信号与系统分析实验信号的频谱分析
信号与系统-信号与系统的频域分析
§3.1 周期信号的分解与合成
1768年生于法国 1807年提出“任何周期信号都可用收敛 的正弦函数级数表示” 1829年狄里赫利第一个给出收敛条件 拉格朗日反对发表 1822年首次发表在“热的分析理论”一 书中。
§3.1 周期信号的分解与合成
一、周期信号分解为三角级数
周期信号 f t,周期为T1
F () 0 0
F () , j
F () 0 0
说明:
F() F(0) f (t)dt
0
时域积分性质多用于F(0)=0的情况,而F(0)=0表明f(t)的频谱函数中直
0
2
bn
2 T
T
2 T
2
f
(t)sin n1tdt
4 T
T
2 0
Asin
n1tdt
图1
T
4A T
co sn1t n1
2 0
4 A (n 1, 3, 5,) nπ 0 (n 2, 4, 6,)
所以f( t )的傅里叶级数为
f
(t )
4A π
(sin
1t
1 3
sin
31t
1 5
sin
51t
)
2
( n1 )
)
A Sa( n1 )
2
T
2
其中Sa( )形式如下。
抽样函数:
Sa(t) sin t t
Sa (0) 1
当 t k (k 1,2,3 时,) Sa( t ) = 0
图6
f( t ) 的双边谱
Sa( t ) : Fn :
图7
周期矩形脉冲信号含有无穷多条谱线,也就是说,周期矩形脉冲信号 可表示为无穷多个正弦分量之和。在信号的传输过程中,要求一个传输系 统能将这无穷多个正弦分量不失真地传输显然是不可能的。实际工作中, 应要求传输系统能将信号中的主要频率分量传输过去,以满足失真度方面 的基本要求。周期矩形脉冲信号的主要能量集中在第一个零点之内, 因而, 常常将ω=0~ 这段频率范围称为矩形脉冲信号的频带宽度。记为
信号与系统分析PPT电子教案第三章连续时间信号与系统的频谱分析
f (t ) A0 An cos(n1t n ) n1
A0
n1
An 2
[e e ] j(n1t n ) j(n1t n )
A0
1 2
n1
An
e e jn jn1t
1 2
n1
An
e e jn jn1t
上式中第三项的n用–n代换,则上式写为
f (t)
A0
1 2
n1
An e jn e jn1t
T0
因此,信号绝对可积就保证了 ak 的存在。
② 在任何有限区间内,只有有限个极值点,且极值
为有限值。
③ 在任何有限区间内,只有有限个第一类间断点。
其它形式
余弦形式 f (t) A0 An cos n1t n
2
n1
A0 a0
an An cosn
An an2 bn2
bn An sinn
cos
2 1 t
4
,
请画出其幅度谱和相位谱。
化为余弦形式
f (t) 1
5
cos(1t
0.15
)
cos
2 1 t
4
三角形式的傅里叶级数的谱系数
三角函数形式的频谱图
A0 1
0 0
An A1 2.24
A0 1
A2 1
0 1 21
n
0.25
1
0
21
0.15
A1 5 2.236 1 0.15
在时域可以看到,如果一个周期信号的周期趋 于无穷大,则周期信号将演变成一个非周期信 号;反过来,任何非周期信号如果进行周期性 延拓,就一定能形成一个周期信号。我们把非 周期信号看成是周期信号在周期趋于无穷大时 的极限,从而考查连续时间傅立叶级数在 T趋 于无穷大时的变化,就应该能够得到对非周期 信号的频域表示方法。
信号与系统—信号的频域分析
信号与系统—信号的频域分析频域分析是指将信号从时间域转换为频域的过程,并通过对信号在频域上的性质和特征进行分析与研究。
频域分析对于理解信号的频率特性、频谱分布等方面的特性有很大的帮助,是信号处理领域中不可或缺的分析工具。
频域分析的基本方法之一是傅里叶变换。
傅里叶变换可以将连续时间域中的信号转换为离散频域中的信号,也可以将离散时间域中的信号转换为连续频域中的信号。
它通过将信号分解为不同频率的正弦波的组合来分析信号的频谱分布。
傅里叶变换的基本公式为:两个公式其中,X(f)表示信号在频域中的频谱,x(t)表示信号在时间域中的波形,f表示频率。
傅里叶变换得到的频谱图可以展示信号在不同频率上的能量分布情况,从而能够更直观地了解信号的频率成分。
频谱图通常以频率为横轴,信号在该频率上的幅度或相位为纵轴,用于描述信号在频域中的变化情况。
除了傅里叶变换,还有其他一些常用的频域分析方法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等。
离散傅里叶变换是对离散时间域中的信号进行频域分析的方法,快速傅里叶变换是一种高效的计算离散傅里叶变换的方法。
频域分析主要包括信号的频谱分析和系统的频率响应分析两个方面。
在信号的频谱分析中,我们可以通过观察信号在频域上的能量分布情况来判断信号的频率成分、频率范围等信息。
而在系统的频率响应分析中,我们可以通过研究系统在不同频率上的响应特性来了解系统对不同频率信号的传输、增益、衰减等情况。
频域分析在实际应用中有着广泛的应用。
例如,在音频处理领域中,频域分析可以用于声音信号的频谱分析和音效处理等方面。
在通信系统中,频域分析可以用于信号的调制解调、信道估计、信号检测等。
在图像处理中,频域分析可以用于图像的锐化、降噪、压缩等方面。
总结起来,信号的频域分析是信号与系统课程中的重要内容,它通过将信号从时间域转换为频域来研究信号的频率特性和频谱分布等问题。
傅里叶变换是频域分析中常用的方法之一,它可以将信号分解为不同频率的正弦波的组合。
连续时间信号与系统的频域分析报告
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
信号与系统实验报告-实验3--周期信号的频谱分析
信号与系统实验报告-实验3--周期信号的频谱分析信号与系统实验报告实验三周期信号的频谱分析实验三周期信号的频谱分析实验目的:1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
实验内容:(1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。
程序如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of timew0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]); grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')subplot(224)plot(t,x)%Plot xtaxis([-2 4 -2 2])grid on,title('signal xt')(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
《信号与系统》离散信号的频域分析实验报告
信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。
4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。
图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。
分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。
并观察是否存在频谱混叠。
图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。
(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。
(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。
(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。
11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。
信号与系统—信号的频域分析
2. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为
f (t) Cn e jn0t
n =
其中
Cn
1 T
T 2 T
fT (t)e jn0t dt
2
n 1 两项的基波频率为f0,两项合起来称为信号的基波分量 n 2 的基波频率为2f0,两项合起来称为信号的2次谐波分量
n N 的基波频率为Nf0,两项合起来称为信号的N次谐波分量
3.卷积性质
若f1(t)和f2(t)均是周期为T0的周期信号,且 f1(t) C1n , f2 (t) C2n
则有 f1(t) * f2 (t) T0C1n C2n
4. 微分特性
若
则有
f (t) Cn
f '(t) jn0Cn
5. 对称特性
(1)若f(t)为实信号
则 | Cn || Cn | n n
• 周期信号f(t)可以分解为不同频率虚指数信号之和
fT (t) Cn e jn0t
n =
不同的时域信号,只是傅里叶级数的系数Cn不同, 因此通过研究傅里叶级数的系数来研究信号的特性。
Cn是频率的函数,它反映了组成信号各正弦谐波 的幅度和相位随频率变化的规律,称频谱函数。
2、频谱的表示
直接画出信号各次谐波对应的An、 Cn线状 分布图形,这种图形称为信号的频谱图。
)
例2 试计算图示周期三角脉冲信号的傅立叶级数展开式。
f (t)
-2 1 0 2
t
解: 该周期信号f (t)显然满足狄里赫勒的三个条件,Cn存在
Cn
1 T
T 2 T
f (t)e jn0t dt 1 ( 0 te jn0t dt 2 1
信号频谱实验报告
信号频谱实验报告信号频谱实验报告引言:信号频谱是无线通信中的重要概念,它描述了信号在频率上的分布情况。
本次实验旨在通过实际测量和分析,探索不同信号的频谱特性,并深入了解信号频谱在通信系统中的应用。
实验一:连续波信号的频谱分析在实验一中,我们使用了频谱分析仪对连续波信号进行了频谱分析。
首先,我们选取了一个频率为1kHz的正弦波信号作为输入信号。
通过观察频谱分析仪的显示,我们发现该信号在频率为1kHz附近有一个峰值,并且在其他频率上几乎没有能量分布。
这说明了正弦波信号在频谱上呈现出单一的频率分布特性。
接下来,我们改变了输入信号的频率,分别选取了10kHz、100kHz和1MHz的正弦波信号进行频谱分析。
结果显示,随着频率的增加,信号的频谱分布范围也随之增大。
这说明高频信号具有更广泛的频谱分布特性。
实验二:脉冲信号的频谱分析在实验二中,我们对脉冲信号进行了频谱分析。
我们首先选取了一个周期为1ms的方波信号作为输入信号。
通过频谱分析仪的显示,我们观察到该信号在频谱上有一系列的谐波分量,其频率为基波频率及其整数倍。
这是因为方波信号可以分解为多个正弦波信号的叠加,每个正弦波信号对应一个谐波分量。
接下来,我们改变了方波信号的周期,分别选取了100μs、10μs和1μs的方波信号进行频谱分析。
结果显示,随着方波信号周期的减小,谐波分量的频率也相应增加。
这说明方波信号的频谱分布与其周期密切相关。
实验三:调制信号的频谱分析在实验三中,我们对调制信号进行了频谱分析。
我们选取了一个频率为1kHz 的正弦波信号作为载波信号,通过调制信号对其进行调制。
我们分别使用了幅度调制(AM)和频率调制(FM)两种调制方式。
通过频谱分析仪的显示,我们观察到幅度调制信号在频谱上出现了两个峰值,分别对应了载波信号和调制信号的频率。
而频率调制信号在频谱上呈现出一系列的频率偏移。
这说明调制信号的频谱特性与调制方式密切相关。
结论:通过本次实验,我们深入了解了信号频谱的特性和应用。
信号与系统实验
实验一 抽样定理与信号恢复一、实验目的1. 观察离散信号频谱,了解其频谱特点;2. 验证抽样定理并恢复原信号。
二、实验原理1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。
抽样信号 Fs (t )=F (t )·S (t )。
其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。
Ts 又称抽样间隔,Fs=1Ts 称抽样频率,Fs (t )为抽样信号波形。
F (t )、S (t )、Fs (t )波形如图1-1。
t-4T S -T S 0T S 4T S8T S 12T S tt02/1τ1τ2/31τ2/1τ1τ2/31τ2/1τ-(a)(b)(c)图1-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图1-2所示。
2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()∑∞∞--∙=m s s m m SaTsA j )(22s F ωωπδτωτω 它包含了原信号频谱以及重复周期为fs (f s =πω2s 、幅度按ST A τSa (2τωs m )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。
因此,抽样信号占有的频带比原信号频带宽得多。
以三角波被矩形脉冲抽样为例。
三角波的频谱 F (j ω)=∑∞-∞=-K k k sa E )2()2(12τπωδππ抽样信号的频谱Fs (j ω)=式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图1-3所示。
图1-2 信号抽样实验原理图)(2(212s m k s m k k Sa m Sa TS EA ωωωδπτωτπ--∙∙∑∞-∞=-∞=111112ττπω==f 或(b) 抽样信号频谙图1-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
信号与系统实验报告实验九:周期与脉宽和脉冲信号频谱的关系实验
信号与系统实验报告实验九:周期与脉宽和脉冲信号频谱的关系实验一、实验目的1.进一步理解信号频谱的概念。
2.进一步掌握脉冲信号频谱的特点。
二、实验原理及内容周期矩形脉冲信号的傅立叶级数是:其中,τ是脉冲信号的脉冲宽度;T是脉冲信号的周期,E是脉冲信号的幅值。
从式中可以看出它的谱线离散,仅含有ω=nΩ的各分量。
相邻谱线间隔为Ω(Ω=2π/T),脉冲周期T越大,谱线间隔越小,频谱越密;反之,则越疏。
另外谱线按照Sa(ωτ/2)的规律变化。
在ω=2nπ/τ(n=1,2,…)各点处包络为零,即该点频率分量为零。
1.脉宽与频谱关系由公式可以看出,频谱包络线的零点为ω=2nπ/τ处,所以当脉冲信号周期不变,脉冲宽度变大时,相邻谱线的间隔不变,频谱包络线的零点频率逐渐变小,反之则变大。
另外频谱中各频率点谱线的幅值与脉宽τ也有关,且当信号周期不变,脉宽越宽其频率点频谱的幅值越大,反之则越小。
2.周期与频谱的关系从公式可以看出,信号的周期与频谱包络线的零点没有关系,所以当周期变化时,频谱包络线零点不变。
然后当信号的脉宽不变,信号周期变大时,相邻谱线的间隔变小,频谱变密。
如果周期无限增长,那么,相邻谱线的间隔将趋近于零,周期信号的离散谱就过滤到非周期信号的连续谱。
另外频谱中各频率点谱线的幅值与脉宽τ也有关,且当信号脉宽不变,信号周期越大其频率点谱线的幅值越小,反之则越大。
三、实验步骤1.脉冲宽度与频谱的关系1)进入波形发生器界面,在该界面上选取幅值3V、频率100Hz、占空比20%的周期脉冲信号。
2)进入频谱分析仪界面。
计算并测量此信号频谱中频谱包络线第一个零点的频率值f、时间坐标零点谱线的幅值V和各谱线之间的距离m三个参数,将计算得到的理论值和测量值表2-9-13)将上述信号的占空比改为10%,通过计算可知:此信号和上边信号的周期一样,且脉宽是其1/2。
计算并测量此信号的上述三个参数,填入上表。
4)将上述信号的占空比改为5%,通过计算可知:此信号和上边信号的周期一样,且脉宽是其1/4。
信号与系统分析实验信号的频谱分析
实验三信号的频谱分析1方波信号的分解与合成实验1实验目的1. 了解方波的傅立叶级数展开和频谱特性。
2. 掌握方波信号在时域上进行分解与合成的方法。
3. 掌握方波谐波分量的幅值和相位对信号合成的影响。
2 实验设备PC机一台,TD-SAS系列教学实验系统一套。
3 实验原理及内容1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。
其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。
依此类推,还有三次、四次等高次谐波分量。
2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。
图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。
(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。
信号及系统的谱分析
信号及系统的谱分析谱分析是信号及系统领域中一种重要的分析方法,用于研究信号的频谱特性。
频谱描述了信号在不同频率上的能量分布情况,揭示了信号的频率成分、频率幅度、相位关系等重要信息,对于进一步了解信号的特性、处理信号、设计滤波器等具有重要意义。
在信号及系统分析中,信号可以分为连续时间信号和离散时间信号两种。
连续时间信号是在连续时间上变化的信号,可表示为函数形式,如x(t)表示连续时间信号的函数表达式。
而离散时间信号是在离散时间点上取值的信号,通常用序列表示,如x[n]表示离散时间信号的序列。
首先,我们来介绍连续时间信号的频谱分析方法。
对于连续时间信号x(t),其频谱可以通过傅里叶变换进行分析。
傅里叶变换将信号从时域转换到频域,得到的结果是信号在不同频率上的复振幅谱。
具体地,对于连续时间信号x(t),其傅里叶变换可以表示为:X(ω) = ∫[from -∞ to +∞] x(t)e^(-jωt) dt其中X(ω)表示信号x(t)的频谱,在频率ω处的复振幅。
频谱的实部表示信号的幅度,虚部表示信号的相位。
对于离散时间信号x[n],其频谱可以通过离散时间傅里叶变换(DTFT)进行分析。
离散时间傅里叶变换将离散时间序列转换到连续频率上的变换,得到信号在不同频率上的复振幅谱。
具体地,对于离散时间信号x[n],其离散时间傅里叶变换可以表示为:X(ω) = ∑[from -∞ to +∞] x[n]e^(-jωn)类似于连续时间信号,离散时间信号的频谱的实部表示信号的幅度,虚部表示信号的相位。
除了傅里叶变换,还有其他一些方法可用于信号的频谱分析,如快速傅里叶变换(FFT)和功率谱密度分析(PSD)。
FFT是一种高效的计算傅里叶变换的算法,可以快速地计算离散时间信号的频谱。
PSD是对信号功率谱的估计,可以用于研究信号的能量分布特性。
通过PSD分析,可以了解信号在不同频率上的功率贡献,找到频域上的主要成分。
总之,谱分析是信号及系统中重要的分析方法,可以帮助我们了解信号的频谱特性。
信号与系统的频域分析
信号与系统的频域分析信号与系统是电子、通信、自动控制、计算机等领域的重要基础课程,频域分析是其中的重要内容之一。
频域分析是指将信号在频域上进行分析和处理,通过分析信号的频谱特性和频率分量来了解信号的频率成分和频率响应。
一、频域分析的基本概念和原理频域分析是将时域信号转换为频域信号的过程,可以通过傅里叶变换来实现。
傅里叶变换是一种将非周期信号或有限时长的周期信号分解为一系列基础频率分量的技术,可以将信号在频域上进行表达和处理。
在频域中,信号的频率成分和相对能量分布可以清晰地呈现出来,方便人们对信号进行分析和理解。
二、傅里叶级数和傅里叶变换傅里叶级数是用来分解周期信号为一系列余弦和正弦函数的技术,适用于周期信号的频域分析。
傅里叶级数展开后,通过求解各个频率分量的振幅和相位,可以得到该周期信号在频域中的频率成分和能量分布。
傅里叶变换是对非周期信号或有限时长的周期信号进行频域分析的方法。
傅里叶变换将信号从时域转换到频域,得到信号的频谱特性。
通过傅里叶变换,可以将时域中的信号分解为一系列基础频率分量,同时还可以得到每个频率分量的相位和振幅信息。
三、频域分析的应用频域分析在信号处理和系统分析中广泛应用。
在通信系统中,频域分析可以用于信号调制、解调和信道估计等方面。
在音频和视频信号处理中,频域分析可以用于音频和视频编码、去噪和增强等技术。
在自动控制系统中,频域分析可以用于系统的稳定性和响应特性分析。
四、常见的频域分析方法除了傅里叶变换外,还有一些常见的频域分析方法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、功率谱密度分析(PSD)等。
这些方法在不同的领域和应用中有着各自的优缺点和适用范围。
熟练掌握这些方法的原理和使用技巧,可以更好地进行频域分析和信号处理。
五、总结频域分析是信号与系统领域中重要的理论和实践内容,通过分析信号在频域上的频率成分和能量分布,可以深入理解信号的特性和系统的行为。
傅里叶变换作为频域分析的核心工具,能够将信号在时域和频域之间进行转换,为信号处理和系统分析提供了强有力的工具。
信号与系统实验报告实验三 连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
信号_频域分析实验报告(3篇)
第1篇一、实验目的1. 理解信号的频域分析方法及其在信号处理中的应用。
2. 掌握傅里叶变换的基本原理和计算方法。
3. 学习使用MATLAB进行信号的频域分析。
4. 分析不同信号在频域中的特性,理解频域分析在实际问题中的应用。
二、实验原理频域分析是信号处理中一种重要的分析方法,它将信号从时域转换到频域,从而揭示信号的频率结构。
傅里叶变换是频域分析的核心工具,它可以将任何信号分解为不同频率的正弦波和余弦波的线性组合。
三、实验内容及步骤1. 信号生成与傅里叶变换- 使用MATLAB生成一个简单的正弦波信号,频率为50Hz,采样频率为1000Hz。
- 对生成的正弦波信号进行傅里叶变换,得到其频谱图。
2. 频谱分析- 分析正弦波信号的频谱图,观察其频率成分和幅度分布。
- 改变正弦波信号的频率和幅度,观察频谱图的变化,验证傅里叶变换的性质。
3. 信号叠加- 将两个不同频率的正弦波信号叠加,生成一个复合信号。
- 对复合信号进行傅里叶变换,分析其频谱图,验证频谱叠加原理。
4. 窗函数- 使用不同类型的窗函数(如矩形窗、汉宁窗、汉明窗等)对信号进行截取,观察窗函数对频谱的影响。
- 分析不同窗函数的频率分辨率和旁瓣抑制能力。
5. 信号滤波- 设计一个低通滤波器,对信号进行滤波处理,观察滤波器对信号频谱的影响。
- 分析滤波器对信号时域和频域特性的影响。
6. MATLAB工具箱- 使用MATLAB信号处理工具箱中的函数,如`fft`、`ifft`、`filter`等,进行信号的频域分析。
- 学习MATLAB工具箱中的函数调用方法和参数设置。
四、实验结果与分析1. 正弦波信号的频谱分析实验结果显示,正弦波信号的频谱图只有一个峰值,位于50Hz处,说明信号只包含一个频率成分。
2. 信号叠加的频谱分析实验结果显示,复合信号的频谱图包含两个峰值,分别对应两个正弦波信号的频率。
验证了频谱叠加原理。
3. 窗函数对频谱的影响实验结果显示,不同类型的窗函数对频谱的影响不同。
实验一信号频谱分析实验
实验一信号频谱分析实验1.引言信号频谱分析是一种通过将信号在频域上进行分解和分析的方法,用于研究信号的频率特性和频谱分布。
频谱分析可以帮助我们了解信号的频率成分、噪声干扰以及信号与系统之间的传递特性。
本实验旨在通过使用快速傅里叶变换(FFT)算法进行信号频谱分析,加深对频谱分析原理和方法的理解。
2.实验目的(1)理解信号频谱分析的基本原理和方法。
(2)熟悉使用FFT算法进行信号频谱分析的流程和步骤。
(3)学会使用示波器和信号发生器进行实验测量和信号生成。
3.实验仪器和设备示波器、信号发生器、计算机等。
4.实验原理信号频谱是描述信号在频域上的分布情况,表示了信号中各个频率成分的强度和相位信息。
频谱分析通过对信号进行傅里叶变换,将信号从时域转换为频域,得到信号的频谱信息。
在本实验中,我们使用快速傅里叶变换(FFT)算法对信号进行频谱分析。
FFT算法是一种高效的离散傅里叶变换(DFT)算法,通过将DFT变换的计算量从O(N^2)降低到O(NlogN),使得频谱分析更加实用。
FFT算法将信号划分为若干个子序列,并对每个子序列进行DFT变换,然后利用蝶形运算将子序列的变换结果合并,最终得到整个信号的频谱信息。
5.实验步骤(1)使用信号发生器产生一个频率为f1的正弦信号,并将其接入示波器。
(2)通过示波器观察和记录信号的波形。
(3)将示波器设置为频谱分析模式,选择FFT算法进行频谱分析。
(4)根据示波器显示的频谱图,记录信号在频域上的频率分布情况。
(5)改变信号发生器的频率,重复步骤(1)-(4),分析和比较不同频率下信号的频谱特性。
(6)将示波器设置为傅里叶合成模式,通过合成不同频率和幅度的正弦波,观察合成信号的波形和频谱分布情况。
(7)利用计算机进行信号频谱分析,使用MATLAB等软件绘制信号的频谱图,并进行进一步分析和比较。
6.实验注意事项(1)实验中使用的信号发生器和示波器需要进行校准,确保测量和生成的信号准确可靠。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
离散信号与系统的频谱分析实验报告
实验二 离散信号与系统的频谱分析一、实验目的1.掌握离散傅里叶变换(DFT )及快速傅里叶变换(FFT )的计算机实现方法。
2.检验序列DFT 的性质。
3.掌握利用DFT (FFT )计算序列线性卷积的方法。
4.学习用DFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT 。
5.了解采样频率对谱分析的影响。
6.了解利用FFT 进行语音信号分析的方法。
二、实验设备1.计算机2.Matlab 软件7.0以上版本。
三、实验内容1.对不同序列进行离散傅里叶变换并进行分析;DFT 共轭对称性质的应用(通过1次N 点FFT 计算2个N 点实序列的DFT )。
2.线性卷积及循环卷积的关系,以及利用DFT (FFT )进行线性卷积的方法。
3.比较计算序列的DFT 和FFT 的运算时间。
4.利用FFT 实现带噪信号检测。
5.利用FFT 计算信号频谱及功率谱。
6.扩展部分主要是关于离散系统采样频率、时域持续时间、谱分辨率等参数之间的关系,频谱的内插恢复,对语音信号进行简单分析。
四、实验原理1.序列的离散傅里叶变换及性质离散傅里叶变换的定义:10, )()]([)(102-≤≤==∑-=-N k en x n x DFT k X N n nk Nj π离散傅里叶变换的性质:(1)DFT 的共轭对称性。
若)()()(n x n x n x op ep +=,[])()(n x DFT k X =,则:)()]([k X n x DFT R ep =, )()]([k jX n x DFT I op =。
(2)实序列DFT 的性质。
若)(n x 为实序列,则其离散傅里叶变换)(k X 为共轭对称,即10),()(*-≤≤-=N k k N X k X 。
(3)实偶序列DFT 的性质。
若)(n x 为实偶序列,则其离散傅里叶变换)(k X 为实偶对称,即10),()(-≤≤-=N k k N X k X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三信号的频谱分析1方波信号的分解与合成实验1实验目的1. 了解方波的傅立叶级数展开和频谱特性。
2. 掌握方波信号在时域上进行分解与合成的方法。
3. 掌握方波谐波分量的幅值和相位对信号合成的影响。
2 实验设备PC机一台,TD-SAS系列教学实验系统一套。
3 实验原理及内容1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。
其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。
依此类推,还有三次、四次等高次谐波分量。
2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。
图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。
(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。
在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。
本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。
4. 信号的合成本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。
图3-1-24 实验步骤本实验在方波信号的分解与合成单元完成。
1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。
2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。
若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。
)3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。
4. 完成信号的分解后,分别测量基波与三次谐波,基波、三次谐波与五次谐波,基波、三次谐波、五次谐波与七次谐波,基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。
并完成图3-1-3。
图 3-1-3基波基波+三次谐波基波+三、五次谐波基波+三、五、七次谐波基波+三、五、七、九次谐波2 连续周期信号与连续非周期信号的频谱实验1 实验目的1. 掌握连续周期信号与连续非周期信号频谱的特点2. 学习使用频谱分析仪观察信号的频谱2 实验设备PC机一台,TD-SAS系列教学实验系统一套。
3 实验原理及内容1. 连续信号的频谱一个周期信号只要满足狄里赫利条件,则可以分解为一系列谐波分量之和。
为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱。
描述各次谐波振幅与频率关系的是振幅频谱;描述各次谐波相位与频率关系的是相位频谱。
根据周期信号展开成傅立叶级数的不同形式可分为单边频带谱和双边频带谱。
连续信号可分为连续周期信号和连续非周期信号。
其中连续周期信号可以分解为一系列正弦信号之和,即由式可见,周期信号的谱线只出现在频率为0,Ω,2Ω,…,等离散频率上,即周期信号的频谱是离散谱。
连续非周期信号可以认为信号的周期趋近无穷大,这样相邻谱线的间隔Ω趋近与无穷小,从而信号的频谱密集成为连续频谱。
例如周期脉冲信号的频谱是由基波和它的各次谐波组成,即只有在其基波频率的等倍数的频率点上有值。
脉冲时域波形与其频谱如图3-2-1所示。
若上述信号只含有脉冲信号的一个周期,则此信号的频谱中有值的频率点数将增加到无穷大,最终形成连续的谱线。
如图3-2-2所示。
图3-2-1周期脉冲信号及其频谱图3-2-2 脉冲信号及其频谱2. 频谱分析仪本实验设备提供了两种频谱分析工具。
(1)理论频谱图:该工具单独由软件算法对信号源中波形数据进行计算,生成频谱数据。
利用它可以观察信号发生器所产生的所有信号的理论振幅频谱。
其界面如图3-2-3所示。
图3-2-3 理论频谱图界面(2)频谱分析仪:该工具由硬件对所测波形进行采样,再由软件算法对所采样数据进行计算,生成频谱数据。
它可以观察实际测量到的信号的单边带振幅谱。
其界面如图3-2-4所示。
图3-2-4 频谱分析仪界面两种振幅谱的坐标定义相同,其中横轴数值对应各个频率点,纵轴数值对应信号的幅值;通过对两种频谱的对比,可以了解信号频谱的理论知识和实际应用的区别。
按照此频谱分析仪的设计,FFT的点数与频谱分辨率有直接关系,采样频率为f s的点FFT 频率分辨率f s/N,频谱宽度从0到f s/2。
对于周期信号,如果点恰好包括了一个或整数个周期,则信号频谱上将在对应频率点上出现尖峰,否则频谱上没有正好与信号周期/频率对应的频率点,此频率点能量将被分散到相邻的频率点上。
实际的信号通常包括多种频率分量,FFT 样点不可能正好是这些分量周期的整数倍,在N较小时,两个频率相近的分量可能在频谱上无法分辨,实验中应注意这些问题。
4 实验步骤1. 周期信号频谱的观察(1)使信号发生器产生频率200Hz、幅值3V的方波信号,用示波器观察此信号波形。
观察完毕后关掉示波器窗口。
(2)在TD-SAS实验系统软件界面上点击“频谱分析仪”进入频谱分析仪界面。
用表笔测量信号发生器输出端,通过试验指导书所述方法调节各参数,使频谱达到较好的效果(频谱分析仪的采样频率一般选择为所测波形频率的10倍左右为最佳)。
(3)记录频谱中各次谐波分量的频率和幅值并与理论之比较完成表3-2-1。
注意:实验中可以发现,所得到的频谱并非由单个的谱线组成,而是每条谱线都有一个边带。
产生此情况的原因是:周期信号是无穷的,而实际测量不可能以无穷大为单位,所以必然存在对信号的截短。
频谱分析仪是以截短后的信号作为周期信号的一个周期,所以测量信号与原始信号存在误差,最终导致边带的产生。
在此频谱分析仪中观察频谱的方法是:频谱中每个波的波峰处为一个频率点,测量时只需观察各波峰处的频率和幅值即可。
表3-2-1(4)上述测量完成后关掉频谱分析仪。
在信号发生器界面中,重新选取上述信号,之后点击频谱按钮,便可以进入理论频谱图界面。
此频谱图中所得到的频谱是所选择信号的理论频谱。
记录频谱中各次谐波分量的频率和幅值并与理论之比较完成表3-2-2。
表3-2-2理论方波图实际方波图2. 非周期信号频谱的观察由于实验中的非周期信号的特殊性,所以只能提供理论的频谱进行观察。
在信号发生器界面中选择所需的非周期信号,点击频谱按钮,便可以观察其理论频谱。
理论脉冲图实际脉冲图3 周期与脉宽和脉冲信号频谱的关系实验1 实验目的1. 进一步理解信号频谱的概念。
2. 进一步掌握脉冲信号频谱的特点。
3.掌握脉冲信号周期或脉宽变化与其频谱的关系。
2 实验设备PC机一台,TD-SAS系列教学实验系统一套。
3 实验原理及内容周期矩形脉冲信号的傅立叶级数是:其中,τ是脉冲信号的脉冲宽度;T是脉冲信号的周期,E是脉冲信号的幅值。
从式中可以看出它的谱线离散,仅含有ω=nΩ的各分量。
相邻谱线间隔为Ω(Ω=2π/T),脉冲周期T 越大,谱线间隔越小,频谱越密;反之,则越疏。
另外谱线按照Sa(ωτ/2)的规律变化。
在ω=2nπ/τ(n=1,2,…)各点处包络为零,即该点频率分量为零。
1. 脉宽与频谱关系由公式可以看出,频谱包络线的零点ω=2nπ/τ为处,所以当脉冲信号周期不变,脉冲宽度变大时,相邻谱线的间隔不变,频谱包络线的零点频率逐渐变小,反之则变大。
另外频谱中各频率点谱线的幅值与脉宽τ也有关,且当信号周期不变,脉宽越宽其频率点谱线的幅值越大,反之则越小。
其关系如图3-3-1所示。
2. 周期与频谱的关系从公式可以看出,信号的周期与频谱包络线的零点没有关系,所以当周期变化时,频谱包络线零点不变。
然而当信号的脉宽不变,信号周期变大时,相邻谱线的间隔变小,频谱变密。
如果周期无限增长(趋于非周期信号)那么,相邻谱线的间隔将趋近于零,周期信号的离散谱就过渡到非周期信号的连续谱。
另外频谱中各频率点谱线的幅值与脉宽T也有关,且当信号脉宽不变,信号周期越大其频率点谱线的幅值越小,反之则越大。
其关系如图3-3-2所示。
图3-3-1 脉冲宽度与频谱的关系图3-3-2 脉冲信号周期与频谱的关系4 实验步骤1. 脉冲宽度与频谱的关系(1)进入信号发生器界面,在该界面上选取幅值3V、频率100Hz、占空比20%的周期脉冲信号。
(2)进入频谱分析仪界面。
计算并测量此信号频谱中频谱包络线第一个零点的频率值F、坐标零点谱线的幅值V和各谱线之间的距离M三个参数,将计算得到的理论值和测量值分别填入表3-3-1。
表3-3-1(3)将上述信号的占空比改为10%。
通过计算可知:此信号和上述信号的周期一样,且脉宽是其1/2。
计算并测量此信号的上述三个参数,填入上表。
(4)将上述信号的占空比改为5%。
通过计算可知:此信号和上边信号的周期一样,且脉宽是其1/4。
计算并测量此信号的上述三个参数,填入上表。
(5)上述数据说明脉冲信号占空比与频谱的关系是:脉冲信号的占空比越大时,频谱的频率越小2. 信号周期与频谱的关系(1)进入信号发生器界面,在该界面上选取幅值3V、频率50Hz、占空比5%的周期脉冲信号。
(2)进入频谱分析仪界面。
计算并测量此信号频谱中频谱包络线第一个零点的频率值F、时间坐标零点谱线的幅值V和各谱线之间的距离M三个参数,将计算得到的理论值和测量值分别填入表3-3-2。
表3-3-2(3)产生幅值3V、频率100Hz、占空比10%的周期脉冲信号。
通过计算可知:此信号和上述信号的脉冲宽度一样,且周期是其1/2。