2020-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷
秦皇岛市八年级上学期数学期末考试试卷
![秦皇岛市八年级上学期数学期末考试试卷](https://img.taocdn.com/s3/m/728393565a8102d277a22f4f.png)
秦皇岛市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 4的算术平方根是A . 2B . -2C . ±2D . 162. (2分)我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园﹣玲珑塔﹣国家体育场﹣水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,2),则终点水立方的坐标为()A . (﹣2,﹣4)B . (﹣1,﹣4)C . (﹣2,4)D . (﹣4,﹣1)3. (2分) (2017八下·海淀期中) 下列计算正确的是().A .B .C .D .4. (2分)(2016·菏泽) 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A . 36B . 12C . 6D . 35. (2分) 3个旅游团游客年龄的方差分别是:S甲2=1.4,S乙2=18.8,S丙2=2.5,导游小方喜欢带游客年龄相近的团队,则他应该选择()A . 甲团B . 乙团C . 丙团D . 哪一个都可以6. (2分)(2016·鄂州) 如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A .B .C .D .7. (2分)(2014·宜宾) 已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d<1,则m=4.其中正确命题的个数是()A . 1B . 2C . 3D . 58. (2分) (2015八上·南山期末) 为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A . 1种B . 2种C . 3种D . 4种9. (2分)下列线段能组成直角三角形是()A . 7,20,25B . 8,15,17C . 5,11,12D . 5,6,710. (2分) (2017七下·河北期末) 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了n人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这n人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A 的对应点D的坐标是________.12. (1分) (2017九下·万盛开学考) 如图,在正方形中,为边上一点,以为对角线构造正方形,点在正方形内部,连接,与边交于点.若,,连接,则的长为________.13. (1分) (2018八上·沈河期末) 一次函数和的图象上一部分点的坐标见下表:x……234……y1……357……y2……-2-3-4……则方程组的解为________.14. (1分)如图,在中,平分,的中垂线交于点,交于点,连接, .若,则的度数为________;15. (1分)已知满足方程组的一对未知数x、y的值互为相反数,则m=________.16. (1分)计算:2﹣3+4﹣5+…+2016﹣2017=________.三、解答题 (共9题;共95分)17. (10分)计算:(1)﹣| ﹣3|+()2;(2)计算:﹣.18. (11分) (2018九上·深圳期末) 感恩是中华民族的传统美德,在4月份某校提出了“感恩父母、感恩老师、感恩他人”的“三感”教育活动.感恩事例有:A.给父母过一次生日;B .为父母做一次家务活,让父母休息一天;C.给老师一个发自内心的拥抱,并且与老师谈心;D.帮助有困难的同学度过难关.为了解学生对这四种感恩事例的情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学在4种感恩事例中选择最想做的一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共查了________名学生;(2)请补全扇形统计图中的数据及条形统计图;(3)若有3名选 A的学生,1名选 C的学生组成志愿服务队外出参加联谊活动,欲从中随机选出2人担任活动负责人,请通过树状图或列表求两人均是选 A的学生的概率.19. (5分)如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)20. (15分)如图,在11×11的正方形网格中,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1 (要求A与A1,B与B1,C与C1相对应);(2)在直线l上找一点P,使得△PAC的周长最小;(3)在(1)问的结果下,连接BB1、CC1,求四边形BB1C1C的面积.21. (10分)(2016·定州模拟) 某体育商店购进一批甲、乙两种足球,已知3个甲种足球的进价与2个乙种足球的进价的和为142元,2个甲种足球的进价与4个乙种足球的进价的和为164元.(1)求每个甲、乙两种足球的进价分别是多少?(2)如果购进甲种足球超过10个,超出部分可以享受7折优惠.商场决定在甲、乙两种足球选购其中一种,且数量超过10个,试帮助体育商场判断购进哪种足球省钱.22. (10分) (2019八上·锦州期末) 如图,直线y= x+3与x轴交于点A,与y轴交于点B,点C与点A 关于y轴对称.(1)求直线BC的函数表达式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.①若∠MBC=90°,求点P的坐标;②若△PQB的面积为,请直接写出点M的坐标.23. (12分) (2017七下·济宁期中) 如图,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图象,并且C的对应点C′的坐标为(4,1)(1)A′、B′两点的坐标分别为A′________、B′________;(2)作出△ABC平移之后的图形△A′B′C′;(3)求△A′B′C′的面积.24. (7分) (2018九上·通州期末) 如图1,在矩形中,点为边中点,点为边中点;点,为边三等分点,,为边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示.那么,图2中四边形的面积与图3中四边形的面积相等吗?(1)小瑞的探究过程如下在图2中,小瑞发现, ________ ;在图3中,小瑞对四边形面积的探究如下. 请你将小瑞的思路填写完整:设,∵∴ ,且相似比为,得到∵∴ ,且相似比为,得到又∵ ,∴∴a=________b, ________ , ________b∴ ________ ,则 ________ (填写“ ”,“ ”或“ ”)(2)小瑞又按照图4的方式连接矩形对边上的点.则 ________25. (15分) (2020八上·巴东期末) 如图a,P、Q是△ABC的边BC上的两点,且△APQ为等边三角形,AB=AC,(1)求证:BP=CQ.(2)如图a,若∠BAC=120 ,AP=3,求BC的长.(3)若∠BAC=120 ,沿直线BC向右平行移动△APQ得到△A′P′Q′(如图b),A′Q′与AC交于点M.当点P移动到何处时,△AA′M≌△CQ′M?证明你的结论.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共95分)17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
河北省秦皇岛市卢龙县2020-2021学年上学期期末考试八年级数学试卷(解析版)
![河北省秦皇岛市卢龙县2020-2021学年上学期期末考试八年级数学试卷(解析版)](https://img.taocdn.com/s3/m/63a17d005ef7ba0d4b733b24.png)
2020-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.“对顶角相等”的逆命题是()A.如果两个角是对顶角,那么这两个角相等B.如果两个角相等,那么这两个角是对顶角C.如果两个角不是对顶角,那么这两个角不相等D.如果两个角不相等,那么这两个角不是对顶角【分析】把命题的题设和结论互换即可得到逆命题.【解答】解:命题“对顶角相等”的逆命题是“如果两个角相等,那么它们是对顶角”故选:B.2.将34.945取近似数精确到十分位,正确的是()A.34.9 B.35.0 C.35 D.35.05【分析】把百分位上的数字4进行四舍五入即可得出答案.【解答】解:34.945取近似数精确到十分位是34.9;故选:A.3.若x=﹣1使某个分式无意义,则这个分式可以是()A.B.C.D.【分析】根据分式无意义的条件进行分析即可.【解答】解:A、当x=﹣时,分式无意义,故此选项不合题意;B、x=﹣1时,分式无意义,故此选项符合题意;C、当x=1时,分式无意义,故此选项不合题意;D、当x=﹣时,分式无意义,故此选项不合题意;故选:B.4.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项图形分析判断后即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.5.若是二次根式,则a的值不可以是()A.4 B.C.90 D.﹣2【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵是二次根式,∴a≥0,故a的值不可以是﹣2.故选:D.6.下列计算正确的是()A.4﹣3=1 B.+=C.+=3D.3+2=5【分析】根据二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变进行计算即可.【解答】解:A、4﹣3=,故原题计算错误;B、和不能合并,故原题计算错误;C、+=+2=3,故原题计算正确;D、3和2不能合并,故原题计算错误;故选:C.7.实数5不能写成的形式是()A.B.C.D.【分析】根据二次根式的性质计算,判断即可.【解答】解:A、=5,B、=5,C、()2=5,D、﹣=﹣5,故选:D.8.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到△ABC的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【解答】解:∵到△ABC的三条边距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点.故选:B.9.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18【分析】由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的周长的定义计算即可求解.【解答】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选:C.10.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【解答】解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.11.以直角三角形的三边为边向外作正方形,其中两个正方形的面积如图所示,则正方形A的面积为()A.6 B.36 C.64 D.8【分析】根据正方形可以计算斜边和一条直角边,则另一条直角边根据勾股定理就可以计算出来.【解答】解:如图,∵∠CBD=90°,CD2=14,BC2=8,∴BD2=CD2﹣BC2=6,∴正方形A的面积为6,故选:A.12.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A.3 B.5 C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.13.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB 于点E,若PE=3,则两平行线AD与BC间的距离为()A.3 B.4 C.5 D.6【分析】过点P作PF⊥AD于F,作PG⊥BC于G,根据角平分线上的点到角的两边距离相等可得PF=PE,PG=PE,再根据平行线之间的距离的定义判断出EG的长即为AD、BC间的距离.【解答】解:如图,过点P作PF⊥AD于F,作PG⊥BC于G,∵AP是∠BAD的平分线,PE⊥AB,∴PF=PE,同理可得PG=PE,∵AD∥BC,∴点F、P、G三点共线,∴FG的长即为AD、BC间的距离,∴平行线AD与BC间的距离为3+3=6,故选:D.14.如图,已知线段AB=20米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.5B.5或10C.10D.6或10【分析】分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.【解答】解:当△APC≌△BQP时,AP=BQ,即20﹣x=3x,解得:x=5;当△APC≌△BPQ时,AP=BP=AB=10米,此时所用时间x为10秒,AC=BQ=30米,不合题意,舍去;综上,出发5秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:A.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.=2.【分析】如果一个正数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:216.的平方根是±.【分析】先把带分数化为假分数,再根据平方根的定义解答.【解答】解:∵2==(±)2,∴2的平方根是±.故答案为:±.17.写出﹣和之间的所有整数﹣1,0,1.【分析】先估算出的取值范围,再找出符合条件的整数即可.【解答】解:∵1<3<4,∴,∴,,∴﹣和之间的所有整数有﹣1,0,1.故答案为:﹣1,0,1.18.两个最简二次根式与相加得6,则a+b+c=11.【分析】两个最简二次根式可以合并,说明它们是同类二次根式,根据合并的结果即可得出答案.【解答】解:由题意得,与是同类二次根式,∵与相加得6,∴a+c=6,b=5,则a+b+c=11.故答案为:11.19.如图,AB=AC,∠C=36°,AC的垂直平分线MN交BC于点D,则∠DAB=72°.【分析】根据等腰三角形的性质得到∠B=∠C=36°,由线段垂直平分线的性质得到CD=AD,得到∠CAD=∠C=36°,根据外角的性质得到∠ADB=∠C+∠CAD=72°,根据三角形的内角和即可得到结论.【解答】解:∵AB=AC,∠C=36°,∴∠B=∠C=36°,∵AC的垂直平分线MN交BC于点D,∴CD=AD,∴∠CAD=∠C=36°,∴∠DAB=180°﹣∠C﹣∠CAD﹣∠B=72°,故答案为:72°20.如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为2.【分析】AB=AC=BC=CD,即可求出∠BAD=90°,∠D=30°,解直角三角形即可求得.【解答】解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)计算:(1)3﹣2+;(2).【分析】(1)直接利用二次根式的加减运算法则化简,进而计算得出答案;(2)直接利用二次根式的混合运算法则化简,进而计算得出答案.【解答】解:(1)原式=6﹣8+2=﹣2+2;(2)原式=×+×=1+9=10.22.(10分)如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P 到射线OA、OB的距离相等,且P点到点C、D的距离也相等.【分析】利用角平分线的作法作出角平分线,再作出线段CD垂直平分线进而得出P点即可.【解答】解:如图所示:P点即为所求.23.(10分)老师所留的作业中有这样一个分式的计算题:,甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步=第三步乙同学:=第一步=2x﹣2+x+5第二步=3x+3第三步老师发现这两位同学的解答都有错误:(1)甲同学的解答从第一步开始出现错误;乙同学的解答从第二步开始出现错误;(2)请重新写出完成此题的正确解答过程.【分析】(1)甲第一步通分错误;乙第二步分母丢掉,所以错误;(2)根据分式的混合运算顺序和运算法则化简可得.【解答】解:(1)甲同学的解答从第一步开始出现错误;乙同学的解答从第二步开始出现错误故答案为:一、二;(2)原式====.24.(10分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.【解答】解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.25.(10分)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.【分析】(1)依据线段垂直平分线的性质,即可得到△CDE的周长=CD+DE+CE=AD+DE+BE=AB;(2)依据AD=CD,BE=CE,即可得到∠A=∠ACD,∠B=∠BCE,再根据三角形内角和定理,即可得到∠A+∠B=55°,进而得到∠ACD+∠BCE=55°,再根据∠DCE =∠ACB﹣(∠ACD+∠BCE)进行计算即可.【解答】解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.26.(10分)已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.【分析】(1)连接CE,由平行线的性质,结合条件可证明△ADC≌△BCE,可证明CD =CE;(2)由(1)中的全等可得∠CDE=∠CED,∠ACD=∠BEC,可证明∠BFE=∠BEF,可证明△BEF为等腰三角形.【解答】(1)证明:如图,连接CE,∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中∴△ADC≌△BCE(SAS),∴CD=CE;(2)解:△BEF为等腰三角形,证明如下:由(1)可知CD=CE,∴∠CDE=∠CED,由(1)可知△ADC≌△BEC,∴∠ACD=∠BEC,∴∠CDE+∠ACD=∠CED+∠BEC,即∠BFE=∠BED,∴BE=BF,∴△BEF是等腰三角形.。
八年级上册秦皇岛数学期末试卷测试卷(含答案解析)
![八年级上册秦皇岛数学期末试卷测试卷(含答案解析)](https://img.taocdn.com/s3/m/402b1e58551810a6f52486d2.png)
八年级上册秦皇岛数学期末试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC 所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD 的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.2.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF 与△BDE 中BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BDE (SAS )∴DE=DF(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN ≌△BDM (AAS )∴DN=DM当S △ADF =2S △BDE .∴12×AF×DN=2×12×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.3.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG ,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,∴+=+==BF CD BF BG GF AE=-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.4.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.5.在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM与△OQN全等【解析】【分析】(1)根据OA=OE即可解决问题.(2)根据ASA证明三角形全等即可解决问题.(2)设运动的时间为t秒,分三种情况讨论:当点P、Q分别在y轴、x轴上时;当点P、Q都在y轴上时;当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时;列方程即可得到结论.【详解】(1)∵A(0,5),∴OE=OA=5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t=174(秒),③当点P在x轴上,Q在y轴上时,若二者都没有提前停止,则PO=QO得:t﹣5=3t﹣12,解得t=72(秒)不合题意;当点Q运动到点E提前停止时,有t﹣5=5,解得t=10(秒),综上所述:当两动点运动时间为72、174、10秒时,△OPM与△OQN全等.【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.二、八年级数学轴对称解答题压轴题(难)6.如图,在△ABC中,AB=BC=AC=20 cm.动点P,Q分别从A,B两点同时出发,沿三角形的边匀速运动.已知点P,点Q的速度都是2 cm/s,当点P第一次到达B点时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)∠A=______度;(2)当0<t<10,且△APQ为直角三角形时,求t的值;(3)当△APQ为等边三角形时,直接写出t的值.【答案】(1)60;(2)103或203;(3)5或20【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP时,△APQ为等边三角形;②当P于B重合,Q与C重合时,△APQ为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°. ∴QA=2PA . 即2022 2.t t -=⨯ 解得 10.3t =当∠AQP=90°时,∠APQ=90°-60°=30°. ∴PA=2QA . 即2(202)2.t t -= 解得 20.3t =∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t ∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形 ∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20 综上,当△APQ 为等边三角形时,t=5或20. 【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.7.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求ANBN的值.(2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BEBC-的值.【答案】(1)3;(2)见解析;(3)32. 【解析】 【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得. 【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点 ∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒ ∴30BAM ∠=︒,90AMB ∠=︒ ∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN ∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠ ∴在Rt BNM ∆中,2BM BN = 在Rt ABM ∆中,2AB BM = ∴24AB AN BN BM BN =+== ∴3AN BN =即3ANBN=. (2)如下图:过点M 作ME ∥BC 交AC 于E ∴∠CME=∠MCB ,∠AEM=∠ACB ∵ABC ∆是等边三角形 ∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB ∠=∠=︒,120MBN =︒∠ ∴120CEM MBN ∠==︒∠,60AEM A ∠=∠=︒ ∴AM=ME∵MNB MCB ∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP∆是等边三角形,120EMP FCP==︒∠∠∴AP MP AM==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCPAEP PFCMP PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS∆∆≌∴ME FC=∴1322 BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+=∴3322BCBF BEBC BC-==.【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.8.如图,在平面直角坐标系中,点B坐标为()6,0-,点A是y轴正半轴上一点,且10AB=,点P是x轴上位于点B右侧的一个动点,设点P的坐标为()0m,.(1)点A的坐标为___________;(2)当ABP△是等腰三角形时,求P点的坐标;(3)如图2,过点P作PE AB⊥交线段AB于点E,连接OE,若点A关于直线OE的对称点为A',当点A'恰好落在直线PE上时,BE=_____________.(直接写出答案)【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫⎪⎝⎭;(3)425【解析】【分析】(1)根据勾股定理可以求出AO的长,则可得出A 的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P的坐标;(3)根据PE AB⊥,点A'在直线PE上,得到EAG OPG,利用点A,A'关于直线OE对称点,根据对称性,可证'OPG EAO,可得'8OP OA,82AP,设BE x=,则有6AE x,根据勾股定理,有:22222BP BE EP AP AE解之即可.【详解】解:(1)∵点B坐标为6,0,点A是y轴正半轴上一点,且10AB=,∴ABO是直角三角形,根据勾股定理有:22221068AO AB BO,∴点A的坐标为()0,8;(2)∵ABP△是等腰三角形,当BP AB时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x ,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE 即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.9.如图1,在△ABC 中,∠ACB =90°,AC =12BC ,点D 为BC 的中点,AB =DE ,BE ∥AC . (1)求证:△ABC ≌△DEB ; (2)连结AD 、AE 、CE ,如图2. ①求证:CE 是∠ACB 的角平分线;②请判断△ABE 是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE 是等腰三角形,理由详见解析. 【解析】 【分析】(1)由AC//BE ,∠ACB=90°可得∠DBE=90°,由AC=12BC ,D 是BC 中点可得AC=BD ,利用HL 即可证明△ABC ≌△DEB ;(2)①由(1)得BE=BC ,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS 可证明△ACE ≌△DCE ,可得AE=DE ,由AB=DE 可得AE=AB 即可证明△ABE 是等腰三角形. 【详解】(1)∵∠ACB=90°,BE ∥AC ∴∠CBE=90°∴△ABC 和△DEB 都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.10.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N . 【答案】(1)见详解;(2)见详解. 【解析】 【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可. 【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示: (2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2] =12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a 2+b 2+c 2-ab-bc-ac=12[(a-b )2+(b-c )2+(c-a )2]正确; (2)20182+20192+20202-2018×2019-2019×2020-2018×2020 =12×[(2018-2019)2+(2019-2020)2+(2020-2018)2] =12×(1+1+4) =12×6 =3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.12.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.【答案】(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.13.观察以下等式:(x+1)(x 2-x+1)=x 3+1(x+3)(x 2-3x+9)=x 3+27(x+6)(x 2-6x+36)=x 3+216...... ......(1)按以上等式的规律,填空:(a+b )(___________________)=a 3+b 3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)【答案】(1)a2-ab+b2;(2)详见解析;(3)2y3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b)(a2-ab+b2)=a3+b3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.【详解】(1)(a+b)(a2-ab+b2)=a3+b3;(2)(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3;(3)(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)=x3+y3-(x3-y3)=2y3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.14.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).【答案】(1)提公因式,两次;(2)2004次,(x+1)2005;(3) (x+1)1n【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,=(1+x)[1+x+x(1+x)+…+ x(x+1)2003]⋯=22003(1)(1)(1)(1)(1)x x x x x +++++个=(1+x )2005,故分解1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x (x+1)+x (x+1)2…+x (x+1)n (n 为正整数)的结果是:(x+1)n+1. 故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.15.观察:22213-=;2222432110-+-=;22222265432121-+-+-=. 探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)【答案】(1)36;(2)83n -;(3)210π【解析】【分析】(1)根据已知条件,直接结算可得;(2)根据观察可得规律:结果就是底数和;其实是运用平方差公式得到;(3)根据题意列出式子,()()()()()22222222222019181716154321ππππππππππ-+-+-++-+-,再根据上面规律简便运算.【详解】(1)2222222287654321-+-+-+-=15+21=36;(2)222222(2)(21)(22)(23)21n n n n --+---+-=[][][][]()()2(21)2(21)(22)(23)(22)(23)2121n n n n n n n n +-•--+-+-•---++•-2(21)(22)(23)21n n n n =+-+-+-++=83n -;(3)由题意可得阴影面积是:()()()()()22222222222019181716154321ππππππππππ-+-+-++-+- =2019181716154321ππππππππππ++++++++++ =()1202012π⨯⨯+ =210π【点睛】 考核知识点:因式分解在运算中的应用.观察并找出规律,利用平方差公式分析问题是关键.四、八年级数学分式解答题压轴题(难)16.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少【解析】【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠,∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b=+, ∴22()22()a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,∴()20a b ->, ∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少.【点睛】 本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.17.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源 EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%【解析】【分析】(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.【详解】解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:300x :3000.6x+ =4:1, 解得:x=0.2, ∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.(2)依题可得新能源汽车400公里所需费用为:0.48×55=26.4(元),∴新能源汽车每公里所需电电费为:26.4÷400=0.066(元/公里),依题可得燃油汽车400公里所需费用为:400×0.8=320(元),∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:26.4÷320=0.0825=8.25%.答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.【点睛】本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.18.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:48728x x=+,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y 元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y 的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.19.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为 元;(2)乙商场定价有两种方案:方案①将该商品提价20%;方案②将该商品提价1元。
卢龙县数学试卷八年级上册
![卢龙县数学试卷八年级上册](https://img.taocdn.com/s3/m/9a98d875b5daa58da0116c175f0e7cd185251844.png)
一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -2B. -1C. 0D. 12. 已知a、b是实数,且a+b=0,则ab的值为()A. 0B. 1C. -1D. 不能确定3. 若x=3,则代数式2x-1的值为()A. 4B. 5C. 6D. 74. 下列方程中,无解的是()A. 2x+1=0B. x+2=0C. x-3=0D. x+1=25. 若a=3,b=-2,则a²+b²的值为()A. 7B. 9C. 13D. 156. 下列不等式中,正确的是()A. 3x>6B. 2x<4C. x>2D. x<27. 已知一次函数y=kx+b(k≠0),当x=1时,y=2;当x=2时,y=4,则该函数的解析式为()A. y=2x+1B. y=3x+1C. y=3x-1D. y=2x-18. 若m、n是实数,且m+n=0,则下列不等式中正确的是()A. m>0,n<0B. m<0,n>0C. m≥0,n≤0D. m≤0,n≥09. 已知一次函数y=kx+b(k≠0),当x=0时,y=1;当x=1时,y=3,则该函数的解析式为()A. y=2x+1B. y=3x+1C. y=3x-1D. y=2x-110. 若a、b是实数,且a²+b²=0,则下列不等式中正确的是()A. a>0,b>0B. a<0,b<0C. a≥0,b≤0D. a≤0,b≥0二、填空题(每题3分,共30分)11. 若a、b是实数,且a²+b²=0,则a、b的值分别为______、______。
12. 下列数中,绝对值最大的是______。
13. 若x=3,则代数式2x-1的值为______。
14. 下列方程中,有解的是______。
15. 若a=3,b=-2,则a²+b²的值为______。
秦皇岛市2020-2021学年第一学期八年级数学期末试卷及答案
![秦皇岛市2020-2021学年第一学期八年级数学期末试卷及答案](https://img.taocdn.com/s3/m/cb27b93e26d3240c844769eae009581b6bd9bdff.png)
20202021学年河北秦皇岛八年级上数学期末试卷一、选择题1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 的平方根是( )A. B. C. D.3. 当时,下列分式无意义的是( )A. B. C. D.4. 下列二次根式中属于最简二次根式的是( )A. B. C. D.5. 下列计算结果正确的是( )A. B. C. D.6. 下列式子从左到右变形不正确的是( )A. B.C. D.7. 若关于的方程有增根,则的值为( )A. B. C. D.8. 如图,在数轴上表示实数的可能是( ) A.点 B.点 C.点 D.点9. 一个等腰三角形两边的长分别为和,那么这个三角形的周长是A. B. C. D.或10. 中,两直角边的长分别为和,则其斜边上的中线长为( )A. B. C. D.11. 如图,垂直平分线段,点是线段上任意一点,则图中的等腰三角形有( )A.个B.个C.个D.个12. 已知:如图,是的角平分线,且,则与的面积之比为( )A. B. C. D.13. 已知:如图,在中,,求证:.下列四种辅助线的说法:①作的高线,②作的中线,③作的角平分线,④作线段的垂直平分线,其中,正确的个数是( )A. B. C. D.14. 在与中,已知,,分别补充下列条件中的一个条件:①;②;③;④,其中能判断的有( )A.个B.个C.个D.个15. 甲、乙两个工程队共同参与一项筑路工程,甲队单独施工需天完成.甲队先单独施工天,然后增加了乙队,两队又合做了天,总工程刚好全部完成.设乙队单独施工需天完成.根据题意可得方程( )A. B. C. D.二、填空题16. 的立方根是________.17. 比较大小:________.(填“、或”)18. 如果实数,满足,那么________.19. 计算:________.20. 方程的解是________. 21. 等腰三角形一个外角等于,则顶角的度数是________.22. 边长为的等边三角形的高是________.23. 中,两边的长分别是和,则第三边的长为________.24. 如图,在中,斜边的垂直平分线交边于点,交边于点,如果,那么________.25. 在正方形网格图中,若每个小正方形的边长是,点在直线上,的最大值是________.三、解答题26. 求的值,其中.27. 在正方形网格图中,若每个小正方形的边长是.与关于直线对称,请画出;与关于直线对称,请画出;与的位置关系是 ________.28. 已知:如图,在中,,于点,于点,,相交于点.求证:.29.当时,________;当时,________;当时,________;当分别取,,,,,,,,,,,,,时,计算分式的值,再将所得结果相加,其和等于________.30. 在中,,,.现在要作一个以为直角边的直角三角形,并使得为等腰三角形.李红同学是这样操作的:如图所示,延长到点,使,连接.则为等腰三角形.此时的周长为________.(2)请你分别在图、图、图中画出符合题目要求的等腰三角形,并直接写出这些等腰三角形的周长.(要求这四个等腰三角形彼此不全等)参考答案与试题解析20202021学年河北秦皇岛八年级上数学期末试卷一、选择题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】A11.【答案】B12.【答案】A13.【答案】B14.【答案】A15.【答案】A二、填空题16.【答案】17.【答案】18.【答案】19.【答案】20.【答案】21.【答案】或22.【答案】23.【答案】或24.【答案】25.【答案】三、解答题26.【答案】解:.当时,原式.27.【答案】解:如图,即为所求.如图,即为所求.关于点对称28.【答案】证明:于点,∴,又,,.于点,,,.在与中,,.29.【答案】30.【答案】如图,当时,设,则,在中,,∴,即,解得,∴. 在中,,,∴,∴的周长为;如图,当时,在中,,,,∴,∴,∴,在中,,∴,∴的周长为;如图,当时,在中,,,,∴,∴,∴,在中,,∴,则的周长为.。
2020-2021学年河北省八年级(上)期末数学试卷(附解析)
![2020-2021学年河北省八年级(上)期末数学试卷(附解析)](https://img.taocdn.com/s3/m/b603d13df8c75fbfc77db2f6.png)
2020-2021学年河北省八年级(上)期末数学试卷1.下列图形具有稳定性的是()A. B. C. D.2.若□×xy=3x2y+2xy,则□内应填的式子是()A. 3x+2B. x+2C. 3xy+2D. xy+23.如图,从标有数字1,2,3,4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是()A. 1B. 2C. 3D. 44.如图,△ABC的BC边上的高是()A. BEB. AFC. CDD. CF5.对于分式x−2来说,当x=−1时,无意义,则a的值是()x−aA. 1B. 2C. −1D. −26.计算:(a⋅a3)2=a2⋅(a3)2=a2⋅a6=a8,其中,第一步运算的依据是()A. 积的乘方法则B. 幂的乘方法则C. 乘法分配律D. 同底数幂的乘法法则7.如图,△ABC与△DCE都是等边三角形,B,C,E三点在同一条直线上,若AB=3,∠BAD=150°,则DE的长为()A. 3B. 4C. 5D. 68.根据下列条件不能唯一画出△ABC的是()A. AB=5,BC=6,AC=7B. AB=5,BC=6,∠B=45°C. AB=5,AC=4,∠C=90°D. AB=5,AC=4,∠C=45°9.如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A. 等腰直角三角形B. 等腰三角形C. 直角三角形D. 等边三角形10.如图,已知点D、E分别在∠CAB的边AB、AC上,若PD=6,由作图痕迹可得,PE的最小值是()A. 2B. 3C. 6D. 1211.若化简mm−2−2m−2⋅□的最终结果是整式,则□的式子可以是()A. m−1B. m+1C. mD. 212.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)()A. (BM垂直于a)B. (AM不平行BN)C. (AN垂直于b)D. (AM平行BN)13.如图,点C在∠AOB的OB边上,用尺规作出了∠BCD=∠AOB.以下是排乱的作图过程:则正确的作图顺序是()⏜,交OB于点M.①以C为圆心,OE长为半径画MN②作射线CD,则∠BCD=∠AOB.⏜于点D.③以M为圆心,EF长为半径画弧,交MN④以O为圆心,任意长为半径画EF⏜,分别交OA,OB于点E,F.A. ①−②−③−④B. ③−②−④−①C. ④−①−③−②D. ④−③−①−②14.当n为自然数时,(n+1)2−(n−3)2一定能()A. 被5整除B. 被6整除C. 被7整除D. 被8整除15.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C′时,另一端D向右滑到D′,则下列说法正确的是()A. 下滑过程中,始终有CC′=DD′B. 下滑过程中,始终有CC′≠DD′C. 若OC<OD,则下滑过程中,一定存在某个位置使得CC′=DD′D. 若OC>OD,则下滑过程中,一定存在某个位置使得CC′=DD′16.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A. 21B. 22C. 23D. 2417.−b⋅b3=______.18.用科学记数法表示(2.5)8(0.4)10=______ .19.如图所示,在△ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F.(1)若∠B=20°,则∠BAE=______ ;(2)若∠EAN=40°,则∠F=______ ;(3)若AB=8,AC=9,设△AEN周长为m,则m的取值范围为______ .20.如图,在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5),请回答下列问题:(1)作出△ABC关于x轴的对称图形△A1B1C1,并直接写出△A1B1C1的顶点坐标.(2)求△A1B1C1的面积.21.小明采用如图所示的方法作∠AOB的平分线OC:将带刻度的直角尺DEMN按如图所示摆放,使EM边与OB边重合,顶点D落在OA边上并标记出点D的位置,量出OD的长,再重新如图放置直角尺,在DN边上截取DP=OD,过点P画射线OC,则OC平分∠AOB.请判断小明的做法是否可行?并说明理由.22.在化简(x+1)●(x−1)+(●x2−1)题目中,●表示+,−,×,÷四个运算符号中的某一个,●表示二次项的系数.(1)若●表示“×”;①把●猜成1时,请化简(x+1)(x−1)+(x2−1);②若结果是一个常数,请说明●表示的数是几?(2)若●表示数−2,当x=1时,(x+1)●(x−1)+(−2x2−1)的值为−1,请推算●所表示的符号.23.在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?24.发现:两个差为2的正整数的积与1的和总是一个正整数的平方.验证:(1)9×7+1是几的平方?(2)设较小的一个正整数为n,写出这两个正整数积与1的和,并说明它是一个正整数的平方.延伸:两个差为4的正偶数,它们的积与常数a的和是一个正整数的平方,求a.25.两个小组攀登一座450m高的山,第二组的攀登速度是第一组的a倍.(1)若两个小组同时开始攀登,当a=1.2时,第二组比第一组早15min到达顶峰,求两个小组的攀登速度;(2)元旦假期这两个小组去攀登另一座hm高的山,第二组比第一组晚出发30min,结果两组同时到达顶峰,问第二组的平均攀登速度比第一组快多少?(用含a,h的代数式表示)26.如图1,△ABC和△ABD中,∠BAC=∠ABD=90°,点C和点D在AB的异侧,点E为AD边上的一点,且AC=AE,连接CE交直线AB于点G,过点A作AF⊥AD交直线CE于点F.(Ⅰ)求证:△AGE≌△AFC;(Ⅱ)若AB=AC,求证:AD=AF+BD;(Ⅲ)如图2,若AB=AC,点C和点D在AB的同侧,题目其他条件不变,直接写出线段AD,AF,BD的数量关系______ .答案和解析1.【答案】A【解析】解:三角形、四边形、五边形及六边形中只有三角形具有稳定性.故选:A.根据三角形具有稳定性解答.本题考查了三角形具有稳定性,是基础题,需熟记.2.【答案】A【解析】解:(3x2y+2xy)÷xy,=3x+2,故选:A.利用乘除法的关系可得□内应填的式子是:(3x2y+2xy)与xy的商,计算即可.此题主要考查了多项式除以单项式,关键是掌握乘除法之间的关系.3.【答案】B【解析】解:从标有数字1,2,3,4的四个小正方形中拿走2,就可以成为一个轴对称图形.故选:B.直接利用轴对称的性质得出符合题意答案.此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.4.【答案】B【解析】解:△ABC的BC边上的高是AF,故选:B.根据三角形的高解答即可.此题考查三角形的角平分线、高和中线,关键是根据三角形的高的概念判断.5.【答案】C无意义,【解析】解:当x−a=0,即x=a时,分式x−2x−a∵当x=−1时,分式无意义,∴a=−1,故选:C.根据分式无意义分条件计算即可.本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.6.【答案】A【解析】解:(a⋅a3)2=a2⋅(a3)2的依据是积的乘方法则.故选:A.积的乘方法则:积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此判断即可.本题主要考查了同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.7.【答案】D【解析】解:∵△ABC与△DCE都是等边三角形,AB=3,∠BAD=150°,∴AB=AC=3,DE=DC,∠BAC=∠DCE=∠ACB=60°,∴∠ACD=60°,∠CAD=150°−60°=90°,∴∠ADC=30°,∴DC=2AC=6,∴DE=DC=6,故选:D.根据等边三角形的性质得出AB=AC=3,DE=DC,∠BAC=∠DCE=∠ACB=60°,求出∠ACD=60°,∠CAD=90°,求出∠ADC=30°,根据很30度角的直角三角形性质得出DC=2AC,求出即可.本题考查了等边三角形的性质和含30度角的直角三角形性质,三角形内角和定理的应用,解此题的关键是得出DC=2AC.8.【答案】D【解析】解:A、∵AC与BC两边之和大于第三边,∴能作出三角形,且三边知道能唯一画出△ABC;B、∠B是AB,BC的夹角,故能唯一画出△ABC;C、AB=5,AC=4,∠C=90°,得出BC=3,可唯一画出△ABC;D、AB=5,AC=4,∠C=45°,不能画出一个三角形.故选:D.判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.本题考查了全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:如图,过点C作CD//AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE//BF,∴CD//BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.故选:C.如图,过点C作CD//AE交AB于点D,可得∠DCA=∠EAC=35°,根据AE//BF,可得CD//BF,可得∠BCD=∠CBF=55°,进而得△ABC是直角三角形.本题考查了直角三角形、方向角,解决本题的关键是掌握方向角定义.10.【答案】C【解析】解:根据作图痕迹可知:AP是∠BAC的平分线,∵PD⊥AB,且PD=6,当PE⊥AC时,PE=PD=6,∴PE的最小值是6.故选:C.根据作图痕迹可得,AP是∠BAC的平分线,根据角平分线上的点到角的两边距离相等即可得PE的最小值.本题考查了作图−基本作图,解决本题的关键是掌握角平分线的性质.11.【答案】A【解析】解:A.mm−2−2m−2⋅(m−1)=m−2(m−1)m−2=−(m−2)m−2=−1,故本选项符合题意;B.mm−2−2m−2⋅(m+1)=−m+2m−2,故本选项不合题意;C.mm−2−2m−n⋅m=−mm−2,故本选项不合题意;D.mm−2−2m−2×2=m−4m−2,故本选项不合题意.故选:A.根据同分母分子的加减法法则判断即可.本题主要考查了分式的加减,熟练掌握运算法则是解答本题的关键.12.【答案】D【解析】解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短即可,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选:D.过A作河的垂线AH,要使最短,MN⊥直线a,AI=MN,连接BI即可得出N,作出AM、MN、BN即可.本题考查了最短路线问题,垂线段最短,三角形的三边关系定理的应用,关键是如何找出M、N点的位置.13.【答案】C【解析】解:根据作一个角等于已知角的过程可知:④以O为圆心,任意长为半径画EF⏜,分别交OA,OB于点E,F.①以C为圆心,OE长为半径画MN⏜,交OB于点M.③以M为圆心,EF长为半径画弧,交MN⏜于点D.②作射线CD,则∠BCD=∠AOB.故选:C.根据作一个角等于已知角的作图过程即可判断.本题考查了作图−基本作图,解决本题的关键是掌握作一个角等于已知角的作图过程.14.【答案】D【解析】解:(n+1)2−(n−3)2=n2+2n+1−n2+6n−9=8n−8=8(n−1),∴能被8整除,故选:D.将所求式子用完全平方公式展开可得原式=8(n−1),即可进行求解.本题考查因式分解的应用;理解题意,将已知式子进行合理的变形,再由数的整除性求解是解题的关键.15.【答案】D【解析】解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C′时,另一端D向右滑到D′,可得:CD=C′D′,A、下滑过程中,CC′与DD′不一定相等,说法错误;B、下滑过程中,当△OCD与△OD′C′全等时,CC′=DD′,说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC′=DD′,说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD′C′全等时,一定存在某个位置使得CC′= DD′,说法正确;故选:D.根据全等三角形的性质解答即可.此题考查全等三角形的应用,关键是根据全等三角形的对应边相等解答.16.【答案】C【解析】解:如图,三角形②的一条直角边为a,另一条直角边为b,因此S△②=12(a−b)b=12ab−12b2,S△①=12a2,∴S阴影部分=S大正方形−S△①−S△②,=12a2−12ab+12b2,=12[(a+b)2−3ab],=12(100−54)=23,故选:C.表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.考查完全平方公式的意义,适当的变形是解决问题的关键.17.【答案】−b4【解析】解:−b⋅b3=−b1+3=−b4.故答案为:−b4.同底数幂相乘,底数不变,指数相加,据此计算即可.本题主要考查了同底数幂的乘法,熟记幂的运算法则是解答本题的关键.18.【答案】1.6×10−1【解析】解:(2.5)8(0.4)10=(52)8×(25)10=(52)8×(25)8×(25)2=(52×25)8×(25)2=18×0.16=1.6×10−1.故答案为:1.6×10−1.积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此化简后用科学记数法表示结果即可.本题主要考查了幂的乘方与积的乘方,还考查了科学记数法,熟记幂的运算法则是解答本题的关键.19.【答案】20°70°1<m<17【解析】解:(1)∵DE是线段AB的垂直平分线,∴EA=EB,∴∠BAE=∠B=20°;(2))∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴∠BAE=∠B,∠CAN=∠C,∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,∴∠BAE+∠CAN=70°,∴∠BAC=∠BAE+∠CAN+∠EAN=110°,∵∠ADF=∠AMF=90°,∴∠F=360°−∠ADF−∠AMF−∠BAC=360°−90°−90°−110°=70°;(3)∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴△AEN的周长=AE+EN+AN=BE+EN+CN=BC,在△ABC中,AB=8,AC=9,∴9−8<BC<9+8,∴1<m<17.故答案为:(1)20°;(2)70°;(3)1<m<17.(1)根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的性质解答即可;(2)根据线段垂直平分线的性质得到EA=EB,AN=CN,根据三角形内角和定理计算即可;(3)根据三角形的周长公式得到△AEN的周长=BC,根据三角形的三边关系计算,得到答案.本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.【答案】解:(1)如图所示,△ABC关于x轴的对称图形△A1B1C1的顶点坐标为:A1(1,−4),B1(4,−2),C1(3,−5).(2)△ABC的面积为:3×3−12×1×2−12×1×3−12×2×3=9−1−1.5−3=3.5.【解析】(1)依据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出△A1B1C1的位置以及顶点坐标.(2)依据割补法进行计算,即可得出△A1B1C1的面积.本题主要考查了利用轴对称变换作图,依据轴对称的性质得出对称点的位置是解决问题的关键.21.【答案】解:小明的做法可行.理由如下:在直角尺DEMN中,DN//EM,∴∠DPO=∠POM,∵DP=OD,∴∠DPO=∠DOP,∴∠POM=∠DOP,∴OC平分∠AOB.【解析】根据平行线的性质得到∠DPO=∠POM,根据等腰三角形的性质得到∠DPO=∠DOP,由等量代换得到∠POM=∠DOP,由此可判断小明的做法可行.本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质,能灵活应用平行线的性质和等腰三角形的性质是解决问题的关键.22.【答案】解:(1)①(x+1)(x−1)+(x2−1)=x2−1+x2−1=2x2−2;②原式=x2−1+●x2−1=(1+●)x2−2,若结果是一个常数,1+●=0,则●=−1;(2)把x=1代入得,2●0+(−2−1)=−1,整理得:2●0=2,则●为+或−.【解析】(1)①原式利用平方差公式化简,去括号合并即可得到结果;②原式化简后,根据结果为常数,确定出●表示的数即可;(2)把x=1代入原式,使其值为−1,确定出●所表示的符号即可.此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20)+α=180°,解得α=40°.即多边形的每个外角为40°.又∵多边形的外角和为360°,=9.∴多边形的外角个数=36040∴多边形的边数=9,答:这个多边形的边数是9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,当截线为经过对角2个顶点的直线时,多边形的边数减少了1条边,内角和=(9−2−1)×180°=1080°;当截线为经过多边形一组对边的直线时,多边形的边数不变,内角和=(9−2)×180°= 1260°;当截线为只经过正多形一组邻边的一条直线时,多边形的边数增加一条边,内角和= (9−2+1)×180°=1440°.答:将这个多边形剪去一个角,剩下多边形的内角和是1080°或1260°或1440°.【解析】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,运用方程求解比较简便.第2问在理解剪掉多边形的一个角的含义时,确定其剩余几边形是关键.(1)设多边形的一个外角为α,则与其相邻的内角等于3α+20°,根据内角与其相邻的外角的和是180度列出方程,求出α的值,再由多边形的外角和为360°,求出此多边形的边数为360°÷α;(2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变.根据多边形的内角和定理可以知道,边数增加1,相应内角和就增加180度,由此即可求出答案.24.【答案】解:(1)∵9×7+1=64=82,∴9×7+1是8的平方;(2)和为(n +2)×n +1,∵(n +2)×n +1=n 2+2n +1=(n +1)2,∴原式为正整数(n +1)的平方;延伸:设较小的正偶数为2k ,∴2k(2k +4)+a =4k 2+8k +a =4(k 2+2k +a 4), 由配方法可知a =4,原式=4(k 2+2k +1)=[2(k +1)]2,综上:a =4.【解析】(1)计算9×7+1,即可求解;(2)设较小的一个正整数为n ,那么这两个正整数积与1的和即为(n +2)×n +1,计算即可求解;延伸解:设较小的正偶数为2k ,计算2k(2k +4)+a =4k 2+8k +a =4(k 2+2k +a 4),求出a =4.本题考查了有理数的混合运算,整式的混合运算,完全平方公式,掌握运算法则是解题的关键. 25.【答案】解:(1)设第一组的速度为xm/min ,则第二组的速度为1.2xm/min , 由题意得,450x −4501.2x =15,解得:x =5,经检验:x =5是原分式方程的解,且符合题意,则1.2x =6.答:第一组的攀登速度5m/min ,第二组的攀登速度6m/min ;(2)设第一组的平均速度为ym/min ,则第二组的平均速度为aym/min ,由题意得,ℎy −ℎay =30,解得:y=aℎ−ℎ30a,经检验:y=aℎ−ℎ30a是原分式方程的解,且符合题意,则ay−y=aℎ−ℎ30−aℎ−ℎ30a=a2ℎ−2aℎ+ℎ30a,答:第二组的平均攀登速度比第一组快a2ℎ−2aℎ+ℎ30am/min.【解析】(1)设第一组的速度为xm/min,则第二组的速度为1.2xm/min,根据两个小组同时开始攀登,第二组比第一组早15min,列方程求解.(2)设第一组的速度为ym/min,则第二组的速度为aym/min,根据两个小组去攀登另一座hm高的山,第二组比第一组晚出发30min,结果两组同时到达顶峰,列方程求解.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列分式方程求解,注意检验.26.【答案】AF=AD+BD【解析】解:(Ⅰ)∵AC=AE,∴∠ACF=∠AEG,∵AF⊥AD,∴∠DAF=90°=∠CAB,∴∠DAF−∠FAG=∠CAB−∠FAG,∴∠CAF=∠EAG,在△AGE和△AFC中,{∠AEG=∠ACF AE=AC∠EAG=∠CAF,∴△AGE≌△AFC(ASA);(Ⅱ)如图1,过点C作CM⊥AC,交AF延长线于点M,∴∠ACM=90°=∠ABD,由(Ⅰ)知,∠CAF=∠EAB,在△ACM和△ABD中,{∠CAF=∠BAEAC=AB∠ACM=∠ABD=90°,∴△ACM≌△ABD(ASA),∴AM=AD,CM=BD,由(Ⅰ)知,△AGE≌△AFC,∴∠AGE=∠AFC,∴180°−∠AGE=180°−∠AFC,∴∠AGC=∠AFG,∵∠CFM=∠AFG,∴∠AGC=∠CFM,∵∠BAC=90°=∠ACM,∴∠BAC+∠ACM=180°,∴CM//AB,∴∠MCF=∠AGC,∴∠CFM=∠MCF,∴MF=CM,∴AM=AF+CM,∴AD=AF+BD;(Ⅲ)AD=AF−BD;过点C作CM⊥AC,交AF于点M,∴∠ACM=90°=∠ABD,由(Ⅰ)知,∠CAF=∠EAB,在△ACM和△ABD中,{∠CAF=∠BAEAC=AB∠ACM=∠ABD=90°,∴△ACM≌△ABD(ASA),∴AM=AD,CM=BD,由(Ⅰ)知,△AGE≌△AFC,∴∠G=∠F,∵∠BAC=90°=∠ACM,∴CM//AB,∴∠MCF=∠G,∴∠F=∠MCF,∴MF=CM,∴AF=AM+CM=AD+BD,故答案为:AF=AD+BD.(Ⅰ)先判断出∠ACF=∠AEG,再用同角的余角相等判断出∠CAF=∠EAG,即可得出结论;(Ⅱ)先用ASA判断出△ACM≌△ABD,得出AM=AD,CM=BD,由(Ⅰ)知,△AGE≌△AFC,得出∠AGE=∠AFC,再判断出CM//AB,得出∠MCF=∠AGC,进而判断出MF= CM,即可得出结论;(Ⅲ)同(Ⅱ)的方法,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,等边对等角,构造出全等三角形是解本题的关键.第21页,共21页。
2022-2023学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷+答案解析
![2022-2023学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷+答案解析](https://img.taocdn.com/s3/m/c4865a41bdd126fff705cc1755270722192e593d.png)
2022-2023学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷一、选择题:本题共14小题,每小题3分,共42分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B.C. D.2.下列实数中无理数是()A. B. C. D.3.下列说法中,错误的是()A.8是64的平方根B.4是64的立方根C.64的平方根是8D.64的立方根是44.下列各组数中,能作为直角三角形边长的是()A.1,2,3B.6,7,8C.1,1,D.5,12,135.下列二次根式中,是最简二次根式的是()A. B. C. D.6.用四舍五入法将数精确到千分位的结果是()A. B. C. D.7.用反证法证明命题“在同一平面内,若,,则”时,首先应假设()A. B. C.a与c相交 D.a与b相交8.等腰三角形的一个内角是,则这个三角形的底角的大小是()A.或B.或C.或D.或9.下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等10.下列计算结果不正确的是()A. B.C. D.11.以直角三角形的三边为边向外作正方形,其中两个正方形的面积如图所示,则正方形A的面积为()A.6B.36C.64D.812.如图,在中,AB的垂直平分线交AB于点D,交BC于点E,若,则的周长为()A.8B.11C.16D.1713.某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x米,则依题意列出正确的方程为()A. B. C. D.14.如图,长方形OABC的OA长为2,AB长为1,OA在数轴上,点O与原点重合,以原点为圆心,对角线OB的长为半径画弧,交负半轴于一点,则这个点表示的实数是()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
河北省秦皇岛卢龙县联考2021届数学八上期末教学质量检测试题
![河北省秦皇岛卢龙县联考2021届数学八上期末教学质量检测试题](https://img.taocdn.com/s3/m/ac9bc7111711cc7931b716f0.png)
河北省秦皇岛卢龙县联考2021届数学八上期末教学质量检测试题一、选择题1.下列各式从左到右的变形正确的是( )A .22()()a b a b -+-=1 B .221188a a a a ---=-++ C .22x y x y ++=x+y D .0.52520.11y y x x ++=-++ 2.若关于x 的方程212x m x +=-+的解是负数,则m 的取值范围是:( ) A .2m <- B .2m >- C .2m <-且4m ≠ D .2m >-且4m ≠3.22018-22019的值是( )A .12B .-12C .-22018D .-24.下列运算正确的是( )A .842a a a ÷=B .236a a ()=C .236•a a a =D .236ab ab ()=5.根据图①的面积可以说明多项式的乘法运算(2a+b )(a+b )=2a 2+3ab+b 2,那么根据图②的面积可以说明多项式的乘法运算是( )A .(a+3b )(a+b )=a 2+4ab+3b 2B .(a+3b )(a+b )=a 2+3b 2C .(b+3a )(b+a )=b 2+4ab+3a 2D .(a+3b )(a ﹣b )=a 2+2ab ﹣3b 2 6.如图,在△ABC 中,∠C =90°,∠B =30°,AC =3.若点P 是BC 边上任意一点,则AP 的长不可能是( )A .7B .5.3C .4.8D .3.57.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是( )A .喜B .迎C .冬D .奥8.点 ()1,3P -- 关于 y 轴对称的点的坐标是 ( )A .()1,3-B .()1,3C .()3,1-D .()1,3-9.如图所示,在△ABC 中,∠ACB =90°,∠B =15°,DE 垂直平分AB ,交BC 于点E ,BE =6cm ,则AC 等于( )A .6cmB .5cmC .4cmD .3cm10.如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .A D ∠=∠B .EC BF =C .AB CD =D .AB BC =11.已知:如图,△ABC 是直角三角形,∠ACB=90°,点D 、E 分别在AB 、BC 上,且CA=CD=CE ,下列说法: ①∠EDB=45° ②∠EAD=12∠ECD ③当△CDB 是等腰三角形时,△CAD 是等边三角形④当∠B=22.5°时,△ACD ≌△DCE .其中正确的个数有( )A.1个B.2个C.3个D.4个12.若一个多边形的内角和是1080°,则此多边形的边数是( )A .十二B .十C .八D .十四13.下列图形中,具有稳定性的是A. B. C. D.14.下列正多边形的组合中,能够铺满地面的是( )A .正六边形和正方形B .正五边形和正八边形C .正六边形和正三角形D .正十边形和正三角形 15.若xy =x+y≠0,则分式11yx +=( ) A .1xyB .x+yC .1D .﹣1 二、填空题 16.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为______.17.如果多项式29mx x ++是完全平方式,那么m =________.【答案】6±.18.如图,已知∠AOB 内有一点P ,过点P 画PC ⊥OB ,垂足为C ;再过点P 画PD ⊥OA ,垂足为D ,画出图形,并量出C 、D 两点间的距离是_____.19.如图,将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分ACB ∠,若110BA C ∠='︒,则12∠+∠的度数是_________.20.如图,在Rt ABC ∆中,AC=BC ,∠ACB=90o,D 为AB 的中点,E 为线段AD 上一点,过E 点的线段FG 交CD 的延长线于点G ,交AC 于点F ,且EG AE =,分别延长CE 、BG 交于点H ,若EH 平分∠AEG ,HD 平分∠CHG 。
八年级数学上学期期末教学质量检测试题 试题_1
![八年级数学上学期期末教学质量检测试题 试题_1](https://img.taocdn.com/s3/m/e702266830b765ce0508763231126edb6f1a7674.png)
卢龙县2021-2021学年八年级数学上学期期末教学质量检测试题一、精心选一选,慧眼识金!〔本大题一一共10小题,每一小题3分,一共30分,在每一小题给出的四个选项里面只有一项是哪一项正确的〕 1.以下图中的轴对称图形有〔 〕.A .〔1〕,〔2〕B .〔1〕,〔4〕C .〔2〕,〔3〕D .〔3〕,〔4〕 2.王师傅用4根木条钉成一个四边形木架,如图1.要使这个木架不变形, 他至少还要再钉上几根木条?〔 〕A . 0根B . 1根C . 2根D . 3根3.如图2,∠1=∠2,要得到△ABD ≌△ACD ,还需从以下条件中补选一个,那么错误的选法是〔 〕 A . AB=ACB . DB=DCC . ∠ADB=∠ADCD . ∠B=∠C4.如图3,一个等边三角形纸片,剪去一个角后得到一个四边形,那么图中∠α+∠β的度数是〔 〕 A . 180°B . 220°C . 240°D . 300°5.如图4,给出了正方形ABCD 的面积的四个表达式,其中错误的选项是〔 〕题号日 期: 20选择题填空题 21 22 23 24 25 26 总分得分A .〔x+a 〕〔x+a 〕B .x 2+a 2+2ax C .〔x ﹣a 〕〔x ﹣a 〕D .〔x+a 〕a+〔x+a 〕x6.以下各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣〔3﹣5〕+〔﹣2〕4÷8×〔﹣1〕=0;⑤x 2+x 2=2x 2,其中正确的选项是〔 〕 A .①②③B . ①③⑤C . ②③④D . ②④⑤7.以下各选项里面,所求的最简公分母错误的选项是〔 〕 A.13x 与16x 的最简公分母是6x B.2313a b 与2313a b c最简公分母是3a 2b 3c C.()1a x y -与()1b y x -的最简公分母是()()ab x y y x --D.1m n +与1m n-的最简公分母是m 2-n 2 8.假如2x 2x x 6---=0,那么x 等于〔 〕A .±2B .-2C .2D .39.化简的结果是〔 〕A . x+1B . x ﹣1C . ﹣xD . x10.随着生活程度的进步,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间是少用了15分钟,现小林家距8千米,乘私家车平均速度是乘公交车平均速度的倍,假设设乘公交车平均每小时走x 千米,根据题意可列方程为〔 〕图1图2图3图4A .B .C .D .二、填空题〔简洁的结果,表达的是你敏锐的思维,需要的是细心!每一小题3分,一共30分〕11.如图5,在△ABC 中,AC=BC ,△ABC 的外角∠ACE=100°, 那么∠A= 度.12.假设等腰三角形的周长为26cm ,一边为11cm ,那么腰长为 . 13.分解因式:x 3﹣4x 2﹣12x= .14.当x=2时,分式x+a2x-b 的值是0;当x=1时,分式无意义.那么a -b= . 15.当n 为奇数时,=-+-22)()(n n a a .16.化简:2222444m mn n m n-+-=. 17.假如()()63122122=-+++b a b a ,那么b a +的值是________________.18.如图6,边长为m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余局部可剪拼成一个矩形,假设拼成的矩形一边长为4,那么另一边长为 .19.如图7,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,那么△ABD 的面积是______. 20.n >1,M =nn -1,N =n -1n ,P =nn +1,那么M 、N 、P 的大小关系为 .三、解答题〔耐心计算,认真推理,表露你萌动的智慧!一共60分〕A DCB图7图6 图521.〔此题满分是10分〕解方程:.22. 〔此题满分是10分〕先化简,再求值:5〔3a2b﹣ab2〕﹣3〔ab2+5a2b〕,其中a=,b=﹣.23.〔此题满分是10分〕在日常生活中,如取款、上网等都需要密码.有一种用“因式分解〞法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)·(x2+y2),假设取x=9,y=9时,那么各个因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162〞作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码一共有多少种?请你分别写出来.24. 〔此题满分是10分〕先化简211()1122x x x x -÷-+-, 然后从不等式组11231215436x x x ⎧-<⎪⎪⎨+-⎪-<⎪⎩的整数解中选取一个你认为适宜..的数 作为x 的值代入求值.25.〔此题满分是10分〕:如图,△ABC和△DBE均为等腰直角三角形.〔1〕求证:AD=CE;〔2〕求证:AD和CE垂直.26.〔此题满分是10分〕某县为了落实HY的“强基惠民工程〞,方案将某村的居民自来水管道进展改造.该工程假设由甲队单独施工恰好在规定时间是内完成;假设乙队单独施工,那么完成工程所需天数是规定天数的倍.假如由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.〔1〕这项工程的规定时间是是多少天?〔2〕甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.那么该工程施工费用是多少?八年级数学试题参考答案及评分HY一、选择题〔每一小题3分,一共30分〕1.B 2.B 3.B 4.C 5.C 6.D 7. C 8.C 9.D 10.D 二、填空题〔每一小题3分,一共30分〕11.50 12.11cm或者cm 13.x〔x+2〕〔x﹣6〕 14.-4 15.0 16.m-2n m+2n17. 4 18.2m+4 19.5 20.M>P>N三、解答题〔一共60分〕21.〔10分〕解:原方程即:方程两边同时乘以〔x+2〕〔x﹣2〕,………………………………………………1分得x〔x+2〕﹣〔x+2〕〔x﹣2〕=8化简,得2x+4=8……………………………………………………………………5分解得:x=2--------------------------------------------------------------------------------------7分检验:x=2时,〔x+2〕〔x﹣2〕=0,即x=2不是原分式方程的解……………...8分那么原分式方程无解.-------------------------------------------------------------------------10分22.〔10分〕解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2---------------------------------7分当a=,b=﹣时,原式=﹣8××=﹣.--------------------------------10分23.〔10分〕解:产生的密码一共有三种.------------------------------------------------------------------------1分4x3-xy2=x(4x2-y2)=x(2x-y)(2x+y),------------------------------------------------5分当x=10,y=10时,x=10,2x-y=2⨯10-10=10,2x+y=2⨯10+10=30,故密码为:101030,或者103010,或者301010.-------------------------------------------10分24.〔10分〕解:原式=22(1)(1)(1)(1)x xx x x-+⨯-+=4x------------------------------------------------3分解不等式组11231215436xx x⎧-<⎪⎪⎨+-⎪-<⎪⎩,解得:-2<x<3---------------------------------6分∵ x为整数,∴ x=-1,0,1,2∵x不能取±1,0,∴x=2----------------------------------------------------------------9分∴原式=4 x=2.-------------------------------------------------------------------------------10分25.〔10分〕解:〔1〕∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,……………………………………2分即∠ABD=∠CBE,在△ABD和△CBE中:AB=BC,∠ABD=∠CBE,BD=BE,∴△ABD≌△CBE,∴AD=CE.-----------------------------------------------------------------------------5分〔2〕延长AD交CE于F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∴∠BAD+∠DAC+∠BCA=∠BCE+ DAC +∠BCA =90°,∴∠AFC= =90°,∴AD⊥CE.--------------------------------------------------------------------------------10分26.〔10分〕创作人:历恰面日期:2020年1月1日解:〔1〕设这项工程的规定时间是是x天,根据题意得:〔+〕×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是是30天.-----------------------------------------------5分〔2〕该工程由甲、乙队合做完成,所需时间是为:1÷〔+〕=18〔天〕,那么该工程施工费用是:18×〔6500+3500〕=180000〔元〕.答:该工程的费用为180000元.------------------------------------------------------10分创作人:历恰面日期:2020年1月1日创作人:历恰面日期:2020年1月1日。
河北省秦皇岛卢龙县联考2021届数学八年级上学期期末教学质量检测试题
![河北省秦皇岛卢龙县联考2021届数学八年级上学期期末教学质量检测试题](https://img.taocdn.com/s3/m/e1ba710f1ed9ad51f01df2f3.png)
河北省秦皇岛卢龙县联考2021届数学八年级上学期期末教学质量检测试题一、选择题1.关于x 的方程32211x m x x --=++有增根,则m 的值为( ) A.2B.7-C.5D.5- 2.分式方程61x -=5(1)x x x +-有增根,则增根为( ) A .0 B .1 C .1或0 D .﹣53.甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x 个,那么所列方程是( )A .90606x x =+B .90606x x =+ C .90606x x =- D .90606x x =- 4.下列各式计算正确的是( ) A .223a a a +=B .326()a a -=C .326a a a ⋅=D .()222a b a b +=+ 5.下列计算正确的是( ) A .(2x)3=2x 3 B .(x+1)2=x 2+1C .(x 2)3=x 6D .x 2+x 3=x 56.下列变形是分解因式的是( )A .22632x y xy xy =B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+-- 7.如图,若∠2=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )A .15°B .30°C .45°D .60°8.如图,过边长为1的等边ABC △的边AB 上一点,作PE AC ⊥于,E Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 于D ,则DE 的长为( )A .13B .12C .23D .349.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是( )A .140或44或80B .20或80C .44或80D .80°或14010.如图所示,AB ∥CD ,O 为∠BAC 、∠ACD 的平分线交点,OE ⊥AC 于E ,若OE =2,则AB 与CD 之间的距离是( )A .2B .4C .6D .8 11.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =28,DE =4,AC =6,则AB 的长是( )A.8B.10C.12D.不能确定 12.如图,已知是线段上任意一点(端点除外),分别以为边,并且在的同一侧作等边和等边,连结交于,连结交于,给出以下三个结论:①② ③,其中结论正确的个数是( ) A.0 B.1 C.2 D.313.一个多边形切去一个角后,形成的另一个多边形的内角和为540︒,那么原多边形的边数为( )A.4B.4或5C.5或6D.4或5或6 14.下列哪一种正多边形不能..铺满地面( ) A .正三边形 B .正四边形 C .正六边形 D .正八边形 15.将含30°角的三角板ABC 如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=90°,当∠1=60°时,图中等于30°的角的个数是( )A .6个B .5个C .4个D .3个二、填空题 16.化简分式:3()y x x y --=_____. 17.已知a b 6+=,ab=3,则 22a b 2+−ab =_______. 18.已知A(0,0),B(2,0),C(3,3),如果在平面直角坐标系中存在一点D ,使得△ABD 与△ABC 全等,那么点D 的坐标为______.19.如图,在ABC ∆中,已知D ,E ,F 分别为BC ,AD ,CE 的中点,且28ABC S cm ∆=,则图中阴影部分BEF ∆的面积等于__2cm .20.如图,已知正方形ABCD 边长为3,点E 在AB 边上且BE=1,点P,Q 分别是边BC,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是___.三、解答题21.先化简,再求值,211111x x x -⎛⎫⨯+ ⎪-+⎝⎭从-1、1、2中选择一个你喜欢的且使原式有意义的x 的值代入求值.22.如图,在一块半径为R 的圆形板材上,冲去半径为r 的四个小圆,小刚测得R=6.8cm ,r=1.6cm ,请利用因式分解求出剩余阴影部分的面积(结果保留π)23.如图,在平面直角坐标系中:()1描出点()2,1A -、()1,3B -;()2描出点A 关于y 轴对称的点C ,点B 关于x 轴对称的点D ;()3依次连接点A 、B 、C 、D ,得到四边形ABCD ,则四边形ABCD 的面积为______.24.如图,点、在线段上,且,点、在一侧,有,且,试说明.25.如图所示,在ABC 中,AD BC ⊥于D ,AE 平分BAC ∠,BAC 80∠=,B 60∠=,求AEC ∠和DAE ∠的度数.【参考答案】***一、选择题16.-17.1218.(3,-3),(-1,3) 或(-1,-3)19.220.92三、解答题21.422.36πcm 223.(1)详见解析;(2)详见解析;(3)12【解析】【分析】()1根据点的坐标描点即可;()2由轴对称的定义作图即可得;()3利用割补法将原四边形分割成两个三角形即可得.【详解】解:()1如图,点A 、B 即为所求;()2如图,点C 和点D 即为所求;()3四边形ABCD 的面积为1161631222⨯⨯+⨯⨯=, 故答案为:12.【点睛】本题主要考查作图-轴对称变换,割补法求图形的面积,解题的关键是掌握轴对称变换的定义和性质.24.详见解析【解析】【分析】根据题意可证△ACE ≌△BDF ,得到∠ACE =∠D ,即可证明.【详解】∵AE ∥BF∴∠A =∠DBF∵AB =CD∴AB +BC =CD +BC即AC =BD在△ACE 和△BDF 中 ∵∴△ACE ≌△BDF (SAS )∴∠ACE =∠D∴CE ∥DF【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.25. AEC 100∠=,DAE 10∠=.。
秦皇岛市卢龙县八年级上册期末数学试卷(附详细答案)
![秦皇岛市卢龙县八年级上册期末数学试卷(附详细答案)](https://img.taocdn.com/s3/m/0d422c283b3567ec102d8a78.png)
2019-2020学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下图中的轴对称图形有()A. (1),(2)B. (1),(4)C. (2),(3)D. (3),(4)2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根B. 1根C. 2根D. 3根3.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. AB=ACB. DB=DCC. ∠ADB=∠ADCD. ∠B=∠C4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180°B. 220°C. 240°D. 300°5.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A. (x+a)(x+a)B. x2+a2+2axC. (x-a)(x-a)D. (x+a)a+(x+a)x6.下列各式:①a0=1;②a2•a3=a5;③2-2=-1;④-(3-5)+(-2)4÷8×(-1)=0;⑤x2+x2=2x2,4其中正确的是()A. ①②③B. ①③⑤C. ②③④D. ②④⑤7.下列各选项中,所求的最简公分母错误的是()A. 13x 与16x的最简公分母是6xB. 13a2b3与13a2b3c最简公分母是3a2b3cC. 1a(x−y)与1b(y−x)的最简公分母是ab(x-y)(y-x)D. 1m+n 与1m−n的最简公分母是m2-n28.如果|x|−2x2−x−6=0,则x等于()A. ±2B. -2C. 2D. 39.化简x2x−1+x1−x的结果是()A. x+1B. x-1C. -xD. x10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A. 8x +15=82.5xB. 8x=82.5x+15 C. 8x+14=82.5xD. 8x=82.5x+14二、填空题(本大题共10小题,共30.0分)11.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=______度.12.若等腰三角形的周长为26cm,一边为11cm,则腰长为______.13.分解因式:x3-4x2-12x=______.14.已知当x=2时,分式x+a2x−b的值为0;当x=1时,分式无意义.则a-b=______.15.当n为奇数时,(-a2)n+(-a n)2=______16.化简:m2−4mn+4n2m2−4n2=______.17.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值为______.18.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为______.19.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.20. 已知n >1,M =n n−1,N =n−1n,P =nn+1,则M 、N 、P 的大小关系为______.三、计算题(本大题共2小题,共20.0分)21. 先化简(1x−1−1x+1)÷x 2x 2−2,然后从不等式组{−12x <13x+14−2x−13<56的整数解中选取一个你认为合适的数作为x 的值代入求值.22. 某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?四、解答题(本大题共4小题,共40.0分) 23. 解方程:xx−2-1=8x −4.24. 先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b ),其中a =13,b =﹣12.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,写出一个用上述方法产生的密码,并说明理由.26.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.答案和解析1.【答案】B【解析】解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.根据轴对称图形的概念求解,看图形是不是关于直线对称.掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.【答案】B【解析】解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选:B.根据三角形的稳定性进行解答即可.本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.【答案】B【解析】解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.4.【答案】C【解析】解:∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选:C.本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.【答案】C【解析】解:根据图可知,S正方形=(x+a)2=x2+2ax+a2=(x+a)a+(x+a)x故选:C.根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.6.【答案】D【解析】解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2-2=,根据负整数指数幂的定义a-p=(a≠0,p为正整数),故本小题错误;④-(3-5)+(-2)4÷8×(-1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.7.【答案】C【解析】解:A、与的最简公分母是6x,此选项正确;B、与最简公分母是3a2b3c,此选项正确;C、与的最简公分母是ab(x-y)或ab(y-x),此选项错误;D、与的最简公分母是m2-n2,此选项正确;故选:C.根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.据此可得.本题主要考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.8.【答案】C【解析】解:由题意可得|x|-2=0且x2-x-6≠0,解得x=2.故选C.分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.9.【答案】D【解析】解:=-===x,故选:D.将分母化为同分母,通分,再将分子因式分解,约分.本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.【答案】D【解析】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.11.【答案】50【解析】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.12.【答案】7.5cm或11cm【解析】解:①当11cm为腰长时,则腰长为11cm,底边=26-11-11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26-11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故答案为:7.5cm或11cm.题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.13.【答案】x(x+2)(x-6)【解析】解:x3-4x2-12x=x(x2-4x-12)=x(x+2)(x-6).故答案为:x(x+2)(x-6).首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.14.【答案】-4【解析】解:∵当x=2时,分式的值为0,当x=1时,分式无意义,∴,解得,,∴a-b=-2-2=-4,故答案为:-4.根据当x=2时,分式的值为0,当x=1时,分式无意义,可知当x=2时,分子x+a=0,当x=1时,分母2x-b=0,从而可以求得a、b的值,本题得以解决.本题考查分式的值为零的条件、分式有意义的条件,解答本题的关键是明确题意,求出a、b的值.15.【答案】0【解析】解:∵n为奇数,∴(-a2)n=-a2n,(-a n)2=a2n,∴(-a2)n+(-a n)2=0.故答案为0.由题意知n为奇数,所以(-a2)n=-a2n,+(-a n)2=a2n,再相加即可.本题考查幂的乘方,底数不变指数相乘,一定要记准法则才能做题.16.【答案】m−2nm+2n【解析】解:=.分式的化简就是约分,把分子、分母分解因式,然后约去公因式.分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键.17.【答案】±4【解析】解:∵(2a+2b+1)(2a+2b-1)=63,∴(2a+2b)2-12=63,∴(2a+2b)2=64,2a+2b=±8,两边同时除以2得,a+b=±4.将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.18.【答案】2m+4【解析】解:设拼成的矩形的另一边长为x,则4x=(m+4)2-m2=(m+4+m)(m+4-m),解得x=2m+4.故答案为:2m+4.根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.19.【答案】5【解析】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD 的高就是CD 的长度,所以高是2,则可求得面积.本题主要考查了角平分线上的一点到两边的距离相等的性质.注意分析思路,培养自己的分析能力.20.【答案】M >P >N【解析】解:∵n >1,M=,N=,P=,∴M-P=-==>0,P-N=-==>0, 则M >P >N .故答案为:M >P >N .分别利用作差法比较大小即可.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.【答案】解:原式=2(x−1)(x+1)×2(x−1)(x+1)x=4x, 解不等式组{−12x <13x+14−2x−13<56, 解得:-2<x <3,∵x 为整数,∴x =-1,0,1,2∵x 不能取±1,0, ∴x =2,∴原式=4x =2.【解析】根据分式的乘除法法则和约分法则把原式化简,根据解一元一次不等式组的步骤解出不等式组,从解集中选取使分式有意义的值代入计算即可.本题考查的是分式的化简求值和一元一次不等式组的解法,掌握分式的乘除法法则和约分法则是解题的关键.22.【答案】解:(1)设这项工程的规定时间是x 天,根据题意得:(1x +11.5x )×15+5x=1. 解得:x =30.经检验x =30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(130+11.5×30)=18(天), 则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.【解析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.23.【答案】解:x x−2-1=8x 2−4,方程两边同时乘以(x +2)(x -2)得x (x +2)-(x +2)(x -2)=8,化简,得2x +4=8,解得:x =2.检验:x =2时,(x +2)(x -2)=0,即x =2不是原分式方程的解,则原分式方程无解.【解析】观察可得最简公分母是(x+2)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.此题考查了分式方程的解法.注意掌握转化思想的应用,注意解分式方程一定要验根.24.【答案】解:原式=15a 2b -5ab 2-3ab 2-15a 2b=-8ab 2,当a =13,b =-12时,原式=-8×13×(-12)2=-23.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.【答案】解:∵4x3-xy2=x(4x2-y2)=x(2x+y)(2x-y),(3分)∴当取x=10,y=10时,各个因式的值是:x=10,2x+y=30,2x-y=10,∴用上述方法产生的密码是:101030.(5分)【解析】将多项式4x3-xy2,提取x后再利用平方差公式分解因式,将x与y的值分别代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.此题考查了因式分解的应用,涉及分解因式的方法有:提公因式法,以及平方差公式法,属于阅读型的新定义题,其中根据阅读材料得出取密码的方法是解本题的关键.26.【答案】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=CBE,在△ABD和△CBE中,{AB=BC∠ABD=∠CBE BD=BE,∴△ABD≌△CBE(SAS),∴AD=CE;(2)证明:延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.【解析】(1)由等腰直角三角形的性质得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,证出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,证出结论.本题考查了等腰直角三角形的性质和全等三角形的判定与性质;证明三角形全等是解决问题的关键.。
数学-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷_含答案
![数学-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷_含答案](https://img.taocdn.com/s3/m/f15f0b105e0e7cd184254b35eefdc8d376ee1404.png)
2020-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1. “对顶角相等”的逆命题是()A 如果两个角是对顶角,那么这两个角相等B 如果两个角相等,那么这两个角是对顶角C 如果两个角不是对顶角,那么这两个角不相等D 如果两个角不相等,那么这两个角不是对顶角2. 将34.945取近似数精确到十分位,正确的是()A 34.9B 35.0C 35D 35.053. 若x=−1使某个分式无意义,则这个分式可以是()A B C D4. 在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A B C D5. 若是二次根式,则a的值不可以是()A 4BC 90D −26. 下列计算正确的是()A 4−3=1B +=C +=3D 3+2=57. 实数5不能写成的形式是()A B C D8. 到△ABC的三条边距离相等的点是△ABC的()A 三条中线交点B 三条角平分线交点C 三条高的交点D 三条边的垂直平分线交点9. 已知等腰三角形的两边长分别为3和6,则它的周长等于( )A 12B 12或15C 15D 15或1810. 暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A 600x =800x−40B 600x−40=800xC 600x=800x+40D 600x+40=800x11. 以直角三角形的三边为边向外作正方形,其中两个正方形的面积如图所示,则正方形A 的面积为()A 6B 36C 64D 812. 如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A 3B 5C 6D 713. 如图,AD // BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为()A 3B 4C 5D 614. 如图,已知线段AB=20m,MA⊥AB于点A,MA=6m,射线BD⊥AB于点B,点P从点B向点A运动,每秒走1m,点Q从点B向点D运动,每秒走3m,点P,Q同时从点B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为( )A 5B 5或10C 10D 6或10二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15. √4=________.16. 21的平方根是________.417. 写出-和之间的所有整数________.18. 两个最简二次根式a√b与c√b相加得6√5,则a+b+c=________.19. 如图,AB=AC,∠C=36∘,AC的垂直平分线MN交BC于点D,则∠DAB=________.20. 如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD 的长为________.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21. 计算:(1)3−2+;(2).22. 如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.23. 老师所留的作业中有这样一个分式的计算题:2x+2+x+5x2−1,甲、乙两位同学完成的过程分别如下:甲同学:2x+1+x+5x2−1=2(x+1)(x−1)+x+6(x+1)(x−1)第一步=2+x+5(x+1)(x−1)第二步=x+7(x+1)(x−1)第三步乙同学:2x+1+x+5x2−1=2(x−1)(x+1)(x−1)+x+5(x+1)(x−1)第一步=2x−2+x+5第二步=3x+3第三步老师发现这两位同学的解答都有错误:(1)甲同学的解答从第________步开始出现错误;乙同学的解答从第________步开始出现错误;(2)请重新写出完成此题的正确解答过程.2x+1+x+5x2−124. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/ℎ.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/ℎ)25. 如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125∘,求∠DCE的度数.26. 已知:如图,C是AB上一点,点D,E分别在AB两侧,AD // BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.2020-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷答案1. B2. A3. B4. D5. D6. C7. D8. B9. C10. C11. A12. B13. D14. A15. 216. ±3217. −1,0,118. 1119. 72∘20. 2√321. 原式=6−3=−3+2;原式=×+×=1+7=10.22. 解:如图所示:P点即为所求.23. 一,二原式=2(x−1)(x+1)(x−1)+x+5(x+1)(x−1)=2x−2+x+5 (x+1)(x−1)=3x+3 (x+1)(x−1)=3x−1.24. 解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC=√AB2−AC2=√502−302=40(m),∴ 小汽车的速度为v=402=20(m/s)=20×3.6(km/ℎ)=72(km/ℎ);∵ 72(km/ℎ)>70(km/ℎ);∴ 这辆小汽车超速行驶.25. 解:(1)△CDE的周长是10.理由如下:∵ 直线l与m分别是△ABC边AC和BC的垂直平分线,∴ AD=CD,BE=CE,∴ △CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵ 直线l与m分别是△ABC边AC和BC的垂直平分线,∴ AD=CD,BE=CE,∴ ∠A=∠ACD,∠B=∠BCE,又∵ ∠ACB=125∘,∴ ∠A+∠B=180∘−125∘=55∘,∴ ∠ACD+∠BCE=55∘,∴ ∠DCE=∠ACB−(∠ACD+∠BCE)=125∘−55∘=70∘.26. 证明:如图,连接CE,∵ AD // BE,∴ ∠A=∠B,在△ADC和△BCE中{AD=BC ∠A=∠B AC=BE∴ △ADC≅△BCE(SAS),∴ CD=CE;△BEF为等腰三角形,证明如下:由(1)可知CD=CE,∴ ∠CDE=∠CED,由(1)可知△ADC≅△BEC,∴ ∠ACD=∠BEC,∴ ∠CDE+∠ACD=∠CED+∠BEC,即∠BFE=∠BED,∴ BE=BF,∴ △BEF是等腰三角形.。
河北省秦皇岛市2021年八年级上学期数学期末考试试卷(I)卷
![河北省秦皇岛市2021年八年级上学期数学期末考试试卷(I)卷](https://img.taocdn.com/s3/m/65c790c15f0e7cd1852536a8.png)
河北省秦皇岛市2021年八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,下列分子结构模型平面图中,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)(2020·海陵模拟) 在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是()A . (-3,2)B . (3,-2)C . (2,-3)D . (-2,3)3. (2分)(2018·高阳模拟) 如图,在数轴上表示数的点可能是()A . 点EB . 点FC . 点PD . 点Q4. (2分) (2019八下·黄冈月考) 以下列各组数据中的三个数作为三角形的边长,其中能够成直角三角形的是()A . 3,5,7B . 5,7,9C . 3,2 ,D . 2,2 ,5. (2分)(2018·鹿城模拟) 已知点,在一次函数的图象上,则,,0的大小关系是A .B .C .D .6. (2分) (2018八上·深圳期中) 下面哪个点在函数的图象上()A .B .C .D .7. (2分) (2018九上·梁子湖期末) 如图,在△ABC中,∠CAB=30°,将△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,且CC'∥AB,则旋转角的度数为()A . 100°B . 120°C . 110°D . 130°8. (2分)(2018·达州) 如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A .B . 2C .D . 3二、填空题 (共8题;共9分)9. (1分) (2017八上·高州月考) 2- 的相反数是________,绝对值是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共14小题,共42.0分)1.下列命题的逆命题不是真命题的是()A. 全等三角形的对应角相等B. 等边三角形的三个内角相等C. 直角三角形的两个锐角互余D. 等边对等角2.把1.5952精确到十分位的近似数是().A. 1.5B. 1.59C. 1.60D. 1.63.使分式x+1有意义的x的取值范围为()x−2A. x≠2B. x≠−2C. x≠−1D. x≠04.下面的图形中,是中心对称图形的是()A. B. C. D.3,−√4,√x−1,√x2+y2中,是二次根式的有()5.在式子√a,√2A. 1个B. 2个C. 3个D. 4个6.下列计算正确的是()A. 3+2√2=5√2B. √2+√5=√5C. 2√1=2 D. 4√3−3√3=√327.计算√(−π)2的结果是()A. −πB. πC. π2D. −π28.三角形内到三角形各边的距离都相等的点是三角形的()A. 三条中线的交点B. 三个内角的角平分线交点C. 三条高线的交点D. 不能确定9.已知等腰三角形一边长等于4,一边长等于9,它的周长是()A. 17或22B. 22C. 17D. 1310.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A. 10000x −10= B. 10000x+10=C. −10=14700x D. +10=14700x11.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A. 360B. 164C. 400D. 6012.如图,A在DE上,F在AB上,且AC=CE,∠1=∠2=∠3,DE=6,则AB的长为()A. 4B. 5C. 6D. 713.如图,AB//CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A. 8B. 6C. 4D. 214.如图,△ABC中,∠ACB=90°,AC=8cm,BC=15cm,点M从A点出发沿A→C→B路径向终点运动,终点为B点,点N从B点出发沿B→C→A路径向终点运动,终点为A点,点M和N分别以2cm/s和3cm/s的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M和N作ME⊥l于E,NF⊥l于F.设运动时间为t秒,要使以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等,则t的值为()A. 4.6或7B. 7或8C. 4.6或8D. 4.6或7或8二、填空题(本大题共6小题,共18.0分)15.化简:√27=________.16.25的平方根是______ .8117.与2−√2最接近的整数是______ .18.计算:√32+√2=_____.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC,则∠BEC=______.20.如图,已知△ABC为等边三角形,D为BC的中点,DE⊥AC于点E,若BC=4cm,则CE的长为______cm.三、计算题(本大题共1小题,共10.0分)21.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?四、解答题(本大题共5小题,共50.0分)22.计算.(1)√32−√18+√12(2)(√48−√27)÷√3.23.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:四边形ABCD.请确定点P,使PA=PD,且点P到边BC、CD的距离相等.结论:______.24.计算:1−(1a+3+6a2−9)÷a+3a2−6a+9.25.如图,在△ABC中,∠BAC=110°,点E、G分别是AB、AC的中点,DE⊥AB交BC于D,FG⊥AC交BC于F,连接AD、AF.试求∠DAF的度数.26.已知,如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC//AB,求证:AD=CF.答案和解析1.【答案】A【解析】[分析]根据逆命题的概念分别写出各个命题的逆命题,判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.[详解]解:A.全等三角形的对应角相等的逆命题是对应角相等的三角形全等,逆命题错误,A 的逆命题不是真命题;B.等边三角形的三个内角相等的逆命题是三个内角相等的三角形是等边三角形,逆命题正确,B的逆命题是真命题;C.直角三角形的两个锐角互余的逆命题是两个锐角互余的三角形是直角三角形,逆命题正确,C的逆命题是真命题;D.等边对等角的逆命题是等角对等边,逆命题正确,D的逆命题是真命题.故选A.2.【答案】D【解析】【分析】本题主要考查近似数和有效数字,精确到哪一位,哪一位后的第一个数就四舍五入.精确到十分位就是精确到0.1的意思,把十分位5后面的数四舍五入就可以将1.5952精确到十分位,将9四舍五入数字为1.6.【解答】解:把1.5952精确到十分位的近似数是1.6,故选D.3.【答案】A有意义,【解析】解:∵分式x+1x−2∴x−2≠0,解得x≠2.故选:A.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,即分式的分母不为0.4.【答案】B【解析】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.根据中心对称图形的概念求解.本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】B【解析】【分析】此题主要考查了二次根式的定义,正确把握定义是解题关键.直接利用二次根式的定义分析得出答案.【解答】解:在式子√23,−√4,√x−1,√x2+y2,√a中,是二次根式的有:−√4,√x2+y2共2个,当a≥0时,√a才是二次根式;当x≥1时,√x−1才是二次根式.故选B.6.【答案】D【解析】解:A、3+2√2无法计算,故此选项错误;B、√2+√5无法计算,故此选项错误;C、2√12=2×√22=√2,故此选项错误;D、4√3−3√3=√3,正确.故选:D.直接利用二次根式加减运算法则分析得出答案.此题主要考查了二次根式的加减运算,正确掌握二次根式加减运算法则是解题关键.7.【答案】B【解析】解:√(−π)2=π,故选:B.根据二次根式的性质进行化简即可.本题考查的是二次根式的化简,掌握二次根式的性质:√a2=|a|是解题的关键.8.【答案】B【解析】【分析】本题考查了角平分线的性质.因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选B.9.【答案】B【解析】【分析】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9−9<4,所以能构成三角形,周长是:9+9+4=22.故选B.10.【答案】B【解析】【分析】此题主要考查了分式方程的应用,正确找出等量关系是解题关键.根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【解答】解:设第一批购进x件衬衫,则所列方程为:10000 x +10=14700(1+40%)x.故选B.11.【答案】A【解析】【分析】本题考查了直角三角形中勾股定理的运用,本题中根据勾股定理求斜边长的平方是解本题的关键.要求正方形A的面积,则要知它的边长,而A正方形的边长是直角三角形的一直角边,利用另外两正方形的面积可求得该直角三角形的斜边和另一直角边,再用勾股定理可解.【解答】解:根据题意得:EG2=1000,FG2=640,根据勾股定理得:EF2=EG2−FG2=1000−640=360,则正方形A的面积为360,故选A.12.【答案】C【解析】【分析】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的条件,属于基础题,中考常考题型.结论DE=AB,只要证明△ACB≌△ECD即可.【解答】解:∵∠AFD=∠BFC,∠1=∠2,∴∠D=∠B,∵∠2=∠3,∴∠ECD=∠ACB,在△ACB和△ECD中,{∠B=∠D∠ACB=∠ECDAC=EC,∴△ACB≌△ECD,∴DE=AB=6.故选C.13.【答案】C【解析】解:过点P作PE⊥BC于E,∵AB//CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选:C.过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD= PE,那么PE=PA=PD,又AD=8,进而求出PE=4.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.14.【答案】D【解析】【分析】本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.易证∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC 与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.【解答】解:①当0≤t<4时,点M在AC上,点N在BC上,如图①,此时有AM=2t,BN=3t,AC=8,BC=15.当MC=NC即8−2t=15−3t,解得t=7,不合题意舍去;②当4≤t<5时,点M在BC上,点N也在BC上,如图②,若MC=NC,则点M与点N重合,即2t−8=15−3t,解得t=4.6;③当5≤t<23时,点M在BC上,点N在AC上,如图③,3当MC=NC即2t−8=3t−15,解得t=7;≤t⩽11.5时,点N停在点A处,点M在BC上,如图④,④当233当MC=NC即2t−8=8,解得t=8;综上所述:当t等于4.6或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C 为顶点的三角形全等.故选D.15.【答案】3√3【解析】【分析】本题考查了算术平方根,根据平方求出算术平方根,注意一个正数的算术平方根只有一个正数,【解答】解:√27=3√3.故答案为3√3.16.【答案】±59【解析】【试题解析】解:∵(±59)2=2581,∴2581的平方根是:±59. 故答案是:±59.根据平方根的定义即可求解.本题考查了平方根的定义,理解定义是关键.17.【答案】1【解析】解:∵1<√2<2,1.42=1.96,1.52=2.25,∴1.4<√2<1.5,∴0<2−√2<1,即与2−√2最接近的整数是1,故答案为:1.先估算√2的范围,即可得出答案.本题考查了估算无理数的大小的应用,能估算出√2的范围是解此题的关键. 18.【答案】5√2【解析】【分析】此题考查了二次根式的加减运算,属于基础题,掌握二次根式的化简及同类二次根式的合并是关键.先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=4√2+√2=5√2.故答案为5√2.19.【答案】72°【解析】【分析】本题考查了线段垂直平分线,等腰三角形性质,三角形外角的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.ED是AC的垂直平分线,可得AE=EC,∠ECD=∠A=36°,再根据三角形外角的性质即可求解.【解答】解:∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°,∴∠BEC=∠A+∠ECD=36°+36°=72°;故答案为:72°.20.【答案】1【解析】【分析】本题考查的是等边三角形的性质、直角三角形的性质;熟记等边三角形的性质和含30°角的直角三角形的性质是解决问题的关键.先根据△ABC是等边三角形,D是BC边的中点得出CD的长和∠C的度数,再根据DE⊥AC可知∠DEC=90°,故可得出∠EDC的度数,根据直角三角形的性质即可得到结论.【解答】解:∵△ABC是等边三角形,D是BC边的中点,BC=4cm,BC=2cm,∠C=60°.∴CD=12∵DE⊥AC,∴∠DEC=90°,∴∠EDC=30°,∴CE=1CD=1cm;2故答案为1.21.【答案】解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD=√DA2−AC2=√2002−1602=120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).【解析】(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC> 200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.22.【答案】解:(1)原式=4√2−3√2+√2,2=√2+√22=3√2;2(2)原式=(4√3−3√3)÷√3,=√3÷√3=1.【解析】(1)首先化简二次根式,进而得出答案;(2)首先化简二次根式,进而利用二次根式除法运算法则求出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.23.【答案】如图,P点即为所求.【解析】本题主要考查了复杂作图,正确掌握角平分线的性质是解题关键.直接利用线段垂直平分线以及角平分线的性质得出答案.24.【答案】解:原式=1−a+3a2−9⋅(a−3)2a+3=1−a−3=a+3a+3−a−3a+3=6a+3.【解析】根据分式的混合运算法则计算即可.本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键.25.【答案】解:在△ABC中,∵∠BAC=110°,∴∠B+∠C=180°−110°=70°,∵E、G分别是AB、AC的中点,又∵DE⊥AB,FG⊥AC,∴AD=BD,AF=CF,∴∠BAD=∠B,∠CAF=∠C,∴∠DAF=∠BAC−(∠BAD+∠CAF)=∠BAC−(∠B+∠C)=110°−70°=40°.【解析】本题考查了等腰三角形性质,线段垂直平分线性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线求出AD=BD,AF=CF,推出∠BAD=∠B,∠CAF=∠C,即可求出答案.26.【答案】证明:∵FC//AB,∴∠A=∠ECF,∠ADE=∠F,在△ADE和△CFE中,{∠A=∠ECF ∠ADE=∠F DE=FE,∴△ADE≌△CFE(AAS),∴AD=CF.【解析】根据两直线平行,内错角相等可得∠A=∠ECF,∠ADE=∠F,然后利用“角角边”证明△ADE和△CFE全等,根据全等三角形对应边相等证明即可.本题考查了全等三角形的判定与性质,平行线的性质,比较简单,熟练掌握三角形全等的判定方法是解题的关键.。