2018届中考数学复习专题突破课件:专题六 阅读理解 (共19张)

合集下载

微专题(六) 与角平分线有关的四种基本模型 课件(共19张PPT) 2024年中考数学总复习专题突破

微专题(六) 与角平分线有关的四种基本模型 课件(共19张PPT) 2024年中考数学总复习专题突破
பைடு நூலகம்
5
.所以
6
= 4 =
10
.
3
10
【答案】
3
图34
17
微专题(六) 与角平分线有关的四种基本模型
模型四 角平分线+轴对称
构造
复习讲义
全等三角形
6.如图6,在 △ 中, ∠ = 108∘ , = ,
图6
平分 ∠ ,交 于点 .求证: = + .
B. 2 + 3
C. 2 + 3
D.3
图2
12
微专题(六) 与角平分线有关的四种基本模型
模型二 角平分线+角平分线的垂线
复习讲义
构造
等腰三角形
3.如图3,在 △ 中, < , 平分
∠ , ⊥ 于点 ,连接 .若 △ 的
面积为4,求 △ 的面积.
复习讲义
学习至此,请完成微专题练习(六) (第267页)
10
微专题(六) 与角平分线有关的四种基本模型
复习讲义
微专题练习(六)
与角平分线有关的四种基本模型
模型一 角平分线+边的垂线
构造
双垂直
1.如图1, 平分 ∠ , ⊥ 于点 ,
△ = 8 , = 2 , = 4 ,则 的长是
= 8 ,所以 = 10 .所以 : : = : : = 3: 4: 5 .设
16
微专题(六) 与角平分线有关的四种基本模型
复习讲义
= = 3 ,则 = = 4 , = 5 .因为 = 10 ,所以
3 + 5 + 4 = 10 .所以 =

2018年中考数学总复习攻略PPT120张

2018年中考数学总复习攻略PPT120张

1 1 1 1 1
4
方程和不等式是初中数学的重要 内容,是提高学生分析问题和解 决问题能力的重要途径,复习时 要在应用两个数学模型解决实际 问题上加大力度.
周 次
日期 起止
教学内容
课 时
教学措施与建议
备 注
3
3.15~ 3.21
3.1函数及其应用 3.2一次函数及其应用 3.3反比例函数及其应用 3.4二次函数及其应用 3.5函数的应用
只有明晰“怎么考”,我们才能在众多 的资料面前保持清醒、用理智的头脑进行 正确筛选,从而做到有的放矢,减轻学生 无谓的负担,提高复习的针对性。
考什么?
选择题常考考点 填空题常考考点
解答题常考考点
填空题的常见考点
1、函数自变量的取值范围。 2、确定简单的函数解析式。 3、已知函数关系式,求其中的字母的值。 4、因式公解、分式的化简计算。 5、直角三角形、等腰三角形的性质 6、多边形的内角和、外角和 7、一元二次方程根的判别式、根与系数 的关系
解答题的常见考点
• 题型一:实数的运算 • 题型二:分式化简求值 • 题型三:有关三角形与四边形中的证明 • 题型四:网格中的图形变换 • 题型五:统计问题 • 题型六:概率问题
解答题的常见考点
• 题型七:直角三角形的实际应用 • 题型八:一次方程、分式方程、一元一次不等式的 实际应用题 • 题型九:简单一次函数、反比例函数问题及实际应 用问题 • 题型十:特殊平行四边形的证明及应用方程思想的 计算 • 题型十一:与圆有关的证明和计算 题型十二:压轴题
(一)做好复习前的准备工作
1、
研究课标 通读教材
2、把握动向 研究中考 4、科学安排 研究计划
3、以人为本 研究学生

2018年贵州中考数学二轮复习课件-专项突破6

2018年贵州中考数学二轮复习课件-专项突破6

2018年中考数学复习课件
第16页
下一页
2018年中考数学复习课件
第17页
下一页
2018年中考数学复习课件
第18页
下一页
2018年中考数学复习课件
第19页
下一页
第8页
下一页
2018年中考数学复习课件
第9页
下一页
2018年中考数学复习课件
第10页
下一页
2018年中考数学复习课件
第11页
下一页
2018年中考数学复习课件
第12页
下一页
2018年中考数学复习课件
第13页
下一页
2018年中考数学复习课件
第14页
下一页
2018年中考数学复习课件
第15页
下一页
2018年中考数学复习课件
第1页
下一页
2018年中考数学复习课件
第2页
下一页
2018年中考数学复习课件
第3页
下一页
2018年中考数学复习课件
第4页
下一页
2018年中考数学复习课件
第5页
下一页
2018年中考数学复习课件
第6页
下一页
2018年中考数学复习课件
第7页
下一页
2018年中考数学复习课件

2018届中考数学复习:阅读理解问题课件(含答案)

2018届中考数学复习:阅读理解问题课件(含答案)

本思路是“阅读→分析→理解→解决问题”.
东营市中考试题中经常考查阅读理解类的题目.例 如:2016年第18题通过阅读材料提炼新的解题方法;2013 年第6题给出一个新的函数定义求函数值.
类型一 新概念学习型 是指在题目中先构建一个新数学概念(或定义),然后再
根据新概念提出要解决的相关问题.主要目的是考查学生
4 问题3:如图,设点 P为问题2中⊙C上的任意一点,点A,B
为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最
大值和最小值.
【分析】(1)根据点到直线的距离公式计算;(2)根据点到 直线的距离公式,列出方程即可解决问题;(3)求出圆心C 到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y
BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.
(1)证明:如图所示,连接EF, ∵AF、BE分别是△ABC的中线, ∴EF是△ABC的中位线,
∴EF∥AB,且EF=
∴△EPF∽△BPA, ∴ 设PF=m,PE=n,
则AP=2m,BP=2n, 在Rt△APE中,AP2+EP2=AE2, 即(2m)2+n2= ①
3 9 概率是_____ .
M D
.如图,现
在等边△ABC内射入一个点,则该点落在△ABC内切圆中的
4.(2016·随州)如图1,PT与⊙O1相切于点T,PB与⊙O1相 交于A,B两点,可证明△PTA∽△PBT,从而有PT2=PA·PB. 请应用以上结论解决下列问题: 如图2,PAB,PCD分别与⊙O2相交于A,B,C,D四点,已知
(1)如果一个正整数 m是另一个正整数 n的平方,我们称正整
数 m 是完全平方数.求证:对任意一个完全平方数 m ,总有

2018中考数学专题复习课件 阅读理解问题(共64张PPT)

2018中考数学专题复习课件  阅读理解问题(共64张PPT)
定义),然后再根据新概念提出要解决的相关问题.主要目的 是考查学生的自学能力和对新知识的理解与运用能力.解决这 类问题:要求学生准确理解题目中所构建的新概念,将学习 的新概念和已有的知识相结合,并进行运用.
(2015·临沂)定义:给定关于x的函数y,对于该函 数图象上任意两点(x1,y1),(x2,y2).当x1<x2时,都 有y1<y2,称该函数为增函数.根据上述定义,可以判断下 面所给的函数中,是增函数的有(填上所有正确答案的序 号). ①y=2x; ②y=-x+1; ③y=x2(x>0);④ y 1 .
(3)①如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E, ∵∠ABC=90°,∠DAB=60°, AB=5, ∴AE=10, ∴DE=AE-AD=10-4=6. ∵∠EDC=90°,∠E=30°, ∴ CD2 3, ∴ A C A D 2 C D 2 4 2 ( 2 3 ) 2 2 7 .
的思想、方法或解题途径,进而运用这些知识和已有的知识 解决题目中提出的问题.
【点评】本题考查了有理数的混合运算,根据新方法正确换 元是快速解答本题的关键.
4.(2014·广东珠海)阅读下列材料: 解答“已知x-y=2,且x>1,y<0,试确定x+y的取值范围”有 如下解法: 解:∵x-y=2,∴x=y+2. 又∵x>1,∴y+2>1, ∴y>-1.
当BN为最大线段时,
B N M N 2 A M 2 9 4 1 3 . ∴BN= 5 或 1. 3
(2)∵FG是△ABC的中位线,
∴FG∥BC.
∴ AMANAG1. MD NE GC
∴点M,N分别是AD,AE的中点.
∴BD=2FM,DE=2MN,EC=2NG.

人教版数学2018年中考专题复习 阅读理解问题重点精讲 (共21张PPT)

人教版数学2018年中考专题复习 阅读理解问题重点精讲 (共21张PPT)

阅读下面的材料: 小敏在数学课外小组活动中遇到这样一个问题:
如果α,β都为锐角,且 tan
1 1 , tan , 求α+β的度数. 2 3
小敏是这样解决问题的:如图1, 把α,β放在正方形网格中,使得 ∠ABD=α,∠CBE=β,且BA,BC在 直线BD的两侧,连接AC,可证得 △ABC是等腰直角三角形,因此可求 得α+β=∠ABC =
请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画 出一个即可,保留画图痕迹,不要求证明) 方法1:以点N为圆心,ON为半 径作圆,交直线l于点P1,P2, 则点P1,P2为符合题意的点.
(2)受以上解答过程的启发,小明设计了如下的画图题: 在Rt△OMN中,∠MON=90º ,OM<ON,OQ⊥MN于点Q,直线l
使图形G’’与图形G对应线段的比为k,并且图形G上的任一点P,它
的对应点P’’在线段OP’或其延长线上;我们把这种图形变换叫做旋 转相似变换,记为O(θ,k),其中点O叫做旋转相似中心,θ叫做旋转
角,k叫做相似比. 如图1中的线段OA’’便是由线段OA经过O(30°,2)
得到的.
图1
(1)如图2,将△ABC经过 ☆ (90°,1)后得到△A’B’C’,则横线上 “☆”应填下列四个点O(0,0)、D(0,1)、E(0,-1)、C(1,2)中的点 .
思维拓展: (2)如果△MNP三边的长分别为 10,2 5, 26, 请利用图2的正方
形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接
写出△MNP的面积.
图2
思维拓展: (2)如果△MNP三边的长分别为 10,2 5, 26, 请利用图2的正方
形网格(每个小正方形的边长为1)画出相应的格点△MNቤተ መጻሕፍቲ ባይዱ,并直接

2017年中考数学总复习课件专题六 阅读理解 (共18张PPT)

2017年中考数学总复习课件专题六  阅读理解 (共18张PPT)

∴1<18-PC2<4. ∴14<PC2<17.
∵PC>0,∴ 14 <PC< 17 .
Ⅱ.若点H在线段EF的延长线
(或反向延长线)上,如图③.
同理,可得PE2+PF2=2(PM2+EM2).
综上所述,当点H在直线EF上时,都有
PE2+PF2=2(PM2+EM2).
b.已知PE=PF=3,以EF为一条对角线作
□CEDF,若1<PD<2,试求CP的取值范围.
分析:b.连接CD,PM.易证□CEDF是矩形, 从而得到M是CD的中点,且MC=EM,然后根据 a中的结论,可得:在△PEF中,有PE2+PF2=2 (PM2+EM2),在△PCD中,有PC2+PD2=2 (PM2+CM2).由MC=EM可得 PC2+PD2=PE2+PF2.根据PE=PF=3可求得 PC2+PD2=18.根据1<PD<2,可得1<PD2<4, 即1<18-PC2<4,从而可求出PC的取值范围.
1 ∵AF,BE是中线,∴EF∥AB,EF= AB. 2 ∴△FPE∽△APB.∴ FP PE 1 . AP PB 2 设FP=x,EP=y,则AP=2x,BP=2y.
∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2,
b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2, c2=AB2=AP2+BP2=4x2+4y2. ∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.
∴∠OCE+∠OCF=90°,即∠ECF=90°.
(2)在△PEF中,M为EF中点,P为动 点.a.求证:PE2+PF2=2(PM2+EM2).

2018年中考数学专题冲刺复习七讲:2018年中考数学专题冲刺复习第六讲阅读理解问题

2018年中考数学专题冲刺复习七讲:2018年中考数学专题冲刺复习第六讲阅读理解问题

阅读理解问题阅读理解型问题一般都是先提供一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容、思想方法,把握本质,解答试题中提出的问题.对于这类题求解步骤是“阅读——分析——理解——创新应用”,其中最关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材.因此这种试题是考查大家随机应变能力和知识的迁移能力.题型之一新定义、新概念阅读型例1 (2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D方法归纳:这类题首先要读懂题目中的新概念,然后将新概念的问题与原有的知识结合,利用原有的知识解决问题,其实就是“披了一件新外衣”,解决方法还是用原来的知识点.1.(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对2.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.3. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.题型之二学习应用型例2 (1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).1. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x ﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).2. (2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.3. (2017年江苏扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= 0 ,OC△OA= 7 ;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.题型之三阅读探究型例3(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.1. (2017湖北随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M 是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.2.(2017江苏盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.3. (2017重庆B)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.参考答案题型之一新定义、新概念阅读型1.(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.2.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.3. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).题型之二学习应用型1. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x ﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)2. (2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI :一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可; (2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x+4y+5=0的距离,求出⊙C 上点P 到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P 1(3,4)到直线3x+4y ﹣5=0的距离d==4,故答案为4.(2)∵⊙C 与直线y=﹣x+b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x+4y ﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C (2,1)到直线3x+4y+5=0的距离d==3,∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.3. (2017年江苏扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC 中,AO 是BC 边上的中线,AB 与AC 的“极化值”就等于AO 2﹣BO 2的值,可记为AB △AC=AO 2﹣BO 2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= 0 ,OC△OA= 7 ;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.【考点】KY:三角形综合题.【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC=BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD=AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD==4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD=AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD===2,∴BA△BC=BD2﹣CD2=24;(3)如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DB=AN=×OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3,∴S=BC×AO=6.△ABC题型之三阅读探究型1. (2017湖北随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M 是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.【考点】SO:相似形综合题.【分析】(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到==1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC=a,接着证明△ANF为等腰直角三角形得到NF=a+b,则NE=NF+EF=2a+b,然后计算的值;(4)由于==+=k,则=,然后表示出==•+1,再把=代入计算即可.【解答】解:(1)如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM=∠FEM,在△CDM和△FEM中,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴==1,∴DM=EM,即点M是DE的中点;(2)∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=AD=a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=AF=(a+b+b)=a+b,∴NE=NF+EF=a+b+a=2a+b,∴===;(4)∵==+=k,∴=k﹣,∴=,∴==•+1=•+1=.2.(2017江苏盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【考点】LO:四边形综合题.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形=PQ•PN═﹣(x﹣)2+,据此可得;PQMN【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,则S矩形PQMN∴当PQ=时,S最大值为,矩形PQMN故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.3. (2017重庆B)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.【点评】本题考查了因式分解的应用以及二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.。

2018年中考数学专题高分攻略6讲专题三阅读理解型问题

2018年中考数学专题高分攻略6讲专题三阅读理解型问题

专题三:阅读理解型问题【命题解读】问题给出一段材料,考生经过阅读,加以理解,在理解的基础上按照题目的要求作出解答.这种根据阅读材料提供的信息,现场阅读、理解和运用的新题型,知识背景较为宽广,知识跨度大,包含的信息较多,综合性强,能力要求高.它综合考查了考生的阅读理解能力、分析推理能力、数据(图表)处理能力、文字概括能力、书面表达能力和随机应变能力及知识迁移能力.【考点概要】1.阅读理解型问题一般可分为如下三种:(1)方法模拟型——通过阅读理解后,模拟提供的材料中所述的过程方法去解决类似的相关问题;(2)判断概括型——通过阅读理解,对提供的材料就其本质进行归纳,加工提炼后,作出解答;(3)迁移发展型——从提供的材料中,通过阅读理解其复杂的思想方法,将其概括抽象成数学模型去解决类似或更高层次的另一个相关命题.2.解答阅读理解型问题的注意事项:(1)阅读时要理解其中的因果关系;(2)看懂过程的同时要注重内涵(数学思想方法);(3)材料中的本质内涵或错处、错因等是解答要素;(4)除模拟外,注意迁移发展,探索创新.【思想方法】阅读理解型问题构思新颖别致、题样多变,整式覆盖面广,它考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据的处理能力、文字的概括能力、书面的表达能力和知识的迁移能力.解决这类型的问题关键在于阅读,核心在于理解,目的在于应用,理解其阅读材料中提供的知识要点、数学思想方法以及解题的方法技巧,然后应用从中所学的知识解决有关问题。

【高分突破】考点1:学习新知型:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=2.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2对应训练:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k (k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.考点2:问题背景型(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D对应训练:(2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=(x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)考点3、结论探索型:(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).对应训练(2017湖北随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.【考点】SO:相似形综合题.【分析】(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到==1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC=a,接着证明△ANF为等腰直角三角形得到NF=a+b,则NE=NF+EF=2a+b,然后计算的值;(4)由于==+=k,则=,然后表示出==•+1,再把=代入计算即可.【解答】解:(1)如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM=∠FEM,在△CDM和△FEM中,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴==1,∴DM=EM,即点M是DE的中点;(2)∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=AD=a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=AF=(a+b+b)=a+b,∴NE=NF+EF=a+b+a=2a+b,∴===;(4)∵==+=k,∴=k﹣,∴=,∴==•+1=•+1=.【真题训练】1.(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a ﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.2. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.3. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).4.(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).5. (2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M 、N 是一对“互换点”,若点M 的坐标为(m ,n ),求直线MN 的表达式(用含m 、n 的代数式表示);(3)在抛物线y=x 2+bx +c 的图象上有一对“互换点”A 、B ,其中点A 在反比例函数y=﹣的图象上,直线AB 经过点P (,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA :待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a ,b )和(b ,a ).①当ab=0时,它们不可能在反比例函数的图象上,②当ab ≠0时,由b =k a 可得a =k b ,于是得到结论;(2)把M (m ,n ),N (n ,m )代入y=cx +d ,即可得到结论;(3)设点A (p ,q ),则q =−2p ,由直线AB 经过点P (,),得到p +q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x 2+bx +c 得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a ,b )和(b ,a ).①当ab=0时,它们不可能在反比例函数的图象上,②当ab ≠0时,由b =k a 可得a =k b ,即(a ,b )和(b ,a )都在反比例函数y =k x (k ≠0)的图象上;(2)由M (m ,n )得N (n ,m ),设直线MN 的表达式为y=cx +d (c ≠0).则有{mc +d =n nc +d =m解得{c =−1d =m +n , ∴直线MN 的表达式为y=﹣x +m +n ;(3)设点A (p ,q ),则q =−2p ,∵直线AB 经过点P (,),由(2)得12=−12+p +q ,∴p +q=1,∴p −2p =1,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x 2+bx +c 得,∴{1−b +c =24+2b +c =−1解得{b =−2c =−1, ∴此抛物线的表达式为y=x 2﹣2x ﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.6. (2017日照)阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C=0的距离公式为:d=.例如:求点P 0(0,0)到直线4x +3y ﹣3=0的距离.解:由直线4x +3y ﹣3=0知,A=4,B=3,C=﹣3,∴点P 0(0,0)到直线4x +3y ﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P 1(3,4)到直线y=﹣x +的距离为 4 ;问题2:已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y=﹣x +b 相切,求实数b 的值;问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x +4y +5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.。

2023年中考数学专项突破之阅读理解课件(共39张PPT)

2023年中考数学专项突破之阅读理解课件(共39张PPT)

研究方法及过程
添加关键字
添加关键字
关键字 关键字 关键字
添加关键字
Your logo
成果展示及应用
学生:XXX
指导老师:XXX
成果展示及应用 点击添加副标题内容
关键字
关键字
关键字
关键字
Your logo
论文总结及致谢
学生:XXX
指导老师:XXX
点击添加副标题内容
关键字 关键字
关键字 关键字
Your logo
毕业论文答辩
学生:XXX
指导老师:XXX
Your logo
CONTENTS
01 02 03 04
Your logo
选题背景和意义
学生:XXX
指导老师:XXX
添加小标题
• •
添加小标题
• •
添加小标题
• •
单击此处添加副标题内容
5 4.5
4 3.5
3 2.5
2 1.5
1 0.5
关键字 关键字
Your logo
感谢您的观看
学生:XXX
指导老师:XXX
0
• 单击此处输入你的正文, 文字是您思想的提炼,为了最终演 示发布的良好效果,请尽量言简意赅的阐述观点
单击此处添加副标题内容
0
2
4
6
8
思想的提炼,为了最终演 示发布的良好效果,请尽量言简意赅的阐述观点
Your logo
研究方法及过程
学生:XXX
指导老师:XXX
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
◆题型展示( 题型一 题型二 )
相关文档
最新文档