材料力学第7章 弯曲变形

合集下载

材料力学第七章课后题答案 弯曲变形

材料力学第七章课后题答案 弯曲变形
3.确定积分常数
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC

工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI

材料力学 第7章 弯曲变形

材料力学 第7章 弯曲变形

M
Fx 挠曲轴近似微分方程: w ' ' EI 3 2 Fx Fx w Cx D w' ( x) C 6 EI 2EI
梁的弯矩方程: M ( x ) Fx
2、确定积分常数
FAy
A x
F L
B
X=0, w=0 X=L, w=0
M
Me L C=- ,D=0 6 EI
3、挠度方程、转角方程及B截面的转角
FAy
x
F L
B
M
3、挠度方程、转角方程及B截面的转角
Fx w' (x) 2EI 3 Fx w 6 EI
2
将 x=L 代入转角方程:
FL2 B 2 EI
例2:简支梁AB,弯曲刚 度 EI为常数,受力偶 M=FL作用,求w(x),
FAy
A x
F L
B
θ(x);
解:1、 建立挠曲轴微分方程并积分 A端约束反力 FAy=F
FA A a l
x
F D b
FB
B x
Fb 解:坐标系如图,求出反力。 FA l 分AD、DB两段分析:
y
Fa FB l
b AD段: 0 x a M x F x l b M x F x 则: EIw1 l
积分可得:
b M x F x EIw1 l
= 0
自由端:无位移边界条件。 位移连续与光滑条件 挠曲轴在B点连续且光滑 连续:wB左= wB右 光滑:左 = 右
F A B D
写出梁的挠曲轴方程的边界条件和连续条件。 例:
F A B C E D
思考: 1、 该梁可分几段积分? 2、 各边界和内部分界点有多少位移边界与连续条件? 分4段。 位移边界条件:A端:2个; C端:1个;D端:无。 位移连续条件:E:2个;B:1个;C:2个

材料力学课件第七章变曲应力(土木专业)

材料力学课件第七章变曲应力(土木专业)
3
46470 10 8 m 4
a
y
z
138.6 106 Pa =138.6 MPa
第七章
弯曲应力
[例2] 试求图示 T 形截面梁的最大拉应力和最大压应力。已知
Iz = 7.64×106 mm4、 y1 = 52 mm、y2 = 88 mm。
解: 1)画弯矩图
梁的最大正弯矩发生
在截面 C 上,最大负弯 矩发生在截面 B 上,分
对称弯曲
对称截面梁,在纵向对称面承受横向 外力时的受力与变形形式-对称弯曲
第七章
弯曲应力
弯 曲 试 验
第七章
试验现象
弯曲应力
(纯弯与正弯矩作用)
横线为直线, 仍与纵线正交 靠顶部纵线缩短, 靠底部纵 线伸长 纵线伸长区,截面宽度减小 纵线缩短区, 截面宽度增大 弯曲假设 横截面变形后保持平面,仍与纵线正交-弯曲平面假设 各纵向“纤维”处于单向受力状态-单向受力假设
第七章
7.1 概 述
弯曲应力
F
C
a
F
D
a
B
弯曲正应力只与弯矩有关,故 通过纯弯曲梁来研究弯曲正应力.
FS
A
纯弯曲: 梁的剪力恒为零, 弯矩为常量。
F
x
F
x
M
Fa
第七章
弯曲应力
纯弯曲
第七章
弯曲应力
.2 弯曲应力
弯曲正应力
弯曲应力
梁弯曲时横截面上的
弯曲切应力
梁弯曲时横截面上的
A ydA M
yC ydA A 0 A
(c)
(a)(b)
A ydA 0
E
中性轴通过横截面形心
(a)(c)

材料力学-第7章 弯曲变形

材料力学-第7章 弯曲变形
引言
梁弯曲问题的近似和简化
q( x)
M0
ML
Q0
QL
弯曲问题中,不考虑轴向拉伸。因此,梁内力只有弯矩和剪力 下面,我们分别考虑弯矩和剪力引起的弯曲变形效果
材料力学-第7章 弯曲变形
挠度曲线 垂直于轴线的横截面弯曲后仍为平面,仍 垂直于轴线,只是相互间转动一个角度
M
弯矩引起的弯曲变形
M
剪力引起的弯曲变形
例题
2
已知:简支梁受力如 图所示。FP、EI、l均为已 知。 求:加力点B的挠度和 支承A、C处的转角。
材料力学-第7章 弯曲变形
§7- 3 计算梁位移的积分法
解:1. 确定梁约束力 首先,应用静力学方法求得 梁在支承A、C二处的约束力分别 如图中所示。 解:2. 分段建立梁的弯矩方程 因为B处作用有集中力FP,所以需要分为AB和BC两段 建立弯矩方程。 在图示坐标系中,为确定梁在0~l/4范围内各截面上的 弯矩,只需要考虑左端A处的约束力3FP/4;而确定梁在l/4~ l范围内各截面上的弯矩,则需要考虑左端A处的约束力 3FP/4和荷载FP。
Q
垂直于轴线的横截面弯曲后不垂直于轴线
Q
材料力学中一般考虑细长梁,顾而可以忽略剪力引起的变形,只 考虑弯矩引起的变形。因为所有横截面始终与轴线垂直,所以,梁的 弯曲变形可以仅用轴线来表征。空间的梁简化成一轴线。
材料力学-第7章 弯曲变形
挠度曲线
问题1: 如何表征梁的弯曲变形
-用什么物理量来描述梁的变形
( x)
w
x
x
( x)
w( x)
材料力学-第7章 弯曲变形
挠度曲线
* 弯曲变形的表征
梁在弯曲变形后,横截面的位置将发生改变,这种位置 的改变称为位移 (displacement) 。梁的位移包括三部分:

第七章 弯曲变形

第七章 弯曲变形

材料力学
弯曲变形/挠曲线的近似微分方程
二、挠曲线的近似微分方程
1 M ( x) 力学公式 ( x) EI z d2y 1 dx2 数学公式 3 ( x) dy 2 2 [1 ( ) ] dx 1

,得:
以上两式消去
材料力学
d2y M ( x) dx2 3 EI z dy 2 2 [1 ( ) ] dx
材料力学
x 0, y A 0
x a时,C左 C右 x a时,yC左 yC右
x L, yB lBD
FBy h EA
FBy k
弯曲变形/用积分法求梁的变形
讨论:
(1)凡载荷有突变处(包括中间支座),应作为分段点;
(2)凡截面有变化处,或材料有变化处,应作为分段点; (3)中间铰视为两个梁段间的联系,此种联系体现为两 部分之间的相互作用力,故应作为分段点;
B L x
A
x L时,yB 0.
材料力学
弯曲变形/用积分法求梁的变形 若B支座改为弹簧支撑,则: y A a
L
若B支座改为拉杆支撑,则: D B kx A a
L
F
C
b
F C b
EA
h
x 0, y A 0
B
x a时,C左 C右 x a时,yC左 yC右
x L, y B
弯曲变形/用积分法求梁的变形 AC段 (0 x a) BC段 (a x L) Fb 2 Fb 2 F EI y1 EI 1 x C1 , EI y2 EI 2 x ( x a ) 2 C2 , 2L 2L 2 Fb 3 Fb 3 F EIy 1 x C1 x D1 , EIy 2 x ( x a ) 3 C2 x D2 , 6L 6L 6 3、确定常数 由边界条件:

梁弯曲变形的计算

梁弯曲变形的计算

yC 2
A MA FA A F C
(a)
Fl 3 24 EI Z
B FB B FB
求得有无顶尖作用时,在刀 尖处变形比为:
yC 7 yC 2 32
结论:可见用顶尖可有效地 减小工件的变形,因而,在 细长轴加工中要设置顶尖, 甚至使用跟刀架。
材料力学
+ A C F B
(b)
F MA A 2a (a)
2
x
d y 2 dx
d y M ( x) 所以 2 dx EI z
2
O
1
2
M (x ) < 0
dy dx 2 < 0
2
x
材料力学
由弯矩的正负号规定可得,弯矩的符号与挠曲 线的二阶导数符号一致,所以挠曲线的近似微分方 程为:
d w M ( x) 2 dx EI z
由上式进行积分,就可以求出梁横截面的转角 和挠度。
1 M ρ EI z

忽略剪力对变形的影响
1 M ( x) ( x) EI z
材料力学
由数学知识可知:
d y 2 1 dx dy 2 3 [1 ( ) ] dx 略去高阶小量,得
2
y M (x ) > 0 M (x ) > 0
dy dx 2 > 0 O
y M (x ) < 0
3
11ql 3 ( ) 48EI
材料力学
wC
例4 已知:悬臂梁受力如图 示,q、l、EI均为已知。求C 截面的挠度wC和转角C 解 1)首先,将梁上的载荷变成 有表可查的情形
为了利用梁全长承受均 布载荷的已知结果,先将均 布载荷延长至梁的全长,为 了不改变原来载荷作用的效 果,在AB 段还需再加上集 度相同、方向相反的均布载 荷。

材料力学教程-7.弯曲变形

材料力学教程-7.弯曲变形
数据处理
根据需要,对数据进行计算、 绘图等处理,以便更好地理解 和分析实验结果。
结果分析
结合实验数据和理论分析,评 估材料的弯曲性能,并探讨影 响材料弯曲性能的因素。
结论总结
总结实验结果,得出结论,并 提出改进和优化材料弯曲性能
的建议。
04
弯曲变形的工程应用实例
桥梁的弯曲变形分析
总结词
桥梁的弯曲变形分析是确保桥梁安全的重要环节,通过分析桥梁在不同载荷下的弯曲变形程度,可以评估桥梁的 承载能力和安全性。
转角
梁在弯曲变形后,其横截 面绕其中性轴旋转的角度 称为转角。转角是衡量梁 横截面旋转程度的量。
弯曲变形的物理关系
弯矩
由于外力作用在梁上,使梁产生弯曲变形的力矩 称为弯矩。弯矩是引起梁弯曲变形的力。
剪力
在梁弯曲变形过程中,垂直于轴线的横向剪切力 称为剪力。剪力使梁产生剪切变形。
扭矩
当外力作用在梁的某一侧时,会使梁产生扭转变 形,这种使梁产生扭转变形的力矩称为扭矩。
详细描述
高层建筑由于其高度和规模,对风载和地震等外部载荷非常敏感。因此,在高层建筑设 计阶段,需要进行详细的弯曲变形分析。这包括对建筑物的整体结构和各个楼层在不同 载荷下的弯曲变形进行模拟和分析,以确保建筑物在各种外部载荷下的安全性和稳定性。
机械零件的弯曲变形分析
要点一
总结词
机械零件的弯曲变形分析是确保机械系统正常运行的关键 环节。通过对机械零件在不同工作载荷下的弯曲变形进行 分析,可以优化零件的设计和加工工艺,提高其工作性能 和寿命。
通过实例分析和习题练习,学生可以加深对弯曲 变形的理解,提高解决实际问题的能力。
弯曲变形的未来研究方向
弯曲变形的非线性行为

材料力学弯曲变形

材料力学弯曲变形

材料力学弯曲变形
材料力学中的弯曲变形是指物体在受到外力作用下发生的一种变形形式。

当材料受到垂直于其长度方向的外力时,会产生弯矩,使得物体产生弯曲变形。

弯曲变形的原理可以通过材料力学中的悬臂梁模型进行解释。

在悬臂梁中,一个固定的端点支撑着一根梁,梁的另一端受到外力作用,使得梁产生弯曲。

在悬臂梁的弯曲变形中,梁上部的纤维受到拉力,而下部的纤维受到压力。

由于力的作用,纤维之间会相互滑动,从而产生弯曲变形。

弯曲变形可以通过材料的弹性性质进行描述。

弯曲变形的程度取决于材料的弯曲刚度,即弹性模量,以及外力的大小和作用点的位置。

与拉伸变形不同,弯曲变形的应变分布不是均匀的,而是随着离中轴线的距离而变化。

中轴线上的纤维经历的应变为零,而离中轴线较远的纤维经历的应变较大。

弯曲变形是材料工程中常见的一种变形形式,它在很多结构中都会发挥作用。

例如,在桥梁和楼板等结构中,弯曲变形可以帮助承受外部荷载并保持结构的稳定性。

在材料设计和工程应用中,科学家和工程师常常要考虑材料的弯曲性能,以确保结构的强度和稳定性。

材料力学 第七章 弯曲变形

材料力学 第七章  弯曲变形


FA
3FP 4
(↑)
3FP
FP
FC
FP 4
(↑)
4
4
明德行远 交通天下
材料力学
(2)分段列梁的弯矩方程
AB段:
M1(x)
3 4
FP x
0x l 4
3
l
BC段:
M 2 ( x)
4
FP x
-
FP (x
-
) 4
l xl 4
(3)积分法求梁的挠曲线
挠曲线近似微分方程
EI
d 2w1 dx2
=
-
M1(x)
-
wC- wC
P
A (b)
图(b): wA 0 A 0
或写成w C

wC右
光滑条件
C- C
或写成 C 左 C 右
明德行远 交通天下
材料力学
讨论: ①适用于小变形、线弹性材料、细长构件的平面弯曲。 ②可求解各种载荷作用下等截面或变截面梁上任意位置处的位移。 ③积分常数由挠曲线变形的几何相容条件(边界条件、光滑连续条件)确定。 ④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
(2)
EIzw=EIz = -
q(x)dx3
1 2
C1x2
C2
x
C3
(3)
明德行远 交通天下
材料力学
例题7-1如图所示,受集中荷载的简支梁AC。已知EI、l、FP。试写出梁的挠 度方程和转角方程,并求截面A和C处的转角及B截面处的挠度。
明德行远 交通天下
y
FP
A
B
θA wB
l 4
EI
3l 4
C
θC

材料力学第7章

材料力学第7章

积分一次: Fb 2 EIw1 x C1 2l 积分二次: Fb 3 EIw1 x C1 x D1 6l
11
CB段(a x l): 弯矩方程:
Fb M 2 x x F x a l
挠曲线近似微分方程:
Fb EIw2 x F x a l Fb 2 F 2 x x a C2 积分一次: EIw2 2l 2
ቤተ መጻሕፍቲ ባይዱ 1 x 0
Fab l b , B 2 6lEI
Fab l a B = 6lEI
Fl 3 Fl 3 Fl 3 2 EI 6 EI 3EI
7
wmax w x l
例题7.2:图示弯曲刚度为EI的简支梁,受集度为q的均布 荷载作用,试求梁的挠曲线方程和转角方程,并确定其最 大挠度和最大转角。 解:由平衡方程得支座反力 ql FA FB 2 建立坐标系,得梁的弯矩方程为 1 1 2 M x qlx qx 2 2 梁挠曲线近似微分方程
1 3 C ql , D 0 24
9
梁的转角方程
q w (4 x3 6lx 2 l 3 ) 24 EI
梁的挠曲线方程
(5)
qx w ( x3 2lx 2 l 3 ) 24 EI
最大转角
(6)
max
ql 3 A B 24 EI
2
最大挠度
M ( x) F l x
1
挠曲线近似微分方程
EIw M x F l x 2 两次积分,得 1 2 EIw Flx Fx C 2 1 1 3 2 EIw Flx Fx Cx D 2 6

材料力学第七章 弯曲变形

材料力学第七章 弯曲变形

1.叠加原理 各载荷同时作用下梁任一截面的挠度和转角
等于各个 载荷单独作用时同一截面挠度和转角 的代数和。
2.叠加原理的前提 小变形 材料是线弹性材料
例1:求大梁跨度中点的挠度 F
q
A
c
B
l
l
F
2
2
q
A
c
B+ A
c
B
l
l
l
l
2
2
2
2
(wc )F
Fl 3 48 EI
(wc )q
5ql 4 384 EI
dx
o
三、弯曲刚度条件
x
w
w f (x) 挠曲线
| w |max [w], | |max [ ]
§7.2 挠曲线的近似微分方程
| ds | | d | (a)
纯弯曲时挠曲线曲率与弯矩的关系为 1 M (b)
EI
横力弯曲时, 剪力对梁弯曲变形很小,可忽略不计。此时曲率与 弯矩为x的函数 。它们的关系仍满足(b)式。
EI2 EIw2' C2 EIw2 C2 x D2
确定积分常数
边界条件 x 0,1 0 w1 0
连续条件 x a,1 2 w1 w2
求得自由端转角和挠度为
C1 0 C2 ma
D1 0
D2
1 2
ma2
B
2
|xl
ma EI
fB
w2
|xl
ma (l EI
a) 2
§7.4 用叠加法求弯曲变形
由(a)(b)可得 d M (c)
ds EI
y
d
由于挠度很小,挠曲线非常平
坦,ds dx,并考虑到符号(c)可

材料力学 第七章弯曲正应力(1,2)解析

材料力学 第七章弯曲正应力(1,2)解析

M
1.平面假设: 梁各个横截面变形后仍保持为平面,并仍垂直于变形 后的轴线,横截面绕某一轴旋转了一个角度。 2.单向受力假设: 假设各纵向纤维之间互不挤压。于是各纵向纤维均 处于单向受拉或受压的状态。
中性层 梁在弯曲变形时,凹面部分纵向纤维缩短,凸面 部分纵向纤维伸长,必有一层纵向纤维既不伸长也不 缩短,保持原来的长度,这一纵向纤维层称为中性层. 中性轴
C截面
Fb/4 拉应力 压应力 B截面
20
y 20
拉应力
压应力
可见:压应力强度条件由B截面控制,拉应力强度 条件则B、C截面都要考虑。
Fb/2
40 180
120 C 形心 86 z 134
Fb/4 考虑截面B :
t,max
c, max
M B y1 F / 2 2 103 mm134 mm 90 MPa 4 4 Iz 5493 10 mm F 73.8 kN
c
注:强度校核(选截面、荷载) ( 1) ( 2)
[ ]t [ ]c (等截面)只须校核Mmax处
[ ]t [ ]c (等截面)
(a)对称截面情况只须校核Mmax处使
maxt [ ]t , maxc [ ]c
(b)非对称截面情况,具体分析,一般要校核 M+max与 M-max两处。
查型钢表得56b号工字钢的Wz比较接近要求值
Wz 2447cm3 2447103 mm3
此时 max
M max 153MPa Wz
误差小于5%,可用
例4-17 跨长 l= 2m 的铸铁梁受力如图,已知铸铁 的许用拉应力[ t ]=30 MPa,许用压应力[ c ] =90 MPa。试根据截面最为合理的要求,确定T字形梁 横截面的尺寸d ,并校核梁的强度 。

材料力学第7章第二部分

材料力学第7章第二部分

弯曲
梁的计算简图:梁轴线代替梁,将荷载和支座加到 轴线上。
载荷的简化: 集中荷载,集中力偶,分布荷载
第7章 7-1 梁的内力 剪力与弯矩 梁的支承的简化
弯曲ห้องสมุดไป่ตู้
一端是固定铰支约束,另一 端可动铰支约束,为简支梁
简支梁的计算简图
第7章 7-1 梁的内力 剪力与弯矩 梁的支承的简化
弯曲
一端为固定约束,另一端自 由,即没有约束,为悬臂梁
7-2 剪力图与弯矩图 F s y F s y ( x ) 剪力方程 M z M z ( x ) 弯矩方程
第7章 弯曲
7-2 剪力图与弯矩图 F s y F s y ( x ) 剪力方程
剪力图
M z M z(x)
弯矩方程
弯矩图
步骤:沿坐标为x的横截面将梁截开,取出其中一段,分 别应用力的平衡方程和力矩的平衡方程,即可得到剪力 FQ(x)和弯矩M(x)的表达式,即剪力方程FQ(x)和弯矩方程 M(x)。 练习: 确定图中所示梁的剪力 方程和弯矩方程矩图。
Mc 0 M z 2 2.5 2 1.5 2 1 2kN m
第7章 弯曲
7-2 剪力图与弯矩图 1)内力方程:梁横截面上的剪力和弯矩是随截面的位置而变 化的,描述这种变化的数学表达式
Fs y Fs y ( x ) M z M z ( x)
M=0
FSy x =qx FRA=qx-
qlx qx 2 M x = - 2 2
ql 2
0 x l
0 x l
第7章 3) 确定剪力方程和弯矩方程
弯曲
解:
ql Fs y ( x ) qx 2 (0 x l )

梁弯曲变形的计算

梁弯曲变形的计算
材料力学
3) 应用叠加法,将简单载荷 作用时的结果求和
5ql 4 ql 4 ql 4 wC wCi 384 EI 48EI 16 EI i 1
3
wC1
11ql 4 ( ) 384 EI
wC2 wC3
ql 3 ql 3 ql 3 B Bi 24 EI 16 EI 3EI i 1
材料力学
积分常数C、D 由梁的位移边界条件和光滑连续 条件确定。 光滑连续条件 位移边界条件
~
~
~
~
A
A
~ ~
~
~
~
~
~
~
~
A A
A
A
~
~
wA 0
wA 0
wA
-弹簧变形
wAL wAR
~
wAL wAR
A 0
AL AR
材料力学

~
A
~
~
A A AA
A
A
A AA
超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统。 2.求解方法: 解除多余约束,建立相当系统——比较变形,列变 形协调条件——由物理关系建立补充方程——利用 静力平衡条件求其他约束反力。
材料力学
材料力学
例5:试分析细长轴车削过程中顶尖的作用,已知:工件的抗弯刚度 为EIZ,切削力为F,且作用在零件的中间位置,零件长度为l。
2
x
d y 2 dx
d y M ( x) 所以 2 dx EI z
2
O
1
2
M (x ) < 0
dy dx 2 < 0

材料力学第2版 课后习题答案 第7章 弯曲变形

材料力学第2版 课后习题答案  第7章 弯曲变形

解:查自重得:
q = 587.02 N / m
J = 15760cm4 Pl 3 5ql 4 f =− − 48EJ 384EJ −176 × 103 × 113 = 48 × 210 × 109 × 15760 × 10−8 × 4 −587.02 × 5 × 114 + 385 × 210 × 109 × 15760 × 10−8 × 4 = 0.0377 m = 3.77cm
(d) 解:
D A P P E
' yC = y E + θ B ia + y C
C B P
− P ( 2a ) − Pa 3 − Pa3 = − − 3EJ 3EJ 3EJ 3 −10 Pa = 3EJ
3
252
7-5 门式起重机横梁由4根36a工字钢组成如图所示, 梁的两端均可视为铰支, 钢的弹 性模量E=210Gpa。试计算当集中载荷P=176 kN作用在跨中并考虑钢梁自重时,跨中截面 C的挠度yC。
x=l
∴y =−
'
∴D = 0
y=0
∴C =
− M 0l 6
M 0l 2 ⎛ x x 3 ⎞ ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
M 0l 2 ⎛ 1 3 x 2 ⎞ ∴θ = y = − ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
− M 0l 2 l ;此时挠度最大 f = 3 9 3EJ 2 ⎛ l ⎞ − M 0l 中点挠度 y ⎜ ⎟ = ⎝ 2 ⎠ 16 EJ − M 0l Ml θA = θB = 0 6 EJ 3EJ (b)解: 设中点为C点,则分析CB段
''
C2 = −
D2 = −
a4 24
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fb M 2 x x F x a l
挠曲线近似微分方程:
Fb EIw2 x F x a l Fb 2 F 2 x x a C2 积分一次: EIw2 2l 2
积分二次:
Fb 3 F 3 EIw2 x x a C2 x D2 6l 6
材料力学
出版社 科技分社
得梁AC段转角方程和挠曲线位移方程
Fb 2 1 2 2 1 w1 x l b 2lEI 3
Fbx 2 2 2 w1 x l b 6lEI
得梁CB段转角方程和挠曲线位移方程
2 w2 Fb 2lEI 1 2 2 2 2 l x x a l b b 3
Fb 弯矩方程: M 1 x x l 挠曲线近 Fb 似微分方 EIw1 x l 程:
积分一次: Fb 2 EIw1 x C1 2l 积分二次: Fb 3 EIw1 x C1 x D1 6l
11
材料力学
出版社 科技分社
CB段(a x l): 弯矩方程:
(1)
1 2 1 EIw qx qlx 2 2
2
8
材料力学
出版社 科技分社
两次积 分得:
1 3 1 EIw qx qlx 2 C 6 4 1 4 1 3 EIw qx qlx Cx D 24 12
(3) (4)
由简支梁的边界条件:
w x0 0, w xl 0
二次积分得挠曲线方程
dx Cx D EIw M x dx
C、D积分常数,由梁上已知的挠度或转角确定,这些 已知的挠度或转角称为边界条件。
4
材料力学
出版社 科技分社
以图示简支梁为例
x 0, wA w 0 0 x l, wB w l 0
小变形梁可近似为 w f x 转角方程
2
材料力学
出版社 科技分社
7.2 梁的挠曲线近似微分方程 由纯弯曲梁的曲率与弯矩的关系: M x 1 1 M x EI EI
曲线曲率 计算公式
1 w 3 2 2 x 1 w
w x 0 0, w x 0 0
C 0, D 0
Flx Fx 2 转角方程 w EI 2 EI
5
挠曲线方程
最大转角 最大挠度
Flx 2 Fx3 w 2 EI 6 EI
6
max
x l
Fl 2 Fl 2 Fl 2 EI 2 EI 2 EI
以图示悬臂梁为例
x 0,
wA w 0 0 A w 0 0
5
材料力学
出版社 科技分社
例题7.1:图示一弯曲刚度为EI的悬臂梁,在自由端受一 集中力F的作用,试求梁的挠曲线方程和转角方程,并确 定其最大挠度和最大转角。 解:建立图示坐标系,弯矩方程为
M ( x) F l x
Fl 3 Fl 3 Fl 3 2 EI 6 EI 3EI
7
wmax w x l
材料力学
出版社 科技分社
例题7.2:图示弯曲刚度为EI的简支梁,受集度为q的均布 荷载作用,试求梁的挠曲线方程和转角方程,并确定其最 大挠度和最大转角。 解:由平衡方程得支座反力 ql FA FB 2 建立坐标系,得梁的弯矩方程为 1 1 2 M x qlx qx 2 2 梁挠曲线近似微分方程
12
材料力学
出版社 科技分社
由C点处的光滑连续条件:
x a w2 w1 w1
xa
xa xa
w2
C1 C2 , D1 D2
由梁的边界条件: w1 x0 0 , w2
D1 D2 0 ,
xl
0
Fb 2 2 C1 C2 l b 6l
13
1
挠曲线近似微分方程
EIw M x F l x 2 两次积分,得 1 2 EIw Flx Fx C 2 1 1 3 2 EIw Flx Fx Cx D 2 6
3 4
6
材料力学
出版社 科技分社
由悬臂梁的边界条件 得积分常数
得积分常数
1 3 C ql , D 0 24
9
材料力学
出版社 科技分社
梁的转角方程
q w (4 x3 6lx 2 l 3 ) 24 EI
梁的挠曲线方程
(5)
Байду номын сангаас
qx w ( x3 2lx 2 l 3 ) 24 EI
最大转角
(6)
max
ql 3 A B 24 EI
2
最大挠度
wmax w x l
5ql 4 384 EI
10
材料力学
出版社 科技分社
例题7.3:图示弯曲刚度为EI的简支梁,在C点受集中力F 作用,试求梁的挠曲线方程和转角方程,并确定其最大挠 度和最大转角。
解:梁的两支座支反力
Fb FA l Fa FB l
AC段(0 x a):
M x w 3 2 2 EI 1 w
由曲率-弯矩 的符号关系: 小变形梁的近 似微分方程:
d w M x 2 dx EI
2
3
材料力学
出版社 科技分社
§7.3 积分法求梁的位移
对于等截面直梁
EIw M x
一次积分得转角方程
EI EI w M x dx C
材料力学
出版社 科技分社
第七章 弯曲变形
材料力学
出版社 科技分社
§ 7.1 梁的弯曲变形 平面弯曲时,梁的轴线在纵向对称平面内弯曲成一条 平面曲线,这条曲线称为梁的挠曲线。横截面形心在 横向(沿y轴方向)的位移w称为挠度。 挠曲线方程或挠度方程:
w f x
梁的横截面与变形前横截面 的夹角 称为梁的转角。 dw tan f x dx
相关文档
最新文档