概率论与数理统计第四章【精选】

合集下载

概率论与数理统计总结之第四章

概率论与数理统计总结之第四章
协方差及相关系数
量 称为随机变量X与Y的协方差,记为Cov(X,Y),即
Cov(X,Y)=
而 称为随机变量X与Y的相关系数
是一Байду номын сангаас无量纲的量
协方差的性质有:
1. ,a,b是常数
2.
当| |较大时,X,Y线性相关的程度较好,当| |较小时,X,Y线性相关的程度较差,当 =0,称X和Y不相关
若X,Y独立,则其不相关,但若X,Y不相关,并不能说明其独立
方差的几个重要性质:
1.设C是常数,则D(C)=0
2.设X是随机变量,C是常数,则有
3.设X,Y是两个随机变量,则有
特别地,若X,Y相互独立,则有
D(X+Y)=D(X)+D(Y)
4.D(X)=0的充要条件是X以概率1取常数C,即P{X=C}=1,显然这里C=E(X)
定理:(切比雪夫不等式)
设随机变量X具有数学期望E(X)=μ,方差D(X)= ,则对于任意正数 ,不等式 成立
矩、协方差矩阵
设X,Y是随机变量,若 …存在,称它为X的k阶原点矩,简称k阶矩
若 …存在,称它为X的k阶中心矩
若 …存在,称它为X和Y的k+l阶混合矩
若 …存在,称它为X和Y的k+l阶混合中心矩
设n维随机变量 … 的二阶混合中心矩

都存在,则称矩阵
为n维随机变量 … 的协方差矩阵
由于 ,因而上述矩阵是一个对称矩阵
若A,B相互独立,则有E(AB)=E(A)E(B)
3.设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y)
方差
设X是一个随机变量,若 存在,则称 为X的方差,记为D(X)或Var(X),即D(X)=Var(X)=

《概率论与数理统计》第四章考点手册

《概率论与数理统计》第四章考点手册

《概率论与数理统计》第四章 随机变量的数字特征考点33 离散型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是离散型随机变量,概率分布为P {X =x i }=p i ,i =1,2,…。

则∑∞==1)(i i ip x X E 为X 的数学期望(或均值)。

2.常用离散型随机变量的数学期望(1)两点分布:X ∼B(1,p),0<p<1,则E(X)=p 。

(2)二项分布:X ∼B(n,p),其中0<p<1,则E(X)=np 。

(3)泊松分布:X ∼P(λ),其中λ>0,则E(X)=λ。

考点34 连续型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是连续型随机变量,则称⎰∞∞-=dx x f x X E )()(为X 的数学期望。

2. 常用连续型随机变量的数学期望(1)均匀分布若X~U[a,b],即X 服从[a,b]上的均匀分布,则; 21)()(b a dx a b x dx x xf X E b a +=-==⎰⎰+∞∞- (2)指数分布若X 服从参数为λ的指数分布,则 ; /1)(0λλλ⎰+∞-==dx e x X E x 正态分布若X 服从),(2s µN ,则.)(μ=X E考点35 二维随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.二维离散型随机变量的数学期望:设二维离散型随机向量(X,Y)的概率分布为p ij ,i=1,2,⋯,j=1,2,⋯.则:.),()],([11åå¥=¥==i j ij j i p y x g Y X g E2. 二维连续型随机变量的数学期望:设二维连续型随机向量(X,Y)的密度函数为f(x,y),则:. ),(),()],([dxdy y x f y x g Y X g E òò¥¥-¥¥-=考点36 数学期望的性质(★★★一级考点,选择、填空)(1).设C 是常数,则E(C)=C;E(C)=C ×1=C(2).若k 是常数,则E(kX)=kE(X);(3).E(X+Y)=E(X)+E(Y);(4).设X,Y 相互独立,则E(XY)=E(X)E(Y);考点37 方差的概念(★★二级考点,选择、填空)1.方差的概念:设X 是一随机变量,若E [X -E (X )]2 存在,则称其为X 的方差,记成Var(X ),即Var(X )=E {[X -E (X )]2} 并称)(X Var 为X 的标准差。

概率论与数理统计(经管类)第四章课后习题答案word档

概率论与数理统计(经管类)第四章课后习题答案word档

习题4.11.设随机变量X 的概率密度为(1) (2)f(x)={2x, 0≤x ≤1,0, 其他; f(x)=12e -|x |, -∞<x <+∞求E(X)解: (1)E (X )=∫+∞-∞xf (x )dx = ∫10x ∙2xdx =2∙x 32|10=23(2)E (X )=∫+∞-∞xf (x )dx =∫+∞-∞x ∙12e -|x |=02.设连续型随机变量X 的分布函数为F (x )={0, x <-1,a +b ∙arcsinx, -1≤x <1,1, x ≥1.试确定常数a,b,并求E(X).解:(1)f (x )=F '(x )={b 1-x 2, -1≤x <10, 其他∫+∞-∞f (x )dx =∫1-1b 1-x 2dx =b ∙arcsinx|1-1=bπ=1, 即b =1π又因当时-1≤x <1F (X )=∫X-1f (x )dx =∫x-11π∙11-x 2dx =1π∙arcsinx|x-1=1π∙arcsinx +12, 即a =12(2)E (X )=∫+∞-∞xf (x )dx =∫1-1xπ∙11-x 2=03.设轮船横向摇摆的随机振幅X 的概率密度为f(x)={1σ2e-x 22σ2, x >0,0, x ≤0.求E(X).解:E (X )=∫+∞-∞xf (x )dx =1σ2∫+∞0x ∙e -x 22σ2dx =14.设X 1, X 2,….. X n 独立同分布,均值为,且设,求E(Y).μY =1n ∑n i =1X i 解:E (Y )=E (1n ∑ni =1X i )=1n E (∑ni =1X i )=1n ∙n μ=μ5.设(X,Y)的概率密度为f(x,y)={e -y, 0≤x ≤1,y >0,0, 其他.求E(X+Y).解:E (X +Y )=∫+∞-∞∫+∞-∞(x +y )f (x,y )dxdy =∫+∞0∫10(x +y )e -ydxdy =∫+∞012∙e ‒y +y ∙e ‒y dy =326.设随机变量X 1, X 2相互独立,且X 1, X 2的概率密度分别为f 1(x )={2e -2x, x >0,0, x ≤0,求:f 2(x )={3e -3x, x >0,0, x ≤0,(1)E (2X 1+3X 2); (2)E (2X 1-3X 22); (3)E (X 1X 2解:(1)E (2X 1+3X 2)=2E (X 1)+3E (X 2)=2*12+3*13=2(2)E (2X 1-3X 22)==2E (X 1)-3E (X 22)=1-3*∫+∞x 23e -3xdx =1-3*[-∫+∞x 2d(e -3x)]=1-3*[-x 2∙e -3x|+∞0+∫+∞e -3xdx 2]=1-3*[0+∫+∞e -3x∙2xdx]=1-3*[23∫+∞e -3x∙3xdx ]=1-3*23*13=13(3)E (X 1X 2)=E (X 1)E (X 2)=12*13=167.求E(X).解:E (X )=∑i ∑j x i p ij =0*0.1+0*0.3+1*0.2+1*0.1+2*0.1+2*0.2=0.98.设随机变量X 的概率密度为且E(X)=0.75,求常数c 和.f(x)={cx α, 0≤x ≤1,0, 其他.α解:E (X )=∫+∞-∞xf (x )dx =∫10x ∙cx αdx =0.75习题4.21.设离散型随机变量X 的分布律为X -100.512P0.10.50.10.10.2求E (X ),E (X 2),D (X ).解: E (X )=(-1)*0.1+0*0.5+0.5*0.1+1*0.1+2*0.2=0.45E (X 2)=(-1)2*0.1+0*0.5+(0.5)2*0.1+12*0.1+22*0.2=1.025D (X )=(-1-0.45)2*0.1+(0-0.45)2*0.5+(0.5-0.45)2*0.1+(1-0.45)22.盒中有5个球,其中有3个白球,2个黑球,从中任取两个球,求白球数X 的期望和方差.解: X 的可能取值为0,1,2P {X =0}=C 22C 25=0.1P {X =1}=C 13∙C 12C 25=0.6P {X =2}=C 23C 25=0.3E (X )=0∗0.1+1∗0.6+2∗0.3=1.2D (X )=(0‒1.2)2∗0.1+(1‒1.2)2∗0.6+(2‒1.2)2∗0.3=0.144+0.024+0.192=0.363.设随机变量X,Y 相互独立,他们的概率密度分别为f X (x )={2e ‒2x, x >0,0, x ≤0,f Y(y )={4, 0<y ≤14,0, 其他,求D(X+Y).解:D (X +Y )=D (X )+D (Y )=122+(14‒0)212=491924.设随机变量X 的概率密度为f X (x )=12e ‒|x |, ‒∞<x <+∞,求D(X)解:E (X )=∫+∞‒∞x2e ‒|x |dx =0E(X2)=∫+∞‒∞x 22e‒|x|dx=2∫+∞‒∞x22e‒x=∫+∞‒∞x2e‒x=2=D(X) E(X2)‒[E(X)]2=25.设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,求D(X-Y).解: D(X‒Y)=D(X)+D(Y)=1+2=36.若连续型随机变量X的概率密度为f(x)={ax2+bx+c, 0<x<1,0, 其他,且E(X)=0.5,D(X)=0.15.求常数a,b,c.解:E(X)=∫10x(ax2+bx+c)dx=a4+b3+c2=0.5E(X2)=∫10x2(ax2+bx+c)dx=a5+b4+c3=0.15+(0.5)2=0.4∫+∞‒∞f(x)dx=∫10(ax2+bx+c)dx=a3+b2+c=1解得a=12,b=-12,c=3.习题4.31.设两个随机变量X,Y相互独立,方差分别为4和2,则随机变量3X-2Y的方差是 D .A. 8B. 16C. 28D. 442.设二维随机变量(X,Y)的概率密度为f(x,y)={18(x+y), 0≤x≤2,0≤y≤2,0, 其他求Cov(X,Y).解:E(X)=∫20[∫20x8(x+y)dy]dx=∫20(x28∙y+x8∙y22)|20d x=76E(Y)=∫20[∫20y8(x+y)dx]dy=76E(XY)=∫20[∫20xy8(x+y)dy]dx=43Cov(X,Y)=E(XY)‒E(X)E(Y)=43‒76∗76=‒1363.设二维随机变量(X,Y)的概率密度为f(x,y)={ye‒(x+y), x>0,y>0,0, 其他求X与Y的相关系数ρxy.解:E(X)=∫+∞0(∫+∞0xye‒(x+y)dy)dx=1E(Y)=∫+∞0(∫+∞0y2e‒(x+y)dx)dy=∫+∞0(∫+∞0y2e‒x e‒y dx)dy=∫+∞0y2e‒y dy=‒∫+∞0y2d(e‒y)=‒y2e‒y|+∞0+∫+∞0e‒y d(y2)=0+∫+∞0e‒y∙2ydy=2∫+∞0e‒y∙ydy=2E(XY)=∫+∞0(∫+∞0xy2e‒(x+y)dy)dx=2Cov(X,Y)=E(XY)‒E(X)E(Y)=2‒2∗1=0所以ρxy=Cov(X,Y)D(X)D(Y)=04.设二维随机变量(X,Y)服从二维正态分布,且E(X)=0, E(Y)=0, D(X)=16, D(Y)=25, Cov(X,Y)=12,求(X,Y)的联合概率密度函数f(x,y).布解:f (x,y )=12πσ1σ21‒ρ2e‒12(1‒ρ2){(x ‒μ1)2σ12‒2ρ(x ‒μ1)(y ‒μ2)σ1σ2+(y ‒μ2)2σ22}∵E (X )=0,E (Y )=0∴μ1=0, μ2=0,∵D(X)=16, D(Y)=25∴σ1=4,σ2=5∵Cov(X,Y)=12∴ρ=Cov (X,Y )D(X)D(Y)=124∗5=35∴f (x,y )=132πe‒2532(x 216‒3xy 50+y 225)5. 证明D(X-Y)=D(X)+D(Y)-2Cov(X,Y).证:D (X ‒Y )=E [X ‒Y ‒E (X ‒Y )]2=E [(X ‒E (X ))‒(Y ‒E (Y ))]2=E [(X ‒E (X ))2]‒2E [X ‒E (X )]∙E [Y ‒E (Y )]+E [(Y ‒E (Y ))2]=D (X )+D (Y )‒2Cov(X,Y)6. 设(X,Y)的协方差矩阵为,求X 与Y 的相关系数ρxy.C =(4‒3‒39)解:∵C =(4‒3‒39)∴Cov (X,Y )=‒3, D (X )=4,D (Y )=9∴ρxy =Cov (X,Y )D(X)D(Y)=‒32∗3=‒12自测题4一、 选择题1.设随机变量X 服从参数为0.5的指数分布,则下列各项中正确的是 B .A. E(X)=0.5, D(X)=0.25 B. E(X)=2, D(X)=4C. E(X)=0.5, D(X)=4 D. E(X)=2, D(X)=0.25解: 指数分布的E (X )=1λ, D (X )=1λ22. 设随机变量X,Y 相互独立,且X~B(16,0.5),Y 服从参数为9的泊松分布,则D(X-2Y+1)= C.A.-14B. 13C. 40D. 41解: D (X )=npq =16∗0.5∗0.5=4, D (Y )=λ=9D (X ‒2Y +1)=D (X )+4D (Y )+D (1)=4+4∗9+0=403. 已知D(X)=25,D(Y)=1, ρxy=0.4, 则D(X-Y)= B .A.6B. 22C. 30D. 464. 设(X,Y)为二维连续随机变量,则X 与Y 不相关的充分必要条件是 C .A. X 与Y 相互独立B. E(X+Y)=E(X)+E(Y)C. E(XY)= E(X)E(Y)D. (X,Y)~N()μ1,μ2,σ12,σ22,0解: ∵X 与Y 不相关∴ρxy =0, ∴Cov (X,Y )=0∴E(XY)= E(X)E(Y)5.设二维随机变量(X,Y)~N(),则Cov(X,Y)= B .1,1,4,9,12A. B. 3C. 18D. 3612解: ∵ρxy =12=Cov (X,Y )D(X)D(Y)=Cov (X,Y )2*3, ∴Cov (X,Y )=36.已知随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)= A .A. 3B. 6C. 10D. 12解: ∵X~U (‒1,3),Y~U (2,4)∴E (X )=a +b 2=‒1+32=1, E (Y )=2+42=3E (XY )= E (X )E (Y )=1∗3=37.设二维随机变量(X,Y)~N(),Ø(x)为标准正态分布函数,则下列结论中错误的是 C .0,0,1,1,0A. X 与Y 都服从N(0,1)正态分布 B. X 与Y 相互独立C. Cov(X,Y)=1 D. (X,Y)的分布函数是Φ(x)∙Φ(y)二、 填空题1.若二维随机变量(X,Y)~N(),且X 与Y 相互独立,则ρ= 0 .μ1,μ2,σ12,σ22,0解:Cov(X,Y)=0∵2.设随机变量X 的分布律为 3 .X -1012P0.10.20.30.4令Y=2X+1,则E(Y)= 3 .解: E(2X+1)=(2*-1+1)*0.1+(2*0+1)*0.2+(2*1+1)*0.3+(2*2+1)*0.4=33.已知随机变量X 服从泊松分布,且D(X)=1,则P{X=1}= .e ‒1解: ∵ D (X )=λ=1∴P {X =1}=λ1e ‒λ1!=e ‒14.设随机变量X 与Y 相互独立,且D(X)= D(Y)=1,则D(X-Y) =2 .5.已知随机变量X 服从参数为2的泊松分布,= 6.E (X 2)解: ∵E (X )=λ=2,D (X )=λ=2,∴ E (X 2)=E 2(X )+D (X )=4+2=66.设X为随机变量,且E(X)=2, D(X)=4,则= 8 .E(X2)7.已知随机变量X的分布函数为F(x)={0, x<0x4, 0≤x<41, x≥4则E(X) = 2 .解: f(x)=F'''"(x)={14, 0≤x<40, 其他E(X)=∫40x4dx=08.设随机变量X与Y相互独立,且D(X)=2, D(Y)=1,则D(X-2Y+3)= 6 .三、设随机变量X的概率密度函数为f(x)={32x2, ‒1≤x≤1,0, 其他试求: (1)E(X), D(X); (2).P{|X‒E(X)|<2D(X)}解:(1) E(X)=∫1‒132x3dx=0D(X)=E(X2)‒E2(X)=∫1‒132x4=32∙x55|1‒1=35(2)P{|X‒E(X)|<2D(X)}=P{|X|<65}=∫65‒65f(x)dx=∫1‒132x2dx=1四、设随机变量X的概率密度为f(x)={x 0≤x≤12‒x, 1≤x<20, 其他试求: (1)E(X), D(X); (2),其中n为正整数.E(X n)解:(1)E(X)=∫1x2dx+∫21x(2‒x)dx=13+13=1D(X)=E(X2)‒E2(X)=∫10x3dx+∫21x2(2‒x)‒1=14+(143‒154)‒1=16(2)E(X n)=∫1x n+1dx+∫21x n(2‒x)=2(2n+1‒1)(n+1)(n+2)五、 设随机变量X 1与X 2相互独立,且X 1~N(), X 2~N().令X= X 1+X 2, Y= X 1-X 2.μ,σ2μ,σ2求: (1)D(X), D(Y); (2)X 与Y 的相关系数ρxy.解:(1)D (X )=D (X 1+X 2)=D (X 1)+D (X 2)=σ2+σ2=2σ2D (Y )=D (X 1‒X 2)=D (X 1)+D (X 2)=2σ2(2) Cov (X,Y )=E (XY )‒E (X )E (Y )=0ρxy =Cov (X,Y )D(X)D(Y)=0六、 设随机变量X 的概率密度为f (x )={2e ‒2x, x >0, 0, x ≤0.(1)求E(X),D(X);(2)令,求Y 的概率密度f Y (y).Y =X ‒E(X)D(X)解:(1)E (X )=∫+∞2xe ‒2x dx =12D (X )=E (X 2)‒E 2(X )=∫+∞02x 2e ‒2x dx ‒14=12‒14=14(2)Y =X ‒E(X)D(X)=X ‒1212=2X ‒1由Y=2X-1得, X’=X =Y +1212=∴f Y (y )={2e‒2(Y +12)∙12,Y +12>00, Y +12≤0{e ‒(y +1), y >‒10, y ≤‒1七、 设二维随机变量(X,Y)的概率密度为f (x,y )={2, 0≤x≤1,0≤y ≤x,0, 其他求: (1)E(X+Y); (2)E(XY); (3). P{X +Y ≤1}解:(1)E (X +Y )=∫10dx ∫x 02(x +y )dy =∫102x 2+x 2dx =1(2)E(XY)=∫1dx∫x2xy dy=∫1x3dx=14(3) P{X+Y≤1}=∬x+y≤1f(x,y)dxdy=∫12(∫1‒yy2dx)dy=∫122‒4ydy=12八、设随机变量X的分布律为X-101P 131313记Y=X2,求: (1)D(X), D(Y); (2) ρxy.解:(1)E(X)=(‒1)∗13+0∗13+1∗13=0D(X)=(‒1‒0)2∗13+(0‒0)2∗13+(1‒0)2∗13=23 E(Y)=(‒1)2∗13+0∗13+12∗13=23D(Y)=(1‒23)2∗13+(0‒23)2∗13+(1‒23)2∗13=29E(XY)=(0∙‒1)∙9+(1∙‒1)∙29+(0∙0)∙19+(0∙1)∙29+(1∙0)∙19+(1∙1)∙29=0Cov(X,Y)=E(XY)‒E(X)E(Y)=0‒0∗23=0ρxy=Cov(X,Y)D(X)D(Y)=0。

概率论与数理统计第四章

概率论与数理统计第四章

上述定理还可以推广到两个或两个以上随 机变量的函数的情况。
02
该公式的重要性在于: 当我们求E[g(X)]时, 不必知道g(X)的分布,而只需知道X的分布就可以了. 这给求随机变量函数的期望带来很大方便.
01
例6
例 7
解:
设(X,Y)在区域A上服从均匀分布,其中A为x轴,y轴和直线x+y+1=0所围成的区域。 求EX,E(-3X+2Y),EXY。
例5
若将这两个电子装置串联连接组成整机,求整机
寿命(以小时计) N 的数学期望.
的分布函数为
三、随机变量函数的数学期望
1. 问题的提出:
设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?
一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.
若设
i=1,2,…,n
则 是n次试验中“成功” 的次数

X~B(n,p),
“成功” 次数 .
则X表示n重努里试验中的
于是
i=1,2,…,n
由于X1,X2,…, Xn 相互独立
= np(1- p)
E(Xi)= p,
D(Xi)=
p(1- p) ,
例7

1
展开
2
证:D(X)=E[X-E(X)]2
3
=E{X2-2XE(X)+[E(X)]2}
4
=E(X2)-2[E(X)]2+[E(X)]2
5
=E(X2)-[E(X)]2

概率论与数理统计第四章

概率论与数理统计第四章

DX=Var(X)= E(X EX )2 。 DX 称为标准差。
DX E( X EX )2 (xi EX )2 pi , 离散型。
i 1
DX (x EX )2 f (x)dx ,
连续型。
II)方差的性质
DX E( X EX )2
1) DX0,若 C 是常数,则 DC=0
2) D(CX ) C 2DX
n!
p k 1q nk
k 1
n(n 1)
p2
(k
n
1)!(n
k )!
(n
2)!
k1 (k 1)!(n k)!
p q k 2 n2(k 2) np
k2 (k 2)!(n 2 (k 2))!
n(n 1) p 2 ( p q) n2 np n 2 p 2 np 2 np
DX EX 2 (EX )2 n2 p2 n p2 np n2 p2 np(1 p) npq
第四章 随机变量的数字特征
§1 数学期望与方差 §2 协方差、相关系数与矩
1、数学期望定义
(1) 离散型
设离散型随机变量 X 的分布律为: P{X xk } pk , k 1,2, ,
若级数 xk pk 绝对收敛, i 1
则称级数 xk pk 的和为随机变量 X 的数学期望。 i 1
记为 EX,即 EX= xk pk 。 k 1
3) D(aX bY ) a2DX b2DY 2abE( X EX )(Y EY ) ,
a,b 是常数。若 X,Y 独立, 则 D(aX bY ) a2DX b2DY
证:D(aX bY) E[aX bY E(aX bY)]2
E[a(X EX ) b(Y EY)]2
方法2:

概率论与数理统计第4章

概率论与数理统计第4章
方差
E(X ) np E(X 2 ) n(n 1) p2 np
D( X ) E( X 2 ) [E( X )]2 np(1 p) npq
If X ~ B ( n, p ) , then D ( X ) = n p ( 1- p )
其中 q 1- p
28
14
2019-10-17
泊松分布的方差
Y sin X 的数学期望。

E(Y
)
E
sin
X
sin
x
f
x
dx
因为
f
x
1 2
,
0 x 2;
0,
其它。
所以 E sin X 2 1 sin xdx 0
0 2
10
5
2019-10-17
数学期望的性质
. E(C) C
C 为常数
. E(CX ) CE(X )
. E(X Y ) E(X ) E(Y )
34
17
2019-10-17
例 某动物的寿命 X (年) 服从指数分布,其中参数 =0.1,求这种动物的平均寿命及标准差.
解 因为 X 服从指数分布,且 0.1
E( X ) 1 1 10, 0.1
D( X )
1 2
1 0.12
100
D(X ) 100 10
所以这种动物的平均寿命为10年,标准差为10年.
2019-10-17
第4章 随机变量的数字特征
数学期望 方差
1
第1节 随机变量的数学期望
2
1
2019-10-17
数学期望E(X)
Mathematical Expectation 离散型随机变量的数学期望

《概率论与数理统计》第04章习题解答

《概率论与数理统计》第04章习题解答

第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。

概率论与数理统计第四章

概率论与数理统计第四章

)
(
)
(
)
,
(
Y
D
X
Dபைடு நூலகம்
Y
X
Cov
xy
=
r
=4[E(WV)]2-4E(W2)×E(V2)≤0
01
得到[E(WV)]2≤E(W2)×E(V2). →(8)式得到证明.
02
设W=X-E(X),V=Y-E(Y),那么
03
其判别式
由(9)式知, |ρ xy|=1 等价于 [E(WV)]2=E(W2)E(V2). 即 g(t)= E[tW-V)2] =t2E(W2)-2tE(WV)+E(V2) =0 (10) 由于 E[X-E(X)]=E(x)-E(X) =0, E[Y-E(Y)]=E(Y)-E(Y) =0.故 E(tW-V)=tE(W)-E(V)=tE[X-E(X)]-E[Y-E(Y)]=0 所以 D(tW-V)=E{[tW-V-E(tW-V)]2}=E[(tW-V)2]=0 (11) 由于数学期望为0,方差也为0,即(11)式成立的充分必要条件是 P{tW-V=0}=1
随机变量X的数学期望是随机变量的平均数.它是将随机变量 x及它所取的数和相应频率的乘积和.
=
(1)
)
2
3
(
)
(
-
=
ò
µ
µ
-
dx
x
x
E
j
x
可见均匀分布的数学期望为区间的中值.
例2 计算在区间[a,b]上服从均匀分布的随机变量 的数学期望
泊松分布的数学期望和方差都等于参数λ.
其他
02
f(x)=
01
(4-6)
03
(4)指数分布

概率论与数理统计 第4章

概率论与数理统计 第4章

dx 令t
t2 2
x

,得
E( X )
1 2



( t )e
dt
1-91
31
1 E( X ) x e 2
( x )2 2 2
dx 令t
t2 2
x

,得
E( X )
1 2



( t )e
t2 2

从而
的概率密度为:
1-91
21
故所求数学期望分别为
1-91
22
三.数学期望的性质
性质1: 设 C 为常数,则 性质2: 设 C 为常数,X 为随机变量, 则有 性质3: 设 X , Y 为任意两个随机变量, 则有 为 n 个随机变量,
推论1 设
为常数,则
1-91
23
性质4 设X 和Y 是相互独立的随机变量,则有
证: 因为 X 和 Y 相互独立,所以 于是
推广:
1-91 24
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值 解 引入随机变量
显然有
1-91
25
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值
1-91
18
例5. 设某公共汽车站于每小时的10分, 50分发车, 乘客在每小时内任一时刻到达车站是随机的。求 乘客到达车站等车时间的数学期望。
解: 设T 为乘客到达车站的时刻, 则
其概率密度为
设Y 为乘客等车时间,则
1-91
19
已知
1-91

(完整word版)概率论与数理统计教案第四章(word文档良心出品)

(完整word版)概率论与数理统计教案第四章(word文档良心出品)
作业布置
课后习题微积分标准化作业
大纲要求
理解随机变量方差的定义及方差的概率含义
熟悉方差的性质
掌握随机变量的方差计算公式
熟练常用随机变量的方差
教 学 基 本 内 容
一、基本概念:
1.方差和标准差的定义
设是一个随机变量,如果存在,则称
为随机变量 的方差。称方差 的算术平方根
为随机变量 的标准差。
二、方差的性质
授课序号02
教 学 基 本 指 标
教学课题
第四章第二节方差和标准差
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
方差的定义及求解,方差的性质
教学难点
方差的性质及其与期望性质的比较
参考教材
高教版、浙大版《概率论与梳理统计》武汉大学同济大学 《微积分学习指导》
安玉伟等《高等数学定理 方法 问题》
2.变异系数
随机变量的数学期望, 方差存在, 那么称
为随机变量 的变异系数。
3. 连续型随机变量的分位数和中位数
设连续型随机变量的分布函数为, 密度函数为,, 则称为的分布的分位数。特别地, 当时, 称为中位数。
4、众数
当为离散型随机变量时, 假定的分布律为。如果存在实数, 使得。那么, 称为(或所服从的分布)的众数。
90
100
乙班分数
40
60
70
80
90
100
人数
2
9
18
9
2
人数
3
1
8
13
8
7
频率
频率
甲、乙两班概率统计的平均成绩是一样的,现选出一个班级参加比赛,应选哪个班级?

概率论与数理统计教程第四章

概率论与数理统计教程第四章

应用之例: 正态随机数的产生; 误差分析
第四章 大数定律与中心极限定理
第22页
例4.4.1 每袋味精的净重为随机变量,平均重量为 100克,标准差为10克. 一箱内装200袋味精,求一 箱味精的净重大于20500克的概率?
解: 设箱中第 i 袋味精的净重为 Xi, 则Xi 独立同分布, 且 E(Xi)=100,Var(Xi) =100,
则{Xn}与{Yn}的加、减、乘、除 依概率收敛到 a 与 b 的加、减、乘、除.
第四章 大数定律与中心极限定理
4.3.2 按分布收敛、弱收敛
第16页
对分布函数列 {Fn(x)}而言,点点收敛要求太高.
定义4.3.2 若在 F(x) 的连续点上都有
nlim Fn(x) F(x) 则称{Fn(x)} 弱收敛于 F(x) ,记为
第31页
4.4.4 独立不同分布下的中心极限定理
定理4.4.3ቤተ መጻሕፍቲ ባይዱ林德贝格中心极限定理
设{Xn }为独立随机变量序列,若任对 > 0,有
1 n
lim
B n
2
2 n i1
xi Bn (x i )2 pi (x)dx 0
林德贝格条件

lim
P
1
n Bn
n
(Xi
i 1
i )
y
(
y)
第8页
4.2.2 常用的几个大数定律
大数定律一般形式:
若随机变量序列{Xn}满足:
nlim
P
1 n
n
i 1
Xi
1 n
n
E(Xi)
i 1
1
则称{Xn} 服从大数定律.
第四章 大数定律与中心极限定理

概率论与数理统计总结之第四章

概率论与数理统计总结之第四章

概率论与数理统计总结之第四章第四章概率论与数理统计总结第四章是概率论与数理统计中的重要章节,主要介绍了概率分布以及随机变量的性质和应用。

本章内容相对较为复杂,需要掌握一定的数学基础知识,但是只要我们认真学习并进行实践,就能够掌握其中的核心概念和方法。

本章的重点内容包括:离散型随机变量及其概率分布、连续型随机变量及其概率密度函数、随机变量的函数分布、两个随机变量的联合分布、随机变量的独立性等。

首先,我们需要了解离散型随机变量及其概率分布。

离散型随机变量是一种取有限或可数个数值的随机变量,其概率分布可以通过概率分布列或概率质量函数进行描述。

常见的离散型随机变量有二项分布、泊松分布等。

我们需要掌握这些分布的定义、性质以及应用,能够计算其均值、方差以及分布函数等。

接着,我们学习了连续型随机变量及其概率密度函数。

连续型随机变量是一种取连续数值的随机变量,其概率分布可以通过概率密度函数进行描述。

常见的连续型随机变量有均匀分布、正态分布等。

我们需要了解这些分布的定义、性质以及应用,能够计算其期望、方差以及分位数等。

随后,我们学习了随机变量的函数分布。

通过对随机变量进行函数变换,可以得到新的随机变量,其概率分布可以通过原始随机变量的概率分布进行推导。

我们需要了解函数分布的计算方法,能够根据随机变量的分布函数和概率密度函数计算新的随机变量的分布函数和概率密度函数。

然后,我们学习了两个随机变量的联合分布。

对于两个随机变量,我们可以通过联合分布来描述它们的联合概率分布。

对于离散型随机变量,我们可以通过联合分布列来描述;对于连续型随机变量,我们可以通过联合概率密度函数来描述。

我们需要掌握联合概率分布的计算方法,能够计算两个随机变量的联合概率、边缘概率以及条件概率等。

最后,我们学习了随机变量的独立性。

当两个随机变量的联合概率分布可以通过各自的边缘概率分布表示时,我们称它们是独立的。

我们需要了解独立性的定义和性质,能够判断两个随机变量是否独立,并能够计算独立随机变量的联合概率分布。

概率论与数理统计第四章数学期望

概率论与数理统计第四章数学期望
定义1 设X是离散型随机变量,它的分布律是:
如果 | xk | pk 有限,定义X的数学期望
k 1

P(X=xk)=pk , k=1,2,…

E ( X ) xk pk
k 1
也就是说,离散型随机变量的数学期望是一个 绝对收敛的级数的和.
分赌本问题 A 期望所得的赌金即为 X 的数学期望
因此彩票发行单位发行 10 万张彩票的创收利 润为
击中环数 概率 击中环数 概率 8 9 10
0 . 3 0 .1 0 . 6
8 9 10
乙射手
0 .2 0 .5 0 .3
试问哪个射手技术较好?
解 设甲、乙射手射中的环数分别为 X 1 , X 2 . 甲射手
击中环数 概率 8 9 10
0 . 3 0 .1 0 . 6
E ( X 1 ) 8 0.3 9 0.1 10 0.6 9.3(环),
200
即为 X 的可能值与其概率之积的累加.
引例2 射击问题 设某射击手在同样的条件下, 瞄准靶子相继射击90次,(命中的 环数是一个随机变量).射中次数 记录如下 命中环数 k 0 1 2 3
命中次数 nk
2 13 15
4 20
5
10
30
2 13 15 nk 10 20 30 频率 90 90 90 n 90 90 90 试问:该射手每次射击平均命中靶多少环?
1 3 200 0 4 4
50(元).
若设随机变量 X 为:在 A 胜2局 B 胜1局 的前提下, 继续赌下去 A 最终所得的赌金.
0 3 1 其概率分别为: 4 4 因而A期望所得的赌金即为X的 “期望”值, 3 1 200 0 150(元). 等于 4 4

概率论与数理统计答案第四章

概率论与数理统计答案第四章

概率论与数理统计答案第四章第四章 大数定律与中心极限定理4.1 设)(x D 为退化分布:⎩⎨⎧≤>=0001)(x x x D讨论下列分布函数列的极限是否仍是分布函数?,2,1},01({)3()};1({)2()};({)1(=-++n n x D n x D n x D 其中解:(1)(2)不是;(3)是。

4.2 设分布函数)(x F n 如下定义:⎪⎩⎪⎨⎧>≤<-+-≤=nx nx n n nx n x x F n 120)(问)(lim )(x F x F n n ∞→=是分布函数吗?解:不是。

4.3设分布函数列)}({x F n 弱收敛于分布函数)(x F ,且)(x F 为连续函数,则)}({x F n 在),(∞-∞上一致收敛于)(x F 。

证:对任意的0>ε,取M 充分大,使有M x x F M x x F -≤∀<≥∀<-,)(;,)(1εε对上述取定的M ,因为)(x F 在],[M M -上一致连续,故可取它的k 分点:Mx x x M x k k =<<<<-=-121 ,使有ki x F x F i i <≤<-+1,)()(1ε,再令∞=-∞=+10,k x x ,则有10,)()(1+<≤<-+k i x F x F i i ε (1)这时存在N ,使得当N n >时有10,|)()(|+≤≤<-k i x F x F i i n ε (2)成立,对任意的),(∞-∞∈x ,必存在某个)0(k i i ≤≤,使得),(1+∈i i x x x ,由(2)知当N n >时有ε+<≤++)()()(11i i n n x F x F x F (3)ε->≥)()()(i i n n x F x F x F (4)由(1),(3),(4)可得εεε2)()()()()()(11<+-≤+-<-++i i i n x F x F x F x F x F x F , εεε2)()()()()()(1->--≥-->-+i i i n x F x F x F x F x F x F ,即有ε2)()(<-x F x F n 成立,结论得证。

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第(T 1)年的累计净现金流量 的绝对值
150
TP T 1

第T年的净现金流量
81
8
150
t
0
12 3
4
5
6 78 9
1、现金流 出
10000
500
300
2、现金流入
700 800 900 1200 1800 2300 3300 4000 5000
3、净现金流 量(2-1)
累计净 现金流量
3、追加投资回收期(不考虑资金时间价值)
定义:又称差额投资回收期、追加投资回收期(一 般在产出相等条件下),是指用投资大的方案所节 约的年经营成本来偿还其多花的追加投资(或差额 投资)所需要的年限。
(2)计算公式: R NB/ K
K—投资总额;R—投资收益率;NB—可以是年利润额(年利税额) 年利润总额=年销售收入-年产品销售税金及附加-年总成本费用 年利税总额=年销售收入-年总成本费用=年利润额+年销售税金及附加
(3)判别标准
设基准投资收益率为Rb: R≥Rb 项目可以考虑接受 若R<Rb 则项目应拒绝
-10000 -10000
200
-9800
500 900 1200 1800 2300 3300 4000 -9300 -8400 -7200 -5400 -3100 200 4200
5000 9200
3100 TP 7 1 3300 6.94
③判别标准
若Tp≤Tb 可以接受
Tp>Tb 应拒绝
年份
01
2345 6
7
8 9 10 合计
1.建设投资 180 240 80
500
2.流动资金
250
250
现 金 流
3.总投资 (1+2)
量 4.收入
180 240
330 300 400 500 500
750 500 500 500 500 3700
情 5.支出(不 况 含投资)
250 300 350 350 350 350 350 350 2650
※ 本章要求
(1)熟悉静态、动态经济效果评价指标的含义、特点; (2)掌握静态、动态经济效果评价指标计算方法和评价准则; (3)掌握不同类型投资方案适用的评价指标和方法。
※ 本章重点
(1)投资回收期的概念和计算 (2)净现值和净年值的概念和计算 (3)基准收益率的概念和确定 (4)净现值与收益率的关系 (5)内部收益率的含义和计算 (6)互斥方案的经济评价方法
第四章 经济效果评价方法
按是否考虑资金的时间价值,经济效果评价指标分为静态评价 指标和动态评价指标。
不考虑资金时间价值的评价指标称静态评价指标;考虑资金时 间价值的评价指标称动态评价指标。
静态评价指标主要用于技术经济数据不完备和不精确的项目初 选阶段。
动态评价指标则用于项目最后决策前的可行性研究阶段。
※ 本章难点
(1)净现值与收益率的关系 (2)内部收益率的含义和计算 (3)互斥方案的经济评价方法
本章主要内容
经济效果评价指标(动态、静态) 运输项目方案评价与决策
§1 经济效果评价指标
投资收益率
静态评价指标
静态投资 回收期
项目评价指标
动态评价指标
内部收益率 净现值 净现值率 净年值 动态投资回收期 费用现值 费用年值
例:某项目经济数据如表所示,假定全部投资中没有借款, 现已知基准投资收益率Rb=15%,试以静态投资效果系数判断 项目取舍。
年份
0 12345 6
1.建设投资 180 240 80
2.流动资金
250
现 3.总投资 金 (1+2) 流 量 4.收入
180 240 330 300 400 500 500
④优点和局限性
优点: 概念清晰,简单易用 该指标不仅在一定程度上反映项目的经济性,而且反映项目 风险大小。
缺点: 它没有反映资金的时间价值 只考虑投资回收期之前的现金流量,故不能全面反映项目在 寿命期内真实的效益,也难于对不同方案的比较选择做出正 确判断。 没有考虑期末残值
方案的投资额相差较大时,比较的结论难以确定
※注:
①行业基准投资收益率和基准投资回收期是按照测算时的财税 价格条件,根据行业代表性企业近几年统计数据。新项目 可行性研究资料,按统一方法估算测算,在取值时考虑了 国家产业政策,行业技术进步,资源劣化,价格结构等因 素后综合研究测定的。
②基准收益率代表行业内投资资金应当获得的最低财务盈利水 平,代表行业内投资资金的边际收益率。
Tb为行业基准投资回收期; Rb为行业基准投资收益率
行业
冶金 煤炭 有色金属 油田开采 机械 化工 纺织 建材
Rb(%)
9~15 10~17 8~15
12 7~12 9~14 8~14 8~10
Tb(年)
8.8~14.3 8~13 9~15 6~8 8~15 9~11 10~13 11~13
故:Tb一般在10年左右
一、静态评价指标
(一)盈利能力分析指标
1、投资回收期
①定义:从项目投建之日起,用项目各年净收入将全部投资回收所需
的期限。
Tp
②计算表达式: (CI CO)t 0(累积净现金流量为0) t 1
计算式:Tp
T
1
上年累积净现金流量 当年净现金流量
T :项目各年累积净现金流量首次为正值或零的年份
Tp被广泛用作项目评价的辅助性指标。
2、投资收益率
(1)概念
投资收益率是项目达到设计生产能力后的一个正常生 产年份的总收益与项目总投资的比率。 ①对生产期内各年的利润总额变化幅度较大的项目,应 计算生产期内年平均利润总额与项目总投资的比率 ; ②由于舍弃了其它一些经济数据,因此一般用于技术经 济数据不完整的初步研究阶段。
情 5.支出(不 况 含投资)
250 300 350 350
6.净收入 (4-5)
50 100 150 150
7 8 9 10 合计 500 250 750
500 500 500 500 3700 350 350 350 350 2650
150 150 150 150 1050
解:由表数据可得: R=150/750=0.2=20% 由于R>Rb=15%,故项目可以考虑接受。
6.净收入 (4-5)
净现金流量
50 100 150 150 150 150 150 150 1050 -180 -240 -330 50 100 150 150 150 150 150 150
累计净现金 流量
-180 -420 -750 -700 -600 -450 -300 -150 0 150 300
相关文档
最新文档