arcgis空间句法插件教程

合集下载

ARCGIS空间分析指导手册_三_

ARCGIS空间分析指导手册_三_

ARCGIS空间分析实习指导书(三)——三维分析部分本章内容:练习一:在地形表面上叠加影像练习二:污染物在蓄水层中的可视化练习三:土壤污染及甲状腺癌发病率的可视化练习四:创建TIN表面表示地形学习三维分析的最佳办法就是在使用中学习.在本教程的这个练习中,您将学习:用ArcCatalog查找、预览三维数据在ArcScene中添加数据察看数据的三维属性从二维要素与表面中创建新的三维要素从点数据源中创建新的栅格表面从现有要素数据中创建TIN表面为了能够顺利使用本教程,用户的机器上必须安装了ArcGIS及三维扩展模块,并且在本机或网络上安装有本教程所需要的数据.如未在教程指定的默认目录中找到练习数据,请与系统管理员联系,以获取正确的数据路径.拷贝教程数据首先将教程数据拷贝到本机。

您将使用ArcCatalog浏览、拷贝数据。

1.击开始->程序->ArcGIS中的ArcCatalog8。

ArcCatalog允许用户对数据进行查找与管理。

ArcCatalog左边的窗口称之为“目录树”.ArcCatalog右边的窗口显示在目录树中选中数据的内容。

2.点击location下拉列表框,输入教程数据的安装路径\arcgis\Arctutor,并按回车.此时,目录树中的ArcTutor文件夹为当前选中的项。

你可以使用Contents标签显示其中的内容。

3.右击3DAnalyst文件夹,选择“复制”4.右击本地将拷入数据的文件夹,选择“粘贴”。

此时文件夹拷贝到了本地驱动器中。

下面,在ArcCatalog的目录树中连接3DAnalyst 文件夹进行连接。

5.在本地驱动器中点击3DAnalyst文件夹,并将其拖至ArcCatalog的目录树的最顶层结点中。

此时将在目录树中出现一个本地数据的文件夹连接。

练习一:在地形表面上叠加影像在地形表面上叠加遥感影像,有助于对影像模式及其与地形的相关性的理解。

假如你是加州Death峡谷的地质学家。

ArcGIS-Geoda空间相关分析操作说明(小编整理)

ArcGIS-Geoda空间相关分析操作说明(小编整理)

ArcGIS-Geoda空间相关分析操作说明(小编整理)第一篇:ArcGIS-Geoda空间相关分析操作说明启动ArcMap 点击+号加载shp文件,或在file下加载shp文件:载入的shp文件CHNPRO31.shp右键点击选open Attribute Table打开的属性数据:点选opention点击Add field如果选择做是长整数如果选包含小数字段选text 准备编辑数据,在excel上按地名编码procode等排好再复制作以上这个动作之前须启动编辑器Editor(四个黑点的笔):点start Editing之后开始粘贴数据粘贴数据后退出编辑:再右击shp文件输出数据:输出文件重新起名后点击ok用以下OpenGeoda画图:以下作分位数图:4分位-9分位用以下Geoda095i软件做空间权重矩阵和空间统计分析(参看geoda中文版手册)输出文件要起文件名字:选4个邻居(这个随便,也有选8个),还有距离远近门槛值,具体参见geoda使用说明选择的权重文件的ID变量,这里是PROCODE,还可考虑什么ID?点create,Done,空间权重被制作点regress后作空间回归,加载空间权重,才可作空间滞后和空间误差模型因变量GDP,自变量出口、投资、消费补充:ArcMap裁减地图数据:在启动编辑器,启动编辑才可裁减!数据中西藏没了:第二篇:水果加工厂空间分析说明水果加工厂选址分析说明一空间分析目的拟在北杜乡建立一个水果产品加工厂,对建厂位置的选择可归结为一个空间分析问题。

由于本分析基于水果加工厂的选址,目的建设一个厂房,满足以下条件:1.靠近原材料地果园和水源地水渠;2.靠近公路;3.靠近居民地;4.尽量建设在地势平坦开阔的地区。

二空间分析思路 2.1思路水果加工厂的选址应该注意以下几个问题:1.2.3.4.5.应距离果园较近,便于新鲜水果能尽快以最小成本运到加工厂。

应距离水源水渠或支渠较近,水果加工厂用水量很大。

ArcGIS空间分析教程(精)

ArcGIS空间分析教程(精)

§ Geodatabase数据库创建
Geodatabase建立的一般过程:
1、Geodatabase设计:
需考虑包含的地理要素类、要素数据集、非空间对象表、集合网络类、 关系类以及空间参考系统等。
2、Geodatabase建立:
可以从头开始建立一个新的Geodatabase;也可移植已经存在的数据到 Geodatabase。
在高端平板电脑上执行,实现GIS分析和决策分析的野外工作任务。
5、Geodatabase:geographic database
是一种在专题图层和空间表达中组织GIS数据的核心地理信息模型。
常用的GIS 平台空间分析功能比较
ArcGIS 9空间处理的主要内容
ArcGIS 9空间处理的主要内容
§ ArcMap 基础
ArcMap用于显示、查询、编辑和分析地图数据,具有地图制图的所 有功能。
1、ArcMap的窗口组成:
主菜单、窗口标准工具、窗口内容表、地图显示窗口、快捷菜单
2、新地图文档创建:
① 启动ArcMap时创建; ② 直接创建:ArcMap New Map File Add Data
3、数据层的加载:
① 直接在新地图中加载:File ② 用ArcCatalog加载
1、ArcCatalog基本操作:
文件夹链接、文件类型显示和增删、文件特性项的显示、栅格数据的 显示。
2、目录内容浏览:
三个选项卡:Contents,Preview,Metadata。
3、数据搜索:
可分别按内容项、地理范围、时间、关键词进行搜索。
4、地图与图层操作:
创建文件、保存独立的图层文件等。
5、地理数据输出:
Environment System Research Institute

ArcGIS10空间分析教程

ArcGIS10空间分析教程

Spatial Analyst TutorialTable of ContentsAbout the ArcGIS Spatial Analyst Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . 3 Exercise 1: Preparing for analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Exercise 2: Accessing Spatial Analyst and Data Exploration . . . . . . . . . . . . . . . . . 11 Exercise 3: Finding a site for a new school . . . . . . . . . . . . . . . . . . . . . . . . 19 Exercise 4: Finding an alternate access route . . . . . . . . . . . . . . . . . . . . . . . 47About the ArcGIS Spatial Analyst TutorialUsing the Spatial Analyst tools available with ESRI ArcGIS, you can perform spatial analysis on your data. You can provide answers to simple spatial questions such as How steep is it at this location? and What direction is this location facing? You can also find answers to more complex spatial questions such as Where is the best location for a new facility? and What is the least costly path from A to B? The comprehensive set of Spatial Analyst tools within ArcGIS allows you to explore and analyze your spatial data and enables you to find solutions to your spatial problems. You can run tools from the Spatial Analyst toolbox or the Python Window, accessible via any ArcGIS Desktop application. You can also create your own custom tools (models or scripts) to run a sequence of tools at one time.A quick tour of Spatial AnalystTutorial ScenarioThe town of Stowe, Vermont, USA, has experienced a substantial increase in population. Demographic data suggests this increase has occurred because of families with children moving to the region, taking advantage of the many recreational facilities located nearby. It has been decided that a new school must be built to take the strain off the existing schools, and as a town planner, you have been assigned the task of finding the potential site.This tutorial will show you how to use many of the available tools and will give you a solid basis from which you can start to think about how to solve your own specific spatial problems.It is assumed that you have installed ArcGIS Desktop (ArcView, ArcEditor, or ArcInfo) and the ArcGIS Spatial Analyst extension before you begin this tutorial. If you need more information about extensions, see Using Extensions in ArcGIS.The data required is included on the ArcGIS Desktop CD. After running the ArcGIS setup, on the Additional Installation Components dialog box, check to install the ArcGIS Tutorial Data. On the ArcGIS Tutorial Data Setup wizard, check to install the Spatial Analyst data (the default installation path isC:\arcgis\ArcTutor\SpatialAnalyst). The datasets were provided courtesy of the state of Vermont for use in this tutorial. The tutorial scenario is fictitious, and the original data has been adapted for the tutorial.Dataset DescriptionElevation Raster dataset representing the elevation of the areaLanduse Raster dataset representing the land-use types over the areaRoads Feature class representing the linear road network for the town of StoweRec_sites Feature class representing point locations of recreation sitesSchools Feature class representing point locations of existing schoolsDestination Feature class representing the destination point used when finding the best route for a new roadThis tutorial is divided into exercises and is designed to allow you to explore the Spatial Analyst functionality in ArcGIS at your own pace.•In Exercise 1, you'll prepare for analysis. You'll copy the tutorial data locally and create a geodatabase to hold your results.•In Exercise 2, you'll learn the location of the Spatial Analyst tools, create a hillshade output, and explore your data.•In Exercise 3, you'll create a suitability map to help you find the best location for a new school. You'll derive datasets of distance and slope, reclassify datasets to a common scale, then weight those that are more important to consider and combine them to find the most suitable locations. You'll thenlocate the optimal site using the selection tools within ArcMap.•In Exercise 4, you'll find the least costly route for an alternate access road to the new school site.You will need approximately 90 minutes of focused time to complete the tutorial. Alternatively, you can perform the exercises in sequence one at a time, saving your results along the way when recommended.Exercise 1: Preparing for analysisIn this exercise, you will prepare for analysis by first copying the tutorial data locally, then creating a geodatabase for your anizing your dataBefore working with Spatial Analyst tools, you will organize your tutorial data.Locating tutorial dataSteps:1.Navigate to the location in your file browser where you installed the tutorial data, forexample, if you installed ArcGIS on your C:\ drive, go to C:\arcgis\ArcTutor.2.Right-click the Spatial Analyst folder and select Copy .3.Browse to your working directory, for example, your C:\ drive.4.Right-click C:\ (or an alternative drive) and select Paste .Complexity:BeginnerData Requirement:ArcGIS Tutorial Data SetupStarting ArcMapSteps:1.Start ArcMap by either double-clicking a shortcut installed on your desktop or clicking Start>All Programs>ArcGIS>ArcMap.2.Click New Maps in the ArcMap - Getting Started window if it is not already highlighted.3.Click the Open button.4.Click the Connect to folder button in the Select the map's geodatabase window.5.Browse to and click the working copy of the Spatial Analyst folder just created.6.Click OK.7.Click the New File Geodatabase button. the new file geodatabase Scratch.9.Click Add.10.Click OK.Setting your workspaceBoth your current and scratch workspaces are set to your Scratch.gdb geodatabase. For this workflow, access data from the Stowe.gdb, which is in the Spatial Analyst folder and contains your data; write your data, by default, to your Scratch.gdb.Steps:1.Click the menu Geoprocessing>Environments.2.Click Workspace to expand the environment settings related to workspaces.3.For Current Workspace, navigate to your Stowe.gdb in your Spatial Analyst folder.4.Click Add.5.Click OK.Your scratch workspace is already set to your Scratch.gdb geodatabase.Adding data to your ArcMap sessionSteps:1.Click Stowe.gdb in the ArcCatalog tree window.2.Select all the datasets while holding the SHIFT key, then release the SHIFT key and drag anddrop the data into the ArcMap table of contents.3.Right-click Layers and select Turn All Layers On.You should see the four feature classes and two rasters in the table of contents. Saving your map documentSteps:1.On the Standard toolbar, click the Save button.2.Browse to the working copy of the Spatial Analyst folder.3.For File name, enter Site Analysis.mxd.4.Click Save.SummaryYou have prepared a workspace in which the datasets created by following the tutorial workflow will be created. You can now proceed to Exercise 2.Exercise 2: Accessing Spatial Analyst and Data ExplorationYou will learn how to turn on the Spatial Analyst extension, access the Spatial Analyst toolbar, and search for geoprocessing tools. You will create a hillshade output to display transparently with your other layers, make a histogram of your land-use layer, and select elements on your map. Thisexercise will take approximately 15 minutes to complete.Checking out a Spatial Analyst licenseSteps:1.Click the Customize >Extensionsmenu.2.Check the Spatial Analyst check box.3.Click Close.Add the Spatial Analyst ToolbarThe Spatial Analyst toolbar contains a Create Contourtool and a Histogram button .Steps:Complexity:BeginnerData Requirement:ArcGIS Tutorial Data SetupClick Customize>Toolbars>Spatial Analyst on the main menu.The Spatial Analyst toolbar is added to your ArcMap session.Creating a hillshadeA hillshade is a shaded relief raster created by using an elevation raster and setting an illumination source (typically the sun) at a user-specified azimuth (the angular direction of the illumination source, in positive degrees from 0 to 360) and altitude (the angle of the illumination source above the horizon). The visual effect of a hillshade can be dramatic when it is displayed under other layers with transparency set in your ArcMap display. You'll run the Hillshade tool so you can view and explore the output from this tool with the rest of your input data later in this exercise.Steps:1.Open the Hillshade tool.Note:These substeps show how to use the Search window to locatethe Hillshade tool.a.Click Search.b.Click Tools.c.Type Hillshade.d.Click the Search button, or click enter.e.Click the Hillshade(Spatial Analyst) tool from the SpatialAnalyst toolbox not the 3D Analyst toolbox.2.Select elevation from the drop-down list for the Input raster.3.Leave the default for the Output raster,Azimuth, and Altitude parameters.4.Accept the default and leave Model shadows unchecked, so the local illumination of thesurface will be calculated whether or not a cell falls in the shadow of another cell.5.Type a value of0.3048for the Z factor.feet. Since there are 0.3048 meters in one foot, multiplying the z-values by a factor of 0.3048will convert them to meters.Dive-in:If your x-, y-, and z-values are all in the same unit of measure (forexample, if they are all in meters), you can accept the default Zfactor of 1, so the z-units are not converted. Setting anappropriate z-factor is critical for good results if your input surfaceis stored in a geographic coordinate system (for example, the x,yunits are a spherical measurement, such as decimal degrees ordecimal seconds). The z-factor can also be used for exaggerationof the terrain.Click OK to run the tool.Displaying and exploring dataYou will now explore the display capabilities of ArcMap by changing the symbology of one of the layers and applying transparency so you can see the hillshade output you have created underneath your other layers in the display.Steps:1.In the table of contents, click and drag the hillshade result below the landuse layer.2.Uncheck the elevation layer in the table of contents.3.Right-click landuse in the table of contents and click Properties.4.Click the Symbology tab.All land-use categories are currently drawn in random colors with the Unique Values renderer, based on the Value Field. You will change the Value Field setting to be more meaningful and change the symbology to show a more appropriate color for each land-use type on the map.5.Click the Value Field drop-down arrow and click LANDUSE. This is a string field in the landuseattribute table that describes each land-use type.6.Double-click each symbol and choose a suitable color to represent each land-use type (forexample, agriculture is orange; built up areas, red; forest, green; water, blue; and wetlands, purple).7.Click Apply.The changes you make are reflected in the table of contents and in the map display.8.Click the Display tab.9.Change the Transparency from0% to30%.10.Click OK.The hillshade layer can now be seen underneath the landuse layer, giving a vivid impressionof the terrain.Land use and hillshade mapSelect features on the mapExamining the attribute table gives you an idea of the number of cells of each attribute in the dataset.Steps:1.Right-click the landuse layer in the table of contents and click Open Attribute Table.The COUNT field identifies the number of cells in the dataset of each value. Notice that Forest(value of 6) has the largest count, followed by Agriculture (value of 5), then Water (value of 2).Click the row representing Wetlands (value of 7).This selected set, all areas where the land-use type is Wetlands, is highlighted on the map.3.Click the Unselect all the currently selected records button in the menu of the Tablewindow.4.Click the attribute table for landuse layer and the Table window.Identifying features on the mapSteps:1.Click the Identify tool on the Tools toolbar and click any location on your map.2.Click the Identify from drop-down arrow on the Identify dialog box and click<All layers>.3.Click a rec_site point to identify the features in this particular location.Note:Your display will not be zoomed in this much; this is only to showthe location of the recreation site to click.Close the Identify window.Examining a histogramSteps:1.On the Spatial Analyst toolbar, click the Layer drop-down arrow and click landuse.2.Click the Histogram button.The histogram displays the number of cells of each type of land use.3.Close the Histogram of landuse window.Saving the map documentAs the last step in this exercise, you'll save the changes to your map document. You'll use this map document in the next exercise.Steps:1.On the Standard toolbar, click the Save button.SummaryIn this exercise, you explored the tutorial data and learned how to access and run Spatial Analyst tools. In the next exercise, you will build a model by adding tools from the Spatial Analyst Tools toolbox to ModelBuilder to run a sequence of tools that will locate the areas that are suitable for building a new school.You can proceed to exercise 3or stop and complete the tutorial at a later time. If you do not proceed to exercise 3 now, do not delete your working copy of the tutorial data.In this exercise, you will build a suitability model that finds suitable locationsfor a new school. The steps to produce such a suitability model are outlinedbelow.Your input datasets in this exercise are landuse, elevation, rec_sites, andschools. You will derive slope, distance to recreation sites, and distance to existing schools, then reclassify these derived datasets to a common scale from 1 to 10. You'll weight them and the landuse dataset according to a percentage of influence and combine them to produce a map displaying suitable locations for the new school. You'll then select the optimal site for the new school from the alternatives.This exercise will take approximately 45 minutes to complete. Start this exercise with your Site Analysis map document, created in exercise 1, open.Creating a new toolboxYou'll first create a new toolbox to hold the models you will create in this exercise and the next exercise.Steps:1.Create a new toolbox in your Spatial Analyst folder. Name the toolbox Site AnalysisTools .Tip:For more information on creating a toolbox, go to Creating acustom toolbox.You will create a model to perform Spatial Analyst tasks. A model is built by stringing tools together in ModelBuilder. Once your model is created, you can easily experiment with parameter values, use different input data, run the model over and over again, and share it with others. To find out more about ModelBuilder, go to What is ModelBuilder.In this exercise, you will create a model to find a suitable location for a new school.Steps:1.Right-click the Site Analysis Tools toolbox and click New>Model.Complexity:BeginnerData Requirement:ArcGIS Tutorial Data SetupAn empty ModelBuilder session will open. Renaming the modelSteps:1.On the model's main menu, click Model>Model Properties.2.Click the General tab.3.Type FindSchool in the Name text box and Find location for school in the Labeltext box.The name is used in scripting and at the Python Window. The label is the display name for the model.4.Check the Store relative path names (instead of absolute paths)check box.Checking this box sets all source paths referenced by the tool as relative to the location ofthe toolbox.Spatial Analyst TutorialBefore you start to perform analysis on your data, you should set any relevant environment settings. For more information on how to set environments and the hierarchy between analysis environments, go to The analysis environment of Spatial Analyst.Because your environment settings apply to each process of this model only, you'll set environment settings for the model.Steps:1.Click the Environments tab.2.Expand Processing Extent and check Extent.3.Expand Raster Analysis and check Cell Size.Tip:The Current Workspace and the Scratch Workspace arealready set, as these environment settings are inherited fromthe map document.Click Values.5.Expand Processing Extent. Set the Extent by clicking the drop-down arrow and selectingSame as Layer elevation.6.Expand Raster Analysis. Set the Cell Size by clicking the drop-down arrow and selectingSame as Layer elevation.The cell size of your elevation layer will be applied to all subsequent raster outputs. Yourelevation dataset has the largest cell size (30 meters).Caution:Setting a smaller cell size than your largest input will not mean youhave more detailed information in subsequent raster results; youwill just have more cells of the same value, which may affect yourdisplay and calculation speeds. Although the software does notClick OK on the Environment Settings window.8.Click OK on the Model Properties window.9.On the toolbar, click the Save button.Tip:The model's properties are updated. If at any point you want toclose the model and carry on later, right-click the model in theArcToolbox window and click Edit to continue with the tutorial.You are ready to start to process your project data to locate suitable areas for the new school. You'll derive the following from your project data:•Derive Slope from the elevation dataset.•Derive Distance from recreation sites from the rec_sites dataset.•Derive Distance from existing schools from the schools dataset.This first section of your model will look like the following:Steps:1.From your table of contents, drag the layers elevation, rec_sites, and schools onto yourmodel.2.Click and drag the Slope tool from the Spatial Analyst Surface toolset onto your model andplace it in line with your elevation data.An element that references the Slope tool is created on the display window.3.Locate the Euclidean Distance tool in the Spatial Analyst Tools toolbox Distance toolset. Clickand drag the Euclidean Distance tool onto your model and place it in line with rec_sites.4.Repeat the previous step, but this time place the Euclidean Distance tool in line with schools.Notice that each time the same tool is added to a model, the name of the tool element isappended with a number. The second time Euclidean Distance was added to your model, thelabel consisted of the tool name followed by (2). You can change these labels if you desire, butthis is unnecessary for this example.5.Click the Add Connection tool.e the Add Connection tool to connect to the elevation dataset to the Slope tool. To do this,click elevation, then click the Slope tool.7.Repeat the previous step, this time connecting rec_sites to the Euclidean Distance tool andschools to the Euclidean Distance (2)tool.Note:The process (consisting of the input data, tool, and output dataelements ) is now filled with a solid color, meaning it is ready torun. If you were to run the model now, it would run using thedefault parameters for each tool.On the model toolbar, click the Select tool, because you no longer need the Add Connection tool.9.Click the Auto Layout button, then click the Full View button to apply the current diagramproperties to the elements and place them within the display window.10.On the toolbar, click the Save button.Deriving Slope from elevationSince the area is mountainous, you need to find areas of relatively flat land on which to build, so you will take into consideration the slope of the land.Steps:1.Right-click the Slope tool and click Open, or double-click the Slope tool.2.Leave the Input raster and the Output measurement as the default values.3.Accept the default location for the value of the Output raster parameter, but typeslope_out for the name.A meaningful output name,slope_out, has been provided to help locate this data later inexercise 3.4.For the Z factor, type0.3048to convert the z-values to the same unit of measure as thex,y units (from feet to meters).5.Click OK.6.Right-click the output variable from the Slope tool and click Rename.7.Type Slope output and click OK.Caution:Renaming an element label does not alter the name of theoutput on disk. A layer will be added to the Table of Contentscalled Slope Output which references data on disk calledSlope_out.To find locations close to recreation sites, you must first calculate the Euclidean (straight-line) distance from recreation sites.Steps:1.Hover over the Euclidean Distance tool connected to rec_sites. You can easily see all thedefault parameters set for this tool. There is no need to adjust any of these parameters.You accepted the default for the Maximum distance, thus leaving this parameter empty.Therefore, the edge of the output raster is used as the maximum distance. The Output cellsize is taken from the environment setting previously set to that of your elevation data. Inthis exercise, the Output direction raster is not required.2.Rename the output variable from the Euclidean Distance tool to Distance torecreation sites.Deriving distance from schoolsTo find locations away from existing schools, you must first calculate the Euclidean (straight-line) distance from schools.Steps:1.Hover over the Euclidean Distance (2)tool connected to schools. You can easily see all thedefault parameters set for this tool. There is no need to adjust any of these parameters.2.Rename the output variable from the Euclidean Distance (2)tool to Distance toschools.Run Model to Derive DatasetsSteps:1.Right-click each of the output variables (Slope output,Distance to recreation sites, andDistance to schools) and click Add To Display.With the Add To Display property on, the data referenced by the variable will be added tothe display each time the model is run.2.Click the Run button on the model toolbar to execute the three tools—Slope,EuclideanDistance, and Euclidean Distance (2)—in your model.Notice that as the tool runs, its progress is documented on the progress dialog box, and thetool that references the tool is highlighted in red. When the tools have finished running, thetool and its output become shaded, indicating that the output has been created on disk.3.If the progress dialog box is present, check the Close this dialog when completedsuccessfully check box , then click Close.4.Examine the layers added to your ArcMap display.On the Slope Output layer, steep slopes are displayed in red and less steep slopes in green in the output layer. On the Distance to recreation sites layer, distances increase the farther you are from a recreation site. On the Distance to schools layer, distances increase the farther you are from a school.Slope output map Distance from recreation sites map Distance from schools mapReclassifying datasetsDeriving datasets, such as slope, is the first step when building a suitability model. Each cell in your study area now has a value for each input criteria (slope, land use, distance to recreation sites, and distance to schools). You need to combine the derived datasets so you can create your suitability map that will identify the potential locations for the new school. However, it is not possible to combine them in their present form—for example, combining a cell value in which slope equals 15 degrees with a cell value for land use that equals 7 (forest)—and get a meaningful answer that you can compare to other locations. To combine the datasets, they first need to be set to a common measurement scale, such as 1 to 10. That common measurement scale is what determines how suitable a particular location—each cell—is for building a new school. Higher values indicate more suitable locations for the school.Using the Weighted Overlay tool, you can weight the values of each dataset, then combine them. However, the inputs for the Weighted Overlay tool must contain discrete, integer values. Landuse data is already categorized into discrete values; for example, forest equals a value of 7, so you can simply add this dataset directly into the Weighted Overlay tool and assign each cell a new value on the common measurement scale of 1 to 10 (you'll do this later in the tutorial). The values in the datasets you derived in previous steps are all floating-point, continuous datasets, categorized into ranges, and they must first be reclassified so that each range of values is assigned one discrete integer value. Potentially, the value given to each range can be any number, provided you note the range that the value corresponds to. This is because you can weight these values within the Weighted Overlay tool—the next step after reclassifying the derived datasets. However, it is easier to weight the cell values for derived datasets while reclassifying. In the Weighted Overlay tool, you can accept the default and leave the scale values the same as the input values.You will reclassify each derived dataset to a common measurement scale, giving each range a discrete integer value between 1 and 10. Higher values will be given to attributes within each dataset that are more suitable for locating the school.This section of your model will look like the following:Steps:1.Locate the Reclassify tool in the Spatial Analyst Tools toolbox Reclass toolset. Click and dragthe Reclassify tool onto ModelBuilder in line with Slope Output. Add another Reclassify tool in line with Distance to recreation sites and another in line with Distance to schools.2.Click the Add Connection tool. Use the connect tool to connect:a.Slope Output to the Reclassify toolb.Distance to recreation sites to the Reclassify (2)toolc.Distance to schools to the Reclassify(3)tool3.On the model toolbar, click the Select tool.4.Click the Auto Layout button, then click the Full View button.Reclassifying slopeIt is preferable that the new school site be located on relatively flat ground. You'll reclassify the slope output, slicing the values into equal intervals. You'll assign a value of 10 to the most suitable range of slopes (those with the lowest angle of slope) and 1 to the least suitable range of slopes (those with the steepest angle of slope) and rank the values in between linearly.Steps:1.Open the Reclassify tool connected to the Slope Output variable.2.Accept the default for the Reclass field parameter so the Value field will be used.3.Click Classify.4.Click the Method drop-down arrow and click Equal Interval.5.Click the Classes drop-down arrow and click10.6.Click OK.7.Click Reverse New Values.Reversing the values applies higher new values to the values representing less steep slope,since these areas are more suitable for building.8.Accept the default for the Output raster parameter.9.Click OK.10.Rename the output variable from the Reclassify tool to Reclassed slope .Spatial Analyst TutorialThe school should be located as close as possible to a recreational facility. You will reclassify the distance to recreation sites output, assigning the number 10 to ranges of values that represent areas closest to recreation sites (the most suitable locations), assigning the number 1 to ranges of values that represent areas far from recreation sites (the least suitable locations), and ranking the values linearly in between.Steps:1.Open the Reclassify tool connected to the Distance to recreation sites variable.2.Accept the default for the Reclass field parameter so the Value field will be used.3.Click Classify.4.Set the Method to Equal Interval and the number of Classes to10.5.Click OK.6.Click Reverse New Values.Clicking Reverse New Values makes it so that distances close to recreational facilitiesreceive a higher new value, since these areas are more desirable.7.Accept the default path and name for the Output raster parameter.8.Click OK.9.Rename the output variable from the Reclassify (2)tool to Reclassed distance torecreation sites.Tip:To resize the output variable element,Reclassed distance torecreation sites, click the element and move the mouse pointerover one of the blue handles surrounding the element, then clickand drag to resize the element so all text can be seen.。

arcgis工具使用方法

arcgis工具使用方法

arcgis工具使用方法a r c g i s工具使用方法公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-在矢量叠加,即将同一区域、同一比例尺的两组或两组以上的多边形要素的数据文件进行叠加产生一个新的数据层,其结果综合了原来图层所具有的属性。

矢量叠加操作分为:交集(Intersect)、擦除(Erase)、标识叠加(又称交补集,Identify)、裁减(Clip)、更新叠加(Update)、对称差(Symmetrical Difference)、分割(Split)、合并叠加(Union)、添加(Append)、合并(Merge)以及融合(Dissolve)等类型。

这里首先提醒一下:编辑里边的merge是将同一要素类里边的要素合并生成新的要素,并将原要素删除,其属性按指定的要素修改。

编辑里边的union可将同一要素类或不同要素类的要素合并生成新的要素,不删除原要素,新要素的属性为系统默认值(空格或0等,根据字段属性而定)。

编辑里的merge和union是对选中的要素进行操作,而arctoolbox里的是对要素类进行操作。

◆交集(Intersect),计算两个图层几何对象相交的部分。

对于ArcT oolBox 中的Intersect工具来说,可以选择保留所有的属性字段或是只有FID或是除了FID所有的字段。

而相应的Editor Tool中也有一个类似于Intersect的工具,对于这个工具来说,与我们ArcT oolBox中Intersect不同的是,它所产生的最后结果是没有属性的,是需要人工输入属性值的。

此工具要求input features 是简单要素类,如point、line、polygon,不能是复杂要素类,如annotation、network等。

当input features是不同的要素类型时(如point和polygon、line和polygon),输出的结果默认是维数较低的类型,如line和polygon的默认结果是line,point与line 的默认结果是point。

ARCGIS空间操作步骤讲解

ARCGIS空间操作步骤讲解

ARCGIS空间操作步骤讲解ARCGIS空间分析基本操作⼀、实验⽬的1. 了解基于⽮量数据和栅格数据基本空间分析的原理和操作。

2. 掌握⽮量数据与栅格数据间的相互转换、栅格重分类(Raster Reclassify)、栅格计算-查询符合条件的栅格(Raster Calculator)、⾯积制表(Tabulate Area)、分区统计(Zonal Statistic)、缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、栅格单元统计(Cell Statistic)、邻域统计(Neighborhood)等空间分析基本操作和⽤途。

3. 为选择合适的空间分析⼯具求解复杂的实际问题打下基础。

⼆、实验准备预备知识:空间数据及其表达空间数据(也称地理数据)是地理信息系统的⼀个主要组成部分。

空间数据是指以地球表⾯空间位置为参照的⾃然、社会和⼈⽂经济景观数据,可以是图形、图像、⽂字、表格和数字等。

它是GIS所表达的现实世界经过模型抽象后的内容,⼀般通过扫描仪、键盘、光盘或其它通讯系统输⼊GIS。

在某⼀尺度下,可以⽤点、线、⾯、体来表⽰各类地理空间要素。

有两种基本⽅法来表⽰空间数据:⼀是栅格表达; ⼀是⽮量表达。

两种数据格式间可以进⾏转换。

空间分析空间分析是基于地理对象的位置和形态的空间数据的分析技术,其⽬的在于提取空间信息或者从现有的数据派⽣出新的数据,是将空间数据转变为信息的过程。

空间分析是地理信息系统的主要特征。

空间分析能⼒(特别是对空间隐含信息的提取和传输能⼒)是地理信息系统区别与⼀般信息系统的主要⽅⾯,也是评价⼀个地理信息系统的主要指标。

空间分析赖以进⾏的基础是地理空间数据库。

空间分析运⽤的⼿段包括各种⼏何的逻辑运算、数理统计分析,代数运算等数学⼿段。

空间分析可以基于⽮量数据或栅格数据进⾏,具体是情况要根据实际需要确定。

空间分析步骤根据要进⾏的空间分析类型的不同,空间分析的步骤会有所不同。

2024版ArcGIS使用教程

2024版ArcGIS使用教程

ArcGIS使用教程•引言•ArcGIS基础操作•空间数据编辑与处理•空间分析与可视化表达目录•三维场景构建与漫游•ArcGIS高级功能拓展•总结与展望01引言目的和背景目的本教程旨在帮助读者掌握ArcGIS软件的基本操作和技能,以便更好地应用于地理信息系统(GIS)相关领域的工作和研究。

背景随着GIS技术的不断发展和普及,ArcGIS作为一款领先的GIS软件,在各个领域得到了广泛应用。

因此,学习和掌握ArcGIS 软件的使用变得尤为重要。

ArcGIS简介ArcGIS是由Esri公司开发的一款功能强大的GIS软件,它提供了丰富的工具和功能,支持各种空间数据的处理、分析、编辑和可视化等操作。

ArcGIS具有广泛的应用领域,包括城市规划、环境保护、资源管理、交通运输、公共安全等。

同时,它也支持多种数据格式和坐标系,方便用户进行数据的导入和导出。

本教程将介绍ArcGIS软件的基本界面和工具,包括地图文档、工具栏、图层管理、属性表等。

教程将详细讲解空间数据的采集、编辑和处理方法,包括矢量数据和栅格数据的处理技巧。

教程还将介绍空间分析的基本原理和方法,包括缓冲区分析、叠加分析、网络分析等,并提供相应的实例操作。

最后,教程将介绍ArcGIS在地图制图和可视化方面的应用,包括符号化、标注、地图输出等技巧。

通过本教程的学习,读者将能够熟练掌握ArcGIS软件的使用,为GIS相关领域的工作和研究提供有力的支持。

教程内容概述02ArcGIS基础操作主菜单工具栏内容列表地图显示区软件界面介绍包括文件、编辑、视图、插入、选择、地理处理、自定义等菜单项,提供软件的核心功能。

显示地图文档中的所有图层及其属性。

提供快捷操作按钮,如放大、缩小、平移、选择、测量等。

用于显示和浏览地图。

选择文件菜单中的新建地图文档选项,设置地图文档的名称、保存路径等参数。

创建新地图文档选择文件菜单中的打开选项,浏览并选择要打开的地图文档。

打开现有地图文档选择文件菜单中的保存或另存为选项,保存当前地图文档。

ArcGIS空间分析模块学习指南

ArcGIS空间分析模块学习指南

ArcGIS空间分析模块学习指南ArcGIS空间分析模块学习指南栅格数据和⾮栅格数据的复合应⽤是GIS应⽤中的⼀个趋势,⽬前多数GIS软件关注的是⽮量数据的分析和应⽤。

随着GIS和遥感以及DEM的不断发展,栅格数据在GIS中将扮演越来越重要的⾓⾊。

这⼏天,兔⼋哥认真的学习了⼀些这⽅⾯的知识,并正在学习ArcGIS Spatial Analyst,下⾯将学习⼼得和⼤家共享。

对于这个模块,兔⼋哥也是初学,难免会出现问题,请⼤家指正!第⼀节空间分析扩展模块简介1.1 简介ArcGIS空间分析扩展模块提供了功能强⼤的空间建模和分析⼯具。

利⽤这个扩展模块可以创建基于栅格的数据,并对其查询,分析,绘图。

在空间分析模块中我们可以采⽤的数据包括影像,Grid以及其他的栅格数据集。

1.2空间分析扩展模块功能下⾯列举⼀些使⽤该模块可以实现的功能:·根据要素⽣成Arcinfo Grid·从要素按照⼀定距离或临近关系⽣成Raster·由点状要素⽣成密度栅格图·由离散要素点⽣成连续表⾯·根据要素派⽣出等⾼线,坡度图,坡向图和⼭体阴影·进⾏基于栅格数据的分析·同时在多个栅格数据上进⾏逻辑查询和代数运算·进⾏临域和区域分析·进⾏栅格分类和显⽰·⽀持很多标准格式1.3 空间模型模型就是把源域的组成部分表现在⽬标域中的⼀种结构。

源域中被表现的部分可以是实体,关系,过程或者其他感兴趣的现象。

建模的⽬的就是对源域的简单化和抽象化。

因此空间建模就是对地⾯上的地理实体进⾏简单和抽象化进⾏表⽰的过程。

模型有两类:表征模型和过程模型。

前者是⽤来描述物体,⽽后者则关注是物体间的相互作⽤和描述过程。

GIS过程模型,它可以使⽤⼀个流程图来表⽰。

相关数据下载:第⼀部分第⼆部分第⼆节在ArcGIS中进⾏空间分析2.1分析环境设置在进⾏空间分析前,必须对设定分析范围,存储形式,存储使⽤的坐标系统,输出Grid的⼤⼩,缺省的输出⽬录。

ArcGIS快速制图插件介绍及安装

ArcGIS快速制图插件介绍及安装

ArcGIS快速制图插件介绍及安装《快速制图插件增强版》在原有的《快速制图插件》基础上,加入植被乱序填充、生成立体楼快、等高线增强显示、一键导出地图和数据、一键点优化显示等功能,尽可能的封装一些复杂操作,利用简单的界面达到高质量的制图显示效果。

此版本为比较完整版本,因此也加入插件加密功能。

《快速制图插件》的第一个版本是在多次的数字城市、智慧城市及其他的省市级GIS应用中萌生出来的。

由于这类型项目的用户数量较多,为了提升其地图的访问效率,一般会采用切片服务动态服务这种方式来提升其效率。

《快速制图插件》则是为了其底图配图专门定制的一个工具,可以大大提升底图制作和底图修改的效率。

一般来说,地图底图的制作都会将其进行切片,做法通常使用【组合图层可见比例设置】进行制作,这样可以很好的控制每一个级别的切片的质量。

但是,由于存在多个显示级别,也就是说多个组合图层的存在,导致了每次同名图层修改都需要在各个图层组中进行修改,造成了大量时间花费,更有可能某个图层组忘记修改,导致前后两个比例尺的地图符号显示不一致;再者,逐层修改地图的标注的设置也是非常麻烦,使用Maplex的【标注】工具存在着功能界面隐藏太深,使用复杂等情况,而且常规的设置非常分散,不利于一般的信息化人员使用;地图制作时需要进行常规的几样处理,如抽稀、智能换行、生成外边线和内边线、符号旋转、四色配图等操作,而这些操作都需要处理数据,通过ArcToolBox要么没有相关处理工具,要么需要进行工具的多次组合,使用复杂,并且需要对ArcGIS非常了解才能做到。

更优化的效果,如点的聚合显示、植被的随机填充、2.5D的显示效果等,这些都需要有一定的制图思路和技术手段才能实现。

为了减少配图工作量,提升配图工作的效率,提升地图质量,降低配图的门槛,经过了多年对地图配图的理解,对现有工具的收集和整理,在原有的《快速制图插件》基础上增加多种地图增强功能,改进第一版不足之处,形成了《快速制图插件增强版》,使配图工作更轻松自在,配合ArcMap的常规工具,可以快速完成基础底图的制作。

arcgis空间内插教程(实例教程超详细)-图文

arcgis空间内插教程(实例教程超详细)-图文

arcgis空间内插教程(实例教程超详细)-图文GIS空间插值(局部插值方法)实习记录一、空间插值的概念和原理当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。

但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。

例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。

空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。

利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。

二、空间插值的几种方法及本次实习采用的原理和方法–整体插值方法边界内插方法趋势面分析变换函数插值–局部分块插值方法自然邻域法移动平均插值方法:反距离权重插值样条函数插值法(薄板样条和张力样条法)空间自协方差最佳插值方法:克里金插值■局部插值方法的控制点个数与控制点选择问题局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。

为此,第一要注意的是控制点的个数。

控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。

为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。

第二需要注意的是怎样选择控制点。

一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。

结合上述分析,在本次实习过程中,我们采用局部分块内插的这4种方法(上文中划横线的方法)进行插值,首先,我们按照默认参数进行插值,目的是粗略比较各种方法的优劣;然后选择出最好的一种方法,对该方法再尝试用不同的权重和点数参数来插值,得出最佳的效果。

三、目标1、根据带坐标的山东省县域矢量地图(d_county.hp),完成山东年平均降水量与矢量图的配准;2、比较各种不同插值算法的优劣;3、做出山东省各县年平均降水雨量专题图。

ArcGIS_Engine—空间分析

ArcGIS_Engine—空间分析

ArcGIS_Engine—空间分析ArcGIS Engine——空间分析空间分析功能是GIS的主要功能之⼀,本章将为读者介绍⼀些GIS开发常⽤的功能涉及到的空间拓扑运算,空间关系运算,空间临近运算所使⽤到的接⼝。

例如开发⼀个缓冲区分析功能,获取两个⼏何要素的最短距离,判断两个⼏何要素的拓扑关系等都需要使⽤到这些接⼝,使⽤这些接⼝可以极⼤提⾼开发者的开发效率。

1.1⽬标1.熟悉ITopologicalOperator接⼝(⽤于空间拓扑运算)的使⽤2.熟悉IRelationalOperator接⼝(⽤于空间拓扑运算)的使⽤3.熟悉IProximityOperator接⼝(⽤于空间拓扑运算)的使⽤1.1 ITopologicalOperator接⼝ 1.1.1 ITopologicalOperator接⼝简介ITopologicalOperator接⼝⽤来通过对已存在的⼏何对象做空间拓扑运算以产⽣新的结合对象。

实现该接⼝的类有Point,Multipoint,Polyline,Polygon,MultiPatch这些都是⾼级⼏何对象,另外GeometryBag也实现了该接⼝,低级的构建⼏何对象如Segments(Line,Circular Arc,Elliptic Arc,Bezier Curve),Paths或者Rings如果想使⽤该接⼝需包装成⾼级⼏何对象。

ITopologicalOperator接⼝在GIS开发中使⽤⾮常⼴泛,通常GIS系统中缓冲区分析,裁剪⼏何图形,⼏何图形差分操作,⼏何图形合并操作等都需要使⽤此接⼝。

下表是ITopologicalOperator接⼝主要的⽅法说明:⽅法名称说明Boundary⼏何图形对象的边界Buffer对⼏何图形对象进⾏缓冲区空间拓扑操作Clip对⼏何图形对象进⾏裁剪空间拓扑操作ConstructUnion ⾼效的合并多个枚举⼏何对象与单个⼏何对象合并为单个⼏何对象,这对于⼤量⼏何对象的合并⾮常⾼效ConvexHull构建⼏何对象的凸边形Cut切割⼏何对象Difference ⼀个⼏何图形减去它与另⼀个⼏何图形相交的部分Intersect两个同维度⼏何对象的交集部分Simplify使⼏何对象拓扑⼀致SymmetricDifference 对称差分将两个⼏何图形的并集部分减去两个⼏何图形交集的部分Union合并两个同维度的⼏何对象为单个⼏何对象1. Boundary属性如图所⽰Polygon⼏何对象的Boundary是组成它的Polyline⼏何对象Polyline⼏何对象的[Boundary是组成它的顶点Point⼏何对象⽽Point⼏何对象的Boundary是空对象,⽰意图如下图所⽰:2.Buffer⽅法:Buffer⽅法可以给⼀个⾼级⼏何对象产⽣⼀个缓冲区,⽆论是Polygon,Polyline,Point它们的缓冲区都是具有⾯积的⼏何对象,如下图所⽰:3.Clip⽅法Clip⽅法可以将⽤⼀个Envelope对象对⼀个⼏何对象进⾏裁剪,参见结果是⼏何对象被Envelope 对象所包围的部分如图所⽰:4.ConvexHull⽅法ConvexHull⽅法可以产⽣⼀个⼏何图形的最⼩的边框凸多边形(没有凹⾯包含⼏何图形的最⼩多边形)5.Cut⽅法Cut⽅法不⽀持GeometryBags⼏何对象,它可以指定⼀条切割曲线和⼀个⼏何图形,经过切割运算后把⼏何图形分为左右两部分,做,右两部分是相对曲线的⽅向⽽⾔。

ARCGIS空间分析教程

ARCGIS空间分析教程

2004-2-23 10:31 AM 首页新手上路网络资源学习心得ARCSDE 站长介绍站长提示GIS空间站将推出ArcGIS扩展模块方面的专题,现在大家看到的是Spatial扩展模块部分内容,由兔八哥完成。

后续将推出地统计模块,将由萧萧幕雨执笔,大家关于地统计方面的问题和想法可以与萧萧幕雨联系。

(QQ:8071580Mail:liuyesen@)(如果大家有空间分析方面的实际问题,兔八哥非常愿意和你进行探讨,一起学习进步。

只有通过解决实际问题,才能对学习的东西加以巩固。

这可不是兔八哥的客套话啊,学习心得ArcGIS应用ArcGIS开发ArcIMSArcSDE感悟EMail:wanghuabin@)相关数据下载:第一部分 第二部分参考书目:1.《ArcGIS 空间分析实用指南》 ArcInfo 培训中心 推荐!2.《Using_ArcGIS_Spatial_Analyst.pdf 》 ESRI 提供的电子文挡3. ESRI Virtual Campus GIS Education and Training on the Web4.《地理信息系统导论》,陈述彭 鲁学军 周成虎 科学出版社5.《Principles of Geographical Information Systems 》, Oxford本页面最新更新日期为:12/20/2003 18:19:532004-2-23 10:32 AM 首页新手上路网络资源学习心得ARCSDE 站长介绍站长提示GIS空间站将推出ArcGIS扩展模块方面的专题,现在大家看到的是Spatial扩展模块部分内容,由兔八哥完成。

后续将推出地统计模块,将由萧萧幕雨执笔,大家关于地统计方面的问题和想法可以与萧萧幕雨联系。

(QQ:8071580Mail:liuyesen@)(如果大家有空间分析方面的实际问题,兔八哥非常愿意和你进行探讨,一起学习进步。

只有通过解决实际问题,才能对学习的东西加以巩固。

如何使用GIS插件进行地理空间分析

如何使用GIS插件进行地理空间分析

如何使用GIS插件进行地理空间分析章节一:GIS插件的介绍和作用地理信息系统(GIS)是一种将空间数据和非空间数据相互关联的技术工具。

GIS插件是在GIS软件平台上添加的功能组件,能够增强GIS的分析和处理功能。

使用GIS插件可以进行各种地理空间分析,如地图叠加、空间缓冲区分析、区域分析等。

章节二:地图叠加分析地图叠加是GIS中常用的一种分析方法,能够将不同地图图层的信息融合在一起,从而得到更全面的地理信息。

通过GIS插件进行地图叠加分析,可以比较不同图层之间的空间关系,例如点、线和面的叠加分析,以及分析不同图层之间的属性变化。

章节三:空间缓冲区分析空间缓冲区分析是根据一定的距离或者范围设置,在地理空间上创建一个或多个缓冲区,以划定特定区域的范围。

利用GIS插件进行空间缓冲区分析,可以快速创建并分析不同缓冲区的属性和空间关系,例如在城市规划中确定建筑物周围的安全距离等。

章节四:区域分析区域分析是通过对地理空间中的不同区域进行统计和分析,了解各区域的属性和空间关系,并绘制对应的热力图、柱状图等。

使用GIS插件进行区域分析,可以将不同区域的数据进行集计、统计和可视化,帮助决策者更好地理解不同区域的特点和差异。

章节五:网络分析网络分析是一种基于网络结构和路径的地理空间分析方法,广泛应用于交通规划、物流路径优化等领域。

GIS插件可以实现网络分析功能,例如最短路径分析、最优路径分析等。

通过GIS插件进行网络分析,可以确定最佳路径、交通瓶颈点等,为交通规划和路径优化提供决策依据。

章节六:空间数据挖掘空间数据挖掘是一种通过模式识别和数据挖掘技术,对地理空间数据进行分析和发现隐藏模式的方法。

GIS插件可以提供空间数据挖掘的功能,例如聚类分析、时空模式识别等。

通过GIS插件进行空间数据挖掘,可以发现地理空间中潜藏的规律和趋势,并为决策者提供科学依据。

章节七:GIS插件的应用案例在实际应用中,GIS插件被广泛应用于不同领域,包括城市规划、环境保护、农业决策等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Axwoman 4.0 Extension for ArcGIS 9.2 User’s GuideDisclaimerAxwoman 4.0 Extension may be freely used and redistributed for academic uses. It is provided "as is", without warranty of any kind, expressed or implied, by statute or otherwise. The author does not warrant that the operation of the extension shall be uninterrupted or error free. The user bears all risk as to the quality and performance of the extension. Technical support is not available. The author appreciates any feedback regarding bug reports or suggestions for future improvement.Bin JiangDepartment of Land Surveying and Geo-informaticsThe Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong KongE-mail: bin.jiang@.hkTable of Contents1. General Information (1)2. Install Axwoman 4.0 Extension for ArcGIS 9.2 (1)3. Draw Axial Lines (4)4. Get Isolated Lines (6)5. Calculate Parameters in Case of Lines with Lines (7)6. Tracking Strokes at Junction by a Limited Angle (9)7. FAQs (11)8. Recommended citation (11)9. Acknowledgements (11)10. References: (11)1. General InformationAxwoman 4.0 developed using Microsoft C# and ESRI’s ArcObjects is an extension for ArcGIS 9.2. It supports space syntax analysis based on both axial lines and natural streets. The space syntax analysis is initially developed by Bill Hillier and his colleagues (Hillier and Hanson 1984) mainly using axial lines, the longest visibility lines representing individual urban spaces. The kind of space syntax analysis has been recently extended using individual streets. The streets we refer to here include both named streets (Jiang and Claramunt 2004), and natural streets or “strokes” in Thomson’s term (Thomson 2003). This new Axwoman is implemented with some efficient computation, thus it can handle large systems involving thousands of axial lines or streets. For instance, it takes no more than a few minutes to finish the computation for an axial map with 17 000 lines.2. Install Axwoman 4.0 Extension for ArcGIS 9.2(1) Check for Prerequisites ModulesBefore you install the Axwoman 4.0, ensure that:Microsoft .NET Framework 2.0 andESRI ArcGIS 9.2 with ESRI ArcGIS .NET Support, have been installed. Microsoft .Net Framework Version 2.0You can download the .NET Framework 2.0 from the Microsoft Download Center. If you have installed this successfully in your machine, you should be able to identify this from the Add/Move Programs list in Control Panel.ESRI ArcGIS 9.2 with ESRI ArcGIS .NET SupportThe ESRI ArcGIS .NET Support can be installed during the ArcGIS 9.2 installation processes. If this is not installed on your computer, you can follow the instructions below to install the .NET Support:a)Insert the ArcGIS 9.2 installation CDb)Go to Control Panel | Add/Move Programsc)Click on ArcGIS Desktop and then click Changed)Choose option Modify and click Nexte)Click .NET Support and install it- 1 -1- 2 -(2) Installing the Axwoman is pretty simple. You download the Axwoman 4.0 from this website (http://www.hig.se/~bjg/Axwoman.htm ), and save to a location on your computer. Extract the installer file and double click the setup.exe to launch setup:- 3 -Click Next . The screen for specifying the installation location will appear as below. You may accept the default installation path. If you wish, you may specific another path in the Folder path field.When you finished specifying the path, click Next to start the installation and click Close to complete the installation window.After installation, we can activate the extension as follow these steps:1) Click the Start menu, point to Programs and Start ArcMap 2) Click on ArcMap’s Tools Menu and then choose Extension. 3) Check the Axwoman 4.0.- 4 -4) Click Close .5) Click View , point to Toolbars , and select Axwoman 4.0. 6) Add the Editor Toolbar the same way.The Axwoman toolbar has seven buttons:3. Draw Axial LinesTo create a new axial map, you must have an existing polyline layer to which you want to digitize. If you do not, you can create one using ArcCatalog . The Draw Axial Lines takes place within an edit session. To begin, choose Start Editing from the Editor menu.Then click the Task dropdown arrow and click Create Axial Lines to activate the Draw Axial Lines button in Axwoman toolbar.Draw Axial Lines Tracking Strokes at Junctionby a Limited AngleCalculate Parameters in case of Lines with Lines Get Isolated Lines Add Pass Points in Junction Calculate Parameters in case of Points with PolygonsCalculate Parameters in caseof Polygons with PolygonsClick the Draw Axial Lines button from the Axwoman toolbar, click on the map to digitize the starting vertex. Click with the mouse to create the last vertex and finish thesketch.To delete the sketch of axial line, use the Select Features toolto select the line andthen press Delete.When you have finished the digitizing, you can save any changes you have made or quit editing without saving. You can also save the edits you have made at any time by choosing Save Edits from the Editor menu. To stop an editing session, click Editor and click Stop Editing.To save changes, click Yes. To quit without saving, click No.- 5 -4. Get Isolated LinesAxwoman 4.0 provides a tool for checking the existence of any isolated line or lines. When you have finished digitizing the axial map, select ONE line from the axial map byusing the Select Features tooland then click the Get isolate lines button from theAxwoman toolbar.If there are any isolated lines, a message box appears telling you how many of the lines are isolated. Only those lines that are isolated remain selected.Click OK and make necessary edits to the axial map to make the isolated lines connected. Save edits, stop editing and use the Get isolate line tool until there is no line being isolated from the network.- 6 -5. Calculate Parameters in Case of Lines with LinesOnce the digitization work is finished, you can put the polyline layer on editing statusagain, and highlight the corresponding layer on the table of contents.Click on the Axwoman toolbar to calculate all the space syntax measures.- 7 -When the computation is finished, the map will be rendered according to the LInteg attribute. Click Save Edits and Stop Editing from the editor menu.The space syntax values of each axial line can be seen in the attributes table of the polyline shapefile.And you can render the map according to other attribute as shown below:- 8 -Click Ok to render the map again.6. Tracking Street Segments to Form Natural StreetsTo perform this function, you need to have to highlight the corresponding polyline layer on the table of contents. Click on the Axwoman toolbar to start the tracking strokes at junction by a limited angle.- 9 -Click Yes to start the tracking processing.Enter an angle for computation and then press Enter. Here we use degree 45 as a defaultand recommended threshold angle.The result will be stored as a shapefile. Enter a name for the resulting shapefile and thenclick Save. The resulting shapefile will then be added to the ArcMap.-10 -7. FAQs1. Why are some functional buttons of Axwoman 4.0 grey?In such situation, you should add some shapefile to current ArcMap document, and HIGHLIGHT the corresponding layer, according to the previous instructions.The two functions of do not work yet in current version.2. What is the limitation for the computation?There is no limitation for the number of axial lines as far as we know. If otherwise, please report to us.8. Recommended citationJiang B. and Liu C. (2007), Street-based topological representations and analyses for predicting traffic flow in GIS, International Journal of Geographical Information Science, x, xx-xx, Preprint, /abs/0709.1981.9. AcknowledgementsThe author is grateful to Chengke Liu, Xintao Liu, Mandy Tang, Junjun Yin, and Sijian Zhao who helped the software implementation or the preparation of the manual. The Gassin dataset is taken from /research/axial/, prepared by Alasdair Turner.10. ReferencesHillier B. and Hanson J. (1984), The Social Logic of Space, Cambridge University Press: Cambridge.Jiang B. and Liu C. (2007), Street-based topological representations and analyses for predicting traffic flow in GIS, International Journal of Geographic Information Science, xx, xx – xx, preprint, /abs/0709.1981.Thomson R. C. (2003), Bending the axial line: smoothly continuous road centre-line segments as a basis for road network analysis, in Hanson, J. (ed.), Proceedings of the Fourth Space Syntax International Symposium, University College London, London.-11 -。

相关文档
最新文档