(完整版)算法导论复习要点
算法导论复习资料
算法导论复习资料一、选择题:第一章的概念、术语。
二、考点分析:1、复杂度的渐进表示,复杂度分析。
2、正确性证明。
考点:1)正确性分析(冒泡,归并,选择);2)复杂度分析(渐进表示O,Q,©,替换法证明,先猜想,然后给出递归方程)。
循环不变性的三个性质:1)初始化:它在循环的第一轮迭代开始之前,应该是正确的;2)保持:如果在循环的某一次迭代开始之前它是正确的,那么,在下一次迭代开始之前,它也应该保持正确;3)当循环结束时,不变式给了我们一个有用的性质,它有助于表明算法是正确的。
插入排序算法:INSERTION-SORT(A)1 for j ←2 to length[A]2 do key ←A[j]3 ▹Insert A[j] into the sorted sequence A[1,j - 1].4 i ←j - 15 while i > 0 and A[i] > key6 do A[i + 1] ←A[i]7 i ←i - 18 A[i + 1] ←key插入排序的正确性证明:课本11页。
归并排序算法:课本17页及19页。
归并排序的正确性分析:课本20页。
3、分治法(基本步骤,复杂度分析)。
——许多问题都可以递归求解考点:快速排序,归并排序,渐进排序,例如:12球里面有一个坏球,怎样用最少的次数找出来。
(解:共有24种状态,至少称重3次可以找出不同的球)不是考点:线性时间选择,最接近点对,斯特拉算法求解。
解:基本步骤:一、分解:将原问题分解成一系列的子问题;二、解决:递归地解各子问题。
若子问题足够小,则直接求解;三、合并:将子问题的结果合并成原问题的解。
复杂度分析:分分治算法中的递归式是基于基本模式中的三个步骤的,T(n)为一个规模为n的运行时间,得到递归式T(n)=Q(1) n<=cT(n)=aT(n/b)+D(n)+C(n) n>c附加习题:请给出一个运行时间为Q(nlgn)的算法,使之能在给定的一个由n个整数构成的集合S和另一个整数x时,判断出S中是否存在有两个其和等于x的元素。
算法基本知识点总结
算法基本知识点总结一、算法的基本概念1. 算法的定义算法是用来解决特定问题的有限步骤的有序集合。
算法是一种计算方法,可以描述为一系列清晰的步骤,用来解决特定问题或执行特定任务。
2. 算法的特性(1)有穷性:算法必须在有限的步骤内结束。
(2)确定性:对于相同输入,算法应该产生相同的输出。
(3)可行性:算法必须可行,即算法中的每一步都可以通过已知的计算机能力来执行。
3. 算法的设计目标(1)正确性:算法应该能够解决给定的问题。
(2)可读性:算法应该易于理解和解释。
(3)高效性:算法应该能在合理的时间内完成任务。
二、算法的复杂度分析1. 时间复杂度算法的时间复杂度表示算法执行所需的时间长度,通常用“大O记法”表示。
时间复杂度反映了算法的运行时间与输入规模之间的关系。
常见的时间复杂度包括:(1)O(1):常数时间复杂度,表示算法的运行时间与输入规模无关。
(2)O(logn):对数时间复杂度,表示算法的运行时间与输入规模的对数成正比。
(3)O(n):线性时间复杂度,表示算法的运行时间与输入规模成正比。
(4)O(nlogn):线性对数时间复杂度,表示算法的运行时间与输入规模和对数成正比。
(5)O(n^2):平方时间复杂度,表示算法的运行时间与输入规模的平方成正比。
(6)O(2^n):指数时间复杂度,表示算法的运行时间与输入规模的指数成正比。
2. 空间复杂度算法的空间复杂度表示算法执行所需的内存空间大小。
常见的空间复杂度包括:(1)O(1):常数空间复杂度,表示算法的内存空间与输入规模无关。
(2)O(n):线性空间复杂度,表示算法的内存空间与输入规模成正比。
三、常见的算法设计思想1. 贪心算法贪心算法是一种选取当前最优解来解决问题的算法。
贪心算法的核心思想是从问题的某一初始解出发,通过一系列的局部最优选择,找到全局最优解。
2. 动态规划动态规划是一种将原问题分解成子问题来求解的方法。
动态规划通常适用于具有重叠子问题和最优子结构性质的问题。
算法导论(第三版)-复习-第六部分图论22-26[转]
算法导论(第三版)-复习-第六部分图论22-26[转]22习题22.1-5 有向图G(V, E)的平⽅图。
链表表⽰时,对每结点u的Adj[u]中所有v加⼊队列,后边出队边将Adj[v]加⼊Adj[u]中。
矩阵表⽰时,若w[i, j]、w[j, k]同时为1则将w[i, k]置1.习题22.1-6 O(V)的时间寻找通⽤汇点。
汇点的特征是邻接矩阵的第j列除[j, j]外所有元素为1. 可将每⾏调整[j ,j]后作为⼀个整数,所有整数与运算,为1的位是汇点。
习题22.1-7 有向⽆环图的关联矩阵B,BB’每个元素C[i, j]=∑B[i, k]*B’[k, j]=∑B[i, k]*B[j, k],即同时进i, j两结点与同时出i, j的结点总数-⼀进⼀出i, j两结点的结点总数。
习题22.2-7 类似BFS,d mod2为0则标为B(娃娃脸),d mod2为1则标为H(⾼跟鞋)。
但若有边连接相同类的结点,则⽆法划分。
wrestler(G){for each u in G{(u,v)=Adj[u];if(v.mark==u.mark){throw error;}if(v.d==NIL) {v.d=u.d+1; v.mark=v.d mod 2;}}}习题22.2-8 任意点之间的最短路径。
重复的Dijktra算法或Floyd-Warshall算法习题22.2-9 ⽆向图扩展为有向图。
问题变成要遍历所有边⼀次。
访问结点u时,将u的⼦结点v的其他边都可视为⼦集v,问题等价于u到v,访问v的集合,v到u。
u标为visiting⼊列,然后访问v,v标为visiting⼊列,然后访问v的后继结点,访问过的边标为visited,返回到visiting的点时,如果该点所有连接的边都标为visited只剩⼀条返回上级的边,则返回上级结点并将点标为visited,v出列,访问u的其他⼦结点,最终u出列。
全部结点出列后达到遍历所有边⼀次。
《算法导论(第二版)》(中文版)课后答案
5
《算法导论(第二版) 》参考答案 do z←y 调用之前保存结果 y←INTERVAL-SEARCH-SUBTREE(y, i) 如果循环是由于y没有左子树,那我们返回y 否则我们返回z,这时意味着没有在z的左子树找到重叠区间 7 if y≠ nil[T] and i overlap int[y] 8 then return y 9 else return z 5 6 15.1-5 由 FASTEST-WAY 算法知:
15
lg n
2 lg n1 1 2cn 2 cn (n 2 ) 2 1
4.3-1 a) n2 b) n2lgn c) n3 4.3-4
2
《算法导论(第二版) 》参考答案 n2lg2n 7.1-2 (1)使用 P146 的 PARTION 函数可以得到 q=r 注意每循环一次 i 加 1,i 的初始值为 p 1 ,循环总共运行 (r 1) p 1次,最 终返回的 i 1 p 1 (r 1) p 1 1 r (2)由题目要求 q=(p+r)/2 可知,PARTITION 函数中的 i,j 变量应该在循环中同 时变化。 Partition(A, p, r) x = A[p]; i = p - 1; j = r + 1; while (TRUE) repeat j--; until A[j] <= x; repeat i++; until A[i] >= x; if (i < j) Swap(A, i, j); else return j; 7.3-2 (1)由 QuickSort 算法最坏情况分析得知:n 个元素每次都划 n-1 和 1 个,因 为是 p<r 的时候才调用,所以为Θ (n) (2)最好情况是每次都在最中间的位置分,所以递推式是: N(n)= 1+ 2*N(n/2) 不难得到:N(n) =Θ (n) 7.4-2 T(n)=2*T(n/2)+ Θ (n) 可以得到 T(n) =Θ (n lgn) 由 P46 Theorem3.1 可得:Ω (n lgn)
算法导论Chapter 17
7
Ch.17 平摊分析
平摊分析特点
3)不仅是分析方法,也是设计算法和数据结 构的一种思维方法 因为设计算法与分析时间性能紧密相关, 所以通过平摊分析可优化算法设计,加深对 算法所操作的数据结构特性的认识,从而设 计出时空性能更优的数据结构
操作
Push(S, x): O(1)
Pop(S):
O(1)
MultiPop(S, k): O(min(|S|, K)) 弹出min(|S|, K)个对象
10
17.1 合计法
栈上操作序列的时间分析 通常分析方法得不到紧确界 设 有 n 个 Push , Pop 和 Multipop 操 作 构 成 的序列作用在初值为空的栈S上。 一次Multipop的最坏时间为O(n),因为|S| ≤n,K=O(n); 最坏情况下可能有O(n)个Multipop。 因此,该序列最坏时间为O(n2)
14
if i<length[A] then //i位上为0,且x<2k -1
A[i] 1;
//将进位加到第i位上
//否则x=2k -1,加1后A[0..k-1]=0
}
15
17.1 合计法
执行过程: 初值为0,做n次增量操作
调用 A中值 A[7] … A[2] A[1] A[0] 总成本 本次成 本
执行次 0
0
…
0
0
0
0
0
数
1
1
0
…
0
0
1
1
1
2
2
0
…
0
1
0
3
2
3
3
算法知识点归纳总结
算法知识点归纳总结什么是算法?算法是解决问题的一系列步骤或规则。
在计算机科学中,算法是指计算机程序解决问题的方法。
算法可以用来解决各种问题,比如搜索、排序、数据压缩等。
算法的特点算法具有以下几个特点:1. 有穷性:算法必须在有限的步骤内结束。
2. 确定性:对于给定的输入,算法必须在每一步都有确定的行为。
3. 输入:算法必须有零个或多个输入。
4. 输出:算法必须有一个或多个输出。
5. 可行性:算法的每一步都必须是可行的。
常见的算法分类1. 搜索算法搜索算法主要用于在给定的数据集中查找特定的元素。
常见的搜索算法包括线性搜索、二分搜索、深度优先搜索和广度优先搜索。
2. 排序算法排序算法用于将给定的数据集按照特定的顺序排列。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序和归并排序。
3. 图算法图算法主要用于解决与图相关的问题,比如最短路径、最小生成树等。
常见的图算法包括Dijkstra算法、Prim算法、Kruskal算法等。
4. 字符串匹配算法字符串匹配算法用于在一个文本中寻找特定的字符串。
常见的字符串匹配算法包括朴素字符串匹配算法、KMP算法、Boyer-Moore算法等。
5. 动态规划算法动态规划算法用于解决具有重叠子问题和最优子结构的问题。
常见的动态规划算法包括背包问题、最长公共子序列问题等。
6. 贪心算法贪心算法是一种使用贪心策略来求解问题的算法。
常见的贪心算法包括最小生成树算法、最短路径算法等。
常见算法的具体内容1. 线性搜索算法线性搜索算法是一种简单的搜索算法,它通过逐个比较给定的元素和目标元素来查找目标元素的位置。
线性搜索算法的时间复杂度为O(n)。
2. 二分搜索算法二分搜索算法是一种高效的搜索算法,它通过逐步缩小搜索范围来查找目标元素的位置。
二分搜索算法的时间复杂度为O(logn)。
3. 冒泡排序算法冒泡排序算法是一种简单的排序算法,它通过多次比较和交换来将给定的数据集排序。
算法初步知识点
高中数学必修3知识点总结第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
算法导论答案 (4)
算法导论答案第一章:算法概述啊算法的定义算法是一系列解决问题的明确指令。
它是一个有穷步骤集,其中每个步骤或操作由确定性和可行性特征。
算法是通过将预期的输入转换为输出来解决问题的工具。
第二章:插入排序插入排序的思想插入排序是一种简单直观的排序算法,其基本思想是将待排序的序列分为已排序和未排序两部分,每次从未排序的部分中取出一个元素,并将其插入到已排序部分的正确位置,直到所有元素都被排序。
插入排序的算法实现以下是插入排序的伪代码:INSERTION-SORT(A)for j = 2 to A.lengthkey = A[j]// Insert A[j] into the sorted sequence A[1.. j-1].i = j - 1while i > 0 and A[i] > keyA[i + 1] = A[i]i = i - 1A[i + 1] = key插入排序的时间复杂度插入排序的时间复杂度为O(n^2),其中n是排序的元素个数。
虽然插入排序的最坏情况下的复杂度很高,但是对于小规模的数据集,插入排序是一种较快的排序算法。
第三章:分治策略分治策略的基本思想分治策略是一种解决问题的思想,它将问题的规模不断缩小,直到问题足够小而可以直接解决。
然后将子问题的解合并起来,得到原问题的解。
分治策略的应用实例一种经典的应用分治策略的算法是归并排序。
归并排序将待排序的序列划分为两个子序列,分别排序后再将两个有序子序列合并为一个有序序列。
以下是归并排序的伪代码:MERGE-SORT(A, p, r)if p < rq = floor((p + r) / 2)MERGE-SORT(A, p, q)MERGE-SORT(A, q + 1, r)MERGE(A, p, q, r)MERGE(A, p, q, r)n1 = q - p + 1n2 = r - qlet L[1..n1+1] and R[1..n2+1] be new arraysfor i = 1 to n1L[i] = A[p + i - 1]for j = 1 to n2R[j] = A[q + j]L[n1 + 1] = infinityR[n2 + 1] = infinityi = 1j = 1for k = p to rif L[i] <= R[j]A[k] = L[i]i = i + 1elseA[k] = R[j]j = j + 1分治策略的时间复杂度归并排序的时间复杂度为O(nlogn),其中n是待排序序列的长度。
[1]算法导论
实例:求最大公约数
算法1.1 Euclid(m,n)
输入:非负整数 m, n,其中m与n不全为0 输出:m 与 n 的最大公约数 1. while m>0 do 2. r n mod m 3. n m 4. m r 5. return n
实例:改进的顺序检索
算法1.2 Search(L,x)
课程主要内容
近似 算法
随机 算法
处理难解问 题的策略
问题处理策略 计算复杂性理论 算法分析方法 算法设计技术 基础知识
NP 完全理论 算法分析与问题的计算复杂性 分治 动态 贪心 回溯与 策略 规划 算法 分支限界 数学基础、数据结构
算法的基本概念
1. 2. 3. 4. 5. 为什么要研究算法? 什么是算法? 算法化求解问题的过程 重要的问题类型 算法设计策略
Decrease and conquer Transform and conquer
20
Backtracking and Branch and bound Space and time tradeoffs
求:总等待时间最少的调度方案,即求S的排列i1, i2, …, in使得
min{k 1 ( n k 1)t ik }
n
求解方法 • 贪心策略:加工时间短的先做 • 如何描述这个方法?这个方法是否对所有的实例都能得到 最优解?如何证明?这个方法的效率如何?
例2 排序算法的评价 已有的排序算法:考察元素比较次数
2-1. 计算判别式d 2-2. 根据d的值进行不同处理 2-2-1:if d>0 x1=… x2=… 2-2-2:if d=0 x1=x2=… 2-2-3:if d<0 ….
4 算法的伪码描述
算法导论答案
算法导论答案算法导论是计算机科学领域的经典教材,它介绍了算法设计和分析的基本原理和方法。
通过学习算法导论,我们可以深入理解算法的运行机制,并且能够运用这些知识解决实际问题。
本文将介绍一些算法导论的常见问题,并给出相应的答案。
第一部分:算法基础在算法导论中,我们首先学习了算法的基础概念和表达方法。
其中最重要的是时间复杂度和空间复杂度的概念。
时间复杂度衡量了算法运行所需的时间,而空间复杂度则衡量了算法所需要的额外空间。
通过计算复杂度,我们可以估算出算法的效率和资源使用情况。
Q1:什么是时间复杂度和空间复杂度?A1:时间复杂度是指算法解决问题所需要的时间代价,通常以大O表示。
空间复杂度是指算法解决问题所需要的额外空间,通常也以大O表示。
时间复杂度和空间复杂度可以帮助我们评估算法的效率和资源使用情况。
Q2:如何计算时间复杂度?A2:时间复杂度可以通过分析算法中的基本操作的执行次数来计算。
通常,我们可以统计算法中循环、递归和条件判断等操作的执行次数,并根据问题规模n来表示。
然后,我们可以将执行次数与n的关系用大O表示法表示。
第二部分:排序算法算法导论中介绍了多种排序算法,包括插入排序、归并排序、快速排序等等。
不同的排序算法适用于不同的问题场景,并且它们的时间复杂度和稳定性也不同。
Q3:什么是稳定的排序算法?A3:稳定的排序算法是指当原始序列中有两个相等的元素时,排序后它们的相对位置不发生改变。
例如,插入排序和归并排序是稳定的排序算法,而快速排序不是稳定的排序算法。
Q4:如何选择合适的排序算法?A4:选择合适的排序算法需要考虑多个因素,包括数据规模、稳定性要求和系统资源等。
对于小规模数据,可以使用插入排序或者冒泡排序。
对于数据规模较大且对稳定性要求较高的情况,可以选择归并排序。
而快速排序则适用于大规模数据和对稳定性没有要求的场景。
第三部分:动态规划动态规划是算法导论中的重要主题,它是一种解决多阶段决策问题的方法。
算法导论pdf
算法导论pdf本书可作为计算机、信息技术等相关专业的本科生和研究生的教材,也可供广大计算机爱好者自学参考。
本书将算法定义为“一个有穷的、能被满足的需求(问题)求解方案”,将算法描述成“一组前后相连、互不重复的步骤”,即算法是能够表示某种输入——输出关系(数据结构)的运算或操作序列。
并将算法划分为数值算法、图形算法、逻辑算法、时间计算算法等类别。
本书包括四部分内容:绪论、数值算法、图形算法和逻辑算法。
每部分又按照算法基本理论、典型算法、数值算法实现三个层次进行介绍。
算法的分类从算法所属学科来看: 1。
算法属于计算机科学的研究领域,主要研究如何用计算机解决数学或其他学科的问题; 2。
算法属于数学科学的研究领域,主要研究数学模型与求解数学问题的算法; 3。
算法属于自动控制科学的研究领域,主要研究计算机在控制过程中的具体应用,即用计算机来模拟人的思维活动; 4。
算法属于信息科学的研究领域,主要研究对有关客观事物的内在规律的总结和抽象,即算法是一种模式。
由此可见,算法可以看作是反映客观世界内在联系的数学模型,这种联系有时间上的顺序性,也有空间上的顺序性,还有时间、空间顺序性的交叉性。
2。
算法实现:算法的实现是把计算机中的指令通过硬件执行。
因此实现算法的基础就是一种计算机语言——编译程序。
而具有较强的计算功能的数字计算机叫做计算机,所以,要掌握好算法,必须先了解计算机,然后再把它应用到具体的问题上去。
3。
算法设计:算法设计又称为算法描述,是用适当的数学模型描述算法的语言,它将算法分析、设计、实施直至优化的全过程贯穿起来。
3。
数值算法4。
存储结构。
我们在使用算法进行计算时,往往是从两方面来考虑的:一是使算法本身具有良好的适应性和通用性,即适合各种不同问题的解法。
二是算法的执行效率,也就是算法本身的速度。
一般情况下,计算机硬件实现的算法都比较慢,所以如果希望提高算法的速度,首先应该选择高速计算机,其次要加快程序的编写速度,第三要提高运算器和存储器的速度,再次要提高输入/输出的速度。
算法导论第四章
算法导论第四章摘自:百度文库/link?url=QunHIQ6sgLN_uMads3Llc8mtkAKSkrn4OI9SuM_g3Tj_0a5N 2fkRVV03F9-iiPOgdcm7zAj54KToWqfeFvNffHr-WaJpeqXzWkDRzewxuhm/tanky-woo/archive/2011/04/12/144020.html这一章讲的是递归式(recurrence),递归式是一组等式或不等式,它所描述的函数是用在更小的输入下该函数的值来定义的。
本章讲了三种方法来解递归式,分别是代换法,递归树方法,主方法。
1.代换法(Substitution method)(P38~P40)定义:即在归纳假设时,用所猜测的值去代替函数的解。
用途:确定一个递归式的上界或下界。
缺点:只能用于解的形式很容易猜的情形。
总结:这种方法需要经验的积累,可以通过转换为先前见过的类似递归式来求解。
2.递归树方法(Recursion-tree method)起因:代换法有时很难得到一个正确的好的猜测值。
用途:画出一个递归树是一种得到好猜测的直接方法。
分析(重点):在递归树中,每一个结点都代表递归函数调用集合中一个子问题的代价。
将递归树中每一层内的代价相加得到一个每层代价的集合,再将每层的代价相加得到递归式所有层次的总代价。
总结:递归树最适合用来产生好的猜测,然后用代换法加以验证。
递归树扩展过程:①.第二章2.3.2节分析分治法时图2-5(P21~P22)的构造递归树过程;②.第四章P41图4-1的递归树构造过程;这两个图需要好好分析。
3.主方法(Master method)优点:针对形如T(n) = aT(n/b) + f(n)的递归式缺点:并不能解所有形如上式的递归式的解。
具体分析:T(n) = aT(n/b) + f(n)描述了将规模为n的问题划分为a个子问题的算法的运行时间,每个子问题的规模为n/b。
在这里可以看到,分治法就相当于a=2, b=2, f(n) = O(n).主方法依赖于主定理:(图片点击放大)图片可以不清晰,可以看书。
算法程序设计知识点汇总
算法程序设计知识点汇总算法与程序设计知识点汇总第一章计算机解决咨询题的基本过程一、开始分析咨询题设计算法编写程序调试、运行程序咨询题解决二、算法-----程序设计的“灵魂”1、定义:算是解决咨询题的办法和步骤 21、确定性:每一步都有确切的含义2、有穷性:执行的步骤和每一步执行的时刻基本上有限的3、输入:有零个或多个输入4、输出:至少产生一具输出5、可行性:原则上可精确运行3、算法的描述:1、自然语言 2、流程图(P11) 3、伪代码(p12)4、计算机语言三:程序设计语言的进展:须通过转换处理。
高级语言:更接近于自然语言(英语)和数学语言的编程语言,容易掌握和使用,也别能直截了当识不,必须通过转换才干被计算机执行。
第二章一、visiual basic 可视化程序开辟工具,要紧是让程序设计人员利用软件本身所提供的各种控件,像搭积木一样构造应用程序的各种界面,然后再编写少量的代码就能够构建应用程序,提供了程序设计,编辑,调试,运行于一体的集成开辟环境。
二、VB6.0的集成开辟环境三个工作栏:标题栏菜单栏工具栏六个基本窗口:主窗口(main) 窗体窗口(form) 工具箱窗口(toolbox)工程窗口(project) 属性窗口(properties) 窗体布局窗口(formlayout)三、属性---用来描述对象的外部特征四、常用控件熟悉常用控件(标签、文本框、命令按钮)的作用,图标及其属性五、数据的表示与处理 1、Vb 数据类型2、常量与变量的讲明:常量讲明:Const a=3.14 const a as single=3.14变量讲明: Dim a As integerDim b As integerDim a,b As integer3、运算符(1) 算术运算符(2)字符串运算符&、+字符串连接" 123 " + " 456 "结果 " 123456 "" 123 " & " 456 " 结果 " 123456 "区不: + 两边必须是字符串, & 别一定例如:"abcdef" & 12345 ' 结果为 "abcdef12345 ""abcdef " + 12345 ' 出错"123" & 456 ' 结果为" 123456 "“123” + 456 ' 结果为 579注意:"123 " + True'结果为 122True转换为数值-1,False转换为数值0(3)关系运算符a、将两个操作数举行大小比较,结果为逻辑量。
《算法导论》读书笔记之第16章贪心算法—活动选择问题
《算法导论》读书笔记之第16章贪心算法—活动选择问题前言:贪心算法也是用来解决最优化问题,将一个问题分成子问题,在现在子问题最优解的时,选择当前看起来是最优的解,期望通过所做的局部最优选择来产生一个全局最优解。
书中先从活动选择问题来引入贪心算法,分别采用动态规划方法和贪心算法进行分析。
本篇笔记给出活动选择问题的详细分析过程,并给出详细的实现代码进行测试验证。
关于贪心算法的详细分析过程,下次在讨论。
1、活动选择问题描述有一个需要使用每个资源的n个活动组成的集合S= {a1,a2,···,a n },资源每次只能由一个活动使用。
每个活动a i都有一个开始时间s i 和结束时间f i,且0≤s i<f i<∞。
一旦被选择后,活动a i就占据半开时间区间[s i,f i)。
如果[s i,f i]和[s j,f j]互不重叠,则称a i和a j两个活动是兼容的。
该问题就是要找出一个由互相兼容的活动组成的最大子集。
例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。
从图中可以看出S中共有11个活动,最大的相互兼容的活动子集为:{a1,a4,a8,a11,}和{a2,a4,a9,a11}。
2、动态规划解决过程(1)活动选择问题的最优子结构定义子问题解空间S ij是S的子集,其中的每个获得都是互相兼容的。
即每个活动都是在a i结束之后开始,且在a j开始之前结束。
为了方便讨论和后面的计算,添加两个虚构活动a0和a n+1,其中f0=0,s n+1=∞。
结论:当i≥j时,S ij为空集。
如果活动按照结束时间单调递增排序,子问题空间被用来从S ij中选择最大兼容活动子集,其中0≤i<j≤n+1,所以其他的S ij都是空集。
最优子结构为:假设S ij的最优解A ij包含活动a k,则对S ik的解A ik和S kj的解A kj必定是最优的。
通过一个活动a k将问题分成两个子问题,下面的公式可以计算出S ij的解A ij。
算法导论(第二版)课后习题解答
Θ
i=1
i
= Θ(n2 )
This holds for both the best- and worst-case running time. 2.2 − 3 Given that each element is equally likely to be the one searched for and the element searched for is present in the array, a linear search will on the average have to search through half the elements. This is because half the time the wanted element will be in the first half and half the time it will be in the second half. Both the worst-case and average-case of L INEAR -S EARCH is Θ(n). 3
Solutions for Introduction to algorithms second edition
Philip Bille
The author of this document takes absolutely no responsibility for the contents. This is merely a vague suggestion to a solution to some of the exercises posed in the book Introduction to algorithms by Cormen, Leiserson and Rivest. It is very likely that there are many errors and that the solutions are wrong. If you have found an error, have a better solution or wish to contribute in some constructive way please send a message to beetle@it.dk. It is important that you try hard to solve the exercises on your own. Use this document only as a last resort or to check if your instructor got it all wrong. Please note that the document is under construction and is updated only sporadically. Have fun with your algorithms. Best regards, Philip Bille
算法与程序设计复习知识点
算法与程序设计复习知识点算法与程序设计复习知识点一、算法基础1.1 算法的定义与特点1.2 算法的描述方式:伪代码、流程图1.3 算法的复杂度分析:时间复杂度、空间复杂度1.4 常见的算法设计策略:分治法、动态规划、贪心法、回溯法、分支限界法二、基本数据结构2.1 线性表:数组、链表、栈、队列2.2 树与二叉树:二叉树的遍历、线索二叉树2.3 图:图的存储方式、图的遍历算法、最短路径算法、最小树算法三、排序算法3.1 插入排序:直接插入排序、希尔排序3.2 交换排序:冒泡排序、快速排序3.3 选择排序:简单选择排序、堆排序3.4 归并排序3.5 基数排序四、查找算法4.1 顺序查找4.2 折半查找4.3 哈希查找五、字符串匹配算法5.1 朴素的模式匹配算法5.2 KMP算法5.3 Boyer-Moore算法5.4 Rabin-Karp算法六、动态规划6.1 背包问题:0-1背包、完全背包6.2 最长公共子序列问题6.3 最短路径问题七、图算法7.1 深度优先搜索(DFS)7.2 广度优先搜索(BFS)7.3 最小树算法:Prim算法、Kruskal算法7.4 最短路径算法:Dijkstra算法、Floyd算法7.5 拓扑排序算法附件:附件一:算法复杂度分析表附件二:常用数据结构图示法律名词及注释:1.算法:根据一定规则解决特定问题的步骤和方法。
2.伪代码:一种介于自然语言和编程语言之间的描述方式,用于表示算法的思路和流程。
3.流程图:用图形化的方式表示算法的执行流程和控制结构。
4.复杂度分析:对算法运行时间和所需空间的量化评估。
5.时间复杂度:表示算法运行时间与输入规模之间的关系。
6.空间复杂度:表示算法所需内存空间与输入规模之间的关系。
7.分治法:将原问题划分为多个相互独立且具有相同结构的子问题来求解的方法。
8.动态规划:将一个复杂问题分解为多个简单的子问题来求解,并将结果保存以供重复使用的方法。
算法导论答案(经典)
8.3-3 8.3-4
8.3-5(*) 8.4-1 见图 8-4 8.4-2
8.4-3 3/2,1/2 8.4-4(*) 8.4-5(*)
9.1-1
9.1-2 9.2-1 9.3-1
第九章
9.3-2 9.3-3
9.3-4 9.3-5
9.3-6 9.3-7
9.3-8
9.3-9
15.1-1
16.3-1 16.3-2Leabharlann 16.3-3 16.3-4
16.3-5
16.3-6 那就推广到树的结点有三个孩子结点,证明过程同引理 16.3 的证明。 16.3-7 16.3-8
第 24 章
24.1-1 同源顶点 s 的运行过程,见图 24-4 24.1-2
24.1-3
24.1-4 24.1-5* 24.1-6 修改 Bellman-Ford 算法,先找到负环上的一个节点,再依次找到负环上的一个节点,再依 次找到负环上的其他节点。 24.2-1 见图 24-5 24.2-2 最后一次不影响结果
len=j;//更新 len
} cout<<len<<endl; } return 0; } 15.5-1
15.5-2 15.5-3
15.5-4
16.1-1
第 16 章
16.1-2 16.1-3
16.1-4 16.2-1 16.2-2
16.2-3
16.2-4
16.2-5 16.2-6
16.2-7
第 25 章
25.1-4 25.1-5
25.1-6 25.1-7 25.1-8
25.1-9 25.1-10 25.2-1 见图 25-4 25.2-2 25.2-3 25.2-4
算法导论doc
第1章算法在计算中的作用章算法在计算中的作用什么是算法?为什么要对算法进行研究?相对于计算机中使用的其他技术来说,算法的作用是什么?在本章中,我们就要来回答这些问题. 1. 1算法算法简单来说,所谓抹法(also*llem)就是定义良好的计算过程,它取一个或一组值作为输入,并产生出一个或一组值作为输出。
并产生出一个或一组值作为输出。
亦即,亦即,算法就是一系列的计算步驭,算法就是一系列的计算步驭,用来将输人数据转换用来将输人数据转换成输出结果。
成输出结果。
我们还可以将算法看作是一种工具。
用来解决一个具有良好规格说明的计算问题。
有关该问题的表述可以用通用的语言,来规定所需的输人/输出关系。
与之对应的算法则描迷了一个特定的计算过程,用于实现这一输人/输出关系输出关系例如.假设需要将一列数按非降顺序进行排序。
在实践中,这一问皿经常山现。
它为我们引入许多标准的算法设计技术和分析工具提供了丰富的问题场景。
下面是有关该排序间题的形式化定义,的形式化定义,输入:由n 个数构成的一个序列编出:对输人序列的一个排列(重排) 例如,给定一个输人序列(31. 41. 59. 26, 41, 58).一个排序算法返回的怕出序列是(26, 31. 41. 41. 58, 59).这样的一个输人序列称为该排序问趣的一个实例G .-e)。
一般来说,。
一般来说,某一个问题的实例包含了求解该间题所需的输人(它满足有关该同题的表述中所给出的任何限制)。
在计算机科学中,排序是一种基本的操作(很多程序都将它用作一种申间步骤)。
因此,迄今为止,科研人员提出了多种非常好的排序算法。
科研人员提出了多种非常好的排序算法。
对于一项特定的应用来说,对于一项特定的应用来说,对于一项特定的应用来说,如何选择最如何选择最佳的排序算法要考虑多方面的因素,其中最主要的是考虑待排序的数据项数、这些数据项已排好序的程度、对数据项取值的可能限制、对数据项取值的可能限制、打算采用的存储设备的类型打算采用的存储设备的类型〔内存、磁盘、磁带)等。
《算法导论(原书第3版)》第24章部分题目解答
《算法导论(原书第3版)》第24章部分题⽬解答第24章单源最短路径24.1 Bellman-Ford算法24.1-4思路:先做|V|-1遍松弛操作,然后再做⼀遍松弛操作,对于这次松弛操作中dist值被更新的点,必然包含了每个负环中的⾄少⼀个点。
对于这些点做dfs查找它们能够在图中到达哪些点,所有被搜索到的点即为题⽬要求找的点部分c++代码:#include <bits/stdc++.h>using namespace std;const int maxn = ...;const int inf = 0x3f3f3f3f;//正⽆穷struct E{int x,y,z;//三元组(x,y,z)表⽰⼀条有向边。
从x出发到y,权值为z。
}vector<E> es;//存边vector<int> e[maxn];//模拟邻接链表vector<int> vec;//存起始点void bellman(int s){for(int i = 1; i<=n; i++)d[i]=inf;d[s] = 0;for(int t = 1; t<n; t++){for(auto e:es){if(d[e.x]!=inf && d[e.x]+e.z<d[e.y])d[e.y] = d[e.x] + w;}}for(auto e:es){if(d[e.x]!=inf && d[e.x]+e.z<d[e.y]){vec.push_back(y);}}}int v[maxn];void dfs(int x){v[x] = 1;for(auto y: e){if(!v[y]) dfs(y);}}void solve(int s){bellman(s);for(auto x:vec){if(!v[x]) dfs(x);}for(int i = 1; i<=n; i++){if(v[i]) cout<<"负⽆穷"<<endl;else if(d[i]==inf) cout<<"不可达"<<endl;else cout<<d[i]<<endl;}}24.1-5思路:跑⼀遍Bellman-Ford算法,具体做法如下:1、初始化∀v∈V,d[v]=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基础知识部分
1. 算法的复杂性有时间复杂性和空间复杂性之分。
2. 算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质。
3. 快速排序算法是基于分治策略的一种排序算法。
4. 矩阵连乘问题的算法可由动态规划设计实现。
5、算法是指解决问题的一种方法或一个过程。
6、从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法。
7、问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。
8、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
9. 贪心算法的基本要素是贪心选择质和最优子结构性质。
10. 动态规划算法的两个基本要素是最优子结构性质和重叠子问题性质。
11、合并排序算法是利用(A )实现的算法
A、分治策略
B、动态规划法
C、贪心法
D、回溯法
12、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质
B、构造最优解
C、算出最优解
D、定义最优解
13.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B动态规划法C、贪心法D回溯法
14. 备忘录方法是那种算法的变形。
(B )
A、分治法B动态规划法C、贪心法D回溯法
15.最长公共子序列算法利用的算法是( B )。
A、分支界限法B动态规划法C贪心法D回溯法16.贪心算法与动态规划算法的主要区别是( B )。
A、最优子结构
B、贪心选择性质
C、构造最优解
D、定义最
优解
17. (D )是贪心算法与动态规划算法的共同点。
A、重叠子问题
B、构造最优解
C、贪心选择性质D最优子结构性质
18. 矩阵连乘问题的算法可由(B )设计实现。
A、分支界限算法 B 、动态规划算法C、贪心算法D、回溯算法19、使用分治法求解不需要满足的条件是( A )。
A 子问题必须是一样的
B 子问题不能够重复
C 子问题的解可以合并
D 原问题和子问题使用相同的方法解
20.下列是动态规划算法基本要素的是( D )。
A、定义最优解B构造最优解C、算出最优解D子问题重叠性质
二、分析解答部分
1 、堆的高度与元素个数之间的关系
2、散列表技术中碰撞的定义与解决方法是什么
3、平摊分析的方法有哪些?重点是势能法的应用。
例、对某个数据结构执行一个n 个操作的序列。
如果i 为2的整数次幂,则第i 个操作的代价为i ,否则为 1.请用势能分析来确定每次操作的平摊代价。
解:不妨设i 2j k,其中k和j均为非负整数,且j取满足等式最大的整数。
定义第i个操作D i的势能函数为 (DJ 2k,下面分析第i个操作D i的平摊代价。
当k0时,第i个操作D i的实际代价C i i,从而
(?C i [ (D i) (D i 1)]
i[0 2(2j 1 2j 1)]
i i
[2j(2 1) 2] i 2
当k0时,第i个操作D i的实际代价C i1,从而
C C i [ (
D i) (D i 1)]
1 [2k 2(k 1)]
3
所以第i个操作D i的平摊代价总为(1)。
4、贪心算法的应用,参考书上的0-1背包问题和部分背包问题的例子。
5、作图说明利用合并排序算法将输入数组A (3,7,12,32,5,20,16,28)按从小到大排序的执行过程。
&作图说明利用堆排序(HEAPSORT将数组A (2,8,17,4,11,14)从小到大排序的执行过程,注意包含建最大堆(BUILD-MAX-HEAP的执行过程。
7、用主方法求解递归式紧确的渐进界,比如
(1) T(n) 6T(》n; (2) T(n) 6T(f) n3; (3) T(n) 6T(》n4;
8、写出利用动态规划解矩阵链乘问题的最小代价的递归式,并由此给出维数序列为A (35,15,5,10,20)的最优加全括号的方案。
9、会写出利用动态规划解最长公共子序列(LCS问题的最大长度的递归式,并
由此确定 A (1, 0, 0, 1, 0, 1, 0, 1)和 B (0, 1, 0, 1, 1, 0, 1, 1, 0)
的最长公共子序列。
10、对某个数据结构执行一个n个操作的序列。
如果i为2的整数次幕,则第i个操作的代价为i,否则为1.请用聚集分析来确定每次操作的平摊代价。
11、猜测下列递归式的良好渐进界,并用代换法证明你的猜测:
(1). T(n) 4T(-) n 的解为(n2) ;(2). T(n) 2T( - ) n 的解为O(nlg n)。
2 2
12、给出红黑树的定义,并由此证明:(1)从根到叶子的最长的可能路径不多于最短
的可能路径的两倍长。
(2) 一棵有n个内节点的红黑树的高度至多为llg( n+1) 13、给出渐进记号©记号、Q记号和0记号的定义,并证明:对任意实常数a
和b,其中b>0,(n (n))
,提示:当n足够大时,
n a 2n。