九年级数学圆 几何综合单元达标训练题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学圆几何综合单元达标训练题(Word版含答案)

一、初三数学圆易错题压轴题(难)

1.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.

(1)求证:∠ECG=∠BDC.

(2)当AB=6时,在点F的整个运动过程中.

①若BF=22时,求CE的长.

②当△CEG为等腰三角形时,求所有满足条件的BE的长.

(3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出1

2

S

S的值.

【答案】(1)详见解析;(2)①

182

5

;②当BE为10,

39

5

44

5

时,△CEG为等腰三角形;(3)

7

24

.

【解析】

【分析】

(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;

(2)根据勾股定理求得BD=10,

①连接EF,根据圆周角定理得出∠CEF=∠BCD=90°,∠EFC=∠CBD.即可得出sin∠EFC =sin∠CBD,得出

3

5

CE CD

CF BD

==,根据勾股定理得到CF=62CE

18

2

5

②分三种情况讨论求得:

当EG=CG时,根据等腰三角形的性质和圆周角定理即可得到∠GEC=∠GCE=∠ABD=

∠BDC,从而证得E、D重合,即可得到BE=BD=10;

当GE=CE时,过点C作CH⊥BD于点H,即可得到∠EGC=∠ECG=∠ABD=∠GDC,得到CG=CD=6.根据三角形面积公式求得CH=

24

5

,即可根据勾股定理求得GH,进而求得HE,即可求得BE=BH+HE=

39

5

当CG=CE时,过点E作EM⊥CG于点M,由tan∠ECM=

4

3

EM

CM

=.设EM=4k,则CM

=3k,CG=CE=5k.得出GM=2k,tan∠GEM=

21

42

GM k

EM k

==,即可得到tan∠GCH=

GH CH =

1

2

.求得HE=GH=

12

5

,即可得到BE=BH+HE=

44

5

(3)连接OE、EF、AE、EF,先根据切线的性质和垂直平分线的性质得出EF=CE,进而证得四边形ABCD是正方形,进一步证得△ADE≌△CDE,通过证得△EHP∽△FBC,得出EH=

1 6BF,即可求得BF=6,根据勾股定理求得CF=10,得出PE=

10

6

,根据勾股定理求得

PH,进而求得PD,然后根据三角形面积公式即可求得结果.【详解】

(1)∵AB∥CD.

∴∠ABD=∠BDC,

∵∠ABD=∠ECG,

∴∠ECG=∠BDC.

(2)解:①∵AB=CD=6,AD=BC=8,

∴BD=10,

如图1,连结EF,则∠CEF=∠BCD=90°,

∵∠EFC=∠CBD.

∴sin∠EFC=sin∠CBD,

3

5 CE CD CF BD

==

∴CF

∴CE

②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,

∴BE=BD=10.

Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,

∴CG=CD=6.

∵CH=BC CD24 BD5

=,

∴GH

18

5 =,

在Rt△CEH中,设HE=x,则x2+(24

5

)2=(x+

18

5

)2

解得x=7

5

∴BE=BH+HE=32

5

+

7

5

39

5

Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.

∵tan∠ECM=

4

3 EM

CM

=.

设EM=4k,则CM=3k,CG=CE=5k.

∴GM=2k,tan∠GEM=

21

42 GM k

EM k

==,

∴tan∠GCH=GH

CH

=tan∠GEM=

1

2

∴HE=GH=12412 255

⨯=,

∴BE=BH+HE=321244 555

+=,

综上所述,当BE为10,39

5

44

5

时,△CEG为等腰三角形;

(3)解:∵∠ABC=90°,

∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,

∵PE是切线,

∴OE⊥PE,

∵PE∥CF,

∴OE⊥CF,

∵OC=OF,

∴CE=EF,

∴△CEF是等腰直角三角形,

∴∠ECF=45°,EF=

2

FC,

∴∠ABD=∠ECF=45°,

∴∠ADB=∠BDC=45°,

∴AB=AD=8,

∴四边形ABCD是正方形,

∵PE∥FC,

∴∠EGF=∠PED,

∴∠BGC=∠PED,

∴∠BCF=∠DPE,

相关文档
最新文档