常微分方程第一章绪论
常微分方程第一到四章知识
教材及参考资料
• 教 材: 常微分方程,(第三版)(07年精品教材), 王高雄等 (中山大学), 高教出版社
• 参考书目: [1] 常微分方程, 东北师大数学系编,高教出版社 [2] 常微分方程讲义,王柔怀、伍卓群编,高教出版社 [3] 常微分方程及其应用,周义仓等编,科学出版社 [4] 微分方程定性理论,张芷芬等编,科学出版社。
"
证明: 对y sinx,由于
y y sin x sin x 0
"
y cosx,y sin x 故对x (, ), 有
' "
故y sinx是微分方程 y" y 0在(,)上的一个解 . 同理y cosx是微分方程 y" y 0在(,)上的一个解 .
y sinx,y cosx都是方程 y y 0的特解 .
"
可在通解y c1sinx c2cosx中分别取 c1 1, c2 0, 得到: y sinx, c1 0, c2 1, 得到: y cosx.
定解条件
为了从通解中得到合乎要求的特解,必须根据实 际问题给微分方程附加一定的条件,称为定解条件 求满足定解条件的求解问题称为定解问题 常见的定解条件是初始条件,n阶微分方程的初始 条件是指如下的n个条件:
课程的教学目的与任务
• 通过该课程的学习,使学生正确理解常微分 方程的基本概念,掌握其基本理论和主要方法, 具备良好的解题能力,为学习本学科近代发展理 论和后继课程打下基础。同时通过一些成功利用 微分方程解释实际现象问题的著名范例,培养学 生利用微分方程建立数学模型解决实际问题的能 力,认识到数学来源于实践,又服务于实践,从 而培养学生的数学实践观和加强数学实践能力。 该课程又是数学分析的继续和进一步学习泛函分 析、数理方程等必不可少的基础,对提高学生的 素质,使之更好地适应当前经济建设的需要提供 必备的知识基础。
常微分方程讲解
常微分方程讲解常微分方程第一章绪论在初等数学中,我们已经学过一些代数方程(如元个一次联立方程),并且用它们解决了一些有趣的应用问题,使我们初步体会到方程论(主要是设未知量、列方程和求解方程的方法)对于解决实际问题的重要性。
在解析几何与微积分中,我们又碰到一类不同的方程——方程的个数少于未知量的个数,也就是通常所说的函数方程。
例如,1) (设是自变量,则是未知函数);2),(设是自变量,则和是两个未知函数)。
这类函数方程与开头所说的代数方程相比,在概念上进了一步——确定自变量与因变量之间的函数关系。
利用这类方程可以解决一类新的问题,例如某些轨迹问题和极值问题等。
本课程所要讲述的方程与刚才说的那种函数方程又不一样,它们除了自变量和未知函数外,还包含了未知函数的导数(即微商)。
例如:1)(是自变量,是未知函数,是未知函数对的导数。
)2)(是自变量,是未知函数,是未知函数对的导数等等)。
这种联系着自变量、未知函数以及未知函数的导数(或微分)的关系式,数学上称之为微分方程。
其中未知函数的导数或微分是不可缺少的。
下面我们通过几个具体的例子,粗略地介绍常微分方程的一些物理背景和方程的建立问题,并讲述一些最基本的概念。
第一节微分方程:某些物理过程的数学模型在这一节中列举几个简单的实际例子,说明怎样从实际问题列成微分方程的问题。
例子虽然简单,但是从中能够简明地诱导出微分方程的一些基本概念,成为进一步探讨其他较复杂问题的借鉴。
掌握好这些例子,会有助于增进我们分析问题的能力。
例1 物体冷却过程的数学模型将某物体放置于空气中,在时刻时,测量得它的温度为,10分钟后测得温度为。
我们要求决定此物体的温度和时间的关系,并计算20分钟后物体的温度。
这里我们假定空气的温度保持为。
解为了解决上述问题,需要了解有关热力学的一些基本规律。
例如,热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内(其中包括了上述问题的温度在内),一个物体的温度变化速度与这一物体的温度和其所在介质温度的差值成比例。
常微分方程----第一章-绪论
莱布尼兹(1646 – 1716)
德国数学家, 哲学家. 他和牛顿同为 微积分的创始人 , 他在《学艺》杂志 上发表的几篇有关微积分学的论文中, 有的早于牛顿, 所用微积分符号也远远优于牛顿 . 他还设计了作乘法的计算机 , 系统地阐述二进制计 数法 , 并把它与中国的八卦联系起来 .
c2
cn
则称 y (x,c1,,cn ) 含有n个相互独立的常数。
目录 上页 下页 返回 结束
例:y c1 cos x c2 sin x 是 y y 0 的通解。 因为 y c1 sin x c2 cos x 而
cos x sin x 1 0
sin x cos x
内容小结
1. 微分方程的基本概念 常微分方程,偏微分方程,微分方程的阶
微分方程的解,通解,特解
线性微分方程, 非线性微分方程 初始条件
作业
P27 2, 3,4, 6,8 (1)(3)(5)
目录 上页 下页 返回 结束
牛顿(1642 – 1727)
伟大的英国数学家 , 物理学家, 天文 学家和自然科学家. 他在数学上的卓越 贡献是创立了微积分. 1665年他提出正 流数 (微分) 术 , 次年又提出反流数(积分)术,并于1671 年完成《流数术与无穷级数》一书 (1736年出版). 他 还著有《自然哲学的数学原理》和《广义算术》等 .
牛顿在建立微积分的同时,对简单的微分方程 用级数来求解。后来瑞士数学家雅各布·贝努利、 欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日 等人又不断地研究和丰富了微分方程的理论。
常微分方程的形成与发展是和力学、天文学、 物理学,以及其他科学技术的发展密切相关的。同 时,数学的其他分支的新发展,如复变函数、李群、 组合拓扑学等,都对常微分方程的发展产生了深刻 的影响,当前计算机的发展更是为常微分方程的应 用及理论研究提供了非常有力的工具。
常微分方程第1章教案
第一章 绪论定义:指含有未知量的等式. 代数方程:2210x x -+=1=,3121x x x--=+ 超越方程:sin cos 1x x +=,221x e x x =+-以上都是一元方程,一般形式可以写成()0F x =二元方程2210x y +-=的一般形式可以写成(,)0F x y =,同理三元方程22210x y z ++-=等等根据对未知量施加的运算不同进行方程的分类,高等数学的运算主要是微分和积分运算一、引例例1:已知一曲线通过点(1,2),且在该曲线上任一点(,)M x y 处的切线的斜率为2x ,求这曲线的方程.解:设所求曲线的方程为()y f x =,由题意1d 2(1)d 2(2)x y x x y =⎧=⎪⎨⎪=⎩由(1)得2d y x x =⎰,即2y x C =+ (3)把条件“1x =时,2y =,”代入上式(3)得221C =+,1C ∴= 把1C =代入式(3),得所求曲线方程:21y x =+例2:列车在平直道路上以20m/s (相当于72km/h )的速度行驶,当制动时列车获得加速度20.4m /s -.问开始制动后需要多长时间列车才能停住,以及列车在这段时间里行驶了多少路程?解:设列车在开始制动后t s 时行驶了s m.根据题意,反映制动阶段列车运动规律的函数()s s t =应满足关系式00220d 0.4(4) d d 20(5)d 0*t t t s ts v t s ===⎧=-⎪⎪⎪==⎨⎪⎪=⎪⎩()把式(4)两端积分一次,得1d 0.4d s v t C t ==-+ (6)把式(6)两端再积分一次,得2120.2s t C t C =-++(7),这里12C C 、都是任意常数. 把条件020t v==代入式(6)得120C =. 把条件00t s ==代入式(7)得20C =.把12,C C 的值代入式(6)及式(7)得0.420v t =-+(8)20.220s t t =-+(9)在式(8)中令0v =,得到列车从开始制动到完全停住所需的时间20500.4t ==(s ) 再把50t =代入式(9),得到列车在制动阶段行驶的路程s =20.2502050-⨯+⨯ = 500 (m). 二、微分方程的基本概念微分方程:联系自变量、未知函数以及它的导数的关系式.例如d 2d y x x =,22d 0.4 d s t =-,224T T x t∂∂=∂∂,2222220T T T x y z ∂∂∂++=∂∂∂ 常微分方程: 只含一个自变量的微分方程. d 2d y x x =,22d 0.4 d s t =- 偏微分方程:自变量的个数为两个或两个以上的微分方程. 224T T x t∂∂=∂∂,2222220T T T x y z ∂∂∂++=∂∂∂ 微分方程的阶数:微分方程中出现的最高阶导数的阶数.一阶常微分方程的一般形式为:(,,)0F x y y '=称为一阶隐式方程(,)y f x y '=称为一阶显式方程(,)(,)0M x y dx N x y dy +=称为微分形式的一阶方程n 阶隐式方程的一般形式为()(,,,,)0n F x y y y '=L (*)n 阶显式方程的一般形式为 ()(1)(,,,,)n n y f x y y y -'=L高阶微分方程:二阶及二阶以上的微分方程.如果(*)的左端为(),,n y y y'L 及的一次有理整式,则称(*)为n 阶线性微分方程,否则是非线性微分方程. 例如:22d y dy y t dt dt+= 是二阶非线性微分方程,而22d 0.4 d s t =-是一个二阶的线性微分方程.微分方程的解:代入微分方程能使该方程成为恒等式的函数叫做该微分方程的解.确切地说,设函数()y x ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,(),(),(),,()0n F x x 'x x ϕϕϕ⎡⎤=⎣⎦L ,那么函数()y x ϕ=就叫做微分方程()(,,,,)0n F x y y'y =L 在区间I 上的解. 称(,)()0x y y x ϕΦ=-=为(*)的隐式解.例如:2y x C =+叫做微分方程d 2d y x x=的解,则2y x C -=或20y x C --=叫做微分方程d 2d y x x=的隐式解 通解:把含有n 个独立的任意常数12,,,n c c c L 的解12(,,,,)n y x c c c ϕ=L 称为方程(*)的通解.(如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.)定解问题:求方程满足定解条件的求解问题.定解条件分为初始条件和边界条件,相应的定解问题分为初值问题和边值问题.初始条件:用于确定通解中任意常数的条件,称为初始条件.例如0x x =时,0y y =,0y'y'=.一般写成00x x y y ==,00x x y y =''= 初值问题:求微分方程满足初始条件的解的问题称为初值问题.例如求微分方程(,)y'f x y =满足初始条件00x x y y ==的特解的问题,记为00(,)x x y f x y y y ='=⎧⎪⎨=⎪⎩ 特解:确定了通解中的任意常数以后,就得到微分方程的特解,即不含任意常数的解. 例如例1中21y x =+是式(1)的特解.一般地,初值问题为()(1)(1)(1)000000(,,,,)0(),(),,()n n n F x y y y y x y y x y y x y --'⎧=⎪⎨'===⎪⎩L L 定义:一阶微分方程(,)dy f x y dx=的解()y x ϕ=是Oxy 平面上的一条曲线,将它称为微分方程的积分曲线;而方程的通解(,)y x c ϕ=对应于Oxy 平面上的一族曲线,称为方程的积分曲线族;满足初始条件00()y x y =的特解就是通过点00(,)x y 的一条积分曲线.定义:设函数(,)f x y 的定义域为D ,在D 内每一点(,)x y 处,画上一小线段,使其斜率恰好为(,)f x y ,将这种带有小线段的区域D 称为由方程所规定的方向场.在方向场中,方向相同的点的几何轨迹称为等斜线.微分方程的等斜线方程为(,)f x y k =例(P28习题7):微分方程22234'x y y xy -=,证明其积分曲线关于坐标原点(0,0)成中心对称的曲线,也是微分方程的积分曲线.证:设:(),[,]L y f x x a b =∈是微分方程的一条积分曲线,则满足22234['()]()(),[,]x f x f x xf x x a b -=∈ 而L 关于(0,0)成中心对称曲线':()(),[,],[,]L y f x F x x b a x a b =--=∈---∈, 所以有'()'()F x f x =-, [,]x b a ∈--当[,]x b a ∈--,[,]x a b -∈,可知22234()['()]()()x f x f x xf x ----=--即 22234['()]()()x F x F x xF x -=所以()F x 满足微分方程,故()F x 为微分方程的积分曲线.并且相对于L 关于原点(0,0)成中心对称曲线.三、微分方程的产生和发展常微分方程有着深刻而生动的实际背景,它从生产实践与科学技术中产生,又成为现代科学技术分析问题与解决问题的强有力工具.该课程是与微积分一起成长起来的学科,是学习泛函分析、数理方程、微分几何的必要准备,本身也在工程力学、流体力学、天体力学、电路振荡分析、工业自动控制以及化学、生物、经济等领域有广泛的应用.300多年前, Newton 与Leibniz 奠定微积分基本思想的同时,就正式提出了微分方程的概念. 1676年微分方程最早出现在Leibniz 写给Newton 的一封信中,常微分方程的发展主要分为三个阶段:1.初期发展期17世纪中期到18世纪末期,常微分方程研究的中心问题是如何求出通解的表达式. 代表人物莱布尼兹(德1646-1716)、牛顿(英1642-1727)2.基本理论奠定期19世纪初期到19世纪末期,主要研究解的定性理论与稳定性问题.代表人柯西Cauchy (法1789-1857)、刘维尔Liouville (法1809-1882)3.现代理论发展期19世纪末期-现在,进入新的阶段,定性上升到理论,进一步发展分为解析法、几何方法、数值方法.代表人物庞加莱Poincare(法1854-1912)、李雅普诺夫Lyapunov(俄1857-1918)。
常微分方程课程总结
常微分方程课程总结第一章 绪论§1.2微分方程的基本概念(1)常微分方程偏微分方程微分方程:凡含有未知函数的导数或微分的方程叫微分方程。
常微分方程:未知函数为一元函数的微分方程。
()(),dyaxy a dxdy p x y Q x dx=+=为常数 偏微分方程:未知函数为多元函数,从而出现偏导数的微分方程。
()22,22242u uf x y x y u u y x ∂∂+=∂∂∂∂=∂∂(2)线性与非线性一般n 阶线性微分方程具有形式:(等式左面全是一次有理整式)()(1)11()()()().n n n n y a x y a x y a x y f x --'++++=(3)解和隐式解微分方程的解:代入微分方程能使方程成为恒等式的函数. 隐式解:Φ(x,y )=0 (4)通解和特解通解:微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数同.) 特解: 确定了通解中任意常数以后的解. 初始条件:用来确定任意常数的条件.初值问题: 求微分方程满足初始条件的解的问题.(5)积分曲线:微分方程任一特解的图形都是一条曲线,称为微分方程的积曲线。
第二章 一阶微分方程的初等解法§2.1 变量分离方程与变量变换2.1.1、变量分离方程)()(y x f dxdyϕ= ⎰⎰+=c dx x f y dy )()(ϕ 2.1.2、可化为变量分离方程的类型1.形如)(x y g dx dy =,称为齐次微分方程,令u =xy ,即y =ux ,于是dx dy =x dx du +u ,代入原方程,变形为x dx du +u =g (u ),整理得dx du =xuu g -)(2.形如222111c x b x a c x b x a dx dy ++++= 的方程也可经变量变换化为变量分离方程(1)常数)(212121k c c b b a a ===,方程化为dxdy =k ,有通解c kx y += (2)≠==k b b a a 212121c c 情形,令u =y b x a 21+,这时有dx du =dx dy b a 22+=2122c u c ku b a +++是分离变量方程 (3)2121b b a a ≠情形,若21c c 、不全为零,方程右端分子、分母都是x 、y 的一次多项式,因此111c x b x a ++=0,222c y b x a ++=0,交点(),βα,令X =x -α,Y =y -β,化为011=+Y b X a , 022=+Y b X a 。
常微分方程复习资料
第二章 一阶微分方程的初等解法
§2.1 变量分离方程与变量变换 §2.2 线性微分方程与常数变易法 §2.3 恰当微分方程与积分因子 §2.4 一阶隐式微分方程与参数表示
变量分离方程的求解
1、形式: dy f ( x )( y ) dx
2、求解方法: 分离变量、 两边积分、 考虑特殊情况
3、方程 dy p( x )y 的解为: dx
D(D 1) pD q y f (et )
机动 目录 上页 下页 返回 结束
c(x)
Q(
x)e
p(
x
)dx
dx
~
c
y e ( p(x)dx
Q(
x)e
p(
x
)
dxdx
~
c)
(3)
二 伯努利(Bernoulli )方程
伯努利方程:形如 dy p(x) y Q(x) yn 的方程, dx
这里P( x), Q( x)为x的连续函数。
解法:
10 引入变量变换 z y1n ,方程变为
dy a1x b1 y c1 dx a2 x b2 y c2
k(a2 x b2 y) c1 a2 x b2 y c2
f (a2x b2 y)
3. a1 b1
a2 b2
0,
且C1、C2不同时为零的情形
aa21
x x
b1 b2
y y
c1 c2
0 0
X x Y y ,
初值条件/Initial Value Conditions/ 对于 n 阶方程 y(n) f (x, y, y,, y(n1) )
初值条件可表示为
y(x0) y0, y(x0) y0 , y(x0) y0,, y(n1) (x0) y0(n1)
常微分方程1
常微分方程1第一章绪论[教学目标]1.理解常微分方程及其解的概念,能判别方程的阶数、线性与非线性。
2.掌握将实际问题建立成常微分方程模型的一般步骤。
3.理解积分曲线和方向场的概念。
[教学重难点] 重点微分方程的基本概念,难点是积分曲线和方向场。
[教学方法] 讲授,实践。
[教学时间] 4学时[教学内容] 常微分方程(偏微分方程)的概念,微分方程的阶,隐式方程,显式方程,线性(非线性)常微分方程;常微分方程的通解,特解,隐式解,初值问题,定解问题,积分曲线和方向场;建立常微分方程模型的具体方法。
[考核目标] 常微分方程及其解的概念,会建立常微分方程模型。
§1 微分方程模型1、微分方程的产生和发展常微分方程有着深刻而生动的实际背景,它从生产实践与科学技术中产生,又成为现代科学技术分析问题与解决问题的强有力工具。
该课程是与微积分一起成长起来的学科,是学习泛函分析、数理方程、微分几何的必要准备,本身也在工程力学、流体力学、天体力学、电路振荡分析、工业自动控制以及化学、生物、经济等领域有广泛的应用。
300多年前,Newton与Leibniz奠定微积分基本思想的同时,就正式提出了微分方程的概念.17世纪末到18世纪,常微分方程研究的中心问题是如何求出通解的表达式.19世纪末到20世纪处,主要研究解的定性理论与稳定性问题.20世纪进入新的阶段,定性上升到理论,进一步发展分为解析法、几何方法、数值方法.解析方法:是把微分方程的解看作是依靠这个方程来定义的自变量的函数.几何方法:(或定性方法)把微分方程的解看作是充满平面或空间或其局部的曲线族.数值方法:求微分方程满足一定初始条件(或边界)条件的解的近似值的各种方法.微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。
牛顿在建立微积分的同时,对简单的微分方程用级数来求解。
后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
常微分方程复习提纲
2012-2013第二学期常微分方程期末复习提纲第一章绪论掌握微分方程的概念, 能正确判断微分方程的阶数以及是否线性方程.第二章一阶微分方程的解法1 掌握变量分离方程的解法.2 掌握恰当方程的判定以及求解方法. 对于非恰当方程, 重点掌握如何求只与x或y有关的积分因子, 并由此求解方程.3 了解一些常见的能够化为变量分离方程的类型以及所用的变换. 例如齐次方程ddy ygx x⎛⎫= ⎪⎝⎭, 111222dda xb y cyx a x b y c++=++, ()ddyf ax by cx=++等类型.重点掌握形如111222d da xb y cyx a x b y c++=++的方程的求解方法.第三章一阶微分方程的解的存在定理1 简要理解解的存在性定理.2 了解利普希兹(Lipschitz)条件与偏导连续的关系.第四章高阶微分方程1 熟悉齐次与非齐次线性方程的解的结构以及性质定理2 掌握Wronsky行列式与线性相关或无关的关系.3 掌握基本解组相关概念.4 重点掌握常系数高阶非齐次线性微分方程的求法.特征根法和比较系数法.5 了解常见的可以降阶的高阶方程的类型, 重点掌握不显含未知函数的高阶方程的降阶求解法.第五章方程组1 熟悉基解矩阵的概念.2 掌握Atexp与基解矩阵的关系.3 重点掌握利用特征值求基解矩阵以及标准基解矩阵Atexp的方法.(只考虑有n个特征值的情形即可)。
常微分方程-总复习
dy a1 x b1 y c1 dx a2 x b2 y c2
dx
x
2.3 恰当方程和积分因子 2.3.1 恰当方程 定义、判别方法、求解方法 2.3.2 积分因子 定义、特殊类型方程的积分因子的求法 2.4 一阶隐方程和参数表示
第三章 一阶微分方程解的存在定理
解的存在唯一性定理的内容及证明过程。
近似计算和误差估计;
解对初值的可微性
第四章 高阶微分方程
4.1 线性微分方程的一般理论 4.1.1 齐线性方程解的性质与结构 定理2-定理6 4.1.2 非齐线性方程与常数变易法 定理7 常数变易法 4.2 常系数线性方程的解法 4.2.2 复值函数与复值解 复值函数的运算性质、定理8、定理9
4.2.2 常系数齐线性方程和欧拉方程 欧拉待定指数函数法、根据特征根的性质确定 方程的基本解组、欧拉方程的求解 4.2.3 非齐线性方程-比较系数法
第五章 线性微分方程组
5.1 解的存在唯一性定理 5.1.1 记号和定义 将n阶线性微分方程的初值问题化为等价的微分 方程组的初值问题 5.1.2 存在唯一性定理 5.2 线性微分方程组的一般理论 5.2.1 齐线性微分方程组
定理2-定理6 定理1*定理2* 5.2.2 非齐线性微分方程组 定理7 定理8 常数变易公式
常微分方程
总复习
第一章 绪论
基本概念 常微分方程、偏微分方程、微分方程的阶 线性和非线性微分方程 解:隐式解、通解、特解 积分曲线
第二章 一阶微分方程
2.1 变量分离方程和变量变换 2.1.1 变量分离方程 2.1.2 可化为变量分离方程的类型 y 1) dy g
2) 2.2 线性方程与常数变易法 一阶齐线性微分方程、一阶非齐线性微分方程、 伯努利方程
常微分方程1.1ppt
x x0
n 1 dy d y (1) ( n 1) y y , y , , y 时, 0 0 0 n 1 dx dx
(1.15)
定解问题:求微分方程满足定解条件(初值条件)的解 相应的定解问题就称为初值问题。 这是本课程讨论的重点。
初值问题(柯西Cauchy问题):当定解条件是初值条件时,
1)17世纪至18世纪, 微分方程发展初期, 求通解时代. 2)19世纪初中叶,转向求特解时代,存在唯一性,微分方 程的解析理论,近似解法
3)19世纪末到20世纪50年代,又一次地转向所有解的大 范围的分析,定性和稳定性理论,动力系统(Birkhoff, Arnold,Smale) 4)20世纪六十年代以后到现在,又从求所有解转向求特 解,新性质的新方程和解,混沌、孤立子和分形等。
代表xy平面上的一条曲线,就称之为微分方程的积分 曲线。
而微分方程的通解 y
( x, c) 代表xy平面上的一
族曲线,就称之为微分方程的积分曲线族。
dy 其上每一点 ( x, y )处的切线斜率 刚好等于函数 dx
满足初始条件 y0 ( x0 ) 的特解就是通过点 ( x0 , y0 ) 的一条积分曲线。 y ( x) 为方程(1.17)的积分曲线的充要条件是
du k (u u a ) dt
(1.1)
其中k是比例常数,方程(1.1)就是物体冷却过程的数学模
du 型,它含有未知函数u及它的(一阶)导数 ,这样的方 dt
程,就称为(一阶)微分方程。 将(1.1)改写成
d (u u a ) kdt (u u a )
(1.2)
变量u和t被分离出来了, 对上式两边积分得
dy f ( x) dx
常微分方程第一章解读
解 当开关 K 合上后,电路中经过电感L、电阻R和电容 C
设两极板间的电压为 U ,
电感电动势 El ,电流强度为 I ,即
dQ
Q( t )
dI
I , dt
U
C
,
El L dt .
经常出现在实际问题中的微分方程有以下 几种:
dy p( x) y 2 q( x) y r( x) dx
(Riccati方程)
x 2 d 2 y x dy ( x 2 n2 ) y 0 dx2 dx
(n阶Bessel方程)
2u 2u 2u
x 2
y 2
z 2
0
(Laplace方程)
u
a2(2u
在这段时间内,放出的溶液为2 dt
升,因为时间短,浓度改变很小,所以可以认为浓度 x 保持不变,于是放出的溶液中含盐量微元
100 t
x 2dt 100 t
于是得到微分方程为
dx 2x dt 100 t
把它改写为
dx 2dt x 100 t
两边积分得
ln x 2 ln(100 t ) lnc
是 ,则摆的运动方程变为
d 2 d g
dt 2
m
dt
l
0
如果沿着摆的运动方向恒有一个外力 F ( t )作用于它,这时摆
的运动称为强迫微小振动,其方程为
d 2 d g 1 dt 2 m dt l ml F ( t )
当要确定摆的某一特定运动时,我们应该给出摆的初始状态
t
0,
0
,
d dt
常微分方程期末总复习
《常微分方程》期末复习第一章绪论1、以模型引出常微分方程的基本概念,准确了解与解方程相关各个概念如:方程的阶数;通解中独立的任意常数的个数问题等2、会建立微分方程模型。
习题:(1)二阶微分方程的通解中应含的独立常数的个数( 2 )(2)P261.(3)P288(6)(7)(4)函数y=sinx是下列哪个微分方程的解( A )A.d 2ydx2+y=0 B.dydx+2y=0 C.d2ydx2+y=sinx D.dydx+y=0第二章一阶微分方程的初等解法1、变量分离方程的解法dydx=f(x)g(y)一般步骤:变量分离,两边积分,整理得通解。
2、可化为变量分离的方程 (1)dydx =f(yx) (2)dydx=a1x+b1y+c1a2x+b2y+c2(1)dydx =f(yx)解法:令u=yx ,则y=ux, dydx=x dudx+u代入原方程整理,成可分离变量。
(2)dydx =a1x+b1y+c1a2x+b2y+c2分三种情况讨论。
3、一阶线性微分方程dydx=P(x)y+Q(x) (2.28)(2.28)对应的齐次线性微分方程dydx=P(x)y(2.3),可用变量分离法求解。
dydx=P(x)y(2.3)的通解为y=ce∫P(x)dx;采用常数变易法,(2.28)有形如y=c(x)e∫P(x)dx (2.29)的解,将其代入原方程解出c(x),将c(x)带回(2.29)即得(2.28)的通解。
(2.28)的通解公式:y=e∫P(x)dx(∫Q(x)e−∫P(x)dx dx+c).4、伯努利微分方程dydx=P(x)y+Q(x)y n (n≠0,1) (2.37)作变量变换令z=y1−n, 则dzdx =(1−n)y−n dydx代入原方程整理成(2.28)的形式再求解。
5、恰当微分方程与积分因子M(x,y)dx+N(x,y)dy=0(1)恰当微分方程⇔ðMðy =ðNðx. 此时M(x,y)dx+N(x,y)dy=du(x,y)原方程通解为u(x,y)=c .(2)非恰当微分方程,但μM(x,y)dx+μN(x,y)dy=0是恰当微分方程。
常微分方程常用数值解法.
常微分方程常用数值解法.第一章绪论1.1 引言常微分方程是现代数学的一个重要分支,是人们解决各种实际问题的有效工具。
微分方程的理论和方法从17世纪末开始发展起来,很快成了研究自然现象的强有力工具,在17到18世纪,在力学、天文、科学技术、物理中,就已借助微分方程取得了巨大的成就。
1864年Leverrer根据这个方程预见了海王星的存在,并确定出海王星在天空中的位置。
现在,常微分方程在许多方面获得了日新月异的应用。
这些应用也为常微分方程的进一步发展提供了新的问题,促使人们对微分方程进行更深入的研究,以便适应科学技术飞速发展的需要。
研究常微分方程常用数值解是数学工作者的一项基本的且重要的工作。
在国内外众多数学家的不懈努力,使此学科基本上形成了一套完美的体系。
微分方程的首要问题是如何求一个给定方程的通解或特解。
到目前为止,人们已经对许多微分方程得出了求解的一般方法。
由于在生产实际和科学研究中所遇到的微分方程问题比较复杂,使这些问题的解即使能求出解析表达式,也往往因计算量太大而难于求出,而对于一些典型的微分方程则可以运用基本方法求出其解析解,并可以根据初值问题的条件把其中的任意常数确定下来。
由于求通解存在许多困难,人们就开始研究带某种定解条件的特解。
首先是Cauchy对微分方程初始解的存在惟一性进行了研究。
目前解的存在惟一性、延拓性、大范围的存在性以及解对初始解和参数的延续性和可微性等理论问题都已发展成熟。
与此同时,人们开始采取各种近似方法来求微分方程的特解,例如求微分方程数值解的Euler折线法、Runge-Kutta法等,可以求得若干个点上微分方程的近似解。
最后,由于当代高科技的发展为数学的广泛应用和深入研究提供了更好的手段。
用计算机结合Matlab软件求方程的精确解、近似解,对解的性态进行图示和定性、稳定性研究都十分方便有效。
本章先介绍常微分的一般概念、导出微分方程的一些典型例子及求解微分方程的思路分析。
常微分方程(第三版)课件第一章
§1.1 Sketch of ODE n阶隐式方程 n阶显式方程 方程组
偏微分方程 偏微分方程 不是微分方程
9. f 2 ( x) sin x
§1.1 Sketch of ODE
微分方程模型举例/Modeling of ODE/
CH.1 Introduction
本章要求/Requirements/
能快速判断微分方程的类型;
掌握高阶微分方程及其初值问题的一般形式;
理解微分方程解的意义。
§1.1 Sketch of ODE
§ 1.1 微分方程概述/ Sketch of ODE/
微分方程理论起始于十七世纪末,是研究自然现象强有 力的工具,是数学科学联系实际的主要途径之一。
§ 1.2 基本概念/Basic Conception/
1. 常微分方程和偏微分方程 2. 一阶与高阶微分方程 3. 线性和非线性微分方程 4. 解和隐式解 5. 通解和特解 6. 积分曲线和积分曲线族 7. 微分方程的几何解释-----方向场
§1.2 Basic Conception
常微分方程与偏微分方程/ODE and PDE/
电子课件
常微分方程
Ordinary differential equation
王高雄 周之铭 朱思铭 王寿松编
常微分方程
Ordinary differential equation
• • • • • • • 第一章 第二章 第三章 第四章 第五章 第六章 第七章 绪 论 一阶微分方程的初等解法 一阶微分方程的解的存在定理 高阶微分方程 线性微分方程组 定性理论初步1 2 一阶线性偏微分方程
常微分方程的解的表达式中,可能包含一个或者几个常
王高雄《常微分方程》(第3版)(章节题库 绪 论)【圣才出品】
第1章 绪 论一、填空题1.微分方程(y'')2+(y')5 sin x+2x cos3y'''=0的阶数是______.【答案】三阶【解析】微分方程的阶是指这个方程中出现未知函数的最高阶导数的阶数.2.具有特定解y1(x)=x,y2(x)=sin x的最低阶实常系数线性齐次微分方程是______.【答案】y(4)+y''=0.【解析】所求方程有特征根为λ1,2=0,λ3,4=±i5.令X=x-1,y=y+1,原方程可化为克莱罗方程y=x y'+(y')2其通解为y=yc+(C)2.二、名词解释1.常微分方程.答:常微分方程是指含有一个自变量、未知函数以及未知函数的某些阶导数的关系式.三、解答题1.指出下列微分方程的阶数解:(1)一阶微分方程;(2)二阶微分方程;(3)二阶微分方程;(4)一阶微分方程;(5)四阶微分方程.2.求下列两个微分方程的公共解:解:两方程的公共解满足条件即所以或代入检验可知不符合.所以两方程的公共解为3.利用等倾线作下列方程的方向场,并且描出经过指定点的积分曲线(1)(2)(3)(4)(5)(6)解:(1)所求方向场和经过(1,1)的积分曲线如图1-1所示图1-1(2)所求方向场及经过(0,0),(0,1)的积分曲线如图1-4所示图1-2(3)所求方向场,及过点(1,0)的积分曲线如图1-3所示图1-3(4)所求的方向场及过点的积分曲线如图1-4所示图1-4(5)所求的方向场及经过点(0,0),(0, 1)的积分曲线如图1-5所示图1-5(6)所求的方向场及过点(1,2)的积分曲线如图1-6所示图1-64.当方程的等倾线就是积分曲线时,应满足什么条件?解:由于方程的等倾线就是积分曲线,所以即f(x,y)应满足的条件为5.若方程的等倾线就是积分曲线时,试证此方程必为克莱罗(Clairaut)方程.证明:由于是方程的解;于是是所要求的满足的曲线方程,该曲线具有与切线有关而与切点无关的性质,则=0一定是克莱罗方程.事实上,设切点(x,y),切线动点坐标为(X,Y),有或于是切线的性质可以用与关系式表示,由此解出可得到:或(克莱罗方程).6.求微分方程的通解,并分别求满足下列条件的特解.(1)通过点(2,1);(2)与直线y=x相切;(3)与直线y=-3x+1正交.解:直接积分得方程的通解为(1)将x=2,y=1代入通解中得C=-7,则通过点(2,1)的解为(2)与直线y=x相切的解满足在切点处斜率相同,有即得切点坐标为和同(1)的解法,与直线y=x相切的解为和(3)与直线y=-3x+1正交的解在正交点处斜率满足即得正交点坐标为和同(1)的解法所求方程的解为和7.求微分方程y'+xy'2-y=0的直线积分曲线.解:设直线积分曲线为y=ax+b,则y'=a,代入原方程得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉格朗日 (1736 – 1813)
法国数学家. 他在方程论, 解析函数论, 及数论方面都作出了重要的贡献, 近百 余年来, 数学中的许多成就都直接或间 接地溯源于他的工作, 他是对分析数学 产生全面影响的数学家之一.
例3 R-L-C电路问题。
如图所示,R-L-C电路是由电阻R、电感 L、电容C和电源E串联组成的电路。其中, R、L、C常数,电源电动势是时间t的已知 函数:E=e(t)。试建立当开关K合上后电流 I(t)应满足的微分方程。
例4 单摆运动问题 单摆是一根长为l的线段的上端固定而
下端系一质量为m的摆锤的简单机械装置。 开始时将单摆拉开一个小角度φ0,然后放 开,使其在摆锤的重力作用下在垂直平面 上摆动。试建立单摆的运动方程。
2u x2
2u y2
2u z2
0
1 )如果微分方程中未知数只依赖于一个自变量,
称为常微分方程。例如:
xky0,
xx2 sint,
2 )如果微分方程中未知数依赖于两个或更多的自 变量,称为偏微分方程。例如:
v v v, t s
2u x2
2u y2
2u z2
0
注:我们不特别声明,就称常微分方程为微分方程或方程。
若存在 (x,c1,,cn) 的一个邻域,使得
,
, ,
c1
c2
cn
, c1
, c2
,
cn 0
(n1) ,
(n1) ,
,
(n1)
c1
c2
cn
则称 y(x,c1,,cn) 含有n个相互独立的常数。
例:yc1cox sc2sixn是 yy0的通解。 因为 y c1sixn c2co x而s
§ 1.1 微分方程的概念
一、 导出微分方程的一些实例
1、单种群增长模型(Logistic 方程)
x rx(1 x ) K
2、数学单摆模型
g sin.
L
二、 微分方程的基本概念
凡含有自变量、未知函数以及未知函数的导数(或 微分)的方程称为微分方程。例如:
xky0,
xx2 sint,
v v v, t s
把
d d
2
t
x
2
及
x
的表达式代入方程,得
k 2 ( c 1 c o s k t c 2 s i n k t k 2 ( c 1 c o s k t c 2 s i n k t ) 0
因此,函数是微分方程的解。
内容小结
1. 微分方程的基本概念 常微分方程,偏微分方程,微分方程的阶
微分方程的解,通解,特解 线性微分方程, 非线性微分方程 初始条件
性微分方程。
例如: xx2sitn是二阶非线性微分方程。
解和隐式解:设 y (x) 是定义在区间(a,b)上的n阶可微函
数,将其代入方程 F(x,y.dy,L,dny)=0后,能使它变成恒等式,
dx dxn
则称函数 y (x) 为方程的解。
若关系式 (x,y)=0决定的隐函数 y=(x)是
上述方程解称 (x,n)=0为方程的隐式解。
课程评分方法 (Grading Policies)
Lecture Grade (100) = Daily Grade (20) + Final Exam (80)
二、如何学习常微分方程 ?
1. 课前预习, 培养浓厚的学习兴趣.
一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
马克思
在实际工作中,常常出现一些特点和以上方程 完全不同的问题。比如:某个物体在重力作用下 自由下落,要寻求下落距离随时间变化的规律; 火箭在发动机推动下在空间飞行,要寻求ห้องสมุดไป่ตู้飞行 的轨道等,研究这些问题所建立的数学方程不仅 与未知函数有关,而且与未知函数的导数有关, 这就是我们要研究的微分方程。
解这类问题的基本思想和初等数学解方程的 基本思想很相似,也是要把研究的问题中已知函 数和未知函数之间的关系找出来,从列出的包含 未知函数及其导数的一个或几个方程中去求得未 知函数的表达式---即求解微分方程。
五、微分方程的教材特点
第一章 绪 论 本章主要内容
1.1 常微分方程的有关模型 1.2 常微分方程的有关概念 1.3 微分方程的发展历史
本章主要介绍微分方程、微分方程的解以 及微分方程的阶、解,微分方程组,动力系统 等有关概念,同时介绍一些有关的微分方程模 型。同学们应着重掌握微分方程的一些基本概 念: 解、通解、特解、阶数、初值条件等,了解 微分方程的有关模型。
常微分方程 Ordinary Differential Equation
教材 (Text Book) <<常微分方程 >> (第三版)
王高雄 周之铭 朱思铭 王寿松编 高等教育出版社
参考书目 (Reference)
➢《常微分方程》 东北师范大学数学系编 高等教育出版社
➢《常微分方程》(山东师范大学数学系)庄 万 黄启宇等编,山东科学技术出版社
作业
P27 2, 3,4, 6,8 (1)(3)(5)
牛顿(1642 – 1727)
伟大的英国数学家 , 物理学家, 天文 学家和自然科学家. 他在数学上的卓越 贡献是创立了微积分. 1665年他提出正 流数 (微分) 术 , 次年又提出反流数(积分)术,并于1671 年完成《流数术与无穷级数》一书 (1736年出版). 他 还著有《自然哲学的数学原理》和《广义算术》等 .
牛顿研究天体力学和 机械力学的时候,利用 了微分方程这个工具, 从理论上得到了行星运 动规律。后来,法国天 文学家勒维烈和英国天 文学家亚当斯使用微分 方程各自计算出那时尚 未发现的海王星的位置。 这些都使数学家更加深 信微分方程在认识自然、 改造自然方面的巨大力 量。
三、微分方程的研究方法
研究微分方程的一般五种方法
4、微分方程的数值解法 5、微分方程的定性和稳定性理论
1900年,希尔波特提出的23个问题中的第16 个问题之一,至今未解决。
四、微分方程的讲授内容(学时64)
1、基本概念 2 、一阶微分方程的初等解法 3、微分方程解的存在性理论 4、高阶线性方程 5、线性微分方程组 6、微分方程的定性稳定性理论初步
( 雅各布第一 ·伯努利 )
瑞士数学家, 他家祖孙三代出过十多 位数学家. 1694年他首次给出了直角坐 标和极坐标下的曲率半径公式, 1695年 年提出了著名的伯努利方程, 1713年出 版了他的巨著《猜度术》, 这是组合数学与概率论史 上的一件大事, 书中给出的伯努利数在很多地方有用, 而伯努利定理则是大数定律的最早形式. 此外, 他对 双纽线, 悬链线和对数螺线都有深入的研究 .
方程的阶数:一个微分方程中,未知函数最高阶导 数的阶数,称为方程的阶数。
一般的n阶微分方程的形式为:
F(x,y.ddyx,L,ddxnny)=0
其中:F(x,y.ddyx,L,ddxnny)=0是变量
x,
y,
,
dny dxn
的已知函数。
如果一个微分方程关于未知函数及其各阶导数都是
线性的,则称它为线性微分方程,否则称之为非线
莱布尼兹(1646 – 1716)
德国数学家, 哲学家. 他和牛顿同为 微积分的创始人 , 他在《学艺》杂志 上发表的几篇有关微积分学的论文中, 有的早于牛顿, 所用微积分符号也远远优于牛顿 . 他还设计了作乘法的计算机 , 系统地阐述二进制计 数法 , 并把它与中国的八卦联系起来 .
伯努利(1654 – 1705)
例:y ekx 是 yky0在 (,) 上的解。
ytanx()是
x' 1x2
在
( , )
22
上的解。
例:xdxydy0有隐式解 x2 y2 C(任意常数)
n 阶方程的通解:把含有 n 个相互独立的任意常数
c1,c2,L ,c n 的解 y= ( x1 , c1 , L, cn)
称为n 阶方程的通解。
一、常微分方程模型
例 1 试求作一曲线y=f(x),使在其上每一点(x, y)处的切线斜率均是该点横坐标的2倍,且 过点(1, 2)。
例 2 物体冷却问题
将某物体置于空气中,在t=0时刻时, 测得它的温度为u0=150oC。10分钟后测得 它的温度为u1=100oC ,试确定该物体温度 u与时间t的关系,并计算20分钟后该物体的 温度。这里假定空气的温度始终保持为 ua=24oC 。
y (x 0 ) y 0 ,dd (x 0 y )x y 0 ',.d .( d .n y 1 n ,) (1 x x 0 ) y 0 (n 1 ) 其中 x0,y0,y0(1),L,y0(n1)是给定的 n 个1 常数。
求微分方程满足定解条件的解就是所谓的定解问题。
当定解条件为初始条件时,相应的定解问题也就为 初值问题。
2. 认真听课,养成正确的学习习惯.
华罗庚
聪明在于学习 , 天才在于积累 .
学而优则用 , 学而优则创 . 由薄到厚 , 由厚到薄 .
3. 课后复习,锻造扎实的学习基础.
常微分方程的基本情况介绍
常微分方程是数学分析或基础数 学的一个组成部分,现代数学的一个 重要分支,是人们解决各种实际问题 的重要工具,它在生命科学、几何、 力学、物理、电子技术、航空航天和 经济领域等都有着广泛的应用。
欧拉 (1707 – 1783)
瑞士数学家. 他写了大量数学经典 著作, 如《无穷小分析引论 》, 《微 分学原理 》, 《积分学原理》等, 还 写了大量力学, 几何学, 变分法教材. 他在工作期间几乎每年都完成 800 页创造性的论文. 他的最大贡献是扩展了微积分的领域, 为分析学的重 要分支 (如无穷级数, 微分方程) 与微分几何的产生和 发展奠定了基础. 在数学的许多分支中都有以他的名 字命名的重要常数, 公式和定理.