初一数学上册奥数题及答案
初一数学上册奥数题及答案
初一数学上册奥数题及答案一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中准确的是 ( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不准确的是 ( )A. 有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有 ( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不准确的说法的个数是 ( ) A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,能够在原方程的两边( )A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)2.198919902-198919892=______.3. =________.4. 关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+ (4999)5000=______.6.当x=- 时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天能够完成它的 .如果工作4天后,工作效率提升了 ,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,所以选D.3.1是最小的自然数,A准确.能够找到正所以C“没有的负整数”的说法不准确.写出扩大自然数列,0,1,2,3,…,n,…,易知无非负数,D准确.所以不准确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是准确的.由(-1)3=-1,可知丁也是准确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不准确.即丙不准确.在甲、乙、丙、丁四个说法中,只有丙1个说法不准确.所以选B.7.令a=0,马上能够排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,所以选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为因为v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a -v0)(a-v)∴t0-t<0,即t0<t.所以河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.因为(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x -x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).。
七年级奥数测试卷(七份及答案)
七年级奥数测试卷一 姓名 班别一.选择题1.a --是( )(A )正数 (B )负数 (C )非正数 (D )0 2.在下面的数轴上(图1)表示数(—2)—(—5)的点是 ( )(A )M (B )N . (C )P. (D )Q. 3.49914991+-----的值的负倒数是( )(A )314. (B )133-(C )1. (D )—1 4.)9187()8176()7165()6154()5143(+++++++++)10198(-+ ( ) (A )0. (B )5.65. (C )6.05 (D )5.855.22)34(34⨯--⨯-等于( )(A )0 (B )72 (C )—180 (D )1086.x 的54与31的差是( )(A )x x 3154- (B )3154-x (C ))31(54-x (D )345+x 7.n 是整数,那么被3整除并且商恰为n 的那个数是( )(A )3n (B )3+n (C )n 3 (D )3n8.如果2:3:=y x 并且273=+y x ,则y x ,中较小的是(A )3 (B )6(C )9(D )129.20°角的余角的141等于( )(A )ο)731( (B )ο)7311( (C )ο)767( (D )5°10.7)71()7(71⨯-÷-⨯等于( )(A )1 (B )49 (C )—7 (D )7二、A 组填空题11.绝对值比2大并且比6小的整数共有__________________个。
12.在一次英语考试中,某八位同学的成绩分别是93,99,89,91,87.81,100,95,则他们的平均分数是__________________。
13.||||1992-1993|-1994|-1995|-1996|=__________________。
14.数:-1.1,-1.01,-1.001,-1.0101,-1.00101中最大的一个数与最小的一个数的比值是__________。
初一上册奥数试题及答案
初一上册奥数试题及答案
一、选择题
1. 如果一个数的平方等于其本身,那么这个数可能是:
A. 0
B. 1
C. -1
D. 0或1
2. 一个数列的前三项分别是1, 1, 2,每一项都是前两项之和,那么
这个数列的第四项是:
A. 3
B. 4
C. 5
D. 6
3. 下列哪个选项不是质数?
A. 2
B. 3
C. 4
D. 5
4. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:
A. 24立方厘米
B. 26立方厘米
C. 28立方厘米
D. 30立方厘米
二、填空题
5. 如果一个数的立方等于8,那么这个数是______。
6. 一个等差数列的前三项是2, 5, 8,那么它的第五项是______。
7. 一个圆的半径是5cm,那么它的面积是______平方厘米。
8. 一个等腰三角形的底边长是10cm,高是6cm,那么它的面积是
______平方厘米。
三、解答题
9. 一个数列的前三项分别是1, 2, 3,每一项都是前两项之和,求这个数列的第10项。
10. 一个长方体的长、宽、高分别是a、b、c,求它的体积。
四、答案
1. D
2. A
3. C
4. A
5. 2
6. 14
7. 78.5
8. 30
9. 55
10. abc。
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
初一奥数题及答案
初一奥数题1、设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,化简代数式|b|-|a+b|-|c-b|+|a-c|2、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将个位与百位上的数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。
3、已知(m+n)*(m+n)+|m|=m,|2m-n-2|=0,求mn的值4、现有4个有理数3,4,-6,10运用24点游戏规则,使其结果得24.(写4种不同的)5、由于-(-6)=6,所以1小题中给出的四个有理数与3,4,6,10,本质相同,请运用加,减,乘,除以及括号,写出结果不大于24的算式1、因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.2、法一:设这个三位数是xyz,则x=y+1,z=3y-2,所以y=x-1,z=3x-5。
这个三位数是100×x+10×y+z=100×x+10×(x-1)+3x-5=113x-15若将个位与百位上的数字顺序颠倒后,新的三位数是zyx,即100×z+10×y+x=100×(3x-5)+10×(x-1)+x=311x-510两个三位数的和是1171,所以,113x-15+311x-510=1171。
解得x=4。
所以,y=x-1=3,z=3x-5=7。
所以这个三位数是437.法二:解:设百位是100(X+1) , 十位是 10X , 个位是3X-2100(X+1)+10X+(3X-2)+100(3X-2)+10X+(X+1)=1171 X=3百位:100(X+1)=100(3+1)=400 十位:10X=3 x 10=30 个位:3X-2=3 x 3 -2=7 三位数:400+30+7=4373、解答:有(m+n)*(m+n)+|m|=m推出m〉0所以|m|=m 所以(m+n)*(m+n)=0,m=-n,n<0由|2m-n-2|=0 3n=-2 n=-2/3 m=2/34、(10-6+4)*3=24 (10-4)*3-(-6)=24(10-4)-(-6)*3=24 4-10*(-6)/3=243*[4+(10-6)]=24 (10-4)*3+6=246/3*10+4=24 6*3+10-4=245、3+4+6+10=23<24 (10-6)*4+3=19<2410*3-4*6=6<24 (10-6+4)*3=24。
初一奥数题(附答案
初一奥数题(附答案)【1 】1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值规模.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均长短负实数,且知足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,礼拜日小柱去探望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应当选择如何的路线才干使旅程最短?13.如图1-89所示.AOB是一条直线,OC,OE分离是∠AOD和∠DOB的等分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE等分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延伸订交于K及L,对角线AC‖KL,BD延伸线交KL于F.求证:KF=FL.19.随意率性转变某三位数数码次序所得之数与原数之和可否为999?解释来由.20.设有一张8行.8列的方格纸,随意把个中32个方格涂上黑色,剩下的32个方格涂上白色.下面临涂了色的方格纸施行“操纵”,每次操纵是把随意率性横行或者竖列上的各个方格同时转变色彩.问可否最终得到恰有一个黑色方格的方格纸?21.假如正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是知足下列前提的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包含每小我的两条腿),问房间里有几小我?24.求不定方程49x-56y+14z=35的整数解.25.男.女各8人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不斟酌先后次序,只斟酌男女若何结成舞伴.问各有若干种不合情形?26.由1,2,3,4,5这5个数字构成的没有反复数字的五位数中,有若干个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经由1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两临盆小队配合种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全体义务快3天.求甲乙单独完成各用若干天?29.一船向相距240海里的某港动身,到达目标地前48海里处,速度每小时削减10海里,到达后所用的全体时光与原速度每小时削减4海里航行全程所用的时光相等,求本来的速度.30.某工场甲乙两个车间,客岁筹划完成税利750万元,成果甲车间超额15%完成筹划,乙车间超额10%完成筹划,两车间配合完成税利845万元,求客岁这两个车间分离完成税利若干万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变更,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和下降了1%,求甲乙两种商品原单价各是若干?甲:105 乙:4532.小红客岁暑假在市肆买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,本年暑假她又带同样的钱去该市肆买同样的牙刷和牙膏,因为本年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,成果找回4角钱.试问客岁暑假每把牙刷若干钱?每支牙膏若干钱?33.某商场假如将进货单价为8元的商品,按每件12元卖出,天天可售出400件,据经验,若每件少卖1元,则天天可多卖出200件,问每件应减价若干元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇动身驶向B镇,25分钟今后,乙骑自行车,用0.6千米/分钟的速度追甲,试问若干分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜2 0%,含锰50%,含镍30%.现各取恰当重量的这三种合金,构成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量暗示第二种合金的重量;0.9+0.25x(2)求新合金中含第二种合金的重量规模;最大:1.035 最小:0.905(3)求新合金中含锰的重量规模.参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变成m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分离令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段构成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡算作一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,衔接甲′乙′,设甲′乙′所连得的线段分离与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度正好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,应用上面的对称办法,都可以化成一条衔接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的旅程最短.13.如图1-98所示.因为OC,OE分离是∠AOD,∠DOB的角等分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.是以,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE等分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CF B.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE等分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,衔接GE.在△ADC中,G,E分离是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.贯穿连接FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEF DG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b +c+a1+b1+c1=9+9+9,即2(a十b+c)=27,抵触!20.答案是否认的.设横行或竖列上包含k个黑色方格及8-k个白色方格,个中0≤k≤8.当转变方格的色彩时,得到8-k个黑色方格及k个白色方格.是以,操纵一次后,黑色方格的数量“增长了”(8-k)-k=8-2k个,即增长了一个偶数.于是无论若何操纵,方格纸上黑色方格数量标奇偶性不变.所以,从原有的32个黑色方格(偶数个),经由操纵,最后老是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的情势.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6 k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设前提知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4, 4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是独一的非负整数解.从而房间里有8小我.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全体整数解是而t= 1,z=2是t+2z=5的一组整数解.它的全体整数解是把t的表达式代到x,y的表达式中,得到原方程的全体整数解是25.(1)第一个地位有8种选择办法,第二个地位只有7种选择办法,…,由乘法道理,男.女各有8×7×6×5×4×3×2×1=40320种不合分列.又两列间有一相对地位关系,所以共有2×403202种不合情形.(2)逐个斟酌结对问题.与男甲结对有8种可能情形,与男乙结对有7种不合情形,…,且两列可对调,所以共有2×8×7×6×5×4×3×2×1=80640 种不合情形.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y 米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3= 12(天).解之得x=16(海里/小时).经磨练,x=16海里/小时为所求之原速.30.设甲乙两车间客岁筹划完成税利分离为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分离为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设客岁每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即2.4x=2×1.68,所以x=1.4 (元).若y为客岁每支牙膏价钱,则y=1.4+1=2.4(元).33.本来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,个中0<x<4.因为减价后,天天可卖出(400+200x)件,若设天天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比本来多卖出200件,是以多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的旅程分离是0.4(25+ x)千米和0.6x千米.因为两人走的旅程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才干追上甲.但A,B两镇之间只有28千米.是以,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的规模是:最小250克,最而0≤x≤500,所以新合金中锰的重量规模是:最小250克,最大400克.。
初一数学奥数题及答案
初一数学奥数题及答案初一数学奥数题通常包括一些基础的数学问题,以及一些需要创造性思维和逻辑推理的题目。
以下是一些典型的初一奥数题目及答案:# 题目1:数字问题小明在计算一个数的平方时,错误地将这个数写成了两倍,结果得到了400。
请问正确的数是多少?答案:设这个数为 \( x \),根据题意,我们有 \( (2x)^2 = 400 \)。
\( 4x^2 = 400 \)。
\( x^2 = 100 \)。
\( x = 10 \) 或 \( x = -10 \)(在实际问题中,我们通常取正数)。
所以,正确的数是10。
# 题目2:逻辑推理有5个盒子,分别标有1到5号。
每个盒子里都装有不同数量的糖果,但只有一个盒子里的糖果数量是奇数。
1号盒子里的糖果数量是2号盒子的两倍,3号盒子里的糖果数量是4号盒子的两倍,5号盒子里的糖果数量是偶数。
根据这些信息,哪个盒子里的糖果数量是奇数?答案:由于5号盒子的糖果数量是偶数,那么1号、2号、3号和4号盒子中必须有一个盒子的糖果数量是奇数。
1号盒子的糖果数量是2号的两倍,所以1号和2号盒子的糖果数量要么都是偶数,要么都是奇数。
但题目说只有一个盒子的糖果数量是奇数,所以1号和2号盒子的糖果数量不能都是奇数。
3号盒子的糖果数量是4号盒子的两倍,所以如果4号盒子是奇数,3号盒子也是奇数,这与题目条件不符。
因此,4号盒子的糖果数量是偶数,3号盒子的糖果数量也是偶数。
由于5号盒子是偶数,1号和2号盒子不能都是奇数,3号和4号盒子都是偶数,所以只有1号盒子的糖果数量是奇数。
# 题目3:几何问题在一个直角三角形中,如果一条直角边的长度是另一条直角边的两倍,且斜边的长度是10,求两条直角边的长度。
答案:设较短的直角边长度为 \( x \),较长的直角边长度为 \( 2x \)。
根据勾股定理,我们有 \( x^2 + (2x)^2 = 10^2 \)。
\( x^2 + 4x^2 = 100 \)。
数学初一奥数题及答案
数学初一奥数题及答案题目一:数列问题题目描述:有一个数列:2, 4, 7, 11, ... 这个数列的第10项是多少?解题思路:观察数列可以发现,每一项与前一项的差值依次为2, 3, 4, 5, ... 这是一个等差数列,差值的公差为1。
因此,第n项与第1项的差值是1+2+3+...+(n-1)。
答案:首先计算第10项与第1项的差值,即1+2+3+...+9,这是一个等差数列求和问题,公式为\( S = \frac{n(n+1)}{2} \),代入n=9得到\( S = \frac{9 \times 10}{2} = 45 \)。
所以第10项是2 + 45 = 47。
题目二:几何问题题目描述:在一个直角三角形ABC中,∠C是直角,AC=6,BC=8,求斜边AB的长度。
解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
答案:根据勾股定理,\( AB^2 = AC^2 + BC^2 \),代入AC=6,BC=8,得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以AB = √100 = 10。
题目三:逻辑推理问题题目描述:有5个盒子,每个盒子里装有不同数量的球,分别是1, 2, 3, 4, 5个。
现在将这5个盒子重新排列,使得每个盒子里的球数都比前一个盒子多1个。
问:重新排列后的盒子里球的数量分别是多少?解题思路:由于每个盒子里的球数都比前一个盒子多1个,我们可以从最小的数开始排列,即5, 4, 3, 2, 1。
答案:重新排列后的盒子里球的数量分别是5, 4, 3, 2, 1。
题目四:组合问题题目描述:有红、黄、蓝三种颜色的球各10个,现在要从中选出5个球,求有多少种不同的选法?解题思路:这是一个组合问题,可以使用组合公式\( C(n, k) =\frac{n!}{k!(n-k)!} \)来计算,其中n是总数,k是选出的数量。
答案:首先考虑不考虑颜色的情况下,从30个球中选出5个球的组合数为\( C(30, 5) \)。
七年级上学期奥数题和答案精选
七年级上学期奥数题和答案精选22、红星制造厂准备招收甲、乙两种的工人共150人,甲工种每名工人的月薪是600元,乙工种每名工人的月薪是1000元,两工种工人的总月薪是10万元,你能帮厂长算算甲、乙两工种应分别招多少人吗?解:设招收甲种工人a人,乙种则为150-a人根据题意600a+1000(150-a)=1000006a+1500-10a=10004a=500a=125人招收甲种125人,乙种150-125=25人或者:设招收甲种a人,乙种b人a+b=150600a+1000b=100000解得a=125b=2523、有一二位数,以其数字之和除之,得商为5,又交换二数字后以原数之个位数之二倍与十位数之差除之,则其商为9,求此二位数。
解:设这个二位数为10a+b根据题意10a+b=(a+b)×510b+a=(2b-a)×9化简5a=4ba=4b/5b=0,1,2,3, (9)所以只有b=5,a=4时符合题意这个二位数是4524、某体育场的环形跑道长400米,甲、乙分别以一定的速度练习长跑和自行车。
如果反向而行,那么他们每隔30秒相遇一次。
如果同向而行,那么每隔80秒乙就追上甲一次。
甲乙的速度分别是多少?解:设甲的速度为a米/秒,乙的速度为b米/秒根据题意(a+b)×30=400(b-a)×80=400化简a+b=40/3(1)b-a=5(2)(1)+(2)2b=55/3b=55/6米/秒(1)-(2)2a=25/3a=25/6米/秒甲的速度是25/6米/秒也就是250米/分钟乙的速度是55/6米/秒也就是550米/分钟25、从A城到B城,水路比陆路近40千米,上午11时,一只轮船以每小时24千米的速度从A城向B城行驶,下午2时,一辆汽车以每小时40千米的速度从A城向B城行驶,轮船和汽车同时到达B城,求A城到B城的水路和陆路各多长?解:设水路a千米,陆路b千米a+40=b(1)a/24-3=b/40(2)(1)代入(2)a/24-3=(a+40)/401/60a=4a=240千米b=240+40=280千米水路240千米,陆路280千米注意:上午11时到下午2时相差3个小时26、某汽车在相距70千米的甲乙两地往返行驶,由于路程中有一个坡度均匀的小山,所以去时用时2.5小时,返回使用时2.3小时,已知汽车在平地上每小时行驶30千米,下坡时每小时行驶40千米,上坡时每小时行驶20千米,求的上坡路,下坡路及平地的路程?解:设去时上坡a千米,下坡b千米,则平路是70-a-b 千米a/20+b/40+(70-a-b)/30=2.5(1)a/40+b/20+(70-a-b)/30=2.3(2)(1)-(2)a/40-b/40=0.2a-b=8a=b+8代入(1)解得b=4千米a=12千米所以去的时候平路70-4-12=54千米,上坡12千米。
初一数学上册奥数题及答案.doc
初一数学上册奥数题及答案一、选择题(每题 1 分,共10 分)1 .如果a,b 都代表有理数,并且a+b=0,那么( )A.a,b 都是0.B.a,b 之一是0.C.a,b 互为相反数.D.a,b 互为倒数.2 .下面的说法中准确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3 .下面说法中不准确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4 .如果a,b 代表有理数,并且a+b 的值大于a-b 的值,那么( ) A.a,b 同号.B.a,b 异号.C.a>0.D.b>0.5 .大于-π并且不是自然数的整数有( )A.2 个.B.3 个.C.4 个.D.无数个.6 .有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不准确的说法的个数是( ) A.0 个.B.1 个.C.2 个.D.3 个.7 .a 代表有理数,那么, a 和-a 的大小关系是( )A.a 大于-a.B.a 小于-a.C.a 大于-a 或a 小于-a.D.a 不一定大于-a.8 .在解方程的过程中,为了使得到的方程和原方程同解,能够在原方程的两边( )A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9 .杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10 .轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10 分)2 .198919902-198919892=______.3. =________.4. 关于x 的方程的解是_________.5.1-2+3-4+5-6+7-8+⋯+4999-5000=______.6. 当x=-时,代数式(3x3 -5x2+6x-1) -(x3 -2x2+x-2)+( -2x3+3x2+1)的值是____.7.当a=-0.2 ,b=0.04时,代数式的值是______.8.含盐30%的盐水有60 千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9. 制造一批零件, 按计划18 天能够完成它的. 如果工作 4 天后, 工作效率提升了, 那么完成这批零件的一半,一共需要______天.1 0.现在 4 点5 分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A 提示:1 .令a=2,b=-2,满足2+(-2)=0,由此2 .x2,2x2,x3 都是单项式.两个单项式x3,x2 之和为x3+x2 是多项式,排除A.两个单项式x2,2x2 之和为3x2 是单项式,排除B.两个多项式x3+x2 与x3-x2 之和为2x3 是个单项式,排除C,所以选D.3.1 是最小的自然数, A 准确.能够找到正所以C“没有的负整数”的说法不准确.写出扩大自然数列,0,1,2,3,⋯,n,⋯,易知无非负数,D准确.所以不准确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0 在内)的整数只有-3,-2,-1,0 共4 个.选C.6.由12=1,13=1 可知甲、乙两种说法是准确的.由( -1)3=-1,可知丁也是准确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不准确.即丙不准确.在甲、乙、丙、丁四个说法中,只有丙 1 个说法不准确.所以选B.7 .令a=0,马上能够排除A、B、C,应选D.8 .对方程同解变形,要求方程两边同乘不等于0 的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x -1)(x -2)=0,其根为x=1 及x=2,不与原方程同解,排除B.若在方程x-2=0 两边加上同一个代数式去了原方程x=2 的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,所以选D.9 .设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a) ×(1+10%)=0.9×1.1 ×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10 .设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v >v0)则往返一次所用时间为因为v-v0>0,a+v0>a-v0,a+v>a-v 所以(a+v0)(a+v) >(a-v0)(a -v) ∴t0 -t <0,即t0 <t .所以河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.因为(2+1)(22+1)(24+1)(28+1)(216+1)=(2 -1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22 -1)(22+1)(24+1)(28+1)(216+1)=(24 -1)(24+1)(28+1)(216+1)=(28 -1)(28+1)(216+1)=(216 -1)(216+1)=232 -1.2(1+x) -(x -2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+⋯+4999-5000=(1-2)+(3 -4)+(5 -6)+(7 -8)+⋯+(4999-5000)=-2500.6.(3x3 -5x2+6x-1) -(x3 -2x2+x-2)+( -2x3+3x2+1)=5x+27.注意到:当a=-0.2 ,b=0.04时,a 2-b=(-0.2)2 -0.04=0,b+a+0.16=0.04 -0.2+0.16=0 .8.食盐30%的盐水60 千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x 克,即0.001x 千克,此时,6 0×30%=(0.001x) ×40%解得:x=45000(克).。
完整版)初一奥数题集(带答案)
完整版)初一奥数题集(带答案) 奥数1、求(-1)^2002的值。
答案:12、如果a是有理数,那么a+2000的值不能是多少?答案:03、计算2007-[2006-{2007-(2006-2007)}]的值。
答案:20094、计算(-1)+(-1)-(-1)×(-1)÷(-1)的结果。
答案:-15、计算(-1)^2006+(-1)^2007÷-1^2008的结果。
答案:06、计算-2÷(-2)^2+(-2)的结果。
答案:07、计算3.825×-1.825+0.25×3.825+3.825×0.的结果。
答案:-2.58、计算2002-2001+2000-1999+…+2-1的值。
答案:10019、计算-1÷2.5×(-0.75)^(-1)÷(-1)×(-1)的结果。
答案:0.610、计算-5×+6×的结果。
答案:11、计算2-2+2-3+2-4+…+2-9+2^10的值。
答案:102212、计算(1/3)+(2/4)+(3/6)+…+(n/n+1)的值。
答案:n/(n+1)13、计算1×2×3+2×4×6+7×14×21/2的结果。
答案:10514、求x+1+x-2的最小值及取最小值时x的取值范围。
答案:最小值为-1,x的取值范围为[2,∞)。
已知实数$a,b,c$满足$-1c>a$,求$c-1+a-c-a-b$的值。
解题思路:将$c-1+a-c-a-b$化简,得到$a-2c-b-1$,然后根据题目中的不等式关系,将$a,b,c$表示成$c$的形式,代入化简后的式子中,即可得到答案。
具体步骤如下:由题意得:$c-1c>a$,即$b-a>a-c$,$b-c>c-a$。
将$c-1+a-c-a-b$化简,得到$a-2c-b-1$。
初一奥数精选题及答案
初中奥数题及答案初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
(完整版)初一奥数题集(带答案解析)
1、( 1)2002 的值2、a 为有理数,则 11工的值不能是a 2000A. -2007B. 2009C.-2009D.20071 8、计算:2002 — 20011 2000- 199912丄 11 2 2 2 32 3A. 2000B.1C.-1D.-2000A.1B.-1C .0D.-20003、2007200620072006 2007 的值等于4、(1)( 1)1)( 1) ( 1)的结果是A.-1B.1C.0D.25、( 1) 20061严20081 的结果是A.0B.1C.-1D.2&计算 (2)2(2)的结果是A.2B.1C.-1D.0 7、计算: 3.825 -1.82540.25 3.825 3.8259、计算:-2.5 ( 0.75)113 1111、计算:32000 5 319999 6 31998.练习:227 282n2n(2 1) 2n.6 12、计算:-(-2 41 1结果为:——22 21495-632? 2〔0 2门1982 612.51 13、计算:一2006 2007.应用:dn(n 1)练习:5 91 19 13 13 171101 10513、计算: 1 2 3 2 4 6 7 14 211 3 52 6 10 7 21 352结果为-514、求x 1 x 2的最小值及取最小值时x的取值范围.练习:已知实数a,b,c满足1 c 0 a b,且b c a,求c 1 |a c |a b 的值.练习:1、计算(1)1998( 1)1999(1)2006( 1)2007的值为(C)A.1B.-1 C.OD.102、 若m 为正整数,那么4 A.—定是零C. 是整数但不一定是偶数3、 若n 是大于1的整数,贝U p A. 一定是偶数C.是偶数但不是2 4、观察以下数表,第10行的各数之和为 1 4 3 6 7 8 13 12 11 10 15 16 17 18 19 26 25 24 2322 211 m (m2 1)的值B. 一定是偶数 D.不能确定1 ( n)n (n 2 1)^的值是B.—定是奇数 D.可以是奇数或偶数B.1190C.595D.4905、已知a 2002 2001 2002 20012 2002足的关系是A. a b2001B.a b 2002C.a1 2 3 24 64 8 127 14 &计算:2001 2OO22001, b 2OO22002,则 a 与 b 满(C )bD.a b 200221 235. 57、计算:1 21 3— 4 丄 5 丄 6— 7丄.2836 12 20 30 42 56 8A.980 1 3 5 2 6 10 4 12 20 7 211 1 113、2007加上它的1得到一个数,再加上所得的数的1又得到一个数,再加上这次得到的1又2 3 4 得到一个数,…,依次类推,一直加到上一次得数的丄,最后得到的数是多少?200714、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间的 自然数, 将这四个(每个数用且只用一次)进行加减四则运算与4 (1 2 3)应视作相同方法的运算,8、计算:112 12 3 123 1009、计算:9 99 9999999 99999 999999.10、 计算 (1 2000 1999 1980 197020 10 1 1 1 1 1-)(1 -)(1 -) (1 )(1 )(12 3 4 998999.10611、 已知9^,Q 巧,比较P,Q 的大小. 9 912、 (11 9)9T90799 999911 911 T9小9099990 设n 为正整数, 计算:114 n(n 2 112 3 3 3 4 4 4 1n 1) 22002 (1 1) (1 1)2 32005003现有四个有理数3, 4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24, 运算式:(1) _______________________ ;(2) _______________________ ;(3) _______________________ ;15黑板上写有1,2,3,…,1997, 1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5, 13和1998后,添加上6;若再擦掉6, 6, 38,添上0,等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册奥数题及答案
一、选择题(每题1分,共10分)
1.如果a,b都代表有理数,并且a+b=0,那么 ( )
A.a,b都是0.
B.a,b之一是0.
C.a,b互为相反数.
D.a,b互为倒数.
2.下面的说法中准确的是 ( )
A.单项式与单项式的和是单项式.
B.单项式与单项式的和是多项式.
C.多项式与多项式的和是多项式.
D.整式与整式的和是整式.
3.下面说法中不准确的是 ( )
A. 有最小的自然数.
B.没有最小的正有理数.
C.没有的负整数.
D.没有的非负数.
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号.
B.a,b异号.
C.a>0.
D.b>0.
5.大于-π并且不是自然数的整数有 ( )
A.2个.
B.3个.
C.4个.
D.无数个.
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立
方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数
的立方不一定大于它本身.这四种说法中,不准确的说法的个数是 ( ) A.0个.
B.1个.
C.2个.
D.3个.
7.a代表有理数,那么,a和-a的大小关系是 ( )
A.a大于-a.
B.a小于-a.
C.a大于-a或a小于-a.
D.a不一定大于-a.
8.在解方程的过程中,为了使得到的方程和原方程同解,能够在原
方程的两边( )
A.乘以同一个数.
B.乘以同一个整式.
C.加上同一个代数式.
D.都加上1.
9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )
A.一样多.
B.多了.
C.少了.
D.多少都可能.
10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )
A.增多.
B.减少.
C.不变.
D.增多、减少都有可能.
二、填空题(每题1分,共10分)
2.198919902-198919892=______.3. =________.4. 关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+ (4999)
5000=______.6.当x=- 时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式
的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划。