工程电磁场答案 题ch4

合集下载

工程电磁场课后答案1(完整)

工程电磁场课后答案1(完整)

0.29K
7401
VOH 74LS00
2.9.1 驱动: 负载: 拉电流: 灌电流: 扇出:
2.9.2 VOH > VIH VOL < VIL IOH > IIH IOL > IIL
第三章 组合逻辑电路分析与设计
3.1.2证明(C)A ABC ACD C D E
A ACD (C D )E
(b) _______ ________ _______ ________
A B C D C D A D
( A B)(C D) (C D)( A D)
(C D)( A B D)
AC AD BC BD CD D
AC BC D
3.2.1展开最小项(a) L A(B C) A BC A(B B)(C C) ( A A)BC
mi
3.2.2 (a)
______________________
___________________
AC ABC BC ABC AC BC BC ABC
灌电流多余: (8-4.8)/0.4=8
N=min(8,17)=8
2.4.5
__________________ ____ ____
L AB BC D E
AB BC D E
2.4.6 RP计算 (1)拉电流时
VCC R IP IH 74LS 00 VOH 7401
D=0 选中低位片1;D=1 选中高位片2
01234
56789
1
0
1
A B C D
0
2
0
4.2.9 7位数字译码显示电路

《工程电磁场基础及应用》习题解答

《工程电磁场基础及应用》习题解答

《工程电磁场》练习题答案第二章练习题2.1一个5nC 的电荷位于2,,32P π⎛⎫- ⎪⎝⎭,另一个-10nC 的电荷位于Q (5, π, 0), 试计算一电荷对另一电荷的作用力,这个力的性质如何?解:空气中,由两点间距离公式可得6.77PQ ==所以: 9981221212212510(1010) 1.01210()44 3.148.8410 6.67r rq q N r πε----⨯⨯-⨯===-⨯⨯⨯⨯⨯F e e 力的性质:吸力。

2.2 两个无限大平面相距为d ,分别均匀分布着等面密度异性电荷,求两平面外及两平面间的电场强度。

解:假设两个无限大平面的面电荷密度分别为 +σ 和-σ(1)对于一个均匀带电无限大平面,设其分布在yoz 平面上,可得电场强度大小为()2x σε=±E e (2)对于两个相距为d 的均匀带电无限大平面,根据叠加原理,可得两平面间的电场强度为000()22x x σσσεεε=+=E e e 两无限大平面外的电场方向相反,大小相等,根据叠加原理,因此,E =0。

2.3 证明无限长均匀带电导体的等位面为同轴圆柱面。

解:(1)柱状带电导体内电场强度为零,所以其内部等位面为同轴圆柱面 (2)柱状带电导体外,圆柱导体外任意一点p 电位为000d d ln 22Qr Prr r r rττφπεπε=⋅==⎰⎰E l 当r 为常数时,φ为常数,所以其等位面为同轴圆柱面。

2.4 求电偶极子的电力线的表达式。

解:电偶极子产生电场强度:30(2cos sin )4r r θθθπε=⋅+⋅p E e e故θθθsin d cos 2d r r = , 积分得:ln 2ln sin r c θ=+则电力线方程为:θ2sin ⋅=C r2.5 证明电偶极子的电场强度的大小为 1223013cos 4PE rθπε⎡⎤=+⎣⎦ 解: 21012012()11()44q r r qr r r r φφφπεπε+--=+=-= 由电位梯度运算,得电场强度)sin 11(αθαϕθθϕϕϕe e e E ∂∂⋅+∂∂+∂∂-=-∇=r r r r )sin cos 2(430θθθπεe e p⋅+⋅=r r 由上式得,E 的大小为:1223013cos 4PE r θπε⎡⎤=+⎣⎦ 2.6半径为 b 的球内体电荷密度为()()b r b r ρ=+- C/m 3 ,求自由空间各处的电场强度和电位。

工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波丁君版答案第四章习题答案第四章习题4-1解:选柱坐标系,在所求无源区内电位函数满足:02=?φφ只和r 相关0=???φ0=??z φ方程化为 0)(1=????rr r r φ21ln C r C +=φ为常数21,C C 由 006.0==φ时r 501.0-==φ时r得 88.27588.9721=-=C C88.275ln 88.97+-=r φr a rE ?188.97=-?=φ4—2:解:图一依据边界条件:?????====021R R R R U φφ0可得:???????--=-=00UR R R B U R R R R A 1211221 ∴()120212021R R U R R R R U R R ---=φ(2) ()R R a RR R U R R a R E ?1?212021?-=??-=-?=φφ (1) 如图一,依据题意可知:电位函数φ满足拉普拉斯方程。

接受球坐标系:2=?φ0=??θφ0=???φR 相关只于φ,方程化为: 0)(122=????R R R R φφ积分得:B RA +?=1φ(3) ()R R R aR R R U R E D ?12102001-?===εε内表 S S d D s Sρ=??内表S S D s ρ=内表∴)(12102R R R U R D s -==ερ内表4—3:解:选择直角坐标如图,由恒定电场的泊松方程可得:xy设两板间距离为d,代入边界条件?????====000U dz z φφ???????+=+==?ερερ22002021d d U d d U C C ∴)2()2(2002ερερφερερφd d U z E zdd U z +-=-?=++-=4—4:解:选择柱坐标系,依据恒定电磁场的拉普拉斯方程,(1) 02=?m φ,m φ只在?方向上有变化,所以:B A r m m+==???φ?φ:,01222积分得由 0=?时:0,0==B m 得φ∴?φA m = l m m a dld Hφφ-=-?=l d H d m?-=φ??-=?-=ππφ2020I l d H d m0,0,2=??=??-=?xy φφερφ方程可化为:,22ερφ-=??z2122:C z C z ++-=ερφ积分得B A I m m+=-==?φφπ?代入,2π2?=-A I π2I A -= ?πφ2Im -= (2) ??π?φφφa rI a d d r a dl d H m l m m21==-=-?=可见,利用拉普拉斯方程与安培环路定理求出来的结果一样。

工程电磁场课后答案

工程电磁场课后答案

电磁兼容性
总结词
电磁兼容性是研究电磁场和电子系统相互作 用的学科。
详细描述
电磁兼容性主要关注电子系统在电磁环境中 的性能表现,包括电磁干扰(EMI)和电磁敏 感度(EMS)等问题。通过学习电磁兼容性,
学生可以了解如何设计和实施有效的电磁屏 蔽、滤波和接地措施,以确保电子系统的可 靠性和稳定性。这对于电子设备和系统的设
磁场能量存储
磁力发电机
利用磁场和导线的相对运动产生感应电动势的原理,将机械能转换为电能进行存 储。
磁性存储器
利用不同磁性材料的不同磁化方向来存储数据,通过改变磁性材料的磁化方向来 读取和写入数据。
电场能量存储
电容
利用电极板之间的电场储存电能,具 有充电和放电的能力,常用于滤波、 去耦和储能等电路中。
总结词
恒定磁场的散度和旋度均为零。
详细描述
由于恒定磁场中电流是恒定的,因此其磁 场强度不会随时间变化,散度和旋度均为 零。
时变电磁场
详细描述
时变电磁场具有以下特性,电场和磁场都 随时间变化,电场和磁场之间存在相互耦
合,电磁波可以传播。
A 总结词
时变电磁场是指电磁场随时间变化 的电磁场。
B
C
D
详细描述
总结词
静电场的散度和旋度分别为零 和不为零。
详细描述
由于静电场中电荷是静止的, 因此其电场线不会随时间变化 ,散度和旋度均为零。
恒定磁场
总结词
详细描述
恒定磁场是由恒定电流产生的磁场,其磁 场强度不随时间变化。
恒定磁场具有以下特性,磁场强度与电流 密度成正比,磁感应线是闭合曲线且无旋 、无源,磁场强度与磁势梯度成正比。
高频电磁波在医疗领域的应用

《工程电磁场》习题答案

《工程电磁场》习题答案
2

r' R
(
R d
)
2
4 R
d
R
2
8-1 一个空气介质的电容器,若保持板极间电压不变,向电容器的板极间注满介电常数为
4 0 的油,问注油前后电容器中的电场能量密度将如何改变?若保持电荷不变,注油前
后电容器中的电场能量密度又将如何改变? 解:
c E
s
d U d
D E c Q U we 1 1 D E E 2 2

1 br u 0 ih 2
) dr a b ln ac bc )
0
u 0 ih 2 u 0 ih 2
ar br
(ln
a (b c ) b(a c)
u 0 whI cos wt b(a c) a (b c )

d dt
m
2
ln
6-4 如题 6-4 图所示,一半径为 R 的接地体球,过球面上一点 P 作球面的切线 PQ,在 Q 点 放置点电荷 q,求 P 点的电荷面密度, 解:
E
0

2 0 r
2-8 解: E 2 r
E
r
2
0

E
r 2 0

2 0
R r

2 0
d
2-15 解:电场切向连续,电位移矢量法向连续
E 2 x 2 0, E 2 y 1 0, D 2 z 5 0 r 0
JD D t E t
U m
d
w cos wt
2 rH r J D r
2 2
wU
d
m

工程电磁场 (杨宪章 邹玲 樊亚东 著) 中国电力出版社 课后答案 题ch4

工程电磁场 (杨宪章 邹玲 樊亚东 著) 中国电力出版社 课后答案 题ch4

v B

v dS
=
S
a 0
μrI 2πa 2
adr
+
2a μI adr = μI
a 2πr
2πa
a2 2
+ μaI ln 2a = μIa [1+ 2 ln 2] 2π a rπ
习题 4-32 解: L = μ0 l ln d = 2.119 *10−3 H
π R0
习题 4-34
解:铜: μ = μ0 ,钢: μ = 200μ0
习题4-16
2
R’
dB1
Idl
R
r
x
I
dB2
1
解:B只有x分量,从平面图可见x=0时
v Idl

rr
垂直,x≠0时
v Idl

rr
垂直
om ∴dBx
=
μ0 4π
Idl R'2
R R'
=
μ0 IRdl 4πR'3
,
dl
= Rdα
( ) ( ) w.c ∫ ∴B =
2π 0
μ0 IR 2 4πR'3

案 本题, Φ = μ(ωI )(d − d 2 − a2 ) = 0.9696 ×10−3 wb
习题 4-25

后 解:B1、B2 只有 t 分量,由边界条件 H1t=H2t
课 B1
=
μ1H1t
=
500μ0
0.0024 μ0
= 1.2T
习题 4-26
解: ∇ × Hv
=
1 r
evr

∂r
0
evα

工程电磁场导论测试附答案

工程电磁场导论测试附答案

工程电磁场导论测试附答案工程电磁场一、填空题1、电荷的周围,存在着一种特殊形式的物质,称为。

2、实验表明,实体物质的存在必将影响和改变在无限大真空中引起的静电场的分布。

3、在导电媒质(如导体、电解液等)中,电荷的运动形成的电流称为。

4、电导的定义是流经与导电媒质两端电压之比。

5、我们将跨步电压超过达到对生命产生危险程度的范围称为危险区。

6、实验表明磁感应线是,既无始端又无终端。

7、磁通连续性原理和安培环路定律表征了的基本性质。

8、磁路中的对应于电路中的电流。

9、电动势是非保守电场的环路线积分,回路中存在感应电动势说明回路中有。

10、在时变电磁场中,场量和场源除了是的函数,还是时间的函数。

11、各种宏观电磁现象都可用特定条件下的来描述。

12、用磁准静态场的理论计算与应用电路理论计算的结果一致。

13、涡流在导体内流动时,会从而引起导体发热,故它具有热效应。

14、一般的平面电磁波可分解为两种平面电磁波的组合:一种是垂直极化波,即电场方向垂直于入射面;另一种是,即电场方向平行于入射面。

15、在时变电场中,电场和磁场之间存在着耦合,这种耦合以存在于空间中,即在空间有电磁场的传播。

16、多层有损介质在低频交流电压作用下,若位移电流远大于介质中的漏电流,则电场按介电常数分布,属问题。

17、在电磁波的传播过程中,对应于每一时刻t,空间电磁场中具有相同相位的点构成等相位面,或波阵面。

18、当传输线的和特性阻抗Z0确定后,沿线电压波和电流波的传播特性也就基本上得到确定。

19、在双导线传输线中既可传播高频电磁波,也可传播以至稳恒电流。

20、远离单元偶极子处的电磁波在小范围内就可近似地看成电磁波。

二、名词解释(每题5分1、天线阵:2、电导:3、正入射:4、介质波导:5、接地电阻:三、计算题(每题20分1、若恒定电场中有非均匀的导电媒质(其导电率γ=γ(x,y,z)介电常数=ε(x,y,z),求媒质中自由电荷的体密度。

2、今测得在13.56MHz的电磁波照射下,脂肪的相对介电常数εr=20,电阻率ρ=34.4Ω?m。

工程电磁场与电磁波_丁君版_答案第四章习题答案

工程电磁场与电磁波_丁君版_答案第四章习题答案

第四章 习题4-1解:选柱坐标系,在所求无源区内电位函数满足: 2=∇φφ只和r 相关0=∂∂ϕφ0=∂∂zφ方程化为 0)(1=∂∂∂∂rrrr φ 21ln C r C +=φ 为常数21,C C由 006.0==φ时r 501.0-==φ时 r得 88.27588.9721=-=C C88.275ln 88.97+-=r φr a rE ˆ188.97=-∇=φ 4—2:解:图一根据边界条件:⎪⎩⎪⎨⎧====021R R R R U φφ0可得:⎪⎪⎩⎪⎪⎨⎧--=-=00U R R R B U R R R R A 1211221 ∴)120112021R R U R RR R U R R ---=φ(2) ()R R a R R R U R R a RE ˆ1ˆ212021⋅-=∂∂-=-∇=φφ (3) ()R R R aR R R U R ED ˆ12102001-⋅===εε内表 (1) 如图一,根据题意可知:电位函数φ满足拉普拉斯方程。

采用球坐标系:2=∇φ0=∂∂θφ0=∂∂ϕφR 相关 只于 φ,方程化为:0)(122=∂∂∂∂R RRR φφ积分得:B RA +⋅=1φSS d D s Sρ=⋅⎰内表SS D s ρ=内表 ∴)(12102R R R U R D s -==ερ内表4—3:解:选择直角坐标如图,由恒定电场的泊松方程可得:xy设两板间距离为d,代入边界条件⎪⎩⎪⎨⎧====00U dz z φφ⎪⎪⎩⎪⎪⎨⎧+=+==⇒ερερ22002012d d U d d U C C ∴)2()2(2002ερερφερερφddU z E zddU z +-=-∇=++-=4—4:解:选择柱坐标系,根据恒定电磁场的拉普拉斯方程,(1) 02=∇m φ,m φ只在ϕ方向上有变化,所以:BA rm m +==∂∂ϕφϕφ:,01222积分得由 0=ϕ时:0,0==B m 得φ ∴ϕφA m =lm m a dld H φφ-=-∇=l d H d m⋅-=φ⎰⎰-=⋅-=ππφ2020I l d H d mBA I m m+=-==ϕφφπϕ代入,20,0,2=∂∂=∂∂-=∇xyφφερφ方程可化为:,22ερφ-=∂∂z2122:C z C z ++-=ερφ积分得π2⋅=-A I π2I A -= ϕπφ2I m -=(2)ϕϕπϕφφφa rI a d d r a dl d H m l m m 21==-=-∇=可见,利用拉普拉斯方程与安培环路定理求出来的结果一样。

电磁场答案四

电磁场答案四

电磁场答案四第四章习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)ya y ϕϕ== ② (,0)0x ϕ= ③ 0(,)xb U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有 01sinh()sin()n n n b n xU A a a ππ∞==∑两边同乘以sin()n x aπ,并从0到a 对x 积分,得到 002sin()d sinh()an U n x A x a n b a a ππ==⎰ 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩, 故得到槽内的电位分布 01,3,5,41(,)s i n h ()s i n ()s i n h ()n U n y n xx y n n b a a aππϕππ==∑ 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的面上,从0=y 到d y =,电位线解。

设在薄片平0(0,)y U y d ϕ=。

性变化,解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:① 22(,0)(,)0x x b ϕϕ==U yxa abo题4.1图 0Uyxo x bxd题 4.2② 2(,)0()x y x ϕ=→∞ ③ 002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()e n x bn n n y x y A b ππϕ∞-==∑ 由条件③有 00100(0)sin()()n n U U y y d n y bA U U b y y d y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑ 两边同乘以sin()n yb π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d bππ 故得到(,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。

工程电磁场 (杨宪章 邹玲 樊亚东 著) 中国电力出版社 课后答案 题ch4

工程电磁场 (杨宪章 邹玲 樊亚东 著) 中国电力出版社 课后答案 题ch4

习题4-16解:B 只有x 分量,从平面图可见x =0时l Id v 与r r 垂直,x ≠0时l Id v 与r r垂直 απμπμRd dl R IRdlR R R Idl dB x ===∴,443'0'2'0()()3222032220203'202424X RIR X R IR d R IR B +=+==∴∫μππμαπμπ习题4-18解:dbd Ia dr r I S d r I S d B b d d S S +==⋅=⋅=Φ∫∫∫+ln2220000πμπμαπμv v v v习题4-19解:αcos 22221ab b =a R −+ααπcos 2)cos(2222222ab b a ab b =a R ++=−−+任一点xIB πμ20=1200ln 222221R Ra I adx r I R R AB πμπμ=⋅=Φ∴∫习题4-20解:由安培环路定律10R r <<时,取单位长,22102r R I r B ππμπ=⋅,r R IB 2102πμ=21R r R <<时,I r B 02μπ=⋅,rIB πμ20=32R r R <<时,)()([])()([22223222022232220R R R r I I R R R r I I r B −−−=−−−=⋅μππμπ课后答案网ww w.kh da w .c om)()(222232230R R r R r I B −−=πμ 3R r >时,02=⋅r B π,0=B习题4-21解:任意点:j x D Ix I B v v ))(22(00−+=πμπμ习题4-22解:电流反向,则磁力线反向j x D I x I B v v )(22(00−−=πμπμ习题4-23解:I r B μωπ=⋅2,rIB πμω2=wb R R Ib dr r Ib R R 31210973.0ln 2221−×==⋅=Φ∴∫πμωπμω习题4-24解:P176例中,)(220a d d I −−=Φμ本题,wb a d d I 322109696.0))((−×=−−=Φωμ习题4-25解:B 1、B 2只有t 分量,由边界条件H 1t =H 2tT H B t 2.10024.050000111===μμμ习题4-26解:...1)2(0201122232232223223=−−∂∂=−−∂∂∂∂∂∂=×∇z z r e r R R r R r I r R R r R r I z re r e e r H v v v v v ππαα课后答案网ww w.kh da w .c om习题4-27解:0点上下的m ϕ,0=∞m ϕ 带I 圆导线线圈在轴线上产生的2/32)(2x R IR BH +==μ I l d H BAB A =⋅=−∫vv ϕϕ习题4-28解:忽略边缘效应,H 是圆线m ϕ仅与α有关,D C m +=αϕ令0=α是障碍面,且0|0==αϕm 所以0=D 由安培定律∫∫∫+==πθθπω2020Hdl Hdl I Hdl在(0,2π)中,μ->∞,H 只有法线分量,B 1n =B 2n ,知00==μμHH t 所以02=∫πθdl H t所以00||==−==∫αθαθϕϕωm m Hdl ICQ I =ω,QIC ω=αωϕQIm =0000001αωμααϕμϕμμvv v v Qr I r H B m m −=∂∂−=∇−==习题4-29解:x e z y x F v v 1222)(−++= k z y x yj z y x z z y x z y xkj iF v v v v vv 222222221222)(2)(20)(++−++=++∂∂∂∂∂∂=×∇− 课后答案网ww w.kh da w .c om习题4-30解:∫⋅=Φ∴SS d B vvr<a ,22a rIB πμ=r>a ,rIB πμ2=]2ln 21[2ln 222222202+=+=+=⋅=Φ∴∫∫∫πμπμπμπμπμr Iaa a aI a a I adr r I adr a rI S d B a a a S v v习题4-32解:H R d l L 30010*119.2ln −==πμ习题4-34解:铜:0μμ=,钢:0200μμ=(1)算每公里长自感铜e i L L L +=其中km H L i /10100010008270−×=××=πμ km H l R DL e /1027631ln 700−×=⋅=πμ km mH L L L e i /863.2=+=钢:km H L i /102000010008270−×=××=πμ km H L e /10228157−×=km mH L L L e i /286.22=+=(2)互感:根据方向判断'11Φ+Φ=Φ∴km mH l M /036.02'1'12'2'112ln 20=⋅⋅⋅=πμ习题4-35 解:r I B πμω21=,21102−×=Φdr rId πμω 2122102−×=Φ=Ψdr rId d πωμωω课后答案网ww w.kh da w .c om67ln 10210221276212−−×=×=Ψ∫πωμωπωμωI dr r IH I M 0148.067ln 102212=×=−πωμω习题4-36 解:由题意得...2)(212)2(212)2(212121322112223223020021022=−−++===∫∫∫∫∫∫R R R R R v rdr I R R r R rdr r I rdr R Ir dVH LI W πμππμππμμ...22==I WL习题4-37解:C I mW M =∂∂=|αααcos 21max 21I I M I MI W m ==ααsin 21max I I M M −=∴o 45=α,m N M ⋅×−=∴−310035.0α习题4-38解:1220022102ln 21212)2(21211R R I rdr R Ir dV H W R v πμππμμ===∫∫∫∫ l r V 2π=,l R dR dV112π= 212201212212084|R I dV dR R R R R I V W f C I mg πμπμ−=−=∂∂==测验题4-39解:将其分段考虑,与0点在一条线上的两直线段上的电流不在0点产生磁场,仅两段圆弧上的电流在0点产生磁场。

工程电磁场期末考试(最终打印版)

工程电磁场期末考试(最终打印版)

工程电磁场期末考试(预测题60%命中率)一、简答题(60分)(请用电脑打开)1、解释并简述霍尔效应原理,并列举相关元件(5分)(必考)答案:磁场强度B与电流方向垂直时,形成电流的正电荷或负电荷将会受到磁场力的作用而发生微小移动,产生的微小电位差叫做霍尔电压。

元件:电子功率计、矩形脉冲元件、测量磁通密度的仪表2、写出不同情况下的法拉第电磁感应电动势,并写出相关数学表达式(5分)(必考)答案:1、闭合路径静止不动,而与其相交链的磁通却随着时间发生变化:emf2、一个恒定磁通与一个闭合路径之间有相对运动:3、以上2种情况的复合:(注意:H、D、E、V、B、L、E、S等加粗的字母一定要标箭头,否则一分都没有)3、写出时变电磁场和静电场的麦克斯韦方程组并说明每个方程的物理意义(微分形式和积分形式)(5分)(注:此题必考,必要时可弄点小抄)答案:时变电磁场(微分形式):----位移电流和变化电场产生磁场------变化的磁场产生电场-------静电场为有源场---------磁场为无源场时变电磁场(积分形式):静电场(微分形式):▽ⅹE=0▽ⅹH=J静电场(积分形式):∮E.d L=0∮H.d L=Ι4、分别写出导体、电介质、磁场的边界条件(5分)(注:此题必考,必要时可弄点小抄)答案:导体边界条件: 1.在导体内部,静电场的电场强度为零。

2.导体表面上的电场强度处处垂直于导体表面。

3. 导体表面是一个等位面。

电介质边界条件:磁场边界条件:5、写出传输线的电报方程、传输波方程、无损耗传输线的方程、正弦波的复数表达式、低损耗传输的条件(5分)(必考)答案:传输线的电报方程:传输线的传输波方程:无损耗传输线的方程:正弦波的复数表达式:在导体表面:E的切线分量为零D 的法线方向为电荷面密度V IRI Lz t∂∂⎛⎫=-+--⎪∂∂⎝⎭I VGV Cz t∂∂⎛⎫=-+⎪∂∂⎝⎭()()22222222V V VLC LG RC RGVz t tI I ILC LC RC RGIz t t⎧∂∂∂=+++⎪⎪∂∂∂⎨∂∂∂⎪=+++⎪∂∂∂⎩V ILz tI VCz t∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=-⎪∂∂⎩——时变电流产生时变电压——时变电压产生时变电流[]()001(,)cos..2j j z j tVV z t V t z V e e e c cφβωωβφ±=±+=+(此处请看教材P237-10.34)(必考)低损耗传输的条件:①R<<wL,G<<wC②无畸变,即:6、解释安培环路定律、高斯定律、毕奥沙伐定律、斯托克斯定理(5分)答案:安培环路定律: 磁场强度沿一闭合路径的线积分等于该闭合路径所包围的电流的大小:点形式:▽ⅹH=J高斯定律:穿过任意闭合曲面的电通量等于该曲面所包含的总电荷:点形式:毕奥沙伐定律:斯托克斯定理:00jV V eφ=-复数振幅(有幅值,有相位)(,)j z j tcV z t V e eβω±=—复数瞬态电压()j zsV z V eβ±=—相电压(不随时间变化)R GL C=7、解释保守场、写出电流连续性方程和欧姆定律的点形式(5分)答案:保守场:沿任意一条闭合路径移动单位电荷外力不做功,即:一个保守场对于任何一条可能的闭合路径的线积分都是零。

《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题一、填空题(每空*2*分,共30分)1.根据物质的静电表现,可以把它们分成两大类:导电体和绝缘体。

2.在导电介质中(如导体、电解液等)中,电荷的运动形成的电流成为传导电流。

3.在自由空间(如真空中)电荷运动形成的电流成为运流电流。

4.电磁能量的储存者和传递者都是电磁场,导体仅起着定向导引电磁能流的作用,故通常称为导波系统。

5.天线的种类很多,在通讯、广播、雷达等领域,选用电磁辐射能力较强的细天线。

6.电源是一种把其它形式的能量转换成电能的装置,它能把电源内导电原子或分子的正负电荷分开。

7.实际上直接危及生命的不是电压,而是通过人体的电流,当通过人体的工频电流超过8mA 时,有可能发生危险,超过30mA 时将危及生命。

8.静电场中导体的特点是:在导体表面形成一定面积的电荷分布,是导体内的电场为0,每个导体都成等位体,其表面为等位面。

9.恒定电场中传导电流连续性方程∮S J.dS=0 。

10.电导是流经导电媒质的电流与导电媒质两端电压之比。

11.在理想导体表面外侧的附近介质中,磁力线平行于其表面,电力线则与其表面相垂直。

12.如果是以大地为导线或为消除电气设备的导电部分对地电压的升高而接地,称为工作接地。

13. 电荷的周围,存在的一种特殊形式的物质,称电场。

14.工程上常将电气设备的一部分和大地联接,这就叫接地。

如果是为保护工作人员及电气设备的安全而接地,成为保护接地。

二、回答下列问题1.库伦定律:答:在无限大真空中,当两个静止的小带电体之间的距离远远大于它们本身的几何尺寸时,该两带电体之间的作用力可以表示为:这一规律成为库仑定律。

2.有限差分法的基本思想是什么?答:把场域用网格进行分割,再把拉普拉斯方程用以各网格节点处的电位作为未知数的差分方程式来进行代换,将求拉普拉斯方程解的问题变为求联立差分方程组的解的问题。

3.静电场在导体中有什么特点?答:在导体表面形成一定的面积电荷分布,使导体内的电场为零,每个导体都成为等位体,其表面为等位面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题4-16解:B 只有x 分量,从平面图可见x =0时l Id v 与r r 垂直,x ≠0时l Id v 与r r垂直 απμπμRd dl R IRdlR R R Idl dB x ===∴,443'0'2'0()()3222032220203'202424X RIR X R IR d R IR B +=+==∴∫μππμαπμπ习题4-18解:d bd Ia dr r I S d r I S d B b d d S S +==⋅=⋅=Φ∫∫∫+ln 2220000πμπμαπμv v v v习题4-19解:αcos 22221ab b =a R −+ααπcos 2)cos(2222222ab b a ab b =a R ++=−−+任一点xIB πμ20=1200ln 222221R Ra I adx r I R R AB πμπμ=⋅=Φ∴∫习题4-20解:由安培环路定律10R r <<时,取单位长,22102r R I r B ππμπ=⋅,r R IB 2102πμ=21R r R <<时,I r B 02μπ=⋅,rIB πμ20=32R r R <<时,)()([])()([22223222022232220R R R r I I R R R r I I r B −−−=−−−=⋅μππμπ)()(222232230R R r R r I B −−=πμ 3R r >时,02=⋅r B π,0=B习题4-21解:任意点:j x D Ix I B v v ))(22(00−+=πμπμ习题4-22解:电流反向,则磁力线反向 j x D I x I B v v )(22(00−−=πμπμ习题4-23解:I r B μωπ=⋅2,rIB πμω2=wb R R Ib dr r Ib R R 31210973.0ln 2221−×==⋅=Φ∴∫πμωπμω习题4-24解:P176例中,)(220a d d I −−=Φμ本题,wb a d d I 322109696.0))((−×=−−=Φωμ习题4-25解:B 1、B 2只有t 分量,由边界条件H 1t =H 2tT H B t 2.10024.050000111===μμμ习题4-26解:...1)2(0201122232232223223=−−∂∂=−−∂∂∂∂∂∂=×∇z z r e r R R r R r I r R R r R r I z re re e r H v v v v v ππαα习题4-27解:0点上下的m ϕ,0=∞m ϕ 带I 圆导线线圈在轴线上产生的2/32)(2x R IR BH +==μ I l d H BAB A =⋅=−∫vv ϕϕ习题4-28解:忽略边缘效应,H 是圆线m ϕ仅与α有关,D C m +=αϕ令0=α是障碍面,且0|0==αϕm 所以0=D 由安培定律∫∫∫+==πθθπω2020Hdl Hdl I Hdl在(0,2π)中,μ->∞,H 只有法线分量,B 1n =B 2n ,知00==μμHH t 所以02=∫πθdl H t所以00||==−==∫αθαθϕϕωm m Hdl ICQ I =ω,QIC ω=αωϕQIm =0000001αωμααϕμϕμμvv v v Qr I r H B m m −=∂∂−=∇−==习题4-29解:x e z y x F v v 1222)(−++= k z y x yj z y x z z y x z y xkj iF v v v v vv 222222221222)(2)(20)(++−++=++∂∂∂∂∂∂=×∇−习题4-30解:∫⋅=Φ∴SS d B vvr<a ,22a rIB πμ=r>a ,rIB πμ2=]2ln 21[2ln 222222202+=+=+=⋅=Φ∴∫∫∫πμπμπμπμπμr Iaa a aI a a I adr r I adr a rI S d B a a a S v v习题4-32 解:H R dl L 30010*119.2ln −==πμ习题4-34解:铜:0μμ=,钢:0200μμ= (1)算每公里长自感 铜e i L L L += 其中km H L i /10100010008270−×=××=πμ km H l R DL e /1027631ln 700−×=⋅=πμ km mH L L L e i /863.2=+= 钢:km H L i /102000010008270−×=××=πμ km H L e /10228157−×= km mH L L L e i /286.22=+=(2)互感:根据方向判断'11Φ+Φ=Φ∴km mH l M /036.02'1'12'2'112ln20=⋅⋅⋅=πμ习题4-35 解:r I B πμω21=,21102−×=Φdr rId πμω 2122102−×=Φ=Ψdr rId d πωμωω67ln 10210221276212−−×=×=Ψ∫πωμωπωμωI dr r IH I M 0148.067ln 102212=×=−πωμω习题4-36 解:由题意得...2)(212)2(212)2(2121213221122232230*********=−−++===∫∫∫∫∫∫R R R R R v rdr I R R r R rdr r I rdr R Ir dVH LI W πμππμππμμ...22==I WL习题4-37解:C I mW M =∂∂=|αααcos 21max 21I I M I MI W m == ααsin 21max I I M M −=∴o 45=α,m N M ⋅×−=∴−310035.0α习题4-38解:1220022102ln 21212)2(21211R R I rdr R Ir dV H W R v πμππμμ===∫∫∫∫ l r V 2π=,l R dR dV112π= 212201212212084|R I dV dR R R R R I VW f C I m g πμπμ−=−=∂∂==测验题4-39解:将其分段考虑,与0点在一条线上的两直线段上的电流不在0点产生磁场,仅两段圆弧上的电流在0点产生磁场。

据P173习题知,单匝线圈在轴心x=0处产生磁感应强度:RIo R IR B 2)(202/32220μμ=+=则半圆线圈产生RIB 40μ=本题:)11(444000ba I bIaIB +−+=μμμ,方向垂直纸面向里测验题4-41解:除与缺口相对应的d 段外,上下两段中的电流在0点产生的磁感应强度相互抵消。

Rda R I B πμπμ22000==(1)叠加:将缺口补齐+仅缺口通以反向电流RdaB B B πμ2002010=+=测验题4-42解:叠加法,将内部用同向电流填满+仅内部通反向电流填满后,21222202212221)('R R IR B R R R I I I −=−⋅+=ππ则j rR R R R I j r x I A o v v v 2212222000ln 2ln 2'−==πμπμ 通反向电流时,j rR R R R I j r x I A o vv v 2212221000ln 2ln 2"−==πμπμ 所以总和:j r R I j r R R R R I j r R R R R I A o vv v v 202212221022122220ln 2ln 2ln 2πμπμπμ=−−−=测验题4-44 解:先算1200ln 2221R RIb bdR R I R R πμπμ∫==Φ120ln 2R R Ib πωμω=Φ=Ψ 120ln 2R R b I M πωμ=Ψ=测验题4-45解:221'H m μω=222221R rI R I r r H in ππππ==,所以22min )2(21'R rI πμω= rI H out π2=,所以2)2(21'rI mout πμω=测验题4-46解:转矩=221)40cos(6.5)40cos(6.5|I I I W o o C I m−=−=∂∂=αααI I I ==21而αα5126102.210)40cos(6.5−−×==×−f o M I65210)40cos(6.5102.2−−×−×=o I αα。

相关文档
最新文档