用坐标表示平移 课件
数学用坐标表示平移
函数图像的平移
函数图像的平移
在函数图像中,平移可以改变图 像的位置,但不会改变图像的形 状和大小。通过平移,我们可以 更好地理解函数的性质和变化趋
势。
函数图像的对称性
平移可以与函数的对称性相结合, 例如通过平移奇函数或偶函数的 图像,可以更好地理解函数的对
称性质。
函数图像的周期性
在周期函数中,平移可以用于研 究函数的周期性和振幅变化,帮 助我们更好地理解函数的周期性。
平移解释物理现象
在物理现象的解释中,平移可以用来解释物体的运动轨迹 和速度变化的原因,例如在流体动力学中,平移可以用来 解释流体运动的轨迹和速度。
总结与展望
06
平移在数学中的重要地位
基础概念
平移是几何学中的基本概念,是研究图形变换和运动的基础。通过 坐标表示平移,可以更精确地描述图形的位置和方向变化。
数学用坐标表示平移
目录
• 引言 • 平移在坐标系中的表示 • 平移的数学表示 • 平移的性质和定理 • 平移的应用 • 总结与展望
引言
01
平移的定义
01
平移是图形在平面内沿某一方向 移动一定的距离,而不发生旋转 或翻转。
02
平移不改变图形的形状、大小和 方向,只改变其位置。
坐标系简介
坐标系是用来确定点 在平面上的位置的一 组数轴。
物理学
在物理学中,平移可以用于描述物体的位置和速度,特别 是在经典力学和电磁学中,平移是研究物体运动规律和相 互作用的基础。
计算机图形学
在计算机图形学中,平移是计算机图形处理的基础技术之 一,可以用于实现图像的平移、缩放、旋转等变换操作。
经济学
在经济学中,平移可以用于描述经济现象的变化趋势,如 市场供需关系的变化、经济增长率的变动等。
完整版用坐标系表示平移 图文
1、如果A,B的坐标分别为 A(-4,5), B(-4,2),将点A向_下__平移_3__个单位长 度得到点 B;将点B向_上__平移_3__个单位 长度得到点 A 。
2、如果P、Q的坐标分别为 P(-3,-5),Q (2,-5),,将点P向_右__平移__5_个单位长 度得到点 Q;将点Q向左___平移5___个单位长 度得到点 P。
作业
教材p.581,; p.592,3,4 题 作业本
)且 PQ ∥ x轴,则 b的值为( 6)
3.点(m,- 1)和点(2,n)关
于 x轴对称,则 mn等于【 B 】 (A)- 2 (B)2
(C)1 (D)- 1
想一想?
这节课你有哪些收获 ? 在平面直角坐标系中 ,将点(x,y)向右 (或向左)
平移a个单位长度,可以得到对应点 (x+a,y) (或(x-a,y)) ,将点(x,y)向上 (或向下) 平移b个单位长度 ,可 以得到对应点 (x,y+b) (或(x,y-b))
在平面直角坐标系内,如果把一个 图形上的各个点的坐标的 横坐标都加 (或减去) 一个正数 a,相应的新图形 就是把原图形向右(或向左) 平移a个 长度单位;如果把各点的 纵坐标都加 (或减去) 一个正数 a,相应的图形就 是把原图形向上(或向下) 平移a个单 位长度.
例:将图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),
y
? △ABC的面积是__12___.
A(1,4)
? 4.将△ABC向左平移三个单位
后,点A、B、C的坐标分别变为 __(-_2_,4_) _,_(_-7_,_0)__, _(-_1,0_) _ .
鲁教版(五四制)数学八年级上册4.用坐标表示点在坐标系中一次平移课件
感悟新知
2. 将第1题中的四边形A2B2C2D2各顶点的纵坐标不 变,横坐标分别减4,得到四边形為A3B3C3D3 , 它与四边形A2B2C2D2相比有什么变化?
知2-练
解:将四边形A2B2C2D2向左平移4个单位长度, 得到四边形A3B3C3D3 ,形状、大小未产生 变化.
感悟新知
知2-练
3. 将四边形A3B3C3D3各顶点的横坐标不变,纵坐 标分别减4,得到四边形A4B4C4D4,它与四边形 A3B3C3D3相比有什么变化?
第4章 图形的平移
4.1 图形的平移 第2课时 用坐标表示点在
坐标系中一次平移
课时导入
回顾与思考 1、平移的定义 在平面内,将一个图形沿某个方向移动一定的 距离,这样的图形运动称为平移. 2、平移的性质 (1)平移不改变图形的形状和大小,只改变形图
形的位置
感悟新知
知识点 1 左右平移与坐标变化
知点A(-2,-1),将点A沿x轴方向平移2个 单位长度得到点B,则点B的坐标为( C ) A.(-4,-1) B.(0,-1) C.(-4,-1)或(0,-1) D.以上都不对
知1-练
感悟新知
知识点 2 上下平移与坐标变化
知2-讲
议一议 在平面直角坐标系中,一个点沿y轴方向平移a
知2-练
感悟新知
5. 如图,与图①中的三角形相比,图②中的三角 形产生的变化是( A ) A.向左平移了3个单位长度 B.向右平移了1个单位长度 C.向上平移了3个单位长度 D.向下平移了1个单位长度
知2-练
感悟新知
6. 如图,将直线y=-x沿y轴向下平移后的直线 恰好经过点A(2,-4),且与y轴交于点B,在x 轴上存在一点P 使得PA+PB的值最小,则点 P的坐标为____23_,_0__.
数学六年级下册第七章-用坐标表示平移-课件与答案
7.2
2.用坐标表示图形的平移:
一般地,在平面直角坐标系内,如果把一个图形各个点
的横坐标都加(或减去)一个正数a,相应的新图形就是把原图
形向右(或左)平移a个单位长度;如果把它各个点的纵坐标都
加(或减去)一个正数a,相应的新图形就是把原图形向上(或
下)平移a个单位长度.
数学
七年级 下册
配RJ版
第七章
点为C(1,1),则点B(3,2)的对应点D的坐标是 (6,2)
.
数学
七年级 下册
配RJ版
第七章
7.2
【变式1】如图,A和B的坐标为(2,0),(0,1),若将线段AB平移
1
至A1B1,则ab的值为
.
数学
知识点2
七年级 下册
配RJ版
第七章
7.2
坐标系中的平移作图
【例题2】如图,将三角形ABC向右平移5个单位长度,再向下
数学
配RJ版
七年级 下册
数学
CONTENTS
目
录
七年级 下册
配RJ版
第七章
第七章 平面直角坐标系
7.2
坐标方法的简单应用
第2课时 用坐标表示平移
01
课标要求
02
基础梳理
03
典例探究
04
课时训练
7.2
数学
七年级 下册
配RJ版
第七章
7.2
在平面直角坐标系中,能写出一个已知顶点坐标的多边
形沿坐标轴方向平移一定距离后图形的顶点坐标,知道对应
第七章
7.2
(3)①如解图1,当点P在线段BD上时,∠APC=∠PCD+∠PAB.
数学
7.2.2用坐标表示平移
向左平移6个单位长度。
若将△ABC三个顶点的横坐标都加上2, 纵坐标不变,分别得到点A1,B1,C1,依次连接 这些点,所得到的△A1B1C1与△ABC的大小、 形状和位置上有什么关系?
1 1
(1) △ A B C1与△ABC的大小、形状不变, 向右平移2个单位长度。 但位置发生变化,即:
在平面直角坐标系中,如果把一个点 的横坐标都加上(或减去)一个正数a,就是把 原图形向右(或左)平移a个单位长度.
1
A2
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -1 -2 -3 A A1 -4
x
2
在平面直角坐标系中,△ABC三个顶点 的坐标分别是A (4,3), B (3,1), C (1,2). (一)将△ABC三个顶点的横坐标都减去6, 纵坐标不变,分别得到点A1,B1,C1,依次连接 这些点,所得到的△A1B1C1与△ABC的大小、 形状和位置上有什么关系? (1) 请分别写出这三点的坐标。 A1( -2,3); B1(-3,1); C1(-5,2 )。 (2) △ A1B1C1与△ABC的大小、形状不变, 但位置发生变化,即:
若点A (-2,-3),向上平移4个单位, 得到点A2 .
(1) 线段AA2与Y轴有什么位置关系?
线段AA2与Y轴平行. (2) 线段AA2上的点横坐标有什么特征? 横坐标相等. (3) 点A与点A2的坐标有什么关系? 横坐标相等,而纵坐标加4. -3+b (4) 若点A向上平移b个单位,则点A2( -2 , ); -3若点A向下平移b个单位,则点A2( -2 , b)
归 纳 在平面直角坐标系中:
将点(x,y)向右(或向左)平移a个单 位长度,可以得到对应点(x+a,y)(或 (x-a,y)); 将点(x,y)向上(或下)平移b个单位 长度,可以得到对应点(x,y+b)(或 (x,y-b)).
《用坐标表示平移》
总结
坐标系的概念
坐标系是数学中用来确定点 在空间中的位置的工具。常 见的坐标系有直角坐标系、 极坐标系和球面坐标系等。
平移的定义
平移是指将图形沿某个方向 移动一定距离,而不改变其 形状和大小。平移操作可以 用向量表示,其中向量的每 个分量对应于移动的方向和 距离。
用坐标表示平移
平移不改变图形的形状、大小和方向,只改变图 形的位置。
平移前后两个图形的周长和面积保持不变。
02
用坐标表示平移的原因
坐标系的重要性
描述物体的位置
坐标系可以准确地描述物体在 空间中的位置,包括其大小、
形状和方向。
建立空间关系
坐标系可以用来建立物体之间的空 间关系,例如距离、角度、相对位 置等。
预测运动轨迹
对于直角坐标系中的点 P(x,y),经过平移后,点 P' 的坐标可以表示为 P'(x+a,y+b),其中 a 和 b 分别表示在 x 轴和 y 轴上的 移动距离。
平移的性质
平移不改变图形的形状和大 小,只改变其位置。平移操 作可以用矩阵表示,其中矩 阵的每个元素对应于移动的 方向和距离。
展望
平移的应用
VS
详细描述
设线段两端点分别为A(x1, y1)和B(x2, y2)。如果要将线段AB沿x轴正向平移a个 单位,则平移后的线段两端点坐标为 (x1+a, y1)和(x2+a, y2)。如果要将线段 AB沿y轴正向平移b个单位,则平移后的 线段两端点坐标为(x1, y1+b)和(x2, y2+b)。同时进行x轴和y轴的平移,平移 后的线段两端点坐标为(x1+a, y1+b)和 (x2+a, y2+b)。
人教版七年级数学上册优质课课件《用坐标表示平移》
4
3 2 1 0 –1 1 2
A2 A A1 C2 C C1 B2 B B1
3 4
D
–2 –3
E
–4
例:如图(1)示,三角形ABC三个顶点的坐标 分别是A(4,3)、B(3,1)、C(1,2).
解:(1)由三角形ABC得到 三角形A1B1C1与原三角形 ABC的大小、形状完全相 同,只是位置从原位置向 左水平移动6个单位长度 (2)由三角形ABC所得三角形 –4 A2B2C2与原三角形ABC的大 小、形状完全相同,只是位 置从原位置向下平移5个单 位长度 F
x
在平面直角坐标系中 , 如果与点 P(x,y) 对应的坐标 –4 为P’(x+a,y),则点P’为点P向右(或向左)平移而得 –5 当a>0时,图形向右平移|a|个单位;当a<0时,图形 向左平移|a|个单位
–3
y
5 4 3 2 1 0 –1 –2 –3 1 2 3 4 5 6 7 8
图中的鱼是将坐 标为:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0) 的点用线段依次 连接而成的
y
5 原图形被向左平移 2个单位
4 3 2 1 -2 -1 0 –1 –2 –3 1 2 3 4 5 6 7 8 9 10
图中的鱼是将坐 标为:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0) 的点用线段依次 连接而成的 如果纵坐标保持不 变,将各坐标的横 坐标减2,图案会 变成什么样? x
x
横坐标保持不 变,将各坐标 的纵坐标都减 2, 则原图型 变为什么样? (x,y)(x,y-b)
y
《用坐标表示平移》参考课件
4
A (-2,-3)
y
C (-2,4)
B (-2,2)
1、向上平移5个单位长度
2、向上平移7个单位长度
请你观察ABC三点的坐标的变化,你能发现什么规律吗?
A (-2,-3)
C (-2, 4)
B (-2, 2)
(1)左、右平移:
向右平移a个单位
(2)上、下平移:
原图形上的点(x,y) ,
1
A
1
C
1
B
1
A
1
C
1
B
1
总结规律2:
(1)横坐标变化,纵坐标不变:
向右平移a个单位
原图形上的点(x,y) ,
(x+a,y)
图形上点的坐标变化与图形平移间的关系
向左平移a个单位
原图形上的点(x,y) ,
(x-a,y)
向上平移b个单位
原图形上的点(x,y) ,
3
2
1
-2
-1
-3
4
y
A
B
C
-5
-4
A1
B1
C1
(4,3)
(1,2)
(3,1)
(-2,3)
(-3,1)
(-5,2)
二. 探索图形上点的坐标变化与图形平移间的关系
1.例题探索 如图,△ABC三个顶点的坐A(4,3),B(3,1),C(1,2) (1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变 (2)依次连接A1,B1,C1,各点,得到三角形A1B1C1
将△ABC三个顶点的纵坐标都减去5,横坐标不变。
2
3
A2
C2
B2
1
A
图形在坐标系中的平移课件
平移的性 质
平移前后,图形上对 应点的距离保持不变。
平移过程中,图形上 各点移动的距离和方 向相同。
平移不改变图形的形 状和大小,只改变其 位置。
平移的分 类
水平平移
图形在水平方向上移动。
竖直平移
图形在竖直方向上移动。
斜向平移
图形在任意方向上移动。
02 图形在坐标系中的平移
点的平移
总结词
点的平移是指一个点在坐标系中沿着某一方向移动一定的距离。
图形在坐标系中的平移 课件
目录
Contents
• 平移的定义与性质 • 图形在坐标系中的平移 • 平移变换的应用 • 平移变换的数学表达 • 平移变换的物理意义
01 平移的定义与性质
平移的定 义
01
平移是图形在平面内沿某一方向 直线移动一定的距离,而不改变 图形的大小和形状。
02
平移不改变图形上点的坐标,只 是使图形在坐标系内移动。
05 平移变换的物理意义
力的作用效果
物体在力的作用下产生加速度, 在坐标系中表现为图形的平移。
力的方向决定了平移的方向, 力的大小决定了平移的距离。
当物体受到多个力的作用时, 其平移效果是各个力作用效果 的合成。
运动的合成与分解
平移变换是运动的一种形式,可 以通过运动的合成与分解来理解。
在平面坐标系中,平移变换可以 看作是物体在两个方向上的分运
详细描述
在二维坐标系中,如果一个点 $(x, y)$ 沿着 $x$ 轴正方向移动 $a$ 个单位,其 新坐标变为 $(x+a, y)$;如果沿着 $x$ 轴负方向移动 $a$ 个单位,其新坐标变 为 $(x-a, y)$。类似地,沿着 $y$ 轴移动的情况也类似。
人教版七年级数学下册 7.2.2 用坐标表示平移(16页PPT)
CC 1
1
B(3,-2) C(4,1)
B1(1,1) C1(2,4)
-3 -2 -1 o 1 2 3 4 x
-1
AA1 -2
BB1
D(0,1)
D1(-2,4)
-3
练习3 如图,△ABC向右平移2个单位,再向
上平移3个单位,则A、B、C各点的坐标变为多少?
y C1
右移2个,上移3个 横坐标加2,纵坐标加3
-5 -4 -3 -2 -1 o 1 2 3 x
-1
B
-2
C
-3
练习2 如图,将平行四边形ABCD向左平移2个
单位,再向上平移3个单位,可以得到平行四边形
A1B1C1D1 ,画出平移后的图形,并指出其各个
顶点的坐标。
y
左移2个,上移3个
4
横坐标减2,纵坐标加3
3
A(-1,-2)
A1(-3,1)
2
DD 1
标变为多少?将它向上平移3个单位呢?分别画出
平移后的图形,
左移2个
横坐标减2
A(-3,2)
A1(-5,2) A1 A
y 4
3 D1 D
2
B(-3,-2) B1(-5,-2)
1
C(3,-2) D(3,2)
C1(1,-2) -5 -4 -3 -2 -1 o
D1(1,2) B1
B
-1 -2
-3
123x
C1 C
C
4 3
B1
A(-4,-1)
A1(-2,2)
A1
2 1
B
-5 -4 -3 -2 -1 0o 1 2 3 4
x
A
-1 -2
-3
用坐标表示平移
则有A1 (-2,3) 1(-3,1) ,C1 (-5,2) 。 ,B 猜想: △ A1B1C1与△ABC的大小、 形状和位置上有什么关系, 为什么?
1.例题探索
将△ABC三个顶点的纵坐标都减去5,横坐标不变。
A(4,3)
B(3,1)
C(1,2)
y
A C B 1 2 3 4 2 1
A2(4,-2) B2(3,-4)
(-2,2)
y
2
2
1
-4 -2 2 4
1
移2个单位长度呢? (- 2,-1) A
(-2,-3)
-4
-3
-2
-1
0 -1 -2 -3
-3 -2 -1
1
2
3
4
x
将点(x,y)向上或向下移a个单位长度,
得到对应点(x,y+b)或(x,y-b)。
y 4
将(-2,-2) 向右移4个单位 长度到
3 2 1
(2,-2) ___________。
对于
4 3 2 1
-4 -3 -2 -1 0 -1 -2 -3
1
2
3
4
x
对坐标中的图形如何进行平移的?
将平行四边形ABCD向左平移3个单位长度。再向上平 移2个单位长度,它们的坐标分别是什么?
y 4 3
D
-4 -3 -2 -1 O
2 1 1 -1 -2 -3 -4 2 3 4
C
x
A
B
向左平移3个单位到达: (-4,-2) (0,-2) (1,1) (-3,1) A1_______, B1________,C1_________,D1________。
向上平移b个单位
人教版数学七年级下册 7.2.2 用坐标表示平移 课件(共36张PPT)
知识梳理
标都加(或减去)一个正数a,相应的新图形就是把原图形向右 (或向左)平移a个单位长度;如果把它各个点的纵坐标都加 (或减去)一个正数a,相应的新图形就是把原图形向上(或向 下)平移a个单位长度. 【例1】通过平移把点A(2,-3)移到点A′(4,-2),按同样 的平移方式,点B(3,1)移到点B′,则点B′的坐标为_(__5_,___2_)____.
第七章 平面直 角坐标系
7.2.2 用坐标表示平移
教学新知
点平移与坐标变化规律: 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得 到对应点的坐标是(x+a ,y) 或(x-a ,y);将点(x,y)向上(或下) 平移b个单位长度,可以得到对应点的坐标是(x,y+b)或(x,y-b).
知识要点
1.掌握坐标变化与图形平移的关系;能利用点的平移规律将 平面图形进行平移; 2.会根据图形上点的坐标的变化,来判定图形的移动过程。
知识梳理
知识点:用坐标表示平移. 1.点平移与坐标变化规律: 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单 位长度,可以得到对应点的坐标是(x+a ,y) 或(x-a , y);将点(x,y)向上(或下)平移b个单位长度,可以得到 对应点的坐标是(x,y+b)或(x,y-b). 2.图形各个点坐标变化与图形平移的关系: 一般地,在平面直角坐标系内,如果把一个图形各个点的横坐
【小练习】 1.如图7-2-49,在平面直角坐标系中,线段A1B1是由线段 AB平移得到的,已知A,B两点的坐标分别为A(-2,3), B(-3,1),若A1的坐标为(3,4),则B1的坐标为 (2,2) .
知识梳理
2.如图7-2-50所示,△ABC图三7-个2-4顶9 点A,B,C的坐标分别为A(1, 2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长 度,再向下平移3个单位长度,恰好得到△ABC,试写出 △A1B1C1三个顶点的坐标.
7.2.2_用坐标表示平移(参赛课件)
本课件适用于:新人教版七年级数学下册第七章《平面直角坐标系》第2节(第二课时)作者单位:江西省赣州市宁都县育新学校作者姓名: 谢林生联系方式:xh1350797@ QQ: 343977686体验,回顾1、下列四组图形中,有一组中的两个图形经过平移,其中一个能得到另一个,这组图形是( )2、如图,平移△ABC 可得到△DEF ,如果∠A=50°,∠C=60°,那么∠F=______∠E=______∠DOB=______。
DC B A OFEA B C D如图,将点A(-2,-3)向右平移5个单位长度,得到点A 1,在图上标出这个点,并写出它的坐标.把点A 向左平移2个单位呢?x y O 12342413-1-2-3-4-5-1-2-3-4-55-6A 1(3, -3)A (-2,-3)把点A 向上平移6个单位呢?A 2(-4,-3)把点A 向下平移4个单位呢?A 3(-2,3)A 4(-2,-7)(-2,-3)右移5个单位(3,-3)横坐标+5(-2,-3)左移2个单位(-4,-3)横坐标-2(-2,-3)上移6个单位(-2,3)纵坐标+6(-2,-3)下移4个单位(-2,-7)纵坐标-4点的平移(1)左、右平移:向右平移a 个单位(2)上、下平移:点(x,y)向左平移a 个单位点(x,y)(x+a,y)(x-a,y)向上平移b 个单位点(x,y)向下平移b 个单位点(x,y) (x,y+b)(x,y-b)总结规律1:点的平移与点的坐标变化间的关系点(x,y)左右平移a 个单位长度(x-a,y)点(x,y)上下平移b 个单位长度纵变横不变横变纵不变左减(x+a,y)右加(x,y+b)上加(x,y-b)下减1.在平面直角坐标系中,有一点P (-4,2),若将点P :(1)向左平移2个单位长度,所得点的坐标为__________;(2)向右平移3个单位长度,所得点的坐标为_____________;(3)向下平移4个单位长度,所得点的坐标为_____________;(4)向上平移5个单位长度,所得点的坐标为_____________;(-6,2)(-1,2)(-4, -2)(-4,7)2、在平面直角坐标系中,有一点P(-4,2),(1)若将P先向右平移5个单位长度,再向上平(1,5)移3个单位长度,所得坐标为_______。
坐标表示平移PPT课件
• 引言 • 平移的坐标表示 • 平移的数学模型 • 平移的物理意义 • 平移的应用实例 • 总结与展望
01
引言
平移的定义与性质
总结词
平移是图形在平面内沿某一方向移动一定的距离,但不改变其形状和大小。平移具有传 递性、周期性和向量性等性质。
详细描述
平移是图形在平面内的一种基本变换,它保持了图形的基本属性,如形状、大小和方向 等。平移具有传递性,即如果图形A经过平移得到图形B,图形B再经过平移得到图形C, 那么图形A经过平移也可以得到图形C。此外,平移还具有周期性和向量性,即图形可
三维平移的坐标表示
总结词
三维平移涉及三个方向的移动,需要使用三个平移向量来表示。
详细描述
在三维空间中,假设原点为 $O(x, y, z)$,平移后的点为 $P'(x', y', z')$,则三 个平移向量分别为 $Delta x = x' - x$、$Delta y = y' - y$ 和 $Delta z = z' z$。这些向量共同决定了三维空间中的平移。
06
总结与展望
平移的重要性和意义
平移是图形变换的一种基本形式,在几何学、计算机图形学等领域有着广泛的应用。通过平移,我们可以对图形进行位置调 整、拼接、组合等操作,从而实现图形的变换和运动。
平移不仅在理论上有重要的研究价值,在实际应用中也具有广泛的意义。例如,在计算机图形学中,平移被广泛应用于图像 处理、动画制作、游戏开发等领域;在机械工程中,平移可以用于设计图纸的绘制和机械零件的定位;在物理学中,平移可 以描述物体的运动轨迹和速度方向。
以沿同一方向无限平移下去,且平移的距离可以表示为一个向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习重点:
在平面直角坐标系中,图形平移变化中坐标的变化规律.
5 5
A1 C1
B1
2 2
A1 C1
B1
3
A1 C1
3
B1
2 2
A1 C1
B1
归纳总结
位置相同。
EH FG
一般地,将一个图形依次沿两个坐 标轴方向平移所得到的图形,可以 通过将原来的图形做一次平移得 到.
处的救生船报警. (1)如何用方向和距离描述救生船相对于遇险
船的位置?
(2)救生船接到 报警后准备前往救援, 如何用方向和距离描 述遇险船相对于救生 船的位置?
景山(5,-2) 映月湖(-4,-2) 写出其它 点的坐标;
四边形ABCD各顶点的坐标分别为A(0,1),B(5,1), C(7,3),D(2,5).
练习: 写出下图平面直角坐标系中,各点的坐标;
当堂检测:写出下图平面直角坐标系中,各点的坐标;
巩固新知
如图,小杰与同学去游乐城游玩,如果用(8,5) 表示入口处的位置,(6,1)表示高空缆车的位置, 那么其他游乐设施的位置如何表示?
拓展延伸
如图,一艘船在A处遇险后向相距35 n mile位于B
(1)在平面直角坐标系中画出该四边形; (2)四边形ABCD内(边界点除外)一共有13个整点(即横
坐标和纵坐标都是整数的点); (3)求四边形ABCD的面积.