高中化学选修三几种典型晶体晶胞结构模型总结

合集下载

(完整版)高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

(完整版)高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1.金刚石晶体构造(硅单质同样)1mol 金刚石中含有mol C —C 键,最小环是元环,(是、否)共平面。

每个 C-C 键被 ___个六元环共有,每个 C 被 _____个六元环共有。

每个六元环实质拥有的碳原子数为______个。

C-C 键夹角: _______。

C 原子的杂化方式是 ______SiO 2晶体中,每个Si 原子与个 O 原子以共价键相联合,每个 O 原子与个 Si 原子以共价键相联合,晶体中 Si 原子与O 原子个数比为。

晶体中 Si 原子与Si— O 键数量之比为。

最小环由个原子构成,即有个 O,个Si,含有个 Si-O 键,每个 Si 原子被个十二元环,每个 O 被个十二元环共有,每个Si-O 键被 __个十二元环共有;因此每个十二元环实质拥有的Si 原子数为 _____个, O 原子数为 ____个, Si-O 键为____个。

硅原子的杂化方式是 ______,氧原子的杂化方式是_________.2.在 NaCl 晶体中,与每个Na+等距离且近来的 Cl -有个,这些 Cl -围成的几何构型是; 与每个 Na +等距离且近来的Na +有个。

由均派法可知该晶胞中实质拥有的Na +数为____个Cl -数为 ______ 个,则次晶胞中含有_______个 NaCl 构造单元。

3.CaF 2型晶胞中,含 :___个 Ca 2+和 ____个 F -Ca2+的配位数:F- 的配位数:Ca2+四周有 ______个距离近来且相等的Ca2+F -四周有_______个距离近来且相等的 F ——。

14.如图为干冰晶胞(面心立方聚积),CO2分子在晶胞中的地点为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化碳分子有个。

5.如图为石墨晶体构造表示图,每层内 C 原子以键与四周的个C原子联合,层间作使劲为;层内最小环有_____个 C 原子构成;每个 C 原子被个最小环所共用;每个最小环含有个C原子,个 C—C键;因此 C 原子数和 C-C 键数之比是 _________。

高中化学 常见晶胞模型

高中化学 常见晶胞模型

离子晶体氯化钠晶体(1)NaCl 晶胞每个Na +等距离且最近的Cl -(即Na +配位数)为6个 NaCl 晶胞每个Cl -等距离且最近的Na +(即Cl -配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na +4_个;占有的Cl -4个。

(3)在该晶体中每个Na + 周围与之最接近且距离相等的Na +共有12个;与每个Na +等距离且最近的Cl -所围成的空间几何构型为 正八面体CsCl 晶体(注意:右侧小立方体为CsCl 晶胞;左侧为8个晶胞) (1) CsCl 晶胞中每个Cs +等距离且最近的Cl -(即Cs +配位数) 为8个CsCl 晶胞中每个Cl -等距离且最近的Cs +(即Cl -配位数) 为8个 ,这几个Cs +在空间构成的几何构型为正方体 。

(2)在每个Cs +周围与它最近的且距离相等的Cs +有6个 这几个Cs +在空间构成的几何构型为正八面体 。

(3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs + 1个;占有的Cl - 1个。

CaF 2晶体(1)) Ca 2+立方最密堆积,F -填充在全部 四面体空隙中。

(2)CaF 2晶胞中每个Ca 2+等距离且最近的F -(即Ca 2+配位数)为8个CaF 2晶胞中每个F -等距离且最近的Ca 2+(即F -配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca 2+4个;占有的F -8个。

ZnS 晶体:(1)1个ZnS 晶胞中,有4个S 2-,有4个Zn 2+。

(2)Zn 2+的配位数为4个,S 2-的配位数为 4个。

原子晶体金刚石 金刚石晶胞 金刚石晶胞(1)金刚石晶体a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实际为椅式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成正四面体。

键角109°28’b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2Si O(2)Si 晶体由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。

常见晶体模型及晶胞计算

常见晶体模型及晶胞计算

常见晶体模型及晶胞计算晶体是由晶体胞重复堆积而成的,晶体胞是晶体的最小构造单元。

晶体的结构可以用晶胞参数表示,晶胞参数包括晶格常数、晶胞的角度、晶胞的体积等。

根据晶体的晶胞参数,可以推导出晶胞的几何形状和晶体的晶体类别。

根据晶体的晶胞形状,晶体可以分为立方晶系、四方晶系、六方晶系、正交晶系、单斜晶系和三斜晶系。

每个晶系又可以进一步分为各种晶体类别,如立方晶系下又有体心立方晶体和面心立方晶体等。

晶体模型描述了晶体的结构和排列方式。

常见的晶体模型有球模型、格点模型和球与棍模型。

1.球模型:球模型是一种简化的晶体表示方法,将晶体中的原子用球体表示,球的大小和颜色常用来表示原子的种类和其它信息。

2.格点模型:格点模型是用晶体胞中的原子位置来表示晶体结构的一种方法,晶体胞中的每个原子位置称为格点。

在格点模型中,晶体中的每个原子都用一个点来表示,这样形成了一个点阵,点阵反映了原子的排列方式。

常见的格点模型有立方格点模型、面心立方格点模型和体心立方格点模型。

3.球与棍模型:球与棍模型是一种结合了球模型和格点模型的晶体表示方法。

在球与棍模型中,每个原子用一个球来表示,不同原子之间用直线连接表示键的形成。

在进行晶胞计算时,需要确定晶体的晶胞参数。

晶胞参数可以通过实验测量得到,也可以通过计算方法获得。

晶胞计算主要包括以下几个步骤:1.实验测量:通过实验手段,如X射线衍射、电子衍射等,测量晶体的晶胞参数。

2.计算方法:根据晶体的晶胞参数和晶体的晶格类型,可以使用计算方法来预测和计算晶体的晶胞参数。

常见的计算方法有密度泛函理论(DFT)和分子力场(MM)等。

3.晶胞优化:通过晶胞优化算法,寻找晶体的最稳定结构。

晶胞优化算法可以通过改变晶胞参数、原子位置或局部结构等来寻找最低能量的晶体结构。

4.校正和验证:使用计算得到的晶胞参数进行校正和验证,与实验结果进行比较,确保计算结果的准确性和可靠性。

总之,晶体模型和晶胞计算是研究和描述晶体结构的重要工具。

高中化学 选修3第三章 晶体结构与性质 知识汇总

高中化学 选修3第三章 晶体结构与性质 知识汇总

高中化学选修3第三章晶体结构与性质知识汇总高中化学选修三的第三章知识汇总,晶体结构这部分知识经常出现在推断题中【课标要求】1.了解化学键和分子间作用力的区别。

2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。

3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。

4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。

5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。

【要点精讲】一.晶体常识1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。

②气态物质冷却不经液态直接凝固(凝华)。

③溶质从溶液中析出。

3.晶胞晶胞是描述晶体结构的基本单元。

晶胞在晶体中的排列呈“无隙并置”。

4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。

常见的晶胞为立方晶胞。

立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。

金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。

(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。

如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。

(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。

②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。

③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。

④同分异构体,支链越多,熔、沸点越低。

(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。

常见晶体模型及晶胞计算

常见晶体模型及晶胞计算

常见晶体模型及晶胞计算
一、晶体模型
晶体模型是用来描述晶体结构的数学模型,它是由晶体中的原子,原子之间的相互作用以及构成晶体结构的基本构件构成的。

晶体模型有很多种,主要包括普通晶体模型、块体晶体模型、多解晶构模型、时效晶体模型、闪锌晶体模型等。

1.普通晶体模型:普通晶体模型包括立方晶体模型、六方晶体模型和六点晶体模型,它依据晶体原子的八面体集合和块体构件来描述晶体的结构。

2.块体晶体模型:块体晶体模型是指块体晶体的特殊形状,即一种多晶体结构模型,它以晶胞的形状来描述晶体结构,每一晶胞都包含若干个晶体原子。

3.多解晶构模型:多解晶构模型是一种描述晶体结构的复杂模型,它以自动运算机技术,以多样的晶胞几何位置,把晶体分解成若干个块体,用最小的能量来构建晶体结构,从而避免晶体自组织构建的耗能现象。

4.时效晶体模型:时效晶体模型也称为“时效条件”。

它描述了晶体原子的动力学过程,它有助于理解晶体中不同原子间的相互作用,以及晶体在不断降温、淬火和轧缩的过程中的变化。

人教版高中化学选修三3.1 晶体的常识—晶胞

人教版高中化学选修三3.1 晶体的常识—晶胞
第一节 晶体的常识
第二课时 晶胞
二.晶胞
1.定义:描述晶体结构的基本单元 晶体与晶胞的关系正好比蜂巢与蜂室的关系
蜂巢与蜂室
铜晶体
铜晶胞
铜晶体
铜晶胞
晶体结构 晶胞示意图
晶胞形状:
无隙并 置
平行六面 体
说明:
⑴晶胞一般是平行六面体,整块晶体是数量巨大 的晶胞“无隙并置”而成。
⑵晶胞是8个顶角相同的最小正六面体;晶胞的 平行棱相同;晶胞的平行面相同。
Zn: 8× +1=2
I2:
(8×
+
6
×
1 2
)×2
=8
8×1/8+6×1/2+4=8
练习1:
石墨晶体的层状结构,层 内为平面正六边形结构(如 图),试回答下列问题:
图中平均每个正六边形占 有C原子数为____2个、占有的 碳碳键数为____个3 。
碳原子数目与碳碳化学键 数目之比为_____2_:_3.
Cl- 顶点 ( 1/8 ) 8 = 1,
面中心 ( 1/2 ) 6 = 3 , 共 4 个
Na+ 棱上 ( 1/4 ) 12 = 3 ,
体中心
1 共4个
练习6、如图所示晶体中每个阳离子A或阴离子B,均可被 另一种离子以四面体形式包围着,则该晶体对应的化学式 为
A.AB C.AB3
B.A2B D.A2B3
练习2
2001年报道的硼和镁形成的化合物刷新了金属化合物超导温 度的最高记录。如图所示的是该化合物的晶体结构单元:镁 原子间形成正六棱柱,且棱柱的上下底面还各有1个镁原子, 6个硼原子位于棱柱内。则该化合物的化学式可表示为( B )
A、MgB C、Mg2B

高中化学 几种常见晶体结构分析论文 新人教版选修3

高中化学 几种常见晶体结构分析论文 新人教版选修3

几种常见晶体结构分析一、氯化钠、氯化铯晶体——离子晶体由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。

阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。

离子的配位数分析如下:离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。

1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。

每个N a +周围与其最近且距离相等的Na +有12个。

见图1。

晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14= 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。

2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与一个Cs +距离最近且相等的Cs +有6个。

晶胞中平均Cs +个数:1;晶胞中平均Cl -个数:8×18= 1。

因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。

二、金刚石、二氧化硅——原子晶体1.金刚石是一种正四面体的空间网状结构。

每个C 原子以共价键与4个C 原子紧邻,因而整个晶体中无单个分子存在。

由共价键构成的最小环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6×112 = 12 ,平均C —C 键数为6×16 = 1。

C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。

【人教版】高中化学选修3知识点总结:第三章晶体排列与特性

【人教版】高中化学选修3知识点总结:第三章晶体排列与特性

【人教版】高中化学选修3知识点总结:第三章晶体排列与特性
本文档总结了高中化学选修3课程中第三章晶体排列与特性的主要知识点。

一、晶体的定义和特点
- 晶体是具有规则的、有序的三维排列的固体结构。

- 晶体呈现出明显的平面、直线和点的等级性。

- 晶体有着明确的晶体结构和晶体缺陷。

二、晶体排列
- 晶体的排列方式主要有原子堆积和离子堆积两种。

- 原子堆积有3种典型的结构类型:简单立方堆积、面心立方堆积和密堆积。

- 离子堆积有3种典型的排列方式:简单立方堆积、体心立方堆积和面心立方堆积。

三、晶体的类型
- 晶体分为金属晶体、离子晶体、共价晶体和分子晶体四种类型。

- 金属晶体由金属原子组成,具有良好的导电性和热导性。

- 离子晶体由阳离子和阴离子组成,具有高熔点和良好的溶解性。

- 共价晶体由共价键连接的原子组成,具有高硬度和高熔点。

- 分子晶体由分子间的弱力相互作用连接的组成,具有低熔点和易溶性。

四、晶体的缺陷
- 晶体的缺陷分为点缺陷、线缺陷和面缺陷。

- 点缺陷包括空位、间隙原子和杂质原子等。

- 线缺陷包括位错和螺旋位错。

- 面缺陷包括阴极空位和阳极不完整等。

以上是高中化学选修3课程中第三章晶体排列与特性的知识点总结。

以上信息仅供参考,如有需要请自行查阅教材或参考其他可靠资料确认。

高中化学选修3人教版:第三章晶体结构与性质-归纳与整理

高中化学选修3人教版:第三章晶体结构与性质-归纳与整理

NaCl<MgCl2
原子晶体:原子半径越小,共价键键能越大,熔沸点越高。
Si,SiO2,SiC
SiO2>SiC > Si
分子晶体:结构相似的分子,分子量越大,分子间作用力
越大,熔沸点越高。
F2,Cl2,Br2,I2
F2 < Cl2 < Br2 < I2
三.四种晶体的比较
晶体类型 离子晶体 晶体粒子 阴、阳离子
60°
(W/124) ×6 ×NA
晶体中Na+和Cl-间最 小距离为a cm, 计 算NaCl晶体的密度
4 58.5g mol 1 N A mol 1
(2acm)3
29.25 a3 NA
g
cm3
第一单元 晶体的 类型与性质
2、晶体举例:
NaCl的晶体结构:
6:6
CsCl的晶体结构:
《晶体结构与性质 -归纳与整理》
一、晶体与非晶体
1.晶体与非晶体的区别
自范性
微观结构
晶体 有(能自发呈现多面体外 原子在三维空间里
形)
呈周期性有序排列
非晶体 没有(不能自发呈现多面 原子排列相对无序 体外形)
(1)晶体自范性的本质:是晶体中粒子微观空间里 呈现周期性的有序排列的宏观表象.
• (2)晶体自范性的条件之一:生长速率适当.
2.晶体形成的途径
• 熔融态物质凝固. • 气态物质冷却不经液态直接凝固(凝华). • 溶质从溶液中析出.
3.晶体的特性
• 有规则的几何外形 • 有固定的熔沸点 • 物理性质(强度、导热性、光学性质等)各
向异性
二.晶胞
• 1.定义:晶体中重复出现的最基本的结构单元

高考化学选修三典型晶体结构的特点分析

高考化学选修三典型晶体结构的特点分析

几种典型晶体结构的特点分析名称晶体类型晶体结构示意图晶体结构特点干冰分子晶体分子晶体(1) 一个晶胞中,平均含有4个C02分子(2)与一个C02分子等距离最近的C02分子数为12个(3)晶胞属于立方面心结构,C02位于顶点和面心金刚石晶体原子晶体(1) 一个水分子周围紧邻4个水分子,之间的作用力为分子间作用力(2) 1mol冰拥有2 N A氢键二氧化硅晶体原子晶体NaCl 晶体离子晶体(1) 每个碳原子都采取sp3杂化,与_4__ 个碳原子以共价键相结,—正四面体—结构,键角109° 28' 。

(2) 晶体中最小的碳环由_6_个碳组成,且不在同一平面内。

(3) 1mol金刚石中含2 N A共价键每个C原子连接12个六元环(4) 晶胞中,C位于顶点_面心_体心(5) 晶胞中,包含8个C原子(1) 1个Si原子和4个0原子形成4个共价键,每个0原子和2个Si原子相结合。

(2) 1mol Si02中含4 mol Si —0 键(3) 最小环是由6 个Si原子和6个0原子组成的12元环。

(1) 一个晶胞中,包含4个Na+, 4个Cl—(2) Na+的配位数为 6 , Cl_的配位数为 6 ,(3) Na+周围等距离最近的Na + 12 个C「周围等距离最近的Cl - 12 个(4 )晶胞中,Na +位于顶点和面心Cl「位于棱边属于正八面体结构CsCI 晶体离子晶体(1) Cs+的配位数为8 CI—的配位数为8(2) Cs+周围等距离最近的Cs+6个CI—周围等距离最近的CI—6个(3) —个晶胞中,包含1个Cs+,1个CI—(4) 晶胞中,Cs+位于―顶点_ C「位于体心CaF2 晶体离子晶体(1)Ca2+的配位数为8 , F—的配位数为4(2) Ca2+周围等距离最近的Ca2+12个F—周围等距离最近的F—8个(3) 晶胞中,包含J_个Ca2+, _8_个F—(4) 晶胞中,Ca2+位于顶点和面心_,F—位于—体心 ______石墨晶体混合晶体(1)层内一个碳原子与3个碳原子以共价键相结合,碳原子采取SP2杂化,键角120°(2)1moI石墨晶体中含_0.5_mol六元环(3)1moI石墨晶体中含_1.5_mol共价键(4)C原子与C —C键数之比为2:3(5)层间作用力是分子间作用力简单立方堆积金属晶体体心立方密堆积金属晶体(1 )典型代表Po(2) 空间利用率52%(3) 配位数6立方体的边长为 a cm,则r=a/2 cm。

高中化学选修3之知识讲解_晶体的常识 分子晶体与原子晶体_基础-

高中化学选修3之知识讲解_晶体的常识 分子晶体与原子晶体_基础-

晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。

【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。

晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。

②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。

非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。

周期性是晶体结构最基本的特征。

许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。

晶体的熔点较固定,而非晶体则没有固定的熔点。

区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。

特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。

2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。

所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。

例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。

4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。

②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。

高中化学 常见晶胞排列

高中化学 常见晶胞排列

高中化学常见晶胞排列晶体是由原子、分子或离子按照一定规律排列而成的固体物质。

在晶体中,原子、分子或离子的排列方式被称为晶胞排列。

不同的晶体具有不同的晶胞排列方式,本文将介绍几种常见的晶胞排列。

1. 简单立方排列简单立方排列是最简单的晶胞排列方式。

在简单立方排列中,原子、分子或离子沿着三个坐标轴均匀排列,形成一个立方体。

每个晶胞中只有一个原子、分子或离子。

简单立方排列的晶体结构非常简单,常见于金属元素如铁、镁等。

2. 面心立方排列面心立方排列是一种密堆最紧排列方式。

在面心立方排列中,原子、分子或离子不仅沿着三个坐标轴均匀排列,还在每个立方体的每个面心上有一个原子、分子或离子。

通过这种方式,晶体的密堆程度更高,稳定性更强。

面心立方排列的晶体常见于许多金属和化合物的晶体。

3. 体心立方排列体心立方排列是一种较为紧密的晶胞排列方式。

在体心立方排列中,原子、分子或离子沿着三个坐标轴均匀排列,并且在每个立方体的中心有一个原子、分子或离子。

体心立方排列的晶体结构比简单立方排列更紧密,但比面心立方排列更稀疏。

许多金属如钠、铁等采用体心立方排列。

4. 其他排列方式除了上述三种常见的晶胞排列方式,还有许多其他的排列方式,如多晶体、不规则晶胞等。

多晶体由多个晶体颗粒组成,每个晶体颗粒具有自己的晶胞排列方式。

不规则晶胞则没有明确的晶胞排列规律。

总结起来,高中化学中常见的晶胞排列方式有简单立方排列、面心立方排列和体心立方排列。

这些不同的排列方式决定了晶体的结构和性质。

通过了解晶胞排列方式,可以更好地理解化学物质的结构和性质。

高中化学选修三-晶体结构与性质

高中化学选修三-晶体结构与性质

晶体结构与性质一、晶体得常识1、晶体与非晶体晶体与非晶体得本质差异得到晶体得途径:熔融态物质凝固;凝华;溶质从溶液中析出特性:①自范性;②各向异性(强度、导热性、光学性质等)③固定得熔点;④能使X-射线产生衍射(区分晶体与非晶体最可靠得科学方法)2、晶胞--描述晶体结构得基本单元、即晶体中无限重复得部分一个晶胞平均占有得原子数=×晶胞顶角上得原子数+×晶胞棱上得原子+×晶胞面上得粒子数+1×晶胞体心内得原子数思考:下图依次就是金属钠(Na)、金属锌(Zn)、碘(I2)、金刚石(C)晶胞得示意图、它们分别平均含几个原子?eg:1、晶体具有各向异性。

如蓝晶(Al2O3·SiO2)在不同方向上得硬度不同;又如石墨与层垂直方向上得电导率与与层平行方向上得电导率之比为1:1000。

晶体得各向异性主要表现在()①硬度 ②导热性 ③导电性 ④光学性质A、①③B、②④C、①②③D、①②③④2、下列关于晶体与非晶体得说法正确得就是()A、晶体一定比非晶体得熔点高B、晶体一定就是无色透明得固体C、非晶体无自范性而且排列无序D、固体SiO2一定就是晶体3、下图就是CO2分子晶体得晶胞结构示意图、其中有多少个原子?二、分子晶体与原子晶体1、分子晶体--分子间以分子间作用力(范德华力、氢键)相结合得晶体注意:a、构成分子晶体得粒子就是分子b、分子晶体中、分子内得原子间以共价键结合、相邻分子间以分子间作用力结合①物理性质a、较低得熔、沸点b、较小得硬度c、一般都就是绝缘体、熔融状态也不导电d、“相似相溶原理”:非极性分子一般能溶于非极性溶剂、极性分子一般能溶于极性溶剂②典型得分子晶体a、非金属氢化物:H2O、H2S、NH3、CH4、HX等b、酸:H2SO4 、HNO3、H3PO4等c、部分非金属单质::X2、O2、H2、S8、P4、C60d、部分非金属氧化物:CO2、SO2、NO2、N2O4、P4O6、P4O10等f、大多数有机物:乙醇、冰醋酸、蔗糖等③结构特征a、只有范德华力--分子密堆积(每个分子周围有12个紧邻得分子)CO2晶体结构图b、有分子间氢键--分子得非密堆积以冰得结构为例、可说明氢键具有方向性④笼状化合物--天然气水合物2、原子晶体--相邻原子间以共价键相结合而形成空间立体网状结构得晶体注意:a、构成原子晶体得粒子就是原子 b、原子间以较强得共价键相结合①物理性质a、熔点与沸点高b、硬度大c、一般不导电d、且难溶于一些常见得溶剂②常见得原子晶体a、某些非金属单质:金刚石(C)、晶体硅(Si)、晶体硼(B)、晶体锗(Ge)等b、某些非金属化合物:碳化硅(SiC)晶体、氮化硼(BN)晶体c、某些氧化物:二氧化硅( SiO2)晶体、Al2O3金刚石得晶体结构示意图二氧化硅得晶体结构示意图思考:1、怎样从原子结构角度理解金刚石、硅与锗得熔点与硬度依次下降2、“具有共价键得晶体叫做原子晶体”、这种说法对吗?eg:1、在解释下列物质性质得变化规律与物质结构间得因果关系时、与键能无关得变化规律就是()A、HF、HCI、HBr、HI得热稳定性依次减弱B、金刚石、硅与锗得熔点与硬度依次下降C、F2、C12、Br2、I2得熔、沸点逐渐升高D、N2可用做保护气2、氮化硼就是一种新合成得无机材料、它就是一种超硬耐磨、耐高温、抗腐蚀得物质。

高中化学 常见晶胞模型

高中化学 常见晶胞模型

离子晶体氯化钠晶体(1)NaCl 晶胞每个Na +等距离且最近的Cl -(即Na +配位数)为6个 NaCl 晶胞每个Cl -等距离且最近的Na +(即Cl -配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na +4_个;占有的Cl -4个。

(3)在该晶体中每个Na + 周围与之最接近且距离相等的Na +共有12个;与每个Na +等距离且最近的Cl -所围成的空间几何构型为 正八面体CsCl 晶体(注意:右侧小立方体为CsCl 晶胞;左侧为8个晶胞) (1) CsCl 晶胞中每个Cs +等距离且最近的Cl -(即Cs +配位数) 为8个CsCl 晶胞中每个Cl -等距离且最近的Cs +(即Cl -配位数) 为8个 ,这几个Cs +在空间构成的几何构型为正方体 。

(2)在每个Cs +周围与它最近的且距离相等的Cs +有6个 这几个Cs +在空间构成的几何构型为正八面体 。

(3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs + 1个;占有的Cl - 1个。

CaF 2晶体(1)) Ca 2+立方最密堆积,F -填充在全部 四面体空隙中。

(2)CaF 2晶胞中每个Ca 2+等距离且最近的F -(即Ca 2+配位数)为8个CaF 2晶胞中每个F -等距离且最近的Ca 2+(即F -配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca 2+4个;占有的F -8个。

ZnS 晶体:(1)1个ZnS 晶胞中,有4个S 2-,有4个Zn 2+。

(2)Zn 2+的配位数为4个,S 2-的配位数为 4个。

原子晶体金刚石 金刚石晶胞 金刚石晶胞(1)金刚石晶体a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实际为椅式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成正四面体。

键角109°28’b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2Si O(2)Si 晶体由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。

【人教版】高中化学选修3知识点总结

【人教版】高中化学选修3知识点总结

第一章原子结构与性质第一节原子结构一.原子结构1、原子结构理论发展从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。

现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。

大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。

其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。

〖复习〗必修中学习的原子核外电子排布规律:核外电子排布的尸般规律(1)核外电子总是尽量先排布在能量较低的电子层,然后由里向外,依次排布在能量逐步升高的电子层 (能量最低原理)。

(2)原子核外各电子层最多容纳2n2个电子。

(3)原于最外层电子数目不能超过8个(K层为最外层时不能超过2个电子(4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒数第三层电子数目不能超过32个。

说明:以上规律是互相联系的,不能孤立地理解。

例如;当M层是最外层时,最多可排8个电子;当M层不是最外层时,最多可排18个电子2、能级与能层(1)能层与能级①能层(电子层)在多电子的原子核外电子的能量是不同的,按电子的能量差异,可以将核外电子分成不同的能层。

能层第一、二、三、四、五、六、七……符号表示 K、 L、 M、 N、 O、 P、 Q……能量由低到高②能级(电子亚层)在多电子原子中,同一能层的电子,能量可以不同,可以把它们分成能级。

Ⅰ、每个能层中,能级符号的顺序是ns、np、nd、nf……Ⅱ、任一能层,能级数=能层序数Ⅲ、s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍不同能层中,符号相同的能级中容纳的最多电子数相同(2)轨道二、.原子核外电子排布规律1、构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。

能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。

几种典型晶体结构的特点分析

几种典型晶体结构的特点分析

几种典型晶体结构得特点分析徐寿坤有关晶体结构得知识就是高中化学中得一个难点,它能很好地考查同学们得观察能力与三维想像能力,而且又很简易与数学、物理特别就是立体几何知识相结合,就是近年高考得热点之一。

熟练掌握NaCl、CsCl、CO2、SiO2、金刚石、石墨、C60等晶体结构特点,理解与掌握一些严重得分析方法与原则,就能顺利地解答此类问题。

通常采用均摊法来分析这些晶体得结构特点。

均摊法得根源原则就是:晶胞任意位置上得原子如果就是被n个晶胞所共有,则每个晶胞只能分得这个原子得1/n。

1、氯化钠晶体由下图氯化钠晶体结构模型可得:每个Na+紧邻6个,每个紧邻6个(上、下、左、右、前、后),这6个离子构成一个正八面体。

设紧邻得Na+与Cl-间得距离为a,每个Na+与12个Na+等距离紧邻(同层4个、上层4个、下层4个),距离为。

由均摊法可得:该晶胞中所拥有得Na+数为,数为,晶体中Na+数与Cl-数之比为1:1,则此晶胞中含有4个NaCl结构单元。

2、氯化铯晶体每个Cs+紧邻8个Cl-,每个Cl-紧邻8个Cs+,这8个离子构成一个正立方体。

设紧邻得Cs+与Cs+间得距离为,则每个Cs+与6个Cs+等距离紧邻(上、下、左、右、前、+后)。

在如下图得晶胞中Cs数为,在晶胞内其数目为8,晶体中得数与数之比为1:1,则此晶胞中含有8个CsCl结构单元。

3、干冰每个CO2分子紧邻12个CO2分子(同层4个、上层4个、下层4个),则此晶胞中得CO2分子数为。

4、金刚石晶体每个C原子与4个C原子紧邻成键,由5个C原子形成正四面体结构单元,C-C键得夹角为。

晶体中得最小环为六元环,每个C原子被12个六元环共有,每个C-C键被6个六元环共有,每个环所拥有得C原子数为,拥有得C-C键数为,则C原子数与C-C键数之比为。

5、二氧化硅晶体每个Si原子与4个O原子紧邻成键,每个O原子与2个Si原子紧邻成键。

晶体中得最小环为十二元环,其中有6个Si原子与6个O原子,含有12个Si-O键;每个Si原子被12个十二元环共有,每个O原子被6个十二元环共有,每个Si-O键被6个十二元环共有;每个十二元环所拥有得Si原子数为,拥有得O原子数为,拥有得Si-O键数为,则Si原子数与O原子数之比为1:2。

高三选修3晶胞知识点

高三选修3晶胞知识点

高三选修3晶胞知识点晶胞是晶体中最小重复单元,它的形状和结构对于晶体性质的理解具有重要的作用。

在高三选修3中学习晶胞的知识点对于理解晶体结构和材料科学具有重要意义。

本文将从三个方面介绍高三选修3中的晶胞知识点。

第一部分:晶胞的定义和分类晶胞是晶体中最小重复单元,由原子或分子组成。

根据晶体的对称性,我们可以将晶胞分为7个晶系和14个晶格。

1. 立方晶系:晶胞为立方体,边长相等,相互垂直。

2. 正交晶系:晶胞为长方体,边长相互垂直,但不相等。

3. 单斜晶系:晶胞为斜方体,边长不相等,存在一个直角。

4. 斜方晶系:晶胞为斜方体,边长不相等,所有角均不为直角。

5. 三斜晶系:晶胞为斜四面体,边长不相等,所有角均不为直角。

6. 菱面晶系:晶胞为菱形面体,边长不相等,存在4个相邻的直角。

7. 六方晶系:晶胞为六面体,边长不相等,存在6个角为直角。

以上是根据晶体对称性所确定的晶胞分类,不同晶胞的形状和结构决定了晶体的不同性质和应用。

第二部分:晶胞参数及其计算方法晶体的晶胞参数是描述晶体结构的重要参数,包括晶胞长度、晶胞角度等。

1. 晶胞长度:晶胞的长度由晶格常数确定,晶格常数是指晶体沿不同方向上的原子、离子或分子排列的周期性重复距离。

2. 晶胞角度:晶胞的角度也由晶格常数决定,不同晶体的晶胞角度不同。

计算晶胞参数的方法包括使用X射线衍射、粉末衍射和电子衍射等实验方法,以及分子动力学模拟和第一性原理计算等理论方法。

这些方法可以精确确定晶体的晶胞结构,为材料科学的研究提供重要的依据。

第三部分:晶胞的应用和意义晶胞的形状和结构对晶体的性质和应用具有重要的影响。

1. 晶胞的形状决定了晶体的外观和结构,不同晶体的晶胞形状各异。

2. 晶胞的结构决定了晶体的物理和化学性质,如硬度、电导率、光学性质等。

3. 晶胞的研究为材料科学和固体物理学等领域提供了重要的基础,促进了材料的开发和应用。

总结:本文介绍了高三选修3中的晶胞知识点,包括晶胞的定义和分类、晶胞参数及其计算方法,以及晶胞的应用和意义。

高中化学常见晶体模型及晶胞计算

高中化学常见晶体模型及晶胞计算

小结:高考常见题型 (一) 晶胞中微粒个数的计算, 求化学式
(二) 确定配位数
(三) 晶体的密度及微粒间距离 的计算
练习
-的距离为 a cm,该晶体密度为
(1)设NaCl晶胞的边长为acm,则
示晶为胞中Na+和Cl-的最近距离(( 即小)立
方体的边长)为 a/2 cm,则晶胞中 同种离子的最近距离为 a/2 cm。
思考:NaCl、CsCl同属AB型离子晶体, NaCl晶体中 Na+的配位数与CsCl晶体中Cs+的配位数是否相等?
CaF2的晶体结构
(1)每个Ca2+周围等距且 紧邻的F-有 8 个, Ca2+配 位数为 8 。
(2)每个F-周围等距且紧 邻的Ca2+有 4 个, F-配位 数为 4 。
FCa2+
金属晶体的四种堆积模型对比
堆积模型
采纳这种堆积 的典型代表
空间利用率
配位数
简单立方
Po(钋)
52%
6
体心立方 (钾型)
K、Na、Fe
68%
8
六方最密 (镁型)
Mg、Zn、Ti
74%
12
面心立方最密 (铜型)
Cu, Ag, Au
74%
12
晶胞
原子晶体
金刚石
该晶胞实际分摊到的碳原子数为 (4 + 6 ×1/2 + 8 ×1/8) = 8个。
(3)每个晶胞中含 4 个Ca2+、含 8 个F-, Ca2+和 F-的个数比是 1︰2 。
3、金属晶体:
①简单立方堆积 唯一金属——钋 简单立方堆积的配位数 =6
每个晶胞含 1 个原子
球半径为r 正方体边长为a r=a/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生版:典型晶体模型
晶体晶体结构晶体详解
原子晶体金刚

(1)每个碳与相邻个碳以共价键结合,
形成体结构
(2)键角均为
(3)最小碳环由个C组成且六个原子不
在同一个平面内
(4)每个C参与条C—C键的形成,C原子
数与C—C键数之比为
SiO2
(1)每个Si与个O以共价键结合,形成正
四面体结构
(2)每个正四面体占有1个Si,4个“
1
2O”,n(Si)∶
n(O)=
(3)最小环上有个原子,即个O,个Si
分子晶体干冰
(1)8个CO2分子构成立方体且在6个面心又各
占据1个CO2分子
(2)每个CO2分子周围等距紧邻的CO2分子
有个

每个水分子与相邻的个水分子,以相
连接,含1 mol H2O的冰中,最多可形成
mol“氢键”。

NaCl(
型)离子
晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有
个。

每个Na+周围等距且紧邻的
Na+有个
(2)每个晶胞中含个Na+和个Cl-
CsCl (型)(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs
+、个Cl-
金属晶体简单
六方
堆积
典型代表Po,配位数为,空间利用率52%
面心
立方
最密
堆积
又称为A1型或铜型,典型代表,配位
数为,空间利用率74%
体心
立方
堆积
又称为A2型或钾型,典型代表,配位
数为,空间利用率68%
六方
最密
堆积
又称为A3型或镁型,典型代表,配位
数为,空间利用率74%
混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是
(2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是
(3)每层中存在σ键和π键,还有金属键
(4)C—C的键长比金刚石的C—C键长,熔点比金刚石的
(5)硬度不大、有滑腻感、能导电
教师版典型晶体模型
晶体晶体结构晶体详解
原子晶体金刚

(1)每个碳与相邻4个碳以共价键结合,形成正
四面体结构
(2)键角均为109°28′
(3)最小碳环由6个C组成且六个原子不在同一
个平面内
(4)每个C参与4条C—C键的形成,C原子数
与C—C键数之比为1∶2
SiO2
(1)每个Si与4个O以共价键结合,形成正四
面体结构
(2)每个正四面体占有1个Si,4个“
1
2O”,n(Si)∶
n(O)=1∶2
(3)最小环上有12个原子,即6个O,6个Si
分子晶体干冰
(1)8个CO2分子构成立方体且在6个面心又各
占据1个CO2分子
(2)每个CO2分子周围等距紧邻的CO2分子有12


每个水分子与相邻的4个水分子,以氢键相连
接,含1 mol H2O的冰中,最多可形成2 mol“氢
键”。

NaCl(型)离子
晶体
(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有
6个。

每个Na+周围等距且紧邻的Na+有12个
(2)每个晶胞中含4个Na+和4个Cl-
CsCl
(型)
(1)每个Cs+周围等距且紧邻的Cl-有8个,每
个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有8个
(2)如图为8个晶胞,每个晶胞中含1个Cs+、
1个Cl-
金属晶体简单
六方
堆积
典型代表Po,配位数为6,空间利用率52%
面心
立方最密堆积又称为A1型或铜型,典型代表Cu、Ag、Au,配位数为12,空间利用率74%
体心立方堆积又称为A2型或钾型,典型代表Na、K、Fe,配位数为8,空间利用率68%
六方最密堆积又称为A3型或镁型,典型代表Mg、Zn、Ti,配位数为12,空间利用率74%
混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是范德华力(2)平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2 (3)每层中存在σ键和π键,还有金属键
(4)C—C的键长比金刚石的C—C键长短,熔点比金刚石的高
(5)硬度不大、有滑腻感、能导电。

相关文档
最新文档