圆六年级(上)数学单元测试卷及答案
六年级数学上册第五单元《圆》测试卷及答案
六年级数学上册第五单元《圆》测试卷及答案一、选择题1.如图,蚂蚁小帅从A点经过O点爬到B点回家,大帅从C点经过O点也爬到B点回家.它们爬的路线相比。
()A.小帅长些B.大帅长些C.一样长D.无法比较2.要画直径4厘米的圆,圆规两脚之间的距离就是()厘米。
A.4B.2C.83.把一根长1.884米的铁条,弯成一个铁环(接头处不计),铁环的直径是()A.0.7米B.0.6米C.0.5米D.0.8米4.小强要剪一个面积是12.56平方厘米的圆形纸片。
如果选择用一张正方形纸片去剪,那么这张正方形纸片的面积至少是()平方厘米。
A.12.56B.14C.16D.255.半圆形花圃,在花圃周围围上篱笆.篱笆的长度是()米.A.21B.22.3C.23.6D.25.76.下面车轮各滚动一周,()行的路程最长。
A.B.C.D.7.一个半圆形的花坛,它的周长是23.13米.沿着这个花坛的直径加修一块宽1米的草坪,这时周长是()A.21.53米B.23.15米C.25.13米D.25.31米8.如果一个圆的直径与一个正方形的边长相等那么圆的面积与正方形的面积相比()。
A.圆的面积稍大B.正方形的面积稍大C.两者相等9.下图中,正方形的面积是16平方厘米,圆的面积是()cm2。
A.50.24B.47.1C.43.98D.37.6810.一个半径是r的半圆形,它的周长是()。
A.2πr÷2B.r+πr C.(2+π)r D.πr÷2二、图形计算11.根据下面的条件,求各圆的周长或半径。
(1)C=?cm(2)C=?cm(3)C=47.1cm三、填空题12.在图所示的比赛场中,车的左、右轮子的距离为2.2米.(R=200米,r=50米)(1)从起点开始,由1到3时两轮路程相差________米.(2)从3到5时两轮路程相差________米.(3)从4回到起点两轮路程相差________米.13.如图:两个半径相等的圆A和圆B相交,三角形DBC是等腰直角三角形,面积是24平方厘米,ABDC 是平行四边形。
六年级上册第五单元《圆》单元测试卷及答案-人教版数学
一、选择题的长方形纸中,剪半径是1.5cm的圆,最多能剪()个。
A.9B.10C.132.钟面上的时针从12起走到3,经过的部分是一个圆心角多少度的扇形?( )A. 30°B. 45°C. 60°D. 90°3.如图中哪个图形的周长最长?()A.正方形B.圆C.等边三角形4.把一个圆的半径扩大到3倍后,圆的面积变为原来的()倍。
A. 3B. 6C. 95.在观看马戏表演的时候,人们一般都会围成圆形。
这是应用了圆特征中()A.圆心决定园的位置B.半径决定圆的大小C.同圆中的半径都相等D.同圆中直径是半径的2倍6.一个环形,外圆直径是40厘米,环的宽度是10厘米,它的内圆半径是()A.10厘米B.20厘米C.30厘米D.50厘米7.从一个正方形铁皮上分别剪下不同规格的圆片,剩下的废料()A.剪法1多B.剪法2多C.同样多8.用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是()。
A. 长方形B. 正方形C. 正三角形D. 圆9.一张圆形纸片的直径是20厘米,将它连续对折2次后按折痕剪开,其中的一块是这个圆的14(如图),这块纸片的周长是( )厘米.A. 15.7B. 31.4C. 35.7D. 62.810.把一张直径为4厘米的圆形纸片对折两次得到一个扇形,这个扇形的周长是()厘米。
A.πB.4+πC.4πD.π二、解答题(题型注释)45厘米。
从钢丝的一端到另一端,车轮正好滚动20圈。
这根悬空的钢丝至少长多少米?12.在下图的长方形中画一个最大的半圆,并涂上阴影,再计算空白部分的面积。
13.某小区内靠墙有一个半圆形水池(如图)。
现在要沿着水池外边用地砖铺一条宽1m的小路需要铺多少平方米的地砖?( 取3.14)14.小明沿6米长的路走了3次,第一次10步走完,第二次9步走完,第三次11步走完。
(1)他平均一步的长度是多少米?(2)他沿着一个圆形花坛走了一圈,刚好是157步,这个花坛的面积约是多少平方米? 15.如下图,学校操场的跑道由正方形的两条对边和两个半圆组成。
新人教版六年级上册《第1章_圆》小学数学-有答案-单元测试卷
新人教版六年级上册《第1章圆》单元测试卷一、填空题(10~15题每空2分,其余每空1分,共30分)1. 要画一个周长是18.84厘米的圆,圆规两脚尖叉开的距离应取________厘米,画出的圆的面积是________平方厘米。
2. 在长为8厘米,宽为6厘米的长方形中画一个最大的圆,这个圆的面积是________平方厘米,周长是________厘米。
3. 有大小两个圆,大圆直径是小圆半径的4倍,小圆与大圆周长的比是________,小圆与大圆面积的比是________.4. 圆周率表示圆的周长与直径的________,一个圆的周长和直径的比值大约是________.5. 两圆的半径比是5:3,那么这两个圆的周长比是________,面积比是________.6. 圆是轴对称图形,有________条对称轴,半圆有________条对称轴。
7. 正方形的边长和圆的直径都是3厘米,正方形和圆的面积之比是________.8. 一个圆的面积是10平方厘米,如果把它的半径扩大到原来的2倍,那么这个圆的面积变为________平方厘米。
9. 用一根62.8米长的绳子分别围成长方形、正方形和圆,________的面积最大,它的面积是________.10. 长12分米,宽8分米的长方形纸板,在这个长方形中最多可以裁剪直径是4分米的圆形________个。
11. 一个半圆的周长是15.42cm,则这个半圆的面积是________.12. 一个圆的半径是8厘米,这个圆面积的3是________平方厘米。
413. 把一个边长是8分米的正方形剪成一个最大的圆,除去圆的面积剩余部分的面积是________平方分米。
14. 用一根长16分米的铁丝围成一个圆,接头处长0.3分米,这个圆的面积是多少?二、判断题(每题1分,共9分)直径是半径的2倍。
________(判断对错)圆的周长与它的直径的比值约是3.14.________(判断对错)一个圆的直径是4分米,这个圆的周长和面积相等。
六年级上册圆单元测试卷【含答案】
六年级上册圆单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个图形是圆?A. 正方形B. 长方形C. 三角形D. 所有点到圆心距离相等的图形2. 圆的周长公式是?A. C = πdB. C = 2πrC. C = πr^2D. C = 2r3. 圆的面积公式是?A. A = πdB. A = 2πrC. A = πr^2D. A = 2r4. 半径为5厘米的圆,其直径是多少厘米?A. 10厘米B. 15厘米C. 20厘米D. 25厘米5. 下列哪个图形不是圆的对称轴?A. 水平线B. 垂直线C. 斜线D. 圆的直径二、判断题(每题1分,共5分)1. 圆的周长与直径成正比。
()2. 圆的面积与半径成正比。
()3. 圆的直径是圆周上任意两点间的距离。
()4. 圆的半径是圆心到圆周上任意一点的距离。
()5. 所有点到圆心距离相等的图形一定是圆。
()三、填空题(每题1分,共5分)1. 圆的周长公式是 C = _______。
2. 圆的面积公式是 A = _______。
3. 半径为 r 的圆,其直径是 _______。
4. 直径为 d 的圆,其周长是 _______。
5. 面积为 A 的圆,其半径是 _______。
四、简答题(每题2分,共10分)1. 请简要说明圆的周长公式。
2. 请简要说明圆的面积公式。
3. 请简要说明圆的直径与半径的关系。
4. 请简要说明圆的对称性质。
5. 请简要说明圆的周长与面积的关系。
五、应用题(每题2分,共10分)1. 已知一个圆的直径为10厘米,求其周长。
2. 已知一个圆的半径为5厘米,求其面积。
3. 已知一个圆的周长为31.4厘米,求其半径。
4. 已知一个圆的面积为78.5平方厘米,求其半径。
5. 已知一个圆的直径增加了2厘米,求其周长增加的长度。
六、分析题(每题5分,共10分)1. 分析圆的周长与半径的关系,并给出证明。
2. 分析圆的面积与半径的关系,并给出证明。
人教版六年级上册数学第五单元《圆》单元测试卷(含答案)
人教版六年级上册数学第五单元《圆》单元测试卷(含答案)一、认真审题,填一填。
(每小题2分,共18分)1.战国时期墨家所著的《墨经》一书中记载:“圆,一中同长也。
”它表示圆上任意一点到( )的距离相等,也就是圆的( )都相等。
2.白居易的《府西池》中“柳无气力枝先动,池有波纹冰尽开”描述了雨点打在水面上荡开层层的波纹。
已知水池是长6 m、宽5 m的长方形,当波纹到池边时,所形成的最大整圆的周长是( ) ,面积是( )。
3.一个时钟的分针长5 cm,当它走一圈时,它的尖端走了( )cm,分针扫过部分的面积是( )cm2。
4.如右图,把一个圆分割,拼成近似的长方形。
已知这个长方形的周长比圆的周长大10 cm,这个圆的周长是( ) cm,面积是( ) cm2。
5.坐落于辽宁省沈抚新区的“生命之环”,无论是高度还是形式都是世界独有的。
它近似于一个圆环,它的外直径是170米,内直径是150米,则“生命之环”的面积约是( )平方米。
6.一种小汽车的轮子的直径是40厘米,小汽车在行驶过程中轮子每分钟大约转1000圈,这辆小汽车每小时大约行驶( )千米。
(取整千米数)7.如图,在长方形内有甲、乙、丙三个圆,已知乙、丙两个圆相同,那么甲、乙两个圆的周长比是( ),面积比是( )。
(第7题图)) (第8题图)) (第9题图))8.如图,等边三角形的边长是6 cm ,则涂色部分的面积是( )cm 2,空白部分的周长是( )cm 。
9.一面镜子的形状如图,它是由1个正方形和4个直径相等的半圆形组成的,半圆形的直径是6 dm ,在镜子周围镶上铝边,需要铝边长( )dm ,镜子的面积是( )dm 2。
二、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题2分,共12分) 1.如图,圆从点A 开始,沿着直尺向右滚动一周到达点B ,点B 的位置大概在( )。
A .9到10之间 B .10到11之间 C .11到12之间2.如图,从甲到乙,走a 路线与走b 路线的路程相比,( )。
人教版数学六年级上册第五单元《圆》单元测试卷(含答案解析)
人教版数学六年级上册第五单元《圆》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.用40厘米长的铁丝分别围成长方形、正方形、圆,()的面积最大。
A.长方形B.正方形C.圆2.如图,阴影部分的周长是()cm.A.π B.2πC.4π D.2.5π3.半径是一条().A.线段B.射线C.直线4.圆是平面上的()。
A.直线图形B.曲线图形C.无法确定5.如图,图形(单位:分米)涂色部分的面积是()。
A.12.84dm²B.9.24dm²C.18.24dm²D.9.42dm²6.一个圆的直径增加2倍后,面积是原来的()A.9倍B.8倍C.4倍D.2倍7.把完全相同的两个半圆合成一个整圆后,它们的()A.面积不变,周长减少了B.面积增加了,周长不变C.面积不变,周长增加了D.面积和周长都减少了8.在面积相等的情况下,正方形、长方形和圆三个图形相比,周长最短的是().A.长方形B.正方形C.圆二、判断题9.在同一个圆中,两条半径就是一条直径。
(________)10.顶点在圆内的角一定是圆心角.(____)11.所有圆的周长和它的直径的比值一定相等。
(________)12.半径是2厘米的圆的周长和面积相等。
(________)13.大小两个不同的圆,它们的圆周率也不同。
(________)14.圆在平面滚动时,圆心在一条直线上运动.(_____)15.两个圆的周长相等,这两个圆的直径也一定相等(_____)16.扇形的大小只与它的圆心角的度数有关。
(________)三、填空题17.______和经过______两端的______所围成的图形叫做扇形.18.用圆规画出圆以后,针尖固定的一点就是________,通常用字母________表示,________决定圆的位置。
19.看图填空(单位:厘米).图1:d=(_____)cm 图2:d=(_____)cm 图3:r=(_____)cm 图4:d=(_____)cm20.一个圆形的笔筒的半径是8厘米,它的直径是(________)厘米,周长是(________)厘米。
六年级(上)《圆》数学单元测试卷及答案
六年级上<圆>单元测试卷一、填空题、(30分)1、(4分)通过并且都在的线段叫做直径、2、(4分)当π取3.14时,16π= ,48π= 、3、(4分)圆的对称轴有条,半圆形的对称轴有条、4、(2分)画圆时,圆规两脚张开的距离是圆的、5、(2分)圆的周长是直径的倍、6、(4分)一个圆的直径是3分米,它的周长是,面积是、7、(2分)用一条长9.42分米的铁丝围成的圆的面积是、8、(4分)甲圆半径是2厘米,乙圆的半径是5厘米,甲圆周长和乙圆周长的比是,乙圆面积与甲圆面积的比是、9、(2分)在一个周长是28厘米的正方形里画一个最大的圆,圆的面积是、10、(2分)一个半圆的半径是10厘米,它的面积是、二、判断、(对的在横线里画“√”,错的画“×”)(8分)11、(2分)两个半圆一定可以拼成一个圆、、12、(2分)圆的半径扩大3倍,它的面积也扩大3倍、、13、(2分)周长相等的长方形、正方形和圆,面积最大的是正方形、、14、(2分)圆周率表示圆的直径与周长的比率、、三、选一选、(将正确答案的序号填在括号里)(6分)15、(2分)π是()A、有限小数B、循环小数C、无限循环小数D、无限不循环小数16、(2分)周长相等的正方形和圆,它们的面积比是()A、1:1B、157:2C、π:417、(2分)已知圆的半径是r,计算它的周长,正确的算式为()A、πr+r πr+2r πr D、πr+2r四、求下图阴影部分的面积、(单位:厘米)(12分)18、(6分)求图形阴影部分的周长和面积、(单位:cm)19、(6分)求阴影部分的面积(单位:cm)五、动手操作、(7分)20、(7分)画下面图形的对称轴、六、应用题、(30分)21、(7分)一只大钟,它的分针长40厘米、这根分针的尖端转动一周所走的路程是多少厘米?从1时到2时分针扫过的面积是多少平方厘米?22、(7 分)一根电线正好将一个直径是4 分米的圆形绕满50 圈,这根电线长多少米?23、(7 分)一个环形,环宽是2 厘米,外圆直径是1 分米,这个环形的面积是多少?24、(9分)一张可折叠的圆桌,直径是1.2m,折叠后便成了一个正方形(如图),折叠后的桌面的面积是多少平方米?折叠部分是多少平方米?(得数保留两位小数)七、解决问题、(7分)25、(7分)学校400米的环形跑道,它是由两个直道和两个半圆形跑道组成,每个直道长100米,每条跑道宽为1.25 米,如果在这个跑道上进行400 米赛跑,第一道选手与第四道选手的起跑线要相差多少米?《圆》六年级(上)数学单元测试卷参考答案与试题解析一、填空题、(30分)1、(4分)通过圆心并且两端都在圆上的线段叫做直径、考点:圆的认识与圆周率、分析:圆的直径的定义为:通过圆心并且两端都在圆上的线段叫做直径、解答:解:通过圆心并且两端都在圆上的线段叫做直径、故答案为:圆心、两端、圆上、点评:解答此题要注意圆的直径是线段而不是直线、2、(4分)当π取3.14时,16π= 50.24,48π= 150.72、考点:用字母表示数;含字母式子的求值、专题:用字母表示数、分析:把π=3.14 直接代入16π和48π中,进而计算即可得解、解答:解:当π=3.14 时,16π=16×3.14=50.24;48π=48×3.14=150.72、故答案为:50.24,150.72、点评:此题考查含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的结果、3、(4分)圆的对称轴有无数条,半圆形的对称轴有一条、考点:确定轴对称图形的对称轴条数及位置、分析:依据轴对称图形的定义即可作答、解答:解:因为圆是轴对称图形,且它的直径所在的直线就是其对称轴,而圆有无数条直径,所以圆就有无数条对称轴;半圆只有沿从圆心到圆弧中点的连线对折,对折后的两部分才能完全重合,所以半圆形只有一条对称轴、答:圆有无数条对称轴,半圆形有一条对称轴、故答案为:无数、一、点评:此题主要考查如何确定轴对称图形的对称轴条数及位置、4、(2分)画圆时,圆规两脚张开的距离是圆的半径、考点:画圆、专题:平面图形的认识与计算、分析:根据用圆规画圆的方法,把圆规有针的一个脚固定住,另一个脚转一圈即可得到一个圆,固定点的一脚和转一圈的一脚即是圆心到圆上的距离也是半径、解答:解:用圆规画圆,圆规两脚张开的距离即是圆心到圆上的距离也是半径;故答案为:半径、点评:此题主要考查的圆规两脚张开的距离确定半径、5、(2分)圆的周长是直径的π倍、考点:圆、圆环的周长、分析:根据圆的周长公式,求出周长和直径的关系、解答:解:由题意知,C=πd,=π,所圆的周长是直径的π倍;故答案为:π、点评:此题考查了圆的周长和直径的关系、6、(4分)一个圆的直径是3分米,它的周长是9.42分米,面积是7.065平方分米、考点:圆、圆环的周长;圆、圆环的面积、分析:此题根据圆的周长公式c=πd 和面积公式s=π(d÷2)2 计算即可、解答:解:3.14×3=9.42(分米),3.14×(3÷2)2=3.14×2.25=7.065(平方分米),故答案为:9.42 分米,7.065 平方分米、点评:此题主要考查圆的周长和面积公式,代入公式计算即可、7、(2分)用一条长9.42分米的铁丝围成的圆的面积是7.065平方分米、考点:圆、圆环的面积、专题:平面图形的认识与计算、分析:根据题干可知:这个圆的周长是9.42 分米,由此先求出这个圆的半径,再利用圆的面积公式即可解答、解答:解:9.42÷3.14÷2=1.5(分米),3.14×1.52=7.065(平方分米);答:圆的面积是7.065 平方分米、故答案为:7.065 平方分米、点评:此题考查了圆的周长和面积公式的综合应用、8、(4分)甲圆半径是2厘米,乙圆的半径是5厘米,甲圆周长和乙圆周长的比是2:5,乙圆面积与甲圆面积的比是25:4 、考点:圆、圆环的周长;比的意义;圆、圆环的面积、专题:平面图形的认识与计算、分析:根据圆的周长公式C=2πr、圆的面积公式s=πr2,将数据代入公式进行计算,再写出相应的比,化简即可、解答:解:(1)甲圆的周长:乙圆周长=(3.14×2×2):(3.14×2×5)=2:5;(2)乙圆面积:甲圆的面积,=(3.14×52):(3.14×22),=25:4;答:甲、乙两圆周长的比是2:5;面积比是25:4;故答案为:2:5;25:4、点评:此题主要考查的是圆的周长公式和圆的面积公式的应用、9、(2分)在一个周长是28厘米的正方形里画一个最大的圆,圆的面积是38.465平方米、考点:圆、圆环的面积、专题:平面图形的认识与计算、分析:圆是一个正方形内所画的一个最大的圆,所以圆的直径就是正方形的边长,由正方形的周长除以4 即可得到正方形的边长,即圆的直径,再根据圆的面积公式S=πr2,列式求出这个圆的面积、解答:解:圆的半径:28÷4÷2=3.5(米),圆的面积:3.14×3.52=38.465(平方米);答:圆的面积是38.465 平方米、故答案为:38.465 平方米、点评:解答本题的关键是知道在一个正方形内所画最大圆的直径是正方形的边长,再灵活利用圆的周长公式与圆的面积公式解决问题、10、(2分)一个半圆的半径是10厘米,它的面积是157平方厘米、考点:圆、圆环的面积、专题:平面图形的认识与计算、分析:半圆的面积=πr2÷2,由此代入数据即可解答、解答:解:半圆的面积是:3.14×102÷2,=3.14×100÷2,=157(平方厘米);答:它的面积是157 平方厘米、故答案为:157 平方厘米、点评:此题考查了半圆的面积的计算方法、二、判断、(对的在横线里画“√”,错的画“×”)(8分)11、(2分)两个半圆一定可以拼成一个圆、错误、考点:图形的拼组;圆的认识与圆周率、分析:半径相同的两个半圆能拼成一个圆,据此解答、解答:解:因半径相同的两个半圆能拼成一个圆,所以当两个半圆的半径不相等时就不能拼成一个圆、故答案为:错误、点评:本题的关键是两个半圆的半径相等时才能拼成一个圆、12、(2分)圆的半径扩大3倍,它的面积也扩大3倍、错误、考点:圆、圆环的面积、分析:圆的面积=πr2,若半径扩大3 倍,则面积会扩大32 倍,据此即可进行判断、解答:解:因为圆的面积=πr2,若半径扩大3 倍,则面积会扩大32=9 倍,故答案为:错误、点评:此题主要考查圆的面积公式的应用、13、(2分)周长相等的长方形、正方形和圆,面积最大的是正方形、错误、考点:面积及面积的大小比较、专题:平面图形的认识与计算、分析:通过举例验证,再进一步发现结论即可、解答:解:长方形、正方形和圆的周长为12.56 厘米;长方形的长宽可以为3.13 厘米、3.15 厘米,长方形的面积=3.13×3.15=9.8595(平方厘米);正方形的边长为3.14厘米,正方形的面积=3.14×3.14=9.8596(平方厘米);圆的面积=3.14×(12.56÷3.14÷2)2=12.56(平方厘米);从上面可以看出圆的面积最大,由此我们可以得出一般结论:周长相等的长方形、正方形和圆,面积最大的是圆、故答案为:错误、点评:我们可以把周长相等的长方形、正方形和圆,面积最大的是圆当做一个正确的结论记住,快速去做一些选择题或判断题、14、(2分)圆周率表示圆的直径与周长的比率、错误、考点:圆的认识与圆周率、专题:平面图形的认识与计算、分析:圆周率的定义是:任意一个圆的周长与它的直径的比的比值是一个固定的数,人们称它为圆周率,用字母π表示;据此判断即可、解答:解:由圆周率的含义可知:圆周率表示圆的直径与周长的比率,说法错误;故答案为:错误、点评:此题考查了圆周率的定义、三、选一选、(将正确答案的序号填在括号里)(6分)15、(2分)π是()A、有限小数B、循环小数C、无限循环小数D、无限不循环小数考点:圆的认识与圆周率、专题:平面图形的认识与计算、分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母“π”表示,它是一个无限不循环小数;进而解答即可、解答:解:根据圆周率的含义可知:圆周率π是一个无限不循环小数;故选:D、点评:此题考查了圆周率的含义、16、(2分)周长相等的正方形和圆,它们的面积比是()A、1:1B、157:2C、π:4考点:比的意义;长方形、正方形的面积;圆、圆环的面积、专题:平面图形的认识与计算、分析:先假设这两种图形的周长是C,再利用这两种图形的面积公式,分别计算出它们的面积,然后求出它们的比即可、解答:解:设这两种图形的周长是C,则圆的半径为:r=C÷2π,面积为:π×()2;正方形的边长为:C÷4,面积为:× = ;所以正方形的面积:圆的面积=(×):[π()2]=π:4;故选:C、点评:此题主要考查正方形、圆形的面积公式及灵活运用,解答此题可以先假设这两种图形的周长是多少,再利用这两种图形的面积公式,分别计算出它们的面积,然后根据题意进行比即可、17、(2分)已知圆的半径是r,计算它的周长,正确的算式为()A、πr+r πr+2r πr D、πr+2r考点:圆、圆环的周长;用字母表示数、专题:平面图形的认识与计算、解分析:圆的周长等于圆的周长的再加上两条半径,据此即可得解、答:×2πr+2r=πr+2r,故选:B、点评:弄清楚圆的周长的组成,是解答本题的关键、四、求下图阴影部分的面积、(单位:厘米)(12分)18、(6分)求图形阴影部分的周长和面积、(单位:cm)考点:组合图形的面积、专题:平面图形的认识与计算、分析:阴影部分的面积就等于长方形的面积减去半圆的面积,又因长方形的长和宽分别等于半圆的直径和半径,于是利用长方形和圆的面积公式即可求解、解答:解:10×(10÷2)﹣3.14×(10÷2)2÷2,=50﹣3.14×25÷2,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75 平方厘米、点评:解答此题的关键是明白:长方形的长和宽分别等于半圆的直径和半径、19、(6分)求阴影部分的面积(单位:cm)考点:长方形、正方形的面积、分析:阴影部分的面积=长方形的面积﹣正方形的面积,长方形的长和宽,正方形的边长已知,从而依据长方形和正方形的面积公式即可求解、解答:解:7×8﹣2×2,=56﹣4,=52(cm2);答:阴影部分的面积是52cm2、点评:此题主要考查长方形和正方形面积的计算方法、五、动手操作、(7分)20、(7分)画下面图形的对称轴、考点:画轴对称图形的对称轴、分析:依据轴对称图形的定义即可作答、解答:解:所作对称轴如下;点评:此题主要考查轴对称图形对称轴的条数、六、应用题、(30分)21、(7分)一只大钟,它的分针长40厘米、这根分针的尖端转动一周所走的路程是多少厘米?从1时到2时分针扫过的面积是多少平方厘米?考点:圆、圆环的周长;圆、圆环的面积、专题:平面图形的认识与计算、分析:(1)根据题干:一只大钟,它的分针长40厘米,可知分针的尖端转动一周所走的路程正好是以分针的长度为半径的圆的周长,利用圆周长的计算公式计算即可;(2)从1 时到2 时分针扫过的面积是半径是40 厘米的圆的面积,根据圆的面积公式解答、解答:解:(1)已知r=40厘米;C=2πr=2×3.14×40=251.2(厘米);答:这根分针的尖端转动一周所走的路程是251.2 厘米;(2)3.14×402=5024(平方厘米),答:从1 时到2 时分针扫过的面积是5024 平方厘米、点评:此题考查圆的周长与面积公式的应用,关键是根据钟面上分针旋转的特点得出旋转后的图形、22、(7分)一根电线正好将一个直径是4分米的圆形绕满50圈,这根电线长多少米?考点:有关圆的应用题、专题:平面图形的认识与计算、分析:根据圆的周长公式:c=πd,把数据代入公式求出圆的周长,然后用周长乘50 即可、解答:解:3.14×4×50,=12.56×50,=628(分米),628 分米=62.8 米;答:这根电线长62.8 米、点评:此题主要考查圆的周长公式的实际应用、23、(7分)一个环形,环宽是2厘米,外圆直径是1分米,这个环形的面积是多少?考点:圆、圆环的面积、专题:平面图形的认识与计算、分析:圆环的面积=π(R2﹣r2),根据题干得出外圆与内圆的半径,代入数据即可解答、解答:解:1分米=10 厘米,10÷2=5(厘米),5﹣2=3(厘米),3.14×(52﹣32),=3.14×(25﹣9),=3.14×16,=50.24(平方厘米);答:这个圆环的面积是50.24 平方厘米、点评:此题考查了圆环的面积公式的应用、24、(9分)一张可折叠的圆桌,直径是1.2m,折叠后便成了一个正方形(如图),折叠后的桌面的面积是多少平方米?折叠部分是多少平方米?(得数保留两位小数)考点:有关圆的应用题;简单图形的折叠问题、专题:平面图形的认识与计算、分析:(1)求折叠后的桌面的面积,即求圆内最大正方形的面积,作出一条半径,作为三角形的高,然后求出三角形的面积,进而求出正方形的面积;(2)根据圆的面积求出圆的面积,然后减去圆内正方形的面积即可求出折叠部分的面积、解答:解:(1)圆内最大正方形的面积:1.2×0.6÷2×2=0.72(平方米);答:折叠后的桌面的面积是0.72平方米,(2)半径:1.2÷2=0.6 米,圆的面积:3.14×0.6×0.6=1.1304(平方米),折叠部分是:1.1304﹣0.72=0.41.04≈0.41(平方米);答:折叠部分是0.41平方米、点评:此题也可以根据圆内最大正方形和圆的面积比是 3.14:2,求出圆内最大正方形的面积,进而求出折叠部分的面积、七、解决问题、(7分)25、(7分)学校400米的环形跑道,它是由两个直道和两个半圆形跑道组成,每个直道长100米,每条跑道宽为1.25 米,如果在这个跑道上进行400 米赛跑,第一道选手与第四道选手的起跑线要相差多少米?考点:有关圆的应用题、专题:平面图形的认识与计算、分析:先求出相邻的两个跑道相隔的距离,即跑道宽×2π,则第4 跑道起跑线与第1 跑道相差3 个这样的距离;据此解答、解答:解:1.25×2×3.14,=2.5×3.14,=7.85(m),7.85×(4﹣1),=7.85×3,=23.55(m);答;第4 道的起跑线与第1 道相差23.55m、点评:解答此题的关键是明白:内外跑道的差就等于弯道的差、。
六年级数学上册第五单元《圆》测试卷-人教版(含答案)
六年级数学上册第五单元《圆》测试卷-人教版(含答案)一、单选题(总分:40分本大题共8小题,共40分)1.(本题5分)圆的周长扩大2倍,面积就()A.扩大2倍B.扩大4倍C.不变2.(本题5分)大圆的周长除以它的直径()小圆的周长除以它的直径.A.大于B.小于C.等于3.(本题5分)如果圆的半径等于正方形的边长,那么圆的周长()正方形的周长.A.大于B.等于C.小于4.(本题5分)两个圆的周长不相等,是因为它们的()A.圆心位置不同B.圆周率不相等C.直径不相等5.(本题5分)圆的大小与()有关.A.圆心B.半径C.圆周率6.(本题5分)一张长13厘米,宽9厘米的长方形纸板,最多可以剪()个半径2厘米的圆.A.7B.8C.67.(本题5分)半径不同的两个圆,它们的()相同.A.圆周率B.周长C.面积8.(本题5分)画圆时,圆规两脚间的距离是()A.半径长度B.直径长度C.圆的大小二、填空题(总分:25分本大题共5小题,共25分)9.(本题5分)一根铁丝可以围成一个半径是3厘米的圆,如果用它围成一个等边三角形,这个三角形的边长是____厘米.10.(本题5分)圆周率表示一个圆的____和____的倍数关系.π约等于____.11.(本题5分)时针长5厘米,分针长6厘米,从上午10时到下午4时,时针尖经过的路线长____分米,分针扫过的面积是____.12.(本题5分)在同一个圆里,直径的长度是半径的____.13.(本题5分)通过圆心,两端都在圆上的线段叫做半径.____.(判断对错)三、解答题(总分:35分本大题共5小题,共35分)14.(本题7分)如图,正方形的周长是24dm,其中一个半圆的周长是多少?15.(本题7分)在下边的正方形中画一个最大的圆.16.(本题7分)列式计算.(1)d=5厘米,求周长.(2)C=12.56dm,求面积.17.(本题7分)笑笑想在室外画一个直径约6米的圆,他可以如何去完成?18.(本题7分)用圆规画一个直径6厘米的半圆,这个半圆的周长是____厘米.在这个半圆里画一个最大的三角形,画出的这个三角形的面积是____平方厘米.参考答案1.【答案】:B;【解析】:解:圆的周长=2πr,其中2π是一个定值,所以圆的周长与r成正比例,周长扩大2倍,则半径也是扩大了2倍;圆的面积公式:S=πr2,其中r2看成一个因数,π是恒值,那么S和r2成正比例;半径扩大2倍,面积就扩大22=4倍;答:圆的面积是扩大4倍.故选:B.2.【答案】:C;【解析】:解:根据圆周率的含义可知:大圆的周长除以它的直径等于小圆的周长除以它的直径;故选:C.3.【答案】:A;【解析】:解:设圆的半径为r,则正方形的边长也是r,圆的周长:3.14×r×2=6.28r,正方形的周长:4r,因为6.28r>4r,所以圆的周长大于正方形的周长.故选:A.4.【答案】:C;【解析】:解:由“圆的周长=2πr=πd”可知:圆的周长和半径或直径、圆周率有关系,因为圆周率不变,所以只与半径或直径有关,则两个圆的周长不相等,是因为半径或直径不同.故选:C.5.【答案】:B;【解析】:解:因为圆心决定圆的位置,半径决定圆的大小;所以得出:圆的大小与半径的长短有关;故选:B.6.【答案】:C;【解析】:解:13÷(2×2)=13÷4=3(个)…1(厘米)9÷(2×2)=9÷4=2(个)…1(厘米)3×2=6(个).答:最多可画6个.故选:C.7.【答案】:A;【解析】:解:半径不同的两个圆,它们的圆周率相同.故选:A.8.【答案】:A;【解析】:解:根据画圆的方法可知,圆规两脚之间的距离就是圆的半径.故选:A.9.【答案】:6.28;【解析】:解:(2×3.14×3)÷3,=18.84÷3,=6.28(厘米);答:这个三角形的一条边长6.28厘米.故答案为:6.28.10.【答案】:周长;直径;3.14;【解析】:解:圆周率表示一个圆的周长和直径的倍数关系.π约等于3.14;故答案为:周长,直径,3.14.11.【答案】:1.57;56.52平方厘米;【解析】:解:(1)时针“走过”了:2×3.14×5×÷2,=3.14×5,=15.7(厘米),=1.57(分米);(2)时针“扫过”的面积:πr2,=×3.14×62,=56.52(平方厘米);答:时针尖经过的路线长1.57分米,分针扫过的面积是56.52平方厘米.故答案为:1.57,56.52平方厘米.12.【答案】:2倍;【解析】:解:通过半径和直径的定义可知,直径的长度是半径的2倍.故答案为:2倍.13.【答案】:x;【解析】:解:由分析可知:半径是连接圆心和圆上任意一点的线段;故答案为:×.14.【答案】:解:24÷4=6(dm)3.14×6÷2+6=9.42+6=15.42(dm),答:一个半圆的周长是15.42分米.;【解析】:根据题意,正方形的周长是24dm,据此可求出正方形的边长,也就是半圆的直径,半圆的周长等于半圆所在圆周长的一半再加上一条直径的长即可,根据圆的周长公式C=πd 进行计算即可得到答案.15.【答案】:解:由分析作图如下:;【解析】:根据在正方形中画一个最大的圆,要使正方形内的圆最大,圆的直径必须等于正方形的边长,量出正方形的边长,即圆的直径,然后画圆即可.16.【答案】:解:(1)3.14×5=15.7(厘米)答:圆的周长是15.7厘米.(2)12.56÷3.14÷2=2(分米)3.14×22=12.56(平方分米)答:圆的面积是12.56平方分米.;【解析】:(1)根据圆的周长公式C=πd进行计算即可得到答案;(2)根据圆的周长公式C=2πr先求出圆的半径,再根据圆的面积公式是:S=πr2,把数据代入公式解答即可.17.【答案】:解:笑笑可以找一根6÷2=3米的绳子,先将绳子的一端固定在地面上,再用手牵着绳子的另一端,绕固定的一端旋转一周,即可画出直径约6米的圆.;【解析】:圆心确定圆的位置,半径确定圆的大小.以任意一点为圆心,以(6÷2)米为半径,即可画出符合要求的圆.18.【答案】:15.429;【解析】:解:(1)以任意一点O为圆心,以6÷2=3厘米为半径的半圆如图所示:半圆的周长为:3.14×6÷2+6=9.42+6=15.42(厘米)(2)6×(6÷2)÷2=6×3÷2=18÷2=9(平方厘米)答:这个三角形的面积是9平方厘米.故答案为:15.42,9.。
人教版六年级上册数学第五单元《圆》测试卷及参考答案(完整版)
人教版六年级上册数学第五单元《圆》测试卷一.选择题(共6题,共12分)1.在长2米,宽1.4米的长方形三夹板上,能裁出()个半径为20厘米的圆。
A.20B.17C.152.圆周率π表示()。
A.周长与直径的比值B.周长与半径的比值C.直径与周长的比值3.从圆心到()任意一点的线段,叫半径。
A.圆心B.圆外C.圆上4.有大、小两个圆,大圆半径是5厘米,小圆半径是4厘米,小圆面积是大圆面积的()。
A. B. C.5.在一个周长为100厘米的正方形纸片内,要画一个最大的圆,这个圆的半径是()。
A.25厘米B.40厘米C.12.5厘米6.一个用篱笆围成的长方形鸡舍,长8.56m,宽4m,现在把它改造到一堵围墙边,()的面积最大。
A.正方形B.半圆C.长方形二.判断题(共6题,共12分)1.大圆的圆周率大,小圆的圆周率小。
()2.如果正方形的周长和圆的周长相等,那么正方形面积一定小于圆面积。
()3.车轮滚动一周的距离是车轮的直径。
()4.两端都在圆上的线段叫做直径。
()5.一个半径是2cm的圆,面积和周长相等。
()6.半径是2cm的圆,它的周长与面积相等。
()三.填空题(共6题,共12分)1.两个圆的半径比是1:4,这两个圆的周长比是():()。
2.通过圆心并且两端都在圆上的线段叫做()。
一般用字母()表示。
()是一个圆内最长的线段。
3.做 r =20cm的铁圈100个,需要铁丝()米。
列式:()。
4.大圆的半径和小圆的直径相等,大圆周长与小圆周长的比是(),小圆面积与大圆面积的比是()。
5.如图像∠AOB这样,顶点在()的角叫做圆心角。
6.如果用C表示圆的周长,求周长的两个公式是()和()。
四.计算题(共1题,共6分)1.求下面图形的周长。
(单位:厘米)(1)(2)五.解答题(共6题,共33分)1.某师大附小在半径为120m的圆形跑道上举行自行车赛.六(1)班的刘明6分钟骑完两圈,他的自行车的车轮直径是0.5m,刘明每分钟的车速是多少米?2.一个正方形和一个圆形的周长相等,正方形的边长是6.28米,这个圆形的半径是多少米?3.半径为6厘米的扇形面积为18.84平方厘米,它的圆心角是多少度?4.有一块长20米,宽15米的长方形草坪,在它的中间安装了一个射程为5米的自动旋转喷灌装置,它不能喷灌到的草坪面积是多少?5.一个直径为8米的圆形花坛,要在花坛外围修一条1米宽的石头小路。
小学数学人教版六年级上册第五单元《圆》测试卷(含答案解析)
小学数学人教版六年级上册第五单元《圆》测试卷(含答案解析)一、选择题1.半径是3cm的圆,下列关于这个圆的数据正确的是()A. 直径9cmB. 周长18.84cmC. 周长9.42cmD. 面积113.04cm22.下面图()中的阴影部分可能是圆心角为100°的扇形.A. B. C.D.3.观察如图,随着圆的个数增多,阴影的面积()A. 没有改变B. 可能不变C. 越变越大D. 越变越小4.一个圆的半径由4厘米增加到9厘米,面积增加了()平方厘米.A. 25πB. 16πC. 65πD. 169π5.如图,沿半圆形草坪外围铺一条4m宽的小路.求小路的面积,正确的列式是()A. 3.14×42÷2B. 3.14×202÷2C. 3.14×(202﹣42)÷2D. 3.14×242÷2﹣3.14×202÷2 6.一个圆的周长扩大3倍,它的面积就扩大()倍.A. 3B. 6C. 97.在圆内剪去一个圆心角为45的扇形,余下部分的面积是剪去部分面积的()倍.A. 9 B. 8 C. 78.大圆的半径是小圆的直径,则大圆面积是小圆面积的()。
A. 2倍B. 4倍C. 12D. 14 9.长方形、正方形、圆的周长都相等,则面积最大的是()。
A. 长方形B. 正方形C. 圆D. 无法比较10.一个蒙古包所占地面的周长是31.4米,它的占地面积是()平方米。
A. 10平方米B. 314平方米C. 78.5平方米11.半圆的周长是直径的()。
A. π倍B. π倍C. (π+1)倍12.两个圆的周长之比是2:5,则它的面积之比是()。
A. 2:5B. 5:2C. 4:25D. 25:4二、填空题13.一个圆形花坛的半径4米,周长是________米,面积是________平方米.14.下图中,正方形的面积是9cm2,这个圆的周长是________cm,面积是________cm2。
六年级上册小学数学第五单元《圆》测试卷(含答案解析)
六年级上册小学数学第五单元《圆》测试卷(含答案解析)一、选择题1.一个圆的半径扩大到原来的2倍,面积就扩大到原来的()A. 2倍B. 3倍C. 4倍2.如图,正方形的周长是16分米,则这个圆的面积是()A. 50.24平方分米B. 12.56平方分米C. 25.12平方分米D. 803.84平方分米3.关于圆,下列说法错误的是().A. 圆有无数条半径B. 圆有无数条对称轴C. 半径越大,周长越大D. 面积越大,周长越小4.计算如图阴影部分面积,正确的列式是()A. 62×3.14﹣()×3.14B. ×62×3.14﹣()2×3.14C. ×[62×3.14﹣()2×3.14]D. ×(6×2×3.14﹣6×3.14)5.如图所示圆环的面积是()cm2.(计算时π取3.14)A. 3.14B. 28.26C. 113.04D. 263.76 6.一个圆的半径由4厘米增加到9厘米,面积增加了()平方厘米.A. 25πB. 16πC. 65πD. 169π7.一个圆的周长扩大3倍,它的面积就扩大()倍.A. 3B. 6C. 98.用一块长12米、宽8米的长方形铁皮剪成半径是2米的小圆(不能剪拼),至多能剪()个。
A. 7B. 8C. 6D. 139.下图是一个半径为5厘米的半圆,求它的周长的正确算式是()。
A. 3.14×5+5×2B. (3.14×52) ÷2C. [3.14×(5×2)]÷2+5D. 3.14×5÷2+5 10.一个圆形花坛的半径是2.5米,在花坛一周铺了一条宽0.5米的碎石小路,小路的面积是()平方米。
A. 27.475B. 9.42C. 8.635D. 28.26 11.大圆的半径是小圆半径的3倍,则大圆面积是小圆面积的()。
人教版六年级数学上册 圆(单元测试) (含答案)
16.6.28 1.72
17.421639.2
18.圆形易滚动,而且车轮上各点到车轴即圆心的距离都等于半径,当车轮在平面上滚动时,车轴与平面的距离保持不变.
19.3,8dm
20.4.43
21.×
22.√
23.√
24.×
25.√
26.5分米
27.28.26平方米
28.15.7平方米
29.7.065分米
32.公园有一个周长是62.8m的圆形喷水池,围绕喷水池周围修一条宽2m的水泥路,求水泥路的路面面积是多少?
33.一个半圆形花坛,花坛的周长是25.7米,这个花坛的直径是多少?
参考答案
1.C
2.C
3.C
4.D
5.C
6.B
7.D
8.C
9.B
10.A
11.外圆内圆环宽
12.15
13.轴对称相等圆心
1Hale Waihona Puke .长方形,定长.26.妈妈在一块边长是10分米的正方形花布上剪下了一个最大的圆,把它当成一个圆形茶盘的布罩,这个布罩的半径是多少?
27.学校要修建一个周长是25.12 m的圆形花坛,并且要在它的周围铺上1m宽的环形小路。这条小路的占地面积是多少平方米?
28.县医院有个圆形喷水池,半径是2米,在周围铺上一条宽1米的石子路,石子路的面积是多少平方米?
A.2.5B.4C.8
6.一块边长是4米的正方形草地上,一条对角线的两个顶点各有1棵树,树上各栓1只羊,绳长4米,两头羊都能吃到的草地面积为( )平方米.
A.6.28B.9.12C.12.56D.50.24
7.在一个边长为4厘米的正方形纸片内剪一个最大的圆,圆面积和正方形面积的比是()。
人教版六年级数学上册第五单元《圆》测试题(含答案)
人教版六年级数学上册第五单元《圆》测试题(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题1.把一块圆形纸片平均分成若干偶数等份,把它剪开拼成一个近似长方形。
长方形的周长与圆的周长相比,()。
A.等于圆的周长B.大于圆的周长C.小于圆的周长2.钟表的分针长12厘米,它从5时走到6时,分针的针尖走了()厘米。
A.12πB.24πC.144πD.6π3.小明画了两个圆,它们的面积不相等,是因为它们的()。
A.圆心位置不一样B.直径不相等C.圆周率不一样4.大圆的半径是小圆的直径,则小圆的周长是大圆周长的()。
A.12B.4倍C.2倍D.145.一个圆环的内圆半径是外圆半径的12,这个圆环的面积是内圆面积的()。
A.4倍B.2C.3倍6.小圆的直径等于大圆的半径,大圆面积是小圆面积的()倍。
A.4B.1C.2D.8评卷人得分二、填空题7.如图,已知正方形的面积是20cm2,这个圆的面积是( )cm2。
8.用一张长10dm、宽8dm的长方形纸剪一个最大的圆,这个圆的周长是( )dm,面积是( )2dm。
9.一个圆的周长是15.7厘米,将这个圆切成两个半圆,每个半圆的周长是( )厘米。
10.钟面上时针长6厘米,分针长10厘米,从8:00到8:45分钟,针尖走过的路程是( )厘米。
11.A圆和B圆的半径比是5:3,它们的直径比是( )∶( ),周长比是( )∶( ),面积比是( )∶( )。
评卷人得分三、判断题12.一张纸至少对折两次,才能找到圆心。
( )13.圆心角是90°的扇形的面积是所在圆面积的14。
( )14.如果两个圆的周长相等,那么它们的面积也一定相等。
( )15.圆的直径与正方形边长相等,圆的周长大于正方形周长。
( )16.所有圆的都有无数条半径,无数条对称轴。
( )17.一个圆的半径是2厘米,那么这个圆的周长和面积相等。
人教版六年级上册数学第五单元 《圆 》单元达标测试卷(含参考答案)
人教版六年级上册数学第五单元《圆》单元达标测试卷一仔细推敲,选一选。
(将正确答案的字母填在括号里)(每小题2 分,共24 分)1. 下列图形中的∠1 属于圆心角的是( )。
2. [福州鼓楼区]下面各图中,对称轴条数最多的是( )。
3. 右图是一个残破的钟面,用软尺量得其边缘的弧长是9.42 cm,则它所在钟面的面积是( )cm2。
A. 9πB. 18πC. 36πD. 144π4.三位同学观察下图后说出了自己的想法,( )的想法正确。
东东: 研究圆的面积,可以用面积单位去测量。
苗苗: 如果小方格越来越小,那么求出来的小方格的面积就越来越接近圆的面积。
林林: 如果像这样把小方格继续画下去,画到第5 个图时,计算出的面积就等于圆的面积。
A. 东东B. 东东和苗苗C. 苗苗和林林D. 东东、苗苗和林林5.圆周率是圆的周长与直径的比值。
如果下图中线段AB表示一个圆的周长,那么这个圆的直径可能是( )。
A. 线段ABB. 线段ACC. 线段ADD. 线段DE6.如图是一张半径是4 dm 的圆桌,上面铺了一块半径是6 dm 的圆形桌布。
桌布下垂部分的面积是( )dm2。
A. 12.56B. 62.8C. 113.04D. 251.27. 一张圆形纸片的直径是2 dm,将它对折再对折后所形成图形的周长是( )dm。
A. 6.28B. 12.56C. 8.28D. 3.578.下图是明明研究圆的面积计算公式时用的方法,此时近似梯形的上底与下底的和相当于圆的( )。
A. 半径B. 直径C. 周长D. 周长的一半9. 如图,将圆形卡片沿着直尺向右滚动一周,点P 第一次接触直尺的位置最有可能落在点( )。
A. CB. DC. AD. B10. 如图,比较从A 地到B 地的两条路,( )。
A. ①长一些B. ②长一些C. 它们同样长D. 无法确定11.用相同的圆画图,根据前四幅图的规律,想一想图5的阴影部分的面积是( )个圆的面积。
六年级上册数学单元测试-圆练习题及答案
六年级上册数学单元测试-圆练习题及答案一、单选题1.选择正确答案的选项填在括号里.半径是2厘米的圆周长和面积()A. 相等B. 无法比较C. 面积比周长大2.小明在计算一道求圆的面积的题时,错把半径当成直径的长度计算,这时只要把计算的结果乘以()就能求出正确答案.A. 圆周率B. 2C. 43.一张长方形纸长12厘米,宽8厘米。
在这张长方形纸中剪一个最大的圆,这个圆的面积是()。
A. 113.04平方厘米B. 50.24平方厘米C. 96平方厘米D. 45.76平方厘米4.圆的半径扩大3倍,它的面积扩大____倍.A. 3倍B. 6倍C. 9倍D. 12倍.二、判断题5.判断.周长相等的两个圆,它们的半径相等,直径相等,面积也相等6.判断对错.一个半径是2厘米的圆,它的周长和面积相等.7.判断正误.所有圆的直径都相等.8.判断对错.一个圆的直径等于另一个圆的半径,那么这两个圆的大小相等.三、填空题9.一张圆形饭桌的面积是50.24平方分米,这张饭桌的直径是________分米?10.一个长方形的长是6 cm,宽是4 cm,在这个长方形内画一个最大的圆,圆的半径是________ cm,周长是________ cm。
11.画圆时,圆规两脚之间叉开得越大,画出的圆越________;如果圆规两脚间的距离为3 cm,所画圆的面积为________ cm2,周长为________ cm。
12.一辆汽车两个轮子之间的距离是2米,这辆汽车绕一个直径是80米的圆形广场行驶一圈,它的外侧车轮比内侧车轮多行________米。
(π≈3.14)四、解答题13.可以用绕绳法、滚动法测量圆的周长,还可以用公式来计算圆的周长,它的公式是什么呢?14.圆的半径是4厘米,阴影部分的面积是14π平方厘米,求图中三角形的面积。
五、综合题15.操作题一:(1)量出所需数据算出面积和周长.(2)在右图圆上取一点,C连接AC、CB,量出∠C=________°,像这样再画几个角,量一量这些角的度数你发现________.六、应用题16.上海外滩海关大钟钟面的直径是5.8米,钟面的面积是多少平方米?时针长2.7米,时针绕一圈时针尖端走过路径的长度是多少米?(得数保留一位小数,π取3.14)参考答案一、单选题1.【答案】B【解析】【解答】半径是2厘米的圆,它的周长和面积无法比较.故答案为:B.【分析】圆的周长是长度单位厘米,圆的面积是面积单位平方厘米,两者之间不能互换,因此无法比较大小.2.【答案】C【解析】【解答】解:设原来的半径为r,则圆面积为πr2,因为小明认为r为直径,则半径为r,面积为π× = πr2,所以面积缩小为原来的,因此只要乘上4就能求出正确答案.故选:C.【分析】设原来的半径为r,则圆面积为πr2;小明把半径当成直径,则圆的半径就被小明错误的认为是r,则圆面积为π×= πr2,可见面积缩小为原来的,因此只要乘上4就能求出正确答案.据此解答.3.【答案】B【解析】【解答】解:3.14×(8÷2)²=3.14×16=50.24(平方厘米)故答案为:B【分析】长方形中剪下的最大的圆的直径与长方形的宽相等,因此圆的直径是8厘米。
人教新课标六年级上册数学《圆》单元测试题(有答案)
人教版六年级数学上册第5章《圆》单元测试题一.选择题(共10小题,满分20分,每小题2分)1.(2分)一个圆的周长总是它直径的()倍.A.πB.3.14C.3D.22.(2分)下面说法正确的是()A.圆规两脚张开3厘米,画出的圆的直径就是3厘米B.周长是6.28米的圆,它的直径是1米C.半径是两厘米的圆,它的周长和和面积相等D.半径相等的圆,他们的面积也一定相等3.(2分)下列关于圆的说法,错误的是()A.圆越大,圆周率也越大B.圆有无数条对称轴C.圆的周长与它的半径的比是2π:14.(2分)如图,以直角三角形ABC的两条直角边为直径作两个半圆,已知这两段弧的长度之和是43.96厘米,那么△ABC的面积最大是()平方厘米(π取3.14)A.49B.98C.144D.1965.(2分)一个半圆的半径为2cm,则这个半圆的周长为()cmA.12.56B.6.28C.10.28D.3.146.(2分)下面圆的周长(单位:厘米)是()A.25.12厘米B.31.4厘米C.37.68厘米D.43.96厘米7.(2分)半径是2厘米的圆,它的周长和面积相比()A.周长大B.面积大C.周长和面积相等D.无法比较8.(2分)在一个钟面上,时针长2厘米,分针长3厘米,从8:00到10:00,分针扫过的面积是()A.28.26cm2B.37.68cm2C.56.52cm29.(2分)在一个边长为5厘米的正方形内画一个最大的圆,圆的半径应该是()厘米A.5B.2.5C.210.(2分)如图已知的面积为20cm2,圆的面积是()cm2 A.31.4B.62.8C.314D.无法确定二.填空题(共8小题,满分10分)11.(1分)小红画圆时,圆规两脚叉开的距离是3cm,画出的圆直径是cm.12.(2分)填空题:(1)圆的直径是.(2)正方形的边长是.13.(1分)如图中,大圆半径等于小圆的直径,大圆的周长是cm.14.(1分)从A到B,小红沿上面的大半圆走,走了m;李明走沿下面的两个小半圆走,走了m.我发现:这两条路线的长度.15.(1分)一个环形的内圆半径是3cm,外圆半径是5cm,这个环形的面积是cm2.16.(1分)圆的半径扩大到原来的3倍,直径就扩大到原来的倍,面积就扩大到原来的.17.(2分)在一个长7cm、宽5cm的长方形中画一个最大的圆,这个圆的面积是cm2.18.(1分)画圆可以用圆规和尺,还可以用和.三.判断题(共5小题,满分10分,每小题2分)19.(2分)圆心决定圆的大小.(判断对错)20.(2分)半径相同的一个整圆的周长一定比半圆的周长长.(判断对错)21.(2分)圆的直径缩小到它的,面积也缩小到它的.(判断对错)22.(2分)圆心角是90°的扇形的大小,是这个扇形所在圆大小的一半.(判断对错)23.(2分)用圆规画一个半径为4厘米的圆,圆规两脚间的距离为8厘米(判断对错)四.计算题(共2小题,满分10分,每小题5分)24.(5分)计算下面个图中涂色部分的面积(1)计算下面圆环的面积;(2)如图2,学校操场由两个半圆和一个正方形组成,求操场面积.25.(5分)求出如图的周长(单位:dm)五.应用题(共3小题,满分15分,每小题5分)26.(5分)求下面正方形中阴影部分的周长.(单位:dm)27.(5分)一辆自行车车轮的直径是0.65米,如果平均每分钟转100圈,那么骑25分钟能行多少米?28.(5分)一只环形玉佩的外圆半径为2厘米,比内圆半径多1.5厘米,这只环形玉佩的面积是多少平方厘米?六.操作题(共3小题,满分15分,每小题5分)29.(5分)按要求在下面的方格中作图并完成填空.(每个小方格的边长为1厘米)(1)以点O为圆心,画一个周长25.12厘米的圆.并算出圆的面积是.(2)在这个圆中画一个圆心角是60度的扇形,并涂上阴影.(3)以直线a为对称轴,画出图①中轴对称图形的另一半.(4)用数对表示图②中三角形顶点C的位置是(,).顶点A在顶点B的偏°的方向上.(5)在方格中画一个面积为24平方厘米的平行四边形,使底和高的比是3:2.30.(5分)动手做.A圆直径2厘米,它与B圆的直径比为1:2,那么B圆面积为.请画出B圆.在B圆边上画一个半径3厘米的半圆,并画出半圆的对称轴.31.(5分)先量出如图相关的数据,在算出它的周长.七.解答题(共3小题,满分20分)32.(5分)一个圆的直径是4分米,则这个圆面积是.33.(5分)实践操作(1)在方框内画一个周长是12.56厘米的圆,并标出圆心O(2)在所画圆中画两条相互垂直的直径.(3)依次连接这两条直径的四个端点,得到一个正方形.(4)这个正方形的面积是平方厘米.34.(10分)图1是一把打开的扇子,图2是和扇子一样大小的扇形.根据图中所给的数据:(1)计算圆的周长;(2)计算这把扇子的周长.参考答案一.选择题(共10小题,满分20分,每小题2分)1.解:圆的周长总是它的直径的π倍.故选:A.2.解:A、圆规两脚张开3厘米,画出的圆的直径就是6厘米,所以本题说法错误;B、周长是6.28米的圆,它的直径是6.28÷3.14=2米,所以本题说法错误;C、半径是两厘米的圆,它的周长和和面积相等,说法错误,因为周长和面积单位不同,不能相比较;D、半径相等的圆,他们的面积也一定相等,说法正确;故选:D.3.解:A、圆越大,圆周率也越大,说法错误,因为圆周率不变;B、圆有无数条对称轴,说法正确;C、因为圆的周长是半径的2π倍,所以圆的周长与它的半径的比是2π:1,说法正确;故选:A.4.解:因为3.14×(AB+AC)÷2=43.96,所以AB+AC=43.96×2÷3.14=28(厘米);要使三角形ABC的面积最大,AB与AC最接近,由此确定AB与AC的长度为:AB=AC=28÷2=14(厘米),所以三角形ABC的面积最大是:14×14÷2=98(平方厘米);答:三角形ABC的面积最大是98平方厘米.故选:B.5.解:2×3.14×2÷2+2×2=6.28+4=10.28(厘米)答:这个半圆的周长是10.28厘米.故选:C.6.解:3.14×12=37.68(厘米)答:圆的周长是37.68厘米.故选:C.7.解:因为周长和面积的概念不同,单位名称不同,所以周长和面积不能比较大小;故选:D.8.解:3.14×32×2,=3.14×9×2,=56.52(平方厘米),答:分针扫过的面积是56.52平方厘米.故选:C.9.解:5÷2=2.5(厘米)答:这个圆的半径是2.5厘米;故选:B.10.解:3.14×20=62.8(cm2)答:圆面积是62.8cm2.故选:B.二.填空题(共8小题,满分10分)11.解:3×2=6(厘米)答:画出的圆直径是6厘米.故答案为:6.12.解:(1)圆的直径是:5×2=10(cm).(2)正方形的边长是10cm.故答案为:10cm,10cm.13.解:3.14×(6×2)=3.14×12=37.68(厘米)答:大圆的周长是37.68厘米.故答案为:37.68.14.解:3.14×5×2÷2=15.7(米);3.14×5=15.7(米);15.7米=15.7米;答:小红走了15.7米,李明走了15.7米.这两条路的长度相等.故答案为:15.7、15.7、相等.15.解:3.14×(52﹣32)=3.14×(25﹣9)=3.14×17=53.38(cm2)答:这个环形的面积是53.38cm2.故答案为:53.38.16.解:圆的半径扩大到原来的3倍,直径就扩大到原来的3倍,面积就扩大到原来的3×3=9倍.故答案为:3;9倍.17.解:3.14×(5÷2)2=3.14×6.25=19.625(平方厘米)答:这个圆的面积是19.625平方厘米.故答案为:19.625.18.解:画圆可以用圆规和尺,还可以用在纸中心固定一个钉子,然后绑一根线,在线的那头绑只铅笔,就可以画出一个圆了和比着圆形器物的边缘画,如瓶盖,硬币等.故答案为:在纸中心固定一个钉子,然后绑一根线,在线的那头绑只铅笔,就可以画出一个圆了;比着圆形器物的边缘画,如瓶盖,硬币等.三.判断题(共5小题,满分10分,每小题2分)19.解:因为圆心决定圆的位置,半径决定圆的大小,所以圆心决定圆的大小,说法错误;故答案为:×.20.解:据分析可知:圆的周长=2π×r=6.28r,半圆的周长=π×r+2×r=5.14r,6.28r>5.14r所以半径相同的一个整圆的周长一定比半圆的周长长这个说法是正确的.故答案为:√.21.解:圆的直径缩小到它的,则圆的半径也缩小到它的;圆的面积=πr2,π是定值,所以圆的面积与r2成正比例,所以一个圆的直径缩小到它的,面积缩小到它的()2=,故答案为:×.22.解:90÷360=所以圆心角是90°的扇形的大小,是这个扇形所在圆大小的一半,说法错误.故答案为:×.23.解:因为用圆规画一个半径为4厘米的圆,圆规两脚间的距离为4厘米;所以原题的说法错误.故答案为:×.四.计算题(共2小题,满分10分,每小题5分)24.解:(1)3.14×32﹣3.14×22=3.14×(9﹣4)=3.14×5=15.7(平方分米)答:这个圆环的面积是15.7平方分米.(2)60×60+3.14×(60÷2)2=3600+3.14×900=3600+2826=6426(平方米)答:这个操场的面积是6426平方米.25.解:3.14×6÷2+10×2+6=9.42+20+6=35.42(dm)答:如图的周长是35.42dm.五.应用题(共3小题,满分15分,每小题5分)26.解:3.14×2.5×2+2.5×2×4=15.7+20=35.7(dm)答:阴影部分的周长是35.7dm.27.解:3.14×0.65×100=2.041×100=204.1(米)204.1×25=5102.5(米)答:骑25分钟能行5102.5米.28.解:2﹣1.5=0.5(厘米)3.14×(22﹣0.52)=3.14×3.75=11.775(平方厘米)答:这只环形玉佩的面积是11.775平方厘米.六.操作题(共3小题,满分15分,每小题5分)29.解:画图如下:(1)25.12÷3.14÷2=25.12÷6.28=4(厘米)3.14×4×4=3.14×16=50.24(平方厘米)(4)根据勾股定理的:斜边=5厘米,正弦值=3÷5=0.6,故为37°.故答案为:50.24平方厘米;22,3;东偏北37°.30.解:A圆直径2厘米,它与B圆的直径比为1:2,圆B的直径:2×2=4(厘米)半径:4÷2=2(厘米)作图如下:面积:3.14×2×2=3.14×4=12.56(平方厘米)答:圆B的面积是12.56平方厘米.作图如下:故答案为:12.56平方厘米.31.解:3.14×4÷2+4=6.28+4=10.28(厘米).答:这个半圆的周长是10.28厘米.七.解答题(共3小题,满分20分)32.解:3.14×(4÷2)2=3.14×4=12.56(平方分米)答:这个圆的面积是12.56平方分米.故答案为:12.56平方分米.33.解:由题意知,周长为12.56厘米的圆的半径为:12.56÷π÷2,=12.56÷3.14÷2,=2(厘米);半径为2厘米的圆如下图所示:在圆中两条互相垂直的直径如下图所求:依次连接这两条直径的四个端点,得到一个正方形如下图所示:可见,这个正方形是由四个小三角形组成的,且小三角形的面积两条直角边已知,正方形的面积:4×(2×2÷2)=8(平方厘米),答:这个正方形的面积是8平方厘米.故答案为:8.34.解:(1)3.14×2×30=6.28×30=188.4(厘米)(2)×3.14×30+30×2,=62.8+60,=122.8(厘米).答:圆的周长是188.4厘米,这把扇子的周长为122.8厘米.。
小学数学六年级上册-圆单元检测卷含答案
圆-单元测试卷一、填空.(每空2分,共22分)1.以半圆为弧的扇形的圆心角是度,以1圆为弧的扇形的圆心角是度.42.一个圆环,外圆直径是6分米,内圆直径是4分米,圆环的面积是平方分米.3.圆心角是90度的扇形面积是所在圆面积的分之.4.大圆的半径2厘米,小圆半径1厘米,小圆面积是大圆面积的.5.大圆半径是小圆半径的3倍,小圆与大圆的周长之比是,面积之比是.6.在一个周长为187.5米的圆中,36度的圆心角所对的弧长为米.7.一个圆的周长、直径、半径的和是27.84厘米,这个圆的半径是厘米.8.把直径为18厘米的圆等分成9个扇形,每个扇形的周长是厘米.9.一个扇形面积是它所在圆面积的5,则这个扇形的圆心角是.18二、判断.(每题2分,共10分)10.扇形不是轴对称图形..(判断对错).改错.11.扇形的大小不仅和圆心角的大小有关,还和半径的长度有关.(判断对错)12.半径越大的扇形的弧越长.(判断对错)13.所对圆心角相同时,半径越大的扇形的弧越长.(判断对错)14.所对圆心角越大的扇形的弧越长.(判断对错)三、选择题.(每题2分,共8分)15.在一个圆里,最多可以画()个扇形.A.360B.180C.4D.无数16.120︒的圆心角所对的弧长是12.56米,弧所在的圆的半径是()米.A.2B.4C.5D.617.圆的一部分()A.一定是扇形B.不一定是扇形C.一定不是扇形D.一定小于半圆18.一个圆的半径增加2cm,则这个圆()πA.周长增加4cm B.周长增加4cmπC.面积增加24cm4cm D.面积增加2四、求下面图形阴影部分的面积(单位:分米)(5分)19.求下面图形阴影部分的面积(单位:分米)五、解决问题.(共45分)20.学校围绕一个半径7米的圆形花坛铺一条1米宽的石子小路,小路面积为多少平方米?如果每平方米投资150元,修这条小路要投资多少元?21.已知一个半圆环形零件的外圆直径是100厘米,内圆直径是60厘米,求这个半圆环形零件的面积.22.一种压路机的前轮直径1.5米,宽2米.如果每分钟滚动5圈,它每分钟前进多少米?每分钟压路面多少平方米?23.将一个半径5厘米的圆形铁片,加工成半径为4厘米的圆形铁片零件,铁片的面积减少了多少平方厘米?24.公园里有一个直径为16米的圆形花圃,在它的周围环绕着一条2米宽的走道.现将走道也改成花圃,现在花圃的面积是多少?圆-单元测试卷参考答案与试题解析一、填空.(每空2分,共22分)1.(4分)以半圆为弧的扇形的圆心角是180度,以14圆为弧的扇形的圆心角是度.【解答】解:13601802⨯=(度);1360904⨯=(度);答:以半圆为弧的扇形的圆心角是180度,以14圆为弧的扇形的圆心角是90度.故答案为:180,90.2.(2分)一个圆环,外圆直径是6分米,内圆直径是4分米,圆环的面积是15.7平方分米.【解答】解:623÷=(分米)422÷=(分米)223.14(32)⨯-3.145=⨯15.7=(平方分米).答:这个圆环的面积是15.7平方分米.故答案为:15.7.3.(2分)圆心角是90度的扇形面积是所在圆面积的四分之.【解答】解:90:3601:4︒︒=,所以圆心角是90度的扇形面积是所在圆面积的四分之一.故答案为:四、一.4.(2分)大圆的半径2厘米,小圆半径1厘米,小圆面积是大圆面积的25%.【解答】解:大圆的面积是224ππ⨯=(平方厘米),小圆的面积是21ππ⨯=,40.2525%ππ÷==,答:小圆面积是大圆面积的25%.故答案为:25%.5.(4分)大圆半径是小圆半径的3倍,小圆与大圆的周长之比是1:3,面积之比是.【解答】解:因为圆的周长和半径成正比例,圆的面积和半径的平方成正比例,所以大圆半径是小圆半径的3倍,小圆与大圆的周长之比是1:3,小圆面积与大圆面积比是221:31:9=.故答案为:1:3,1:9.6.(2分)在一个周长为187.5米的圆中,36度的圆心角所对的弧长为18.75米.【解答】解:36187.518.75360⨯=(米)答:36度的圆心角所对的弧长为18.75米.故答案为:18.75.7.(2分)一个圆的周长、直径、半径的和是27.84厘米,这个圆的半径是3厘米.【解答】解:设圆的半径是r ,则直径为2r ,周长为:2r π,由题意可得:2227.84r r r π++=,(122)27.84r π++=,9.2827.84r =,3r =;答:这个圆的半径是3厘米.故答案为:3.8.(2分)把直径为18厘米的圆等分成9个扇形,每个扇形的周长是24.28厘米.【解答】解:3.14189⨯÷3.142=⨯6.28=(厘米)6.281824.28+=(厘米)答:每个扇形的周长是24.28厘米.故答案为:24.28.9.(2分)一个扇形面积是它所在圆面积的518,则这个扇形的圆心角是100︒.【解答】解:536010018︒⨯=︒,答:这个扇形的圆心角是100︒.故答案为:100︒.二、判断.(每题2分,共10分)10.(2分)扇形不是轴对称图形.⨯.(判断对错).改错.【解答】解:根据轴对称图形的意义可知,“扇形不是轴对称图形”的说法错误,正确的说法是:扇形是轴对称图形;故答案为:⨯,扇形是轴对称图形.11.(2分)扇形的大小不仅和圆心角的大小有关,还和半径的长度有关.√(判断对错)【解答】解:由分析可知:扇形的大小与圆心角的度数和半径的长短有关,所以本题说法正确;故答案为:√.12.(2分)半径越大的扇形的弧越长.⨯(判断对错)【解答】解:根据弧长公式可得,半径越大的扇形的弧越长,此说法错误,因为弧长还与圆心角的度数有关;故答案为:⨯.13.(2分)所对圆心角相同时,半径越大的扇形的弧越长.√(判断对错)【解答】解:根据弧长公式可得,所对圆心角相同时,半径长越大的弧越长,此选项说法正确;故答案为:√.14.(2分)所对圆心角越大的扇形的弧越长.⨯(判断对错)【解答】解:半径不确定,所以无法确定弧长,所以本题“所对圆心角越大的扇形的弧越长”说法错误;故答案为:⨯.三、选择题.(每题2分,共8分)15.(2分)在一个圆里,最多可以画()个扇形.A.360B.180C.4D.无数【解答】解:因为一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形,所以在一个圆里,最多能画出无数个完全相同的扇形.故选:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<圆>单元测试卷一、填空题.(30分)1.(4分)通过_________ 并且_________ 都在_________ 的线段叫做直径.2.(4分)当π取3.14时,16π=_________ ,48π=_________ .3.(4分)圆的对称轴有_________ 条,半圆形的对称轴有_________ 条.4.(2分)画圆时,圆规两脚张开的距离是圆的_________ .5.(2分)圆的周长是直径的_________ 倍.6.(4分)一个圆的直径是3分米,它的周长是_________ ,面积是_________ .7.(2分)用一条长9.42分米的铁丝围成的圆的面积是_________ .8.(4分)甲圆半径是2厘米,乙圆的半径是5厘米,甲圆周长和乙圆周长的比是_________ ,乙圆面积与甲圆面积的比是_________ .9.(2分)在一个周长是28厘米的正方形里画一个最大的圆,圆的面积是_________ .10.(2分)一个半圆的半径是10厘米,它的面积是_________ .二、判断.(对的在横线里画“√”,错的画“×”)(8分)11.(2分)两个半圆一定可以拼成一个圆._________ .12.(2分)圆的半径扩大3倍,它的面积也扩大3倍._________ .13.(2分)周长相等的长方形、正方形和圆,面积最大的是正方形._________ .14.(2分)圆周率表示圆的直径与周长的比率._________ .三、选一选.(将正确答案的序号填在括号里)(6分)15.(2分)π是()A.有限小数B.循环小数C.无限循环小数D.无限不循环小数16.(2分)周长相等的正方形和圆,它们的面积比是()A.1:1B.157:2C.π:417.(2分)已知圆的半径是r,计算它的周长,正确的算式为()A.πr+r B.πr+2rC.πrD.πr+2r四、求下图阴影部分的面积.(单位:厘米)(12分)18.(6分)求图形阴影部分的周长和面积.(单位:cm)19.(6分)求阴影部分的面积(单位:cm)五、动手操作.(7分)20.(7分)画下面图形的对称轴.六、应用题.(30分)21.(7分)一只大钟,它的分针长40厘米.这根分针的尖端转动一周所走的路程是多少厘米?从1 时到2时分针扫过的面积是多少平方厘米?22.(7分)一根电线正好将一个直径是4分米的圆形绕满50圈,这根电线长多少米?23.(7分)一个环形,环宽是2厘米,外圆直径是1分米,这个环形的面积是多少?24.(9分)一张可折叠的圆桌,直径是1.2m,折叠后便成了一个正方形(如图),折叠后的桌面的面积是多少平方米?折叠部分是多少平方米?(得数保留两位小数)七、解决问题.(7分)25.(7分)学校400米的环形跑道,它是由两个直道和两个半圆形跑道组成,每个直道长100米,每条跑道宽为1.25米,如果在这个跑道上进行400米赛跑,第一道选手与第四道选手的起跑线要相差多少米?《第4章圆》2012年人教版六年级(上)数学单元测试卷(2)参考答案与试题解析一、填空题.(30分)1.(4分)通过圆心并且两端都在圆上的线段叫做直径.考点:圆的认识与圆周率.分析:圆的直径的定义为:通过圆心并且两端都在圆上的线段叫做直径.解答:解:通过圆心并且两端都在圆上的线段叫做直径.故答案为:圆心、两端、圆上.点评:解答此题要注意圆的直径是线段而不是直线.2.(4分)当π取3.14时,16π=50.24 ,48π=150.72 .考点:用字母表示数;含字母式子的求值.专题:用字母表示数.分析:把π=3.14直接代入16π和48π中,进而计算即可得解.解答:解:当π=3.14时,16π=16×3.14=50.24;48π=48×3.14=150.72.故答案为:50.24,150.72.点评:此题考查含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的结果.3.(4分)圆的对称轴有无数条,半圆形的对称轴有一条.考点:确定轴对称图形的对称轴条数及位置.分析:依据轴对称图形的定义即可作答.解答:解:因为圆是轴对称图形,且它的直径所在的直线就是其对称轴,而圆有无数条直径,所以圆就有无数条对称轴;半圆只有沿从圆心到圆弧中点的连线对折,对折后的两部分才能完全重合,所以半圆形只有一条对称轴.答:圆有无数条对称轴,半圆形有一条对称轴.故答案为:无数、一.点评:此题主要考查如何确定轴对称图形的对称轴条数及位置.4.(2分)画圆时,圆规两脚张开的距离是圆的半径.考点:画圆.专题:平面图形的认识与计算.分析:根据用圆规画圆的方法,把圆规有针的一个脚固定住,另一个脚转一圈即可得到一个圆,固定点的一脚和转一圈的一脚即是圆心到圆上的距离也是半径.解答:解:用圆规画圆,圆规两脚张开的距离即是圆心到圆上的距离也是半径;故答案为:半径.点评:此题主要考查的圆规两脚张开的距离确定半径.5.(2分)圆的周长是直径的π倍.考点:圆、圆环的周长.分析:根据圆的周长公式,求出周长和直径的关系.解答:解:由题意知,C=πd,=π,所圆的周长是直径的π倍;故答案为:π.点评:此题考查了圆的周长和直径的关系.6.(4分)一个圆的直径是3分米,它的周长是9.42分米,面积是7.065平方分米.考点:圆、圆环的周长;圆、圆环的面积.分析:此题根据圆的周长公式c=πd和面积公式s=π(d÷2)2计算即可.解答:解:3.14×3=9.42(分米),3.14×(3÷2)2=3.14×2.25=7.065(平方分米),故答案为:9.42分米,7.065平方分米.点评:此题主要考查圆的周长和面积公式,代入公式计算即可.7.(2分)用一条长9.42分米的铁丝围成的圆的面积是7.065平方分米.考点:圆、圆环的面积.专题:平面图形的认识与计算.分析:根据题干可知:这个圆的周长是9.42分米,由此先求出这个圆的半径,再利用圆的面积公式即可解答.解答:解:9.42÷3.14÷2=1.5(分米),3.14×1.52=7.065(平方分米);答:圆的面积是7.065平方分米.故答案为:7.065平方分米.点评:此题考查了圆的周长和面积公式的综合应用.8.(4分)甲圆半径是2厘米,乙圆的半径是5厘米,甲圆周长和乙圆周长的比是2:5 ,乙圆面积与甲圆面积的比是25:4 .考点:圆、圆环的周长;比的意义;圆、圆环的面积.专题:平面图形的认识与计算.分析:根据圆的周长公式C=2πr、圆的面积公式s=πr2,将数据代入公式进行计算,再写出相应的比,化简即可.解答:解:(1)甲圆的周长:乙圆周长=(3.14×2×2):(3.14×2×5)=2:5;(2)乙圆面积:甲圆的面积,=(3.14×52):(3.14×22),=25:4;答:甲、乙两圆周长的比是2:5;面积比是25:4;故答案为:2:5;25:4.点评:此题主要考查的是圆的周长公式和圆的面积公式的应用.9.(2分)在一个周长是28厘米的正方形里画一个最大的圆,圆的面积是38.465平方米.考点:圆、圆环的面积.专题:平面图形的认识与计算.分析:圆是一个正方形内所画的一个最大的圆,所以圆的直径就是正方形的边长,由正方形的周长除以4即可得到正方形的边长,即圆的直径,再根据圆的面积公式S=πr2,列式求出这个圆的面积.解答:解:圆的半径:28÷4÷2=3.5(米),圆的面积:3.14×3.52=38.465(平方米);答:圆的面积是38.465平方米.故答案为:38.465平方米.点评:解答本题的关键是知道在一个正方形内所画最大圆的直径是正方形的边长,再灵活利用圆的周长公式与圆的面积公式解决问题.10.(2分)一个半圆的半径是10厘米,它的面积是157平方厘米.考点:圆、圆环的面积.专题:平面图形的认识与计算.分析:半圆的面积=πr2÷2,由此代入数据即可解答.解答:解:半圆的面积是:3.14×102÷2,=3.14×100÷2,=157(平方厘米);答:它的面积是157平方厘米.故答案为:157平方厘米.点评:此题考查了半圆的面积的计算方法.二、判断.(对的在横线里画“√”,错的画“×”)(8分)11.(2分)两个半圆一定可以拼成一个圆.错误.考点:图形的拼组;圆的认识与圆周率.分析:半径相同的两个半圆能拼成一个圆,据此解答.解答:解:因半径相同的两个半圆能拼成一个圆,所以当两个半圆的半径不相等时就不能拼成一个圆.故答案为:错误.点评:本题的关键是两个半圆的半径相等时才能拼成一个圆.12.(2分)圆的半径扩大3倍,它的面积也扩大3倍.错误.考点:圆、圆环的面积.分析:圆的面积=πr2,若半径扩大3倍,则面积会扩大32倍,据此即可进行判断.解答:解:因为圆的面积=πr2,若半径扩大3倍,则面积会扩大32=9倍,故答案为:错误.点评:此题主要考查圆的面积公式的应用.13.(2分)周长相等的长方形、正方形和圆,面积最大的是正方形.错误.考点:面积及面积的大小比较.专题:平面图形的认识与计算.分析:通过举例验证,再进一步发现结论即可.解答:解:长方形、正方形和圆的周长为12.56厘米;长方形的长宽可以为3.13厘米、3.15厘米,长方形的面积=3.13×3.15=9.8595(平方厘米);正方形的边长为3.14厘米,正方形的面积=3.14×3.14=9.8596(平方厘米);圆的面积=3.14×(12.56÷3.14÷2)2=12.56(平方厘米);从上面可以看出圆的面积最大,由此我们可以得出一般结论:周长相等的长方形、正方形和圆,面积最大的是圆.故答案为:错误.点评:我们可以把周长相等的长方形、正方形和圆,面积最大的是圆当做一个正确的结论记住,快速去做一些选择题或判断题.14.(2分)圆周率表示圆的直径与周长的比率.错误.考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:圆周率的定义是:任意一个圆的周长与它的直径的比的比值是一个固定的数,人们称它为圆周率,用字母π表示;据此判断即可.解答:解:由圆周率的含义可知:圆周率表示圆的直径与周长的比率,说法错误;故答案为:错误.点评:此题考查了圆周率的定义.三、选一选.(将正确答案的序号填在括号里)(6分)15.(2分)π是()A.有限小数B.循环小数C.无限循环小数D.无限不循环小数考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母“π”表示,它是一个无限不循环小数;进而解答即可.解答:解:根据圆周率的含义可知:圆周率π是一个无限不循环小数;故选:D.点评:此题考查了圆周率的含义.16.(2分)周长相等的正方形和圆,它们的面积比是()A.1:1B.157:2C.π:4考点:比的意义;长方形、正方形的面积;圆、圆环的面积.专题:平面图形的认识与计算.分析:先假设这两种图形的周长是C,再利用这两种图形的面积公式,分别计算出它们的面积,然后求出它们的比即可.解答:解:设这两种图形的周长是C,则圆的半径为:r=C÷2π,面积为:π×()2;正方形的边长为:C÷4,面积为:×=;所以正方形的面积:圆的面积=(×):[π()2]=π:4;故选:C.点评:此题主要考查正方形、圆形的面积公式及灵活运用,解答此题可以先假设这两种图形的周长是多少,再利用这两种图形的面积公式,分别计算出它们的面积,然后根据题意进行比即可.17.(2分)已知圆的半径是r,计算它的周长,正确的算式为()A.πr+r B.πr+2rC.πrD.πr+2r考点:圆、圆环的周长;用字母表示数.专题:平面图形的认识与计算.分析:圆的周长等于圆的周长的再加上两条半径,据此即可得解.解答:解:×2πr+2r=πr+2r,故选:B.点评:弄清楚圆的周长的组成,是解答本题的关键.四、求下图阴影部分的面积.(单位:厘米)(12分)18.(6分)求图形阴影部分的周长和面积.(单位:cm)考点:组合图形的面积.专题:平面图形的认识与计算.分析:阴影部分的面积就等于长方形的面积减去半圆的面积,又因长方形的长和宽分别等于半圆的直径和半径,于是利用长方形和圆的面积公式即可求解.解答:解:10×(10÷2)﹣3.14×(10÷2)2÷2,=50﹣3.14×25÷2,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75平方厘米.点评:解答此题的关键是明白:长方形的长和宽分别等于半圆的直径和半径.19.(6分)求阴影部分的面积(单位:cm)考点:长方形、正方形的面积.分析:阴影部分的面积=长方形的面积﹣正方形的面积,长方形的长和宽,正方形的边长已知,从而依据长方形和正方形的面积公式即可求解.解答:解:7×8﹣2×2,=56﹣4,=52(cm2);答:阴影部分的面积是52cm2.点评:此题主要考查长方形和正方形面积的计算方法.五、动手操作.(7分)20.(7分)画下面图形的对称轴.考点:画轴对称图形的对称轴.分析:依据轴对称图形的定义即可作答.解答:解:所作对称轴如下;点评:此题主要考查轴对称图形对称轴的条数.六、应用题.(30分)21.(7分)一只大钟,它的分针长40厘米.这根分针的尖端转动一周所走的路程是多少厘米?从1 时到2时分针扫过的面积是多少平方厘米?考点:圆、圆环的周长;圆、圆环的面积.专题:平面图形的认识与计算.分析:(1)根据题干:一只大钟,它的分针长40厘米,可知分针的尖端转动一周所走的路程正好是以分针的长度为半径的圆的周长,利用圆周长的计算公式计算即可;(2)从1时到2时分针扫过的面积是半径是40厘米的圆的面积,根据圆的面积公式解答.解答:解:(1)已知r=40厘米;C=2πr=2×3.14×40=251.2(厘米);答:这根分针的尖端转动一周所走的路程是251.2厘米;(2)3.14×402=5024(平方厘米),答:从1时到2时分针扫过的面积是5024平方厘米.点评:此题考查圆的周长与面积公式的应用,关键是根据钟面上分针旋转的特点得出旋转后的图形.22.(7分)一根电线正好将一个直径是4分米的圆形绕满50圈,这根电线长多少米?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:根据圆的周长公式:c=πd,把数据代入公式求出圆的周长,然后用周长乘50即可.解答:解:3.14×4×50,=12.56×50,=628(分米),628分米=62.8米;答:这根电线长62.8米.点评:此题主要考查圆的周长公式的实际应用.23.(7分)一个环形,环宽是2厘米,外圆直径是1分米,这个环形的面积是多少?考点:圆、圆环的面积.专题:平面图形的认识与计算.分析:圆环的面积=π(R2﹣r2),根据题干得出外圆与内圆的半径,代入数据即可解答.解答:解:1分米=10厘米,10÷2=5(厘米),5﹣2=3(厘米),3.14×(52﹣32),=3.14×(25﹣9),=3.14×16,=50.24(平方厘米);答:这个圆环的面积是50.24平方厘米.点评:此题考查了圆环的面积公式的应用.24.(9分)一张可折叠的圆桌,直径是1.2m,折叠后便成了一个正方形(如图),折叠后的桌面的面积是多少平方米?折叠部分是多少平方米?(得数保留两位小数)考点:有关圆的应用题;简单图形的折叠问题.专题:平面图形的认识与计算.分析:(1)求折叠后的桌面的面积,即求圆内最大正方形的面积,作出一条半径,作为三角形的高,然后求出三角形的面积,进而求出正方形的面积;(2)根据圆的面积求出圆的面积,然后减去圆内正方形的面积即可求出折叠部分的面积.解答:解:(1)圆内最大正方形的面积:1.2×0.6÷2×2=0.72(平方米);答:折叠后的桌面的面积是0.72平方米,(2)半径:1.2÷2=0.6米,圆的面积:3.14×0.6×0.6=1.1304(平方米),折叠部分是:1.1304﹣0.72=0.41.04≈0.41(平方米);答:折叠部分是0.41平方米.点评:此题也可以根据圆内最大正方形和圆的面积比是3.14:2,求出圆内最大正方形的面积,进而求出折叠部分的面积.七、解决问题.(7分)25.(7分)学校400米的环形跑道,它是由两个直道和两个半圆形跑道组成,每个直道长100米,每条跑道宽为1.25米,如果在这个跑道上进行400米赛跑,第一道选手与第四道选手的起跑线要相差多少米?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先求出相邻的两个跑道相隔的距离,即跑道宽×2π,则第4跑道起跑线与第1跑道相差3个这样的距离;据此解答.解答:解:1.25×2×3.14,=2.5×3.14,=7.85(m),7.85×(4﹣1),=7.85×3,=23.55(m);答;第4道的起跑线与第1道相差23.55m.点评:解答此题的关键是明白:内外跑道的差就等于弯道的差.感谢您的支持与配合,我们会努力把内容做得更好!。