB 2、溶液的气液平衡 pA=pax,A;pB=kx,Bax,B=kb,Bab,B=k%,Ba%,B;p=pA+pB 3、理想稀溶液的凝固点降低 4、分配定律 5、化学平衡 6、西弗特定律
第八章 表面现象
一、表面吉布斯函数 1、产生 表面分子与内部分子的差别。 2、定义及单位 ;J/m2或N/m;因此又称表面张力。 3、影响因素 物质本性、温度、相邻相、溶质的种类。 4、表面热力学 在温度、压力、组成不变的情况下, 缩小表面积和降低表面张力为自发方向。
二、弯曲液面的表面现象 1、附加压力 2、饱和蒸气压 3、毛细管现象
第十章 复合反应动力学
一、复合反应基本类型 1、平行反应 ; 2、对行反应 ; 3、连串反应 ;;
第二章热力学第一定律
只要有功交换,均存在某种粒子 的定向运动,或者是某种有序运动。 途径函数,其微小变量用W表示
体积功计算方法
系统: 气缸内的气体 过程: 受热膨胀了dV, 气体抵抗pamb 作功W
结果 : 活塞位移dh 计算: 微功=力×位移
由功的传递 方向的规定:
W =F dh =pamb As dh = pamb d(Ash)
化学热力学与物理中的热力学不同,
本课程主要讨论与化学变化相关的热力学
(Chemical Thermodynamics)。
1.第一定律:能量守恒,解决过程的能量衡
算问题(功、热、热力学能等);
2.第二定律:过程进行的方向判据;
3.第三定律:解决物质熵的计算; 4.第零定律:热平衡原理T1=T2, T2=T3,
H2 0℃ 101.325 kPa
n(H2)=1mol 途径b
H2 0℃ 50.663 kPa
W(b)= -pamb(V2-V1)
= -pamb(nRT2/p2- nRT1/p1)
= -50.663kPa× (44.8-22.4)dm-3 = -1135J
虽:始态与末态分别相同 因:途径a 途径b 结果: W(a) W(b) 例2.2.1 表明:功W是途径函数 2. 热(heat) 定义: 由系统与环境间的温度差引起的 能量交换即为热。 符号:Q 单位:J(kJ)
3. 过程和途径
过程: 系统从某一状态变化到另一状态 的经历。 将实现某一过程的具体步骤称途径。 途径: 一个途径可以由一个或几个步骤 组成,中间可能经过多个实际的 或假想的中间态。
单纯 pVT 变化 由内部物质变 化类型分类
相变化
化学变化
恒温过程 ( Tsys= Tamb= const) 恒压过程 ( psys= pamb= const) 由过程进行特 定条件分类
物理化学1-2章公式总结
(3)理想气体恒温混合 ∆S = −R∑ni ln yi
i =1 K
, 能用这个公式各气体的 对不同种分子的混合才 的 ∆ 分压在混合前后是改变 , 否则 S = 0 。 4 ( )单组分理想气体任意 过程 V2 T2 ∆S = SB − SA = nRln + nCV ,m ln V1 T1 p1 T2 V2 p2 = nRln + nC p,m ln = nC p,m ln + nCV ,m ln p2 T1 V1 p1
∂U ∂ H T = = ∂ S ∂ S
V
∂Z ∂ Z dZ = dY dX + ∂ X ∂Y
Y X
p
∂ A ∂ G S = − = − ∂T ∂T
V
p
麦克斯韦关系式 dZ = MdX + NdY
1.热力学基本定律 热力学基本定律
1.1热力学第一定律和热力学能 热力学第一定律和热力学能
①热力学第一定律的数学表达式 (封闭系统任何过程) ∆U = Q + W
dU = dQ + dW (封闭系统微小过程)
V2 V1
dW体积 = - p外dV,W体积 = -∫
p外dV
在封闭系统, W 在封闭系统, ' = 0的恒容过程中 ∆U = QV
T
V
p
12
V(β ) V (α )
∆U = ∆H − ∆( pV )
T2 T1
∆U = ∫ nCV ,mdT
pd = − p V ( β ) −V (α ) V
(
)
如涉及气体则液体或固体的体积可 , , 忽略 , 还可用 (g) = nRT pV 如气体可视为理想气体
高中热学公式
二、热学:
1、热力学第一定律: W + Q = ∆E
符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。
气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“-”。
温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。
三种特殊情况: (1) 等温变化 ∆E=0, 即 W+Q=0
(2) 绝热膨胀或压缩:Q=0即 W=∆E
(3)等容变化:W=0 ,Q=∆E
2 理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。
(2) 公式: PV T P V T PV T
111222==或恒量 (3) 含密度式:
P T P T 1112
22ρρ= *3、 克拉白龙方程: PV=n RT=M RT μ (R 为普适气体恒量,n 为摩尔数)
4 、 理想气体三个实验定律:
(1) 玻马—定律:m 一定,T 不变
P 1V 1 = P 2V 2 或 PV = 恒量
(2)查里定律: m 一定,V 不变 P T P T 1122= 或 P T =恒量 或 P t = P 0 (1+t 273) (3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T V t 112===或恒量或V 0 (1+t 273
)
注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。
Welcome !!! 欢迎您的下载,资料仅供参考!。
第二章__热力学第一定律(2)
T2 T1
适用条件:理想气体恒压pVT变化过程
H n C p ,m dT nC p ,m T2 T1
T2 T1
适用条件:理想气体单纯pVT变化的一切过程;或 真实气体恒压变温过程;或纯的液、固态物质恒压 或压力变化不大的变温过程。
3、热容的一般定义
热容是计算物质变温过程中热量传递的基础热数据,属于 物质的特性之一。 定义:没有相变化、化学变化,无非体积功过程,物质温度升
高一度所需吸收的热。
Q C dT
C (T1 T2 ) Q T1 T2
真热容 平均热容
Q CdT
T1
T2
Q C (T1 T2 )
实例: 正丁烷(液态)
4 2 C 7 . 9 0 . 330 T 1 . 0 10 T p ,m
/ J K 2 mol 1
§2.5 理想气体的热力学 1. 焦耳实验
纯物质单相系统 一定量 U=f ( n,T,V ) U=f ( T,V )
U U dU ( )V dT ( )T dV T V
3、热力学可逆过程
(1)定义: 能够通过过程的反方向变化
而使系统恢复到原来状态,同时环境也 恢复到原来状态的过程,即系统和环境 均没有热、功和物质的得失。 “能从原路返回的过程”
(2)特点:
a. 准静态过程;在整个过程中,系统内部无限 接近于平衡,或说整个过程是由无限多个准 静态组成。
b. 推动力与阻力的差值无限小;
(m)恒外压压缩
p1’=202.65kPa T1’=298K (n)恒外压膨胀 V1’=12.23dm3
p2=50.663kPa T2=298K V1=48.90dm3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∆ r H p = ∆ rUV + p∆V = ∆ rUV + ( p∆V ) g + ( p∆V ) s.or . l ≈ ∆ rUV + RT ∆ni . g = ∆ rUV + RT ∑ν i . gξ i 规定: 稳定单质,298.15K) ,298.15K)= 规定: Hmθ(稳定单质,298.15K)=0
1 ∂V α = ( )p V ∂T
1 ∂V κ = − ( )T V ∂p
∂T µ J = ( )U ∂V
µ J -T
∂T 1 ∂H = ( )H = − ∂p C p ∂p T
β α θ
可逆相变热 : Q p = ∆H = n∆ H m ( B )
不可逆相变热:设计过程, 不可逆相变热:设计过程,其中要包含可逆相变
1
2
∆H = ∫ nCP ,m dT (不限于恒压)
1
2
理想气体绝热可逆过程的过程方程: 理想气体绝热可逆过程的过程方程: 过程方程
pV = 常数
r
V r-1T = 常数
p T = 常数
1-r r
理想气体绝热过程(可逆与不可逆均可用) 理想气体绝热过程(可逆与不可逆均可用):
1 nR (T2 − T1 ) W = ∆U = nCV ,m (T2 − T1 ) = ( p2V2 − p1V1 ) = r −1 r −1
δ QV
∂H Cp ≡ ≡( )p dT ∂T
δ Qp
∂U ∂V ∂V C p − CV = ( )T ( ) p + p ( ) p ∂V ∂T ∂T ∂U ∂V 或 C p − CV = [ p + ( )T ]( ) p ∂V ∂T
对理想气体: 对理想气体: C p ,m − CV ,m = R
5 3 对单原子分子理想气体: 对单原子分子理想气体:C p ,m = R, CV ,m = R 2 2 7 5 C 对双原子分子理想气体: 对双原子分子理想气体: p ,m = R, CV , m = R 2 2
理想气体 任意单纯pVT pVT过程 任意单纯pVT过程
∆U = ∫ nCV ,m dT (不限于恒容)
本次课的主要内容: 本次课的主要内容
1.总结本章重要公式 总结本章重要公式 2.《物理化学学习指导》综合练习题 (见P48) 《物理化学学习指导》 见
本次课作业: 本次课作业 2-20,2-22, 2-26, 2-28, 2-36 - , - - -
本章重要公式
体积功定义式: 体积功定义式: 反抗恒外压: 反抗恒外压 可逆过程: 可逆过程: QV=△U Qp= ∆H
δ W=-pex dV
W=-pex(V2-V1)
W = − ∫ pex dV = − ∫ pdV
1 1
2
2
QV = ∆U = ∫ nCV ,m dT
2
Q p = ∆H = ∫ nC p ,m dT
T1
ቤተ መጻሕፍቲ ባይዱ
1 T2
∆ H= ∆ U+ ∆(pV) = ∆ U+(p2V2-p1V1)
∂U CV = =( )V dT ∂T
推论: 稳定单质,T) ,T)= 推论: ∆fHmθ(稳定单质,T)=0 (B,298.15K)=H ∆fHmθ(B,298.15K)=Hmθ(B,298.15K)
由基础热数据求∆ 由基础热数据求∆rHmθ(298.15K):
θ θ ∆ r H m (298.15K ) = ∑ν B ∆ f H m ( B, 298.15K )
B
θ = − ∑ν B ∆ c H m ( B, 298.15K )
B
= − ∑ν B ∆ at H m ( B, 298.15K )
θ
反应热与温度的关系——Kirchhoff定律: Kirchhoff定律: 反应热与温度的关系 Kirchhoff定律
∆ r H m (T ) = ∆ r H m (298.15 K ) + ∫ ∆ rU m (T ) = ∆ rU m (298.15K ) + ∫
ξ=
nB (ξ ) − nB (0)
νB
QV = ∆ rU, Q p = ∆ r H
∆ r H p = ∆ rUV + RT ∑ν i . gξ
∆ r H m = ∆ rU m + RT ∑ν i . g
i
i
以上两式推导过程如下,可以看出应用了两个近似: 以上两式推导过程如下,可以看出应用了两个近似: (1)忽略了凝聚相体积的变化(2)将气体视为理想气体。 )忽略了凝聚相体积的变化( )将气体视为理想气体。
θ θ
θ
θ
T
298
∑ν
B B
B
C p, m ( B)dT
θ
T
298
ν BCV ,θ ( B)dT ∑ m