高二数学椭圆的知识点整理

合集下载

高二数学椭圆的几何性质1

高二数学椭圆的几何性质1

e越接近1,椭圆越扁;e越接近 于0,椭圆越接近于圆。
2 2 例1:椭圆25x +16y =400
的长轴长为____,短轴长 为____,焦点坐标为___, 顶点坐标为____,离心率 为 ______。
x y 练习:若椭圆 1的离心率 a8 9 1 为 ,求a的值。 2
2
2
x y (2)若 2 2 1( a b 0 ) 的左焦 a b
x y 2 1 2 a b ( a b 0)
y B2(0,b) o x A2(a,0) B1(0,-b)
2
2
A1(-a,0)
a、b分别叫做椭圆的 长半轴长和短半轴长。
四、椭圆的离心率
离心率:椭圆的焦距与长轴长的比, 2c c 叫做椭圆的离心率。 e y 2a a
0<e<1
o x
变式: (08江西)已知F1,F2椭圆的两 个焦点,满足 MF1 MF2 0 ,点 M总在椭圆的内部,则椭圆的离心率 的取值范围是___________。
2
2
练习:
2 2
x y 1 ( a b 0 ) 已知 2 2 a b 的长轴两端点为A,B,如果椭圆 上存在一点Q,使∠F1QF2=120°, 求离心率e的取值范围。
一、椭圆的范围 二、椭圆的对称性 三、椭圆的顶点
变量x,y的取 值范围 方程的对称性 x=0或y=0时 方程的解
四、椭圆2 2 2 2 x y x y 由 2 1 2 1和 2 1 2 a b a b

x a和 y b
o
y
说明:椭圆位于矩 形之中。
x
二、椭圆的对称性 2 2
椭圆关于x轴对称; 椭圆关于y轴对称; 椭圆关于原点对称;

高二数学椭圆的第二定义

高二数学椭圆的第二定义
y
l2
M d
H
左准线
xa c
2
F1左焦点
o
F2
x
右焦点
右准线 2
x
a
c
例1.点P与定点A(2,0)的距离 和它到定直线x=5的距离的比是1:2, 求点P的轨迹;
注意:1、定点必须在直线外。 2、比值必须小于1。 3、符合椭圆第二定义的动点轨迹肯定 是椭圆,但它不一定具有标准方程形式。 4、椭圆离心率的两种表示方法:
动画演示
四、椭圆的离心率
c 离心率:椭圆的焦距与长轴长的比:e a 叫做椭圆的离心率。 y
1、离心率的取值范围: 因为 a > c > 0,所以1 >e >0 2、离心率对椭圆形状的影响:
o x
1)e 越接近 1,c 就越接近 a,从而 b就越小(?),椭圆 就越扁(?)
2)e 越接近 0,c 就越接近 0,从而 b就越大(?),椭 圆就越圆(?) 3)特例:e =0,则 a = b,则 c=0,两个焦点重合,椭 圆方程变为(?) 动画演示
复习回顾
y
o
x
一、椭圆的范围
x y x 2 1 2 由 2 a a b
即 x a和 y b 说明:椭圆位于直 线X=±a和y=±b所 围成的矩形之中。
2 2
2
y 1 和 b
y
2
2
1
o
x
二、椭圆的对称性
方程:
x2 a2
y
b2 1(a b 0)
o xy23、对来自性:c 椭圆上任意一点P至焦点F的距离 e a P至与F 对应的准线的距离
准线方程为:
a x
2
椭圆焦点在x轴

高二选修一椭圆的知识点

高二选修一椭圆的知识点

高二选修一椭圆的知识点椭圆是高中数学的重要内容之一,作为高二学生选修的数学课程之一,椭圆的知识点对于学生的数学素养和理解力有着重要的影响。

本文将介绍高二选修一中涉及的椭圆的知识点。

一、椭圆的定义与性质椭圆是平面上一点到两个给定定点的距离之和等于常数的点的集合。

这两个给定定点分别称为椭圆的焦点,常数称为椭圆的离心率。

椭圆具有如下性质:1. 椭圆的离心率小于1,且等于0时为圆。

2. 椭圆的中心即为焦点所连直线的垂直平分线的交点。

3. 椭圆的长半轴和短半轴分别是焦点所连直线的垂直平分线与椭圆的交点到焦点的距离。

4. 椭圆的顶点是和焦点在同一直线上的两个点。

二、椭圆的方程表达椭圆的方程表达有两种形式:标准方程和一般方程。

1. 标准方程椭圆的标准方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。

2. 一般方程椭圆的一般方程为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F均为常数。

三、椭圆的参数方程椭圆的参数方程是将椭圆的坐标表示为参数θ的函数形式。

椭圆的参数方程为x = h + a cosθ,y = k + b sinθ,其中θ为参数。

四、椭圆的焦点与直径椭圆的焦点是指离心率所决定的椭圆上两个特殊的点,位于椭圆的长轴上。

椭圆的直径是从椭圆上一点到椭圆的另一点的最长线段。

五、椭圆与切线椭圆上的任意一点处都存在切线。

椭圆的切线与椭圆的法线垂直。

六、椭圆的重要参数椭圆的重要参数包括离心率、焦距、短半轴、长半轴、准线等,这些参数可以通过椭圆的方程表达或者几何性质求解。

七、椭圆的应用椭圆在日常生活和工程领域中有着广泛的应用。

例如,椭圆的形状可以模拟行星的轨道,从而研究天体运动;椭圆的形状也可以用来设计汽车、船舶和建筑物等工程项目。

高二数学椭圆的简单几何性质

高二数学椭圆的简单几何性质

教学内容:椭圆的简单几何性质【基础知识精讲】22a x +22by =1(a >b >0);范围:椭圆位于直线x=±a 和y=±b 所围成的矩形里;即|x |≤a ;|y |≤b.2.对称性:椭圆关于x 轴;y 轴和原点都是对称的.坐标轴为椭圆的对称轴;原点是椭圆的对称中心;即为椭圆的中心.3.顶点:椭园与坐标轴的交点为椭圆的顶点为A 1(-a ;0);A 2(a ;0);B 1(0;b);B 2(0;-b)4.离心率:e=ac;(o <e <1);e 越接近于1;则椭圆越扁;e 越接近于0;椭圆就越接近于圆.5.椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(0<e <1)的点的轨迹.定点即为椭圆的焦点;定直线为椭圆的准线.6.椭圆的焦半径公式:设P(x 0;y 0)是椭圆22a x +22by =1(a >b >0)上的任意一点;F 1、F 2分别是椭圆的左、右焦点;则|PF 1|=a+ex 0;|PF 2|=a-ex 0.⎩⎨⎧==ϕϕϕsin )(cos b y a x 是参数 本节学习要求:椭圆的几何性质内容多.它与直线的位置关系的确定离不开一元二次方程中的判别式及韦达定理.如椭圆中的弦长问题:若直线y=kx+b 和二次曲线Ax 2+Cy 2+Dx+Ey+F=0相交;所得弦长可由下法求之;由两方程中消去y ;得ax 2+bx+c=0;记△=b 2-4ac ;则弦长=ak )1(2+△;若弦过焦点;则用焦半径公式更为简洁.这要求大家针对具体的题目;灵活采用方法计算弦长或与焦半径有关的问题.【重点难点解析】通过“圆的方程”的学习我们知道;圆的几何性质问题用代数的方法解题简便;计算量小的特点;同样;椭圆也有类似的几何性质;那么在学习本节之前要复习椭圆的定义及标准方程;在此基础上来学习椭圆的几何性质;掌握椭圆的性质;标准方程;及椭圆的第二定义.例1 设直线l 过点P(-1;0);倾角为3π;求l 被椭圆x 2+2y 2=4所截得的弦长. 解:直线l 的方程为y=3x+3;代入椭圆方程;得7x 2+12x+2=0;∵△=144-4×7×2=88∴弦长=7)31(88+=7224 例2 求椭圆252x +812y =1上的点到直线3x+4y-64=0的最长距离与最短距离.解:设椭圆上的点为(5cos θ;9sin θ);则 d=564sin 36cos 53-θ+θ⨯=564cos 15sin 36-+θθ=564)125arctan sin(39-+θ∴d max =564139-⨯例3 已知椭圆42x +32y =1内有一点P(1;-1);F 是右焦点;M 是椭圆上的动点;求|MP|+2|MF|的最小值;并求此时M 的坐标.解:过M 作右准线x=4的垂线;垂足为M 1;由椭圆第二定义;有1MM MF =21∴2|MF |=|MM 1|∴|MP |+2|MF |=|MP |+|MM 1|过P 作右准线的垂线交椭圆于N ;垂足为N 1;垂线方程为y=-1.显然|MP |+|MM 1|≥|NP |+|NN 1|(当M 与N 重合时等号成立)而|NP |+|NN 1|=|PN 1|=3由方程组⎩⎨⎧==+1124322y y x 得N(362;-1)∴|MP |+2|MF |的最小值是3;此时M 的坐标是(362;-1)【难题巧解点拨】例1 P 是椭圆方程为162y +92x =1上的任意一点;F 1;F 2是椭圆的两个焦点;试求|PF 1|·|PF 2|的取值范围.解:设|PF 1|=t ;则t ∈[a-c ;a+c ];即t ∈[4-7;4+7]且|PF 2|=2a-t=8-t. ∴|PF 1|·|PF 2|=t(8-t)=-(t-4)2+16 t ∈[4-7;4+7]当t=4时;取最大值为16 当t=4±7时;取最小值为9.∴所求范围为[9;16] 例2 F 1、F 2是椭圆的两个焦点;过F 2作一条直线交椭圆于P 、Q 两点;使PF 1⊥PQ ;且|PF 1|=|PQ |;求椭圆的离心率e.解:如下图;设|PF 1|=t ;则|PQ |=t ;|F 1Q |=2t ;由椭圆定义有:|PF 1|+|PF 2|=|QF 1|+|QF 2|=2a∴|PF 1|+|PQ |+|F 1Q |=4a 即(2+2)t=4a ;t=(4-22)a ∴|PF 2|=2a-t=(22-2)a 在Rt △PF 1F 2中;|F 1F 1|2=(2c)2∴[(4-22)a ]2+[(22-2)a ]2=(2c)2∴22ac =9-62 ∴e=a c =6-3例3 已知P 是椭圆22a x +22by =1(a >b >0)上的一点;F 1F 2为两焦点;且F 1P ⊥F 2P ;若P到两准线的距离分别为6和12;求此椭圆方程.解:(利用椭圆第二定义求解)∵点P 到两准线的距离分别是6和12∴2·ca 2 =6+12 即a 2=9c由椭圆第二定义知;e=11d PF =22d PF∵d 1=6;d 2=12 ∴|PF 1|=6e ;|PF 2|=12e又∵PF 1⊥PF 2 ∴|PF 1|2+|PF 2|2=|F 1F 2|2∴36e 2+144e 2=4c 2∵e=ac ∴a 2=45 又a 2=9c ∴c=5 ∴b 2=a 2-c 2=20∴所求椭圆的方程的452x +202y =1例4 在椭圆3x 2+4y 2=12上;是否存在相异的两点A 、B 关于直线y=4x+m 对称并说明理由.解:设A(x 1;y 1);B(x 2;y 2);AB 的中点M(x 0;y 0) 直线AB :y=-41x+t ;将AB 的方程代入椭圆的方程消去y 得;13x 2-8tx+16t 2-48=0 ∴△=(-8t)2-4×13×(16t 2-48)>0 ∴-213<t <213①且x 1+x 2=138t又AB 的中点M 在直线y=4x+m 上; ∴1312t=4×134t+m ∴t=-413m 代入①式得: -13213<m <13213 解法二:设A(x 1;y 1);B(x 2;y 2)是椭圆上关于直线l :y=4x+m 对称的两点;则421x +321y =1 ① 422x +322y =1 ② ①-②得42221x x -+32221y y -=0∴2121x x y y --=)(4)(32121y y x x +-+而K AB =2121x x y y -- =-41故有)(4)(32121y y x x +-+=-41设AB 的中点为(x ;y);则有x 1+x 2=2x ;y 1+y 2=2y 代入即得AB 中点的轨迹方程为y=3x. 由⎩⎨⎧-=-=⇒⎩⎨⎧+==my mx m x y x y 343 由于AB 的中点在椭圆内部∴4)(2m -+3)3(2m -<1⇒m 2<134⇒-13213<m <13213 故当m ∈(-13213;13213)时;椭圆C 上有不同的两点关于直线对称. 例5 椭圆92522y x +=1上不同三点A(x 1;y 1);B(4; 159);C(x 2;y 2)与焦点F(4;0)的距离成等差数列.(1)求证:x 1+x 2=8(2)若线段AC 的垂直平分线与x 轴的交点为T ;求直线BT 的斜率k. 解:由题知a=5;b=3;c=4. (1)由椭圆的第二定义知:12x ca AF -=a c ⇒|AF |=a-ac x 1=5-54x 1同理有|CF |=5-54x 2 ∵|AF |+|CF |=2|BF | 且|BF |=159 ∴(5-54x 1)+(5-54x 2)=518 即x 1+x 2=8(2)∵线段AC 的中点为(4;221y y +) ∴它的垂直平分线方程为y-221y y + =1221y y x x --(x-4)又点T 在x 轴上;设其坐标为(x 0;0);代入上式得;x 0-4=)(2212221x x y y -- ①点A(x 1;y 1);B(x 2;y 2)都在椭圆上∴y 21=259(25-x 21);y 22=259 (25-x 22) ∴y 21-y 22=-259(x 1+x 2)(x 1-x 2) 将此式代入①并利用x 1+x 2=8得 x 0-4=-2536 ∴k BT =04059x --=45【命题趋势分析】1.熟练掌握椭圆的第二定义;两种形式的标准方程及几何性质;运用它们及参数间的关系解决相关问题.2.必要时;椭圆方程可设为mx 2+ny 2=1(m >0;n >0);这样计算简洁;还可避免对焦点位置的讨论.3.遇到弦的中点问题时;常用点差法.例1 椭圆31222y x +=1的焦点为F 1;F 2;点P 在椭圆上;如果线段PF 1的中点在y 轴上;那么|PF 1|是|PF 2|的( )A.7倍B.5倍C.4倍解:设F 1(-3;0);e=23;P(x 0;y 0) ∵线段PF 1的中点的横坐标为0;∴230-x =0 即x 0=3 ∴|PF 1|=a+ex 0=23+23×3=273∴|PF 2|=2a-|PF 1|=43 -273 =23 ∴|PF 1|=7|PF 2| 故选A例2 设椭圆的中心是坐标原点;长轴在x 轴上;离心率e=23;已知点P(0;23)到这个椭圆上的点的最远距离为7;求这个椭圆方程;并求椭圆上到P 的距离等于7的点的坐标.解:设所求椭圆方程为22a x +22b y =1(a >b >0)由e 2=22a c =222ab a - =1-22a b 和e=23得a=2b 设椭圆上的点(x ;y)到P 点的距离为d ;则d 2=x 2+(y-23)2=a 2(1-22by )+y 2-3y+49=-3(y+21)2+4b 2+3 (-b ≤y ≤b) 若b <21时;则当y=-b 时;d 2(从而d)有最大值;由题设得(7)2=(b+23)2;由此得b=7 -23>21与b <21矛盾.若b ≥21时;当y=-21时;d 2有最大值;从而d 有最大值;有(7)2=4b 2+3;∴b=1;a=2∴所求椭圆方程为42x +y 2=1;椭圆上的点(-3;-21);点(3;-21)到P 点的距离都是7.说明:本题体现了数学的转化与函数思想;本题关键是讨论距离函数d 2=-3(y+21 )2+4b 2+3在区间[-b ;b ]上的最值;二次函数在区间上的最值问题要就对称轴与区间的关系来讨论.例3 已知椭圆的中心在原点O ;焦点在坐标轴上;直线y=x+1与该椭圆相交于P 和Q ;且OP ⊥OQ ;|PQ |=210.求椭圆方程. 分析 设P(x 1;y 1);Q(x 2;y 2;)由OP ⊥OQ 知x 1x 2+y 1y 2=0;再结合弦长公式与韦达定理求解.解:设椭圆的方程为22a x +22by =1(a >0;b >0;a >b 或a <b);点P 、Q 的坐标别为P(x 1;y 1);Q(x 2;y 2).由⎪⎩⎪⎨⎧+==+112222x y b y a x 消去y 得 (a 2+b 2)x 2+2a 2x+a 2-a 2b 2=0;当△=(2a 2)2-4(a 2+b 2)(a 2-a 2b 2)>0时由韦达定理得x 1+x 2=-2222ba a +;x 1x 2=22222b a b a a +-. 且y 1=x 1+1;y 2=x 2+1; ∵OP ⊥OQ ;∴11x y ·22x y=-1;即y 1y 2+x 1x 2=0; ∴(x 1+1)(x 2+1)+x 1x 2=0;∴2x 1x 2+(x 1+x 2)+1=0;①又|PQ |=210;由弦长公式有: 211+|x 2-x 1|=210; ∴2[(x 1+x 2)2-4x 1x 2]=410; ∴4(x 1+x 2)2-16x 1x 2-5=0②解由①、②组成的方程组得⎪⎪⎩⎪⎪⎨⎧-=+=,32,412121x x x x 或⎪⎪⎩⎪⎪⎨⎧-=+-=•21412121x x x x ∴⎪⎪⎩⎪⎪⎨⎧-=+-=+-32241)1(2222222b a a b a b a ;或⎪⎪⎩⎪⎪⎨⎧-=+--=+-,212,41)1(2222222b a a b a b a解得⎪⎩⎪⎨⎧==32222b a 或⎪⎩⎪⎨⎧==23222b a故所求椭圆方程为22x +322y =1或322x +22y =1【同步达纲练习】A 级一、选择题22a x +22b y =1与22a x +22by =k(a >b >0;k >0)一定具有相同的( )A.长轴B.焦点 C .离心率23;且过点(2;0)的椭圆标准方程为( ) A. 42x +y 2=1B. 42x +y 2=1或x 2+42y =1C. x 2+412y =1D. 42x +y 2=1或42x +162y =1m x -252+my +162=1表示焦点在y 轴上的椭圆;则实数m 的取值范围是( )A.(-16;25)B.(29;25) C.(-16;29) D.(29;+∞) 4.若圆(x-a)2+y 2=9与椭圆92x +42y =1有公共点;则实数a 的取值范围是( )A.(-∞;+∞)B.[-6;6]C.[-35;35] D.φ5.若椭圆的两个焦点三等分两条准线间的距离;则椭圆的离心率为( )B.51C.3D.33二、填空题42+m x +82y =1的离心率e=21;则实数m 的值为 .52-k x +ky -32=-1表示椭圆;则实数k 的取值范围是 . 8.若椭圆的长轴长、短轴长;焦距依次成等差数列;则其离心率e= .三、解答题92x +42y =1上的点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项;求P 点坐标.92x +42y =1上的点;且∠F 1PF 2=90°;求△F 1PF 2的面积.AA 级一、选择题1.不论k 为何值;直线y=kx+1与焦点在x 轴上的椭圆72x +my 2=1有公共点;则实数m的范围是( )A.(0;1)B.(0;7) C .[1;7] D.(1;7] 2.椭圆的两个焦点和中心将两准线间的距离四等分;则一焦点与短轴两端点连线的夹角为( )A.4π B.3π C.2π D.32π 1、F 2是椭圆22a x +22by =1(a >b >0)的两个焦点AB 是过F 1的弦;则△ABF 2的周长是( ) D.2a+2b4.已知(0;-4)是椭圆3kx 2+ky 2=1的一个焦点;则实数k 的值是( )B.61D.241 2为圆心作圆;使这圆过椭圆的中心;且交椭圆于M 点;若直线MF 1是圆F 2的切线;则椭圆的离心率是( )A. 3-13C.22 D.23二、填空题6.以椭圆的两个焦点为直径端点的圆交椭圆于四个点;若顺次连接四个点及两个焦点恰好组成一个正六边形;则椭圆的离心率e= .1F 2是椭圆两焦点;P 是椭圆上一点;△PF 1F 2满足∠PF 1F 2:∠PF 2F 1:∠F 1PF 2=1∶2∶3;则此椭圆的离心率e=8.已知A(1;1) B(2;3);椭圆C:x 2+4y 2=4a 2;如果椭圆C 和线段AB 有公共点;则正数a 的取值范围是 .三、解答题9.已知A 、B 是椭圆22a x +22925a y =1上的两点;F 2是椭圆的右焦点;若|AF 2|+|BF 2|=58a ;AB 中点到椭圆左准线距离为23;求椭圆方程.22a x +22by =1(a >b >0)的左顶点为A ;若椭圆上存在一点P ;使∠OPA=2π;求椭圆离心率的取值范围.【素质优化训练】一、选择题1.已知M 为椭圆上一点;F 1F 2是两焦点;且∠MF 1F 2=2α;∠MF 2F 1=α(α≠0);则椭圆的离心率是( )α α α α-12+y 2=1上的点到直线y=3x-4的距离的最小值是( ) A. 3102- B. 3105- C. 432+ D.4108- 22a x +22b y =1(a >b >0)的一个焦点;PQ 是过其中心的一条弦;则△FQP 面积的最大值是( ) A.21ab22a x +22by =1(a >b >0)的离心率等于53;若将此椭圆绕右焦点按逆时针方向旋转2π后;新位置的椭圆有一条准线方程是y=316;则原椭圆方程是( ) A.1292x +482y =1 B. 1002x +642y =1 C.252x +162y =1 D. 162x +92y =1 122x +62y =1的一个焦点为F 1;点P 在椭圆上;若线段PF 1的中点M 在y 轴上;则M 的纵坐标是( )A.±43B.±23C.±22D.±43二、填空题6.已知圆柱底面的直径为2k ;一个与底面成30°角的平面截这个圆柱;则截面上的椭圆的离心率是22a x +22b y =1(a >b >0)上的点;且∠F 1PF 2=θ;则△F 1PF 2的面积是8.点P(0;1)到椭圆22x +y 2=1上点的最大距离是 .三、解答题9.已知椭圆长轴|A 1A 2|=6;|F 1F 2|=42;过椭圆焦点F 1作一直线;交椭圆于M 、N 两点;设∠F 2F 1M=α(0≤α≤π);问当α取何值时;|MN |等于椭圆的短轴长.22a x +22by =1(a >b >0)与x 轴交于AB 两点;F 1F 2为焦点. (1)过一焦点F 2作垂直于长轴的弦MN ;求∠AMB 的大小范围(2)若椭圆上有一点P ;使得∠APB=120°;求P 点的纵坐标;并求椭圆离心率满足什么条件时;这样的点P 才存在.【生活实际运用】要把一个边长分别为52cm 和30cm 的矩形板锯成椭圆形;使它的长轴和短轴长分别为52cm 和30cm 用简便的方法在木板上画出这个椭圆的草图.参考答案:【同步达纲练习】A 级 1.C 2.D 3.B 4.B 5.D 6. 323或517 7.3<k <5且k ≠4 8. 53 AA 级 1.C 2.C 3.B 4.D 5.A 6. 3 -1 7.3-1 8.[25; 102+925y 2=1 10.22<e <1 【素质优化训练】 1.D 2.D 3.D 4.C 5.A 6.212tan 2θ 8.2 9.α=6π或65π 10.(1) 2π<∠AMB <π-arccot2 (2)e ∈[36;1]。

高二数学椭圆基础知识点总结大全

高二数学椭圆基础知识点总结大全

高二数学椭圆基础知识点总结大全椭圆是高中数学中的一种重要的曲线,它具有许多独特的性质和特点。

本文将对高二数学中椭圆的基础知识点进行全面总结,帮助同学们更好地理解和掌握这一内容。

一、椭圆的定义和特征椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a 的点P的轨迹。

F1和F2被称为椭圆的焦点,a被称为椭圆的半长轴。

椭圆的离心率定义为ε = c/a,其中c为焦点之间的距离。

离心率表示了椭圆的扁平程度,ε<1时为椭圆,ε=1时为抛物线,ε>1时为双曲线。

二、椭圆的方程和参数椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

参数方程为x = a*cosθ,y = b*sinθ,其中θ为参数。

三、椭圆的图形性质1. 椭圆关于x轴和y轴对称;2. 椭圆的长轴和短轴分别与x轴和y轴平行;3. 椭圆的左右焦点分别在x轴上方和下方;4. 椭圆的离心率ε满足0 < ε < 1;5. 椭圆的离心率越小,椭圆越圆。

四、椭圆的参数方程以椭圆的中心为原点,a为半长轴,b为半短轴建立直角坐标系,则椭圆上任意一点P(x, y)的参数方程为:x = a*cosθy = b*sinθ其中0 ≤ θ ≤ 2π。

五、椭圆的焦点和准线1. 椭圆的焦点是椭圆上两个固定点F1和F2,它们满足F1F2 = 2a;2. 椭圆的准线是通过椭圆中心且垂直于长轴的直线。

六、椭圆的方程一般形式当椭圆的中心不在坐标原点时,椭圆的方程为:(x-h)^2/a^2 + (y-k)^2/b^2 = 1其中(h, k)为椭圆的中心坐标。

七、椭圆的主要性质1. 椭圆的周长公式为C = 4a(E(ε^2)),其中E为椭圆的第一类完全椭圆积分函数;2. 椭圆的面积公式为S = πab;3. 离心率ε和焦距f之间的关系为ε^2 = 1 - (b^2/a^2) = 1 -(f/a)^2。

八、椭圆在几何和物理中的应用椭圆在几何和物理中有许多应用,如天体运动轨迹的研究、光学系统的设计等。

高二椭圆知识点总结

高二椭圆知识点总结

高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。

具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。

1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。

(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。

(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。

1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。

这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。

二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。

2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。

2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。

椭圆的性质对于解析几何的学习非常重要。

在实际应用中,我们可以利用这些性质进行问题的求解和分析。

2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。

三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。

3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。

3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。

高二人教版数学椭圆知识点

高二人教版数学椭圆知识点

高二人教版数学椭圆知识点椭圆是高中数学中一个重要的几何图形,它在二维平面上呈现出特定的形状和性质。

本篇文章将为大家介绍高二人教版数学课程中关于椭圆的基本知识点。

一、椭圆的定义椭圆是指到两个定点F1和F2距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,2a为椭圆的长轴长度。

二、椭圆的性质1. 焦距性质:椭圆上任意一点P到两个焦点F1和F2的距离之和等于常数2a。

2. 对称性质:椭圆关于长轴和短轴都具有对称性。

3. 半焦距性质:椭圆的焦点到椭圆上任意一点P的距离之和等于椭圆的长轴长度2a。

4. 离心率性质:椭圆的离心率定义为离心率e = F1P / PF2,其中P为椭圆上任意一点。

离心率决定了椭圆形状的圆形程度,当离心率小于1时,椭圆更加靠近圆形。

三、椭圆的方程椭圆的标准方程可以表示为(x - h)² / a² + (y - k)² / b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长轴半径和短轴半径。

四、椭圆的参数方程椭圆的参数方程可以表示为x = h + acosθ,y = k + bsinθ,其中θ为参数。

五、椭圆的几个重要点1. 中心点:椭圆的中心点坐标为(h, k)。

2. 长轴端点:椭圆的长轴端点坐标为(h ± a, k)。

3. 短轴端点:椭圆的短轴端点坐标为(h, k ± b)。

4. 焦点坐标:椭圆的焦点坐标为(h ± c, k),其中c = √(a² - b²)。

六、椭圆的参数方程的参数意义在椭圆的参数方程中,参数θ表示椭圆上的任意一点的弧度角,取值范围为0至2π。

通过改变θ的取值,可以得到椭圆上的所有点坐标。

七、椭圆的图像与实际应用椭圆图形在现实生活中有广泛的应用。

例如,椭圆形状的行星轨道、地球绕太阳的轨迹等都可以用椭圆来描述。

此外,椭圆在艺术设计和建筑设计中也常常被使用。

高二椭圆知识点总结

高二椭圆知识点总结

高二椭圆知识点总结椭圆是一个经典的几何图形,它在高二数学中也占据着重要的地位。

本文将对高二椭圆的相关知识点进行总结,包括椭圆的定义、性质、方程、焦点与直径、切线与法线以及与其他几何图形的关系等内容。

1. 椭圆的定义椭圆是平面上到两个固定点F1和F2的距离之和恒定的点的集合。

这两个固定点称为椭圆的焦点,记作F1、F2,它们之间的距离为2a。

椭圆上的任意一点P到两个焦点的距离之和等于常数2a,即PF1 + PF2 = 2a。

2. 椭圆的性质(1) 椭圆的离心率e小于1,且越接近于1,椭圆越扁平。

(2) 椭圆的长轴是通过两个焦点的直线段,记为2a;短轴是通过椭圆中心且垂直于长轴的直线段,记为2b。

(3) 椭圆的离心率e与长轴a、短轴b的关系为e = √(1 - b²/a²)。

(4) 椭圆的面积为πab。

3. 椭圆的方程(1) 标准方程:设椭圆的焦点在坐标原点上,长轴与x轴重合。

则椭圆的标准方程为x²/a² + y²/b² = 1。

(2) 一般方程:设椭圆的焦点在任意位置,且长轴与x轴的夹角为α。

则椭圆的一般方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆的中心坐标。

4. 椭圆的焦点与直径(1) 椭圆的焦点是确定椭圆形状和大小的重要元素,它们与椭圆的离心率相关。

(2) 椭圆的直径是通过椭圆中心且与椭圆两点重合的直线段,它的长度等于长轴的长度2a。

5. 椭圆的切线与法线(1) 椭圆上任意一点P处的切线是与椭圆相切且经过点P的直线,切线的斜率为y' = -b²x/a²y。

(2) 椭圆上任意一点P处的法线是与切线垂直的直线,它的斜率为y' = a²x/b²y。

6. 椭圆与其他几何图形的关系(1) 椭圆与直线的关系:当直线与椭圆相交时,交点个数有四种情况:无交点、一个交点、两个交点、两个交点且直线与椭圆相切。

高二椭圆知识点总结

高二椭圆知识点总结

高二椭圆知识点总结椭圆是高中数学中的一个重要内容,是解析几何中的一个基本图形。

在高二阶段,学生需要掌握椭圆的相关性质和定理,理解其在几何和代数方面的应用。

本文将对高二椭圆的知识点进行总结,帮助学生更好地掌握和理解此部分内容。

一、椭圆的定义和基本特性椭圆可定义为平面上到两个固定点F1和F2的距离之和为常数2a的点集。

其中,F1和F2称为椭圆的焦点,两焦点之间的距离为2c,椭圆的离心率定义为e=c/a。

椭圆的长轴和短轴分别是通过两焦点并且垂直于长轴的直线段,长轴的长度为2a,短轴的长度为2b。

椭圆的焦点在坐标系的x轴上,且原点为椭圆的中心。

椭圆的标准方程为 x^2/a^2 + y^2/b^2 = 1,其中a>b>0。

二、椭圆的性质和定理1. 焦半径定理:对于椭圆上的任意一点 P,设其到两个焦点的距离分别为 d1 和 d2,则有 d1 + d2 = 2a。

2. 定义两个焦点到椭圆上任意一点的距离之和为常数2a,我们可以得到椭圆的双离心性质。

3. 推论1:椭圆上的顶点为(±a, 0),端点为(0,±b)。

4. 推论2:椭圆的离心率满足 0 < e < 1,即离心率小于1且大于0。

5. 椭圆的重要性质之一是切线的斜率,切线的斜率等于 y =±(b/a) * sqrt(a^2 - x^2) 在该点的导数。

6. 椭圆的两条焦半径正好和椭圆上的法线垂直。

7. 椭圆的两条直径正交。

8. 椭圆的周长可以近似计算为C ≈ 2π * sqrt((a^2 + b^2) / 2)。

三、椭圆的应用1. 椭圆在几何方面的应用:椭圆的形状可以用来描述行星、卫星、地球轨道等运动的路径。

同时,在建筑设计中,椭圆的美学特性也得到了广泛应用。

2. 椭圆在代数方面的应用:椭圆的标准方程可以用来解决一些代数问题,如求解椭圆与直线的交点、椭圆与其他曲线的交点等等。

3. 椭圆在物理学中的应用:椭圆方程被广泛用于描述天体力学问题中天体的轨道。

高二数学椭圆知识点

高二数学椭圆知识点

高二数学椭圆知识点一、引言简要介绍椭圆在数学中的重要性及其在现实世界中的应用。

二、椭圆的定义1. 标准定义:在平面上,到两个固定点(焦点)距离之和为常数的点的轨迹称为椭圆。

2. 几何定义:由椭圆的中心、焦点和任意一点构成的三角形,其两边之和大于第三边。

三、椭圆的性质1. 焦点和焦距- 焦点:椭圆上任意一点到两个焦点的距离之和是常数,这个常数是椭圆的长轴。

- 焦距:两个焦点之间的距离。

2. 长轴和短轴- 长轴:椭圆上最长的直径,通过两个焦点。

- 短轴:垂直于长轴的最短直径。

3. 离心率- 定义:焦点到椭圆中心的距离与焦距的比值。

- 性质:离心率的值介于0和1之间(不包括1)。

四、椭圆的标准方程1. 直角坐标系中的椭圆方程- 横向椭圆:`(x^2)/(a^2) + (y^2)/(b^2) = 1` (a > b)- 纵向椭圆:`(y^2)/(a^2) + (x^2)/(b^2) = 1` (a < b)2. 参数a、b、c的关系:`c^2 = a^2 - b^2`五、椭圆的图形特征1. 椭圆的对称性2. 椭圆的边界3. 椭圆的内含角和外切角六、椭圆的面积计算- 公式:`A = πab`七、椭圆的应用问题1. 椭圆在几何问题中的应用2. 椭圆在物理和工程问题中的应用3. 椭圆在天文学中的应用八、椭圆的相关问题解答1. 椭圆与圆的关系2. 椭圆的切线问题3. 椭圆的焦点反射性质九、练习题提供几个关于椭圆的计算和证明问题,包括:- 求椭圆的焦点坐标- 计算椭圆的面积- 求椭圆的离心率- 椭圆上的切线问题十、结论总结椭圆的重要性和在数学学习中的地位。

请根据上述概要,逐一扩展每个部分的内容,确保每个部分都有详细的解释和必要的数学公式。

同时,可以添加图表和示例来帮助理解。

最终的文章应该是逻辑清晰、结构严谨、语言准确,并且格式规范,便于读者阅读和理解。

高二数学椭圆通经知识点

高二数学椭圆通经知识点

高二数学椭圆通经知识点椭圆是二次曲线的一种,具有许多重要的性质和应用。

在高二数学学习中,学生将接触到椭圆的基本定义、性质和相关公式。

本文将介绍高二数学学习中涉及到的椭圆的主要知识点。

一、椭圆的定义和特点椭圆可以由两个焦点F1和F2以及到这两个焦点距离之和等于常数2a的点的集合定义。

其中,焦距是两个焦点之间的距离,长轴是通过焦点的线段,短轴是垂直于长轴通过焦点的线段。

椭圆的主要特点有:1. 长短轴之比为b/a:椭圆的长短轴之比称为离心率,用e表示。

2. 中心:椭圆的中心为两个焦点的中点。

3. 对称性:椭圆具有两种对称轴,分别是长轴和短轴。

4. 焦点与顶点的坐标:焦点的坐标为(F1,0)和(F2,0),顶点的坐标为(a,0)和(-a,0)。

5. 离心率与几何性质:离心率e决定了椭圆的形状,当e<1时为椭圆,e=1时为抛物线,e>1时为双曲线。

二、椭圆的方程椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆中心的坐标。

当椭圆的中心为原点时,方程可以简化为:x²/a² + y²/b² = 1。

三、椭圆的焦点坐标椭圆的焦点坐标可以通过以下公式计算:F1 = (ae,0),F2 = (-ae,0),其中e为离心率,a为椭圆长轴的长度。

四、椭圆的参数方程椭圆的参数方程表示了椭圆上每个点的坐标,参数为角度θ。

x = a*cosθ,y = b*sinθ。

五、椭圆的周长和面积椭圆的周长C和面积S可以通过以下公式计算:C = 4a*E(e),S = π*a*b,其中E(e)为椭圆的第二类完全椭圆积分,π为圆周率。

六、椭圆的性质和应用椭圆具有许多重要的性质和应用,包括:1. 投影性质:当椭圆的平面与投影平面平行时,投影是一个圆。

2. 聚焦性质:椭圆折射光线具有将入射光线聚焦到焦点的性质,这一性质在光学系统的设计中有广泛应用。

高二圆锥曲线椭圆 知识点

高二圆锥曲线椭圆 知识点

高二圆锥曲线椭圆知识点圆锥曲线是高二数学中的重要内容之一,其中椭圆是其中的一种。

椭圆作为圆锥曲线的一种特殊情况,具有一些独特的性质和特点。

本文将介绍高二圆锥曲线椭圆的相关知识点,帮助读者更好地理解和应用。

一、椭圆的定义和性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,a称为椭圆的半长轴,椭圆的形状取决于a和焦点之间的距离。

椭圆的性质:1. 椭圆的离心率(e)小于1,且等于焦点之间的距离与半长轴之比。

2. 椭圆的中点O为原点,x轴为主轴,y轴为副轴,且过焦点F1、F2的直线称为焦准线。

3. 椭圆的对称轴平行于y轴,焦准线垂直于对称轴。

4. 椭圆的离心角等于焦角的一半。

5. 椭圆的半长轴与焦点之间的距离之和等于2a。

二、椭圆的方程和参数表示椭圆可以以方程或参数表示。

常见的椭圆方程为:(x^2/a^2) + (y^2/b^2) = 1,其中a和b分别表示半长轴和半短轴的长度。

椭圆的参数表示为:x = a*cosθ,y = b*sinθ,其中θ为参数。

三、椭圆的重要点和线椭圆上的重要点和线有:1. 焦点F1和F2:椭圆的焦点位于椭圆的长轴上。

2. 长轴:椭圆上两焦点之间的距离,即2a。

3. 短轴:椭圆上两顶点之间的距离,即2b。

4. 焦准线:焦点F1、F2所在的直线,对称轴的垂线。

5. 扇形:椭圆上连接两焦点和一点P的弧段,称为扇形。

6. 弦:椭圆上连接两点的线段,称为弦。

四、椭圆的性质与应用1. 对称性:椭圆关于主轴和副轴对称。

2. 直径:椭圆上与两焦点相垂直的直线段称为直径。

3. 焦点定位法则:对于给定的椭圆,焦点F1和F2是确定的,根据焦点定位法则可以绘制出椭圆的形状。

4. 椭圆的应用:椭圆经常出现在日常生活和科学研究中。

例如,候车室的设计、卫星轨道、行星公转路径等都可以用椭圆来近似表示。

五、椭圆的相关定理和公式1. 椭圆内切矩形:椭圆内可切一个面积最大的矩形,它的边与椭圆的长轴平行。

高二数学——椭圆讲解

高二数学——椭圆讲解

高二数学——椭圆讲解只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。

基本知识概要 1 椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M={P||PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。

其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。

②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。

(1=e 为抛物线;1>e 为双曲线) 2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by ax (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。

其中22ba c -=(一个∆Rt )(2)焦点在y 轴上,中心在原点:12222=+bx ay (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。

其中22ba c -=注意:①在两种标准方程中,总有a >b >0,22ba c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。

3.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a半长轴长,b 半短轴长); ④ 准线方程:cax 2±=;或cay 2±=⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。

高二数学(椭圆及双曲线)

高二数学(椭圆及双曲线)

图形
标准方程 第一定义
x2 a2

y2 b2
1 a
0,b
0
y2 a2

x2 b2
1 a
0,b
0
到两定点 F1 、F2 的距离之差的绝对值等于常数 2a ,即 | MF1 | | MF2 | 2a
9
第二定义 范围
( 0 2a | F1F2 | )
与一定点的距离和到一定直线的距离之比为常数 e ,即 MF e (e 1)
圆与圆 C 关于直线 x+y﹣2=0 对称. (l)求圆 C 的方程; (2)过点 P(m,0)作圆 C 的切线,求切线长的最小值以及相应的点 P 的坐标.
4
14.(2015 秋•城厢区校级期中)已知 F1(﹣1,0)、F2(1,0)为椭圆 C 的左、右焦点,且 点 P(1, )在椭圆 C 上.
(1)求椭圆 C 的方程; (2)若直线 y=x+1 与椭圆 C 交于 A、B 两点,求弦长|AB|.
=1(a>b>0)上的点 P 到左、右两焦点 F1,F2 的距
离之和为 2 ,离心率为 .
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点 F2 的直线 l 交椭圆于 A、B 两点.
(1)若 y 轴上一点
满足|MA|=|MB|,求直线 l 斜率 k 的值;
(2)是否存在这样的直线 l,使 S△ABO 的最大值为 (其中 O 为坐标原点)?若存在, 求直线 l 方程;若不存在,说明理由.
7.(2015•上海模拟)已知 F1,F2 是椭圆
|PF1|•|PF2|的最大值是( )
A.9
B.16
的两个焦点,P 是椭圆上的任意一点,则
C.25

高二椭圆数学知识点总结

高二椭圆数学知识点总结

高二椭圆数学知识点总结椭圆是解析几何中非常重要的一个曲线。

在高二数学课程中,我们学习了椭圆的一系列性质和定理。

本文将总结高二椭圆数学知识点,帮助大家系统地理解和掌握椭圆的相关内容。

1. 椭圆的定义和基本性质椭圆可以通过两个焦点和所有到这两个焦点距离之和等于常数的点的集合来定义。

其中,两个焦点分别为F1和F2,到焦点的距离之和为2a,a为椭圆的长半轴,中点O为短半轴b。

2. 椭圆的方程椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h, k)为椭圆的中心坐标。

若椭圆的长轴与x轴平行,则方程化简为(x-h)^2/a^2 + (y-k)^2/b^2 = 1。

3. 椭圆的离心率椭圆的离心率e描述了椭圆形状的圆心偏移程度。

离心率的计算公式为e = c/a,其中c为焦点到圆心的距离。

离心率决定了椭圆的扁平程度,当e<1时,椭圆更加扁平,当e=1时,椭圆退化为圆。

4. 椭圆的几何性质(1)焦点引法:椭圆上的点P到焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。

这一性质可以用来解决直线和椭圆的切点问题。

(2)弦长定理:椭圆内任意两点P1(x1, y1)和P2(x2, y2)的连线段P1P2的长度为2a * sqrt(1 - e^2 * cos^2θ),其中θ为P1P2与椭圆长轴的夹角。

(3)切线定理:椭圆上任一点P处的切线斜率等于y轴上点P 到两焦点连线的斜率的相反数。

(4)四边形面积定理:以椭圆的两焦点F1、F2及椭圆上两点A、B为对角线的四边形面积为2ab,其中A、B为椭圆上的点。

5. 椭圆的参数方程椭圆的参数方程为x = h + a * cosθ,y = k + b * sinθ,其中θ为参数,范围为0到2π。

6. 椭圆的焦点和直线的关系对于给定的椭圆和直线,若直线不经过椭圆的焦点,则直线与椭圆相交于两个点;若直线与椭圆相切,则有且仅有一个交点;若直线经过椭圆的焦点,则直线与椭圆没有交点。

高二数学第一册知识点椭圆

高二数学第一册知识点椭圆

高二数学第一册知识点椭圆椭圆是数学中一种重要的几何形状,广泛应用在各个领域中。

在高二数学第一册中,学习椭圆是一个重要的知识点。

本文将详细介绍椭圆的定义、性质以及相关定理的应用。

1. 椭圆的定义椭圆可以简单地定义为平面上到两个固定点(焦点)的距离之和等于常数的点的集合。

而该常数称为椭圆的离心率,离心率的取值范围是0到1之间。

2. 椭圆的性质(1)对于椭圆上的任意一点P,到两个焦点的距离之和等于两个焦半径的长度。

(2)椭圆的两个焦点关于中心对称,且中心处于椭圆的对称轴上。

(3)椭圆的长轴是通过两个焦点且垂直于椭圆的短轴的线段。

(4)椭圆的离心率等于焦距与长轴长度的比值。

3. 椭圆的方程椭圆的标准方程通常可以表示为(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别是长轴和短轴的长度。

4. 椭圆的参数方程椭圆的参数方程可以表示为x = h + a*cosθy = k + b*sinθ,其中θ为参数,取值范围是0到2π。

5. 椭圆的焦点方程椭圆的焦点坐标可以表示为F₁(h-c, k)和F₂(h+c, k),其中c为焦距的一半,c² = a² - b²。

6. 椭圆的常见定理(1)实施定理:椭圆上任意一点P的切线与两个焦点F₁和F₂的连线之间的夹角等于椭圆法线与椭圆长轴的夹角。

(2)布里亚定理:椭圆上任意一点P到两个焦点F₁和F₂的距离之和等于椭圆上任意一点到椭圆的直径的距离之和。

7. 椭圆的应用(1)椭圆在天体力学中的应用:椭圆轨道是描述行星运动的基本模型。

(2)椭圆在建筑设计中的应用:椭圆形状可以用来设计建筑物的门廊、窗户等部分,增加建筑的美观性。

(3)椭圆在电子产品设计中的应用:椭圆形状可以用来设计电子设备的触摸按钮、屏幕等部分,提高用户体验。

综上所述,椭圆是高二数学第一册中的重要知识点。

高中数学椭圆知识点小结

高中数学椭圆知识点小结

高二数学椭圆知识点1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。

③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。

②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。

高二数学椭圆知识点整理

高二数学椭圆知识点整理

一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.说明:两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2.(2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当10<<e 时,点的轨迹是椭圆. 椭圆上一点到焦点的距离可以转化为到准线的距离.二、椭圆的数学表达式:()0222121>>=+F F a a PF PF ;(){}.02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程:焦点在x 轴: ()012222>>=+b a by a x ; 焦点在y 轴: ()012222>>=+b a bx a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足.222c b a +=四、二元二次方程表示椭圆的充要条件方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件: 上式化为122=+CBy C Ax ,122=+BC y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当B C A C >时,椭圆的焦点在x 轴上;当BC A C <时,椭圆的焦点在y 轴上.五、椭圆的几何性质(以()012222>>=+b a by a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3.顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5.离心率(1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆.6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为ab 22. 7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.例题选讲一、选择题1.椭圆1422=+y x 的离心率为( )A .23 B .43 C .22 D .32 2.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A . 4B .5C . 8D .10 3.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21, 则m=( ) A .3 B .23 C .38 D .32 4.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .125.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .552 6.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .32B .33C .22D .23 7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )A .23B .62C .72D .24二、填空题:8. 在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .9. 已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .10.在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A C B += . 11.椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.三、解答题12.已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.13.已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆 的标准方程.14.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.15.已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.16. 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

312 椭圆的简单几何性质(基础知识+基本题型)(含解析)2022高二数学(选择性必修第一册)

312 椭圆的简单几何性质(基础知识+基本题型)(含解析)2022高二数学(选择性必修第一册)

3.1.2椭圆的简单几何性质(基础知识+基本题型)知识点一椭圆的范围以椭圆22221(0)x y a b a b +=>>为例.由标准方程可知,椭圆上点的坐标(,)x y 都适合不等式22221,1x y a b≤≤,即2222,x a y b ≤≤,所以||,||x a y b ≤≤.这说明椭圆位于直线x a =±和y b =±所围成的矩形框内(如图2.2-8).拓展(1)确定了曲线的范围后,用描点法作图时,就可以不取范围之外的点了,在解析几何中,讨论曲线的范围就是确定方程中变量的取值范围.(2)如果将椭圆的标准方程22221(0)x y a b a b+=>>变形为y =,那么这个椭圆的方程可以分成y =,y =两个函数式,研究椭圆的范围,就是讨论这两个函数的定义域和值域,这也是讨论椭圆范围的一种方法.知识点二椭圆的对称性以椭圆22221(0)x y a b a b+=>>为例.1.椭圆的对称轴:坐标轴.2.椭圆的对称中心:原点(0,0)O ,椭圆的对称中心叫做椭圆的中心.通过观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形.提示:(1)在方程22221(0)x y a b a b+=>>中,将x 换成x -,方程显然不变,这就是说椭圆上的点(,)x y 关于y 轴的对称点(,)x y -也在椭圆上,故椭圆关于y 轴对称;将方程中的y 换成y -,方程也不变,故椭圆关于x 轴对称;同理,将,x y 分别换成,x y --时,方程也不变,故椭圆关于原点对称.(2)椭圆的中心是焦点连线的中点,对称轴是焦点的连线及它的垂直平分线.(3)椭圆关于x 轴、y 轴成轴对称,关于原点成中心对称,原点为椭圆的中心.知识点三椭圆的顶点与长轴、短轴以椭圆22221(0)x y a b a b+=>>为例.1.椭圆的顶点令0x =,得y b =±,令0y =,得x a =±.这说明12(,0),(,0)A a A a -是椭圆与x 轴的两个交点,1(0,)B b -,2(0,)B b 是椭圆与y 的两个交点,因为x 轴、y 轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点.这四个交点叫做椭圆的顶点.2.椭圆的长轴、短轴线段12A A 叫做椭圆的长轴,它的长为2a ,a 叫做椭圆的长半轴长.线段12B B 叫做椭圆的短轴,它的长为2b ,b 叫做椭圆的短半轴长.提示明确,a b 的几何意义,a 是长半轴长,b 是短半轴长,由222c a b =-,得“已知椭圆的四个顶点求焦点”的几何作法,只要以短轴的端点1B (或2B )为圆心,以a 为半径作弧,交长轴于两点,这两点就是焦点.知识点四椭圆的离心率1.定义:椭圆的焦距与长轴长的比称为椭圆的离心率,记作22c c e a a==.2.范围:因为0a c >>,所以01ca<<,即(0,1)e ∈.拓展对椭圆离心率的理解(1)01e <<,越趋近于1,椭圆越扁;越趋近于0,椭圆越接近于圆.(2)当趋近于0时,c 趋近于0,椭圆变圆,直至成为圆,此时也可认为圆在椭圆在0e =时的特例.(3)当趋近于1时,c 趋近于a ,椭圆变扁,直至成为线段12F F ,此时也可认为12F F 为椭圆在1e =时的特例.(4)2221b e a=-.知识点五直线与椭圆的位置关系1.直线与椭圆的三种位置关系:(1)相交;(2)相切;(3)相离.2.直线与椭圆的位置关系的判断;直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定,通常用消元后的关于x (或y )的一元二次方程的判别式∆来判定;0∆>⇔直线与椭圆相交;0∆=⇔直线与椭圆相切;0∆<⇔直线与椭圆相离.3.弦长公式一条直线被椭圆所截得的线段叫做椭圆的弦,若直线y kx b =+与椭圆相交于不同的两点11(,)A x y ,22(,)B x y ,则直线被椭圆所截得的弦长公式为12|||AB x x =-或12|||AB y y =-.考点一由方程求椭圆的几何性质例1.求椭圆22925225x y +=的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.解:将椭圆的方程化为标准形式为221259x y +=,得5,3a b ==,则4c ==因此,长轴长210a =,短轴长26b =,离心率40.85c e a ===.焦点坐标为1(4,0)F -和2(4,0)F ,顶点坐标为1212(5,0),(5,0),(0,3),(0,3)A A B B --.将方程变形为55)y x =-≤≤,根据5)y x =≤≤可求出椭圆的两个顶点及其在第一象限内一些点的坐标(,)x y ,列表如下:x 012345y32.942.752.41.8先描点画出第一象限内的图形,再利用椭圆的对称性画出整个椭圆.将椭圆的方程化成标准方程易得5,3a b ==,则椭圆位于四条直线5x =±,3y =±所围成的矩形框内,又因为椭圆以两坐标轴为对称轴,所以只要画出椭圆在第一象限内的图形,就可以利用对称性画出整个椭圆.考点二由椭圆的几何性质求方程例2.已知椭圆C 以坐标轴为对轴称、长轴长是短轴长的5倍,且经过点(5,0)A ,求此椭圆的标准方程.解:方法1:若椭圆的焦点在x 轴上,设其标准方程为22221(0)x y a b a b +=>>由题意,得22252,2501,a b a b =⨯⎧⎪⎨+=⎪⎩解得5,1.a b =⎧⎨=⎩故所求椭圆的标准方程为22125x y +=,若椭圆的焦点在y 轴上,设其标准方程为22221(0)y x a b a b +=>>,由题意,得22252,0251,a b a b =⨯⎧⎪⎨+=⎪⎩解得25,5.a b =⎧⎨=⎩故所求椭圆的标准方程为22162525y x +=.综上所述,所求椭圆的标准方程为22125x y +=或22162525y x +=.方法2:设椭圆方程为221(0,0,)x y m n m n m n +=>>≠.由题意,得2501,5m n ⎧+=⎪⎨⎪=⨯⎩或2501,5m n⎧+=⎪⎨⎪=⨯⎩解得25,1m n =⎧⎨=⎩或25,625.m n =⎧⎨=⎩故所求椭圆的标准方程为22125x y +=或22162525y x +=.(1)利用椭圆的几何性质求椭圆的标准方程,通常利用待定系数法.(2)根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,其一般步骤:①确定焦点所在的坐标轴;②求出22,a b 的值;③写出标准方程.考点三求椭圆的离心率例3.若一个椭圆的长轴长、短轴长和焦距成等差数列,求该椭圆的离心率.分析:解答本题的关键是先由椭圆长轴长、短轴长和焦距成等差数列,列出,,a b c 的关系式,再转化成,a c 间的关系式,从而求出.解:因为椭圆的长轴长、短轴长和焦距成等差数列,所以2b a c =+,①所以224()b a c =+,即22242b a ac c =++.②又因为222a b c =+,所以22224()2a c a ac c -=++,③即225230c ac a +-=.两边同除以2a ,得25230e e +-=.④解得35e =或1e =-(舍去).故该椭圆的离心率为35.求椭圆的离心率,关键是寻找a 与c 的关系,一般地,(1)若已知,a c ,则直接代入ce a=求解;(2)若已知,a b,则由e =(3)若已知,,a b c 的关系,则可先转化为,a c 的齐次式,再转化为含的方程,求解即可.例4.若椭圆22221(0)x y a b a b+=>>上存在一点M ,使1290F MF ∠=︒(12,F F 为椭圆的两焦点),求椭圆的离心率的取值范围.解:设点M 的坐标是00(,)x y ,则220022222001,.x y a b x y c ⎧+=⎪⎨⎪+=⎩消去0y ,得222202()a cb xc -=.因为2200x a ≤≤②所以222222222()0,().a c b c a c b a c ⎧-≥⎪⎪⎨-⎪≤⎪⎩①②由①,得22c b ≥,即222c a c ≥+,所以222a c ≤,所以22212c e a =≥.又因为01e <<,所以2[2e ∈,由②,得222c b c -≤,此式恒成立.综上所述,所求椭圆的离心率的取值范围是2[2.(1)解析几何中求参数的取值范围是一类常见而又较困难的题型,其基本的解题思路有:①建立目标函数,运用求函数值域的方法求解;②建立目标变量的不等式,解不等式求解.(2)本题在用基本量表示出椭圆上的点的坐标后,借助椭圆的范围(||,||)x a y b ≤≤建立了一个关于基本量的不等式组.考点四点与椭圆的位置关系例5.直线1()y kx k R =+∈与焦点在x 轴上的椭圆2215x y m+=总有公共点,求m 的取值范围.解:方法1,直线1y kx =+恒过定点(0,1),直线与椭圆总有公共点等价于点(0,1)在椭圆内或椭圆上,所以20115m+≤,即1m ≥.又由于5m <,故[1,5)m ∈,方法2:由221,15y kx x y m=+⎧⎪⎨+=⎪⎩,得22(5)105(1)0m k x kx m +++-=,则2210020(1)(5)0k m m k ∆=--+≥对k R ∈恒成立,即2250mk m m +-≥对k R ∈恒成立.因为0m >,所以251k m ≥-对k R ∈恒成立,故10m -≤,即1m ≥.又因为5m <,所以[1,5)m ∈.点与椭圆的位置关系(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>上2200221x y a b ⇔+=;(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>外⇔2200221x y a b +>;(3)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>内2200221x y a b⇔+<.考点五直线与椭圆的位置关系例6.已知椭圆2241x y +=及直线y x m =+.(1)当直线与椭圆有公共点时,求实数m 的取值范围;(2)求直线被椭圆截得的最长弦的长度.解:由方程组2241,x y y x m⎧+=⎨=+⎩消去y 并整理,得225210x mx m ++-=.(1)因为直线与椭圆有公共点,所以222420(1)20160m m m ∆=--=-≥.解得m ≤故实数m 的取值范围是55[]22.(2)由根与系数的关系,得1225m x x +=-,21215m x x -⋅=,则弦长12||d x x =-===故当0m =时,d.(1)利用方程讨论直线与椭圆的位置关系设直线方程为y kx m =+,椭圆方程为22221(0)x y a b a b +=>>,联立方程,得2222,1.y kx m x y ab =+⎧⎪⎨+=⎪⎩消去方程组中的一个变量,得到关于另一变量的一元二次方程,写出判别式∆,则0∆>⇔直线与椭圆相交⇔有两个公共点;0∆=⇔直线与椭圆相切⇔有且只有一个公共点;0∆<⇔直线与椭圆相离⇔无公共点.(2)弦长问题设直线:y kx m =+交椭圆22221(0)x y a b a b+=>>于111(,)P x y ,222(,)P x y 两点,则1212||||PP x x =-=或1212||||PP y y =-=考点六椭圆中弦的中点问题例7焦点分别为和的椭圆截直线32y x =-所得椭圆的弦的中点的横坐标为12,求此椭圆方程.分析:设椭圆的方程→联立椭圆的方程与直线的方程→利用根与系数的关系设而不求→由中点列出方程→已知焦点→求出方程.解析:设22221(0)y x a b a b+=>>依题意,有22250a b -==.①由22221,32y x a b y x ⎧+=⎪⎨⎪=-⎩消去y 并整理,得2222222(9)1240a b x b x b a b +-+-=.因为12122x x +=,所以2226192b a b =+.所以223a b =.②由①②,得275a =,225b =.经检验,此时0∆>.所以椭圆方程为2217525y x +=.弦的中点问题的解决方法关于中点的问题,我们一般可以采用两种方法解决:(1)联立方程、消元,利用根与系数进行设而不求,从而简化运算过程;(2)利用“点差法”,求出与中点、斜率有关的式子,进而求解.不管应用何种方法,我们都必须要注意判别式∆的限制.考点七椭圆中的最值问题例8设椭圆的中心是坐标原点,长轴在x轴上,离心率e =3(0,2P 到这个椭圆P的点的坐标.分析:本题是解析几何与代数中的最大值的综合题.解题关键是怎样运用“最远距离是”这个条件,可尝试用两点间的距离公式,转化为函数的最大值问题来解.解析:设所求椭圆方程为22221x y a b +=(a >b >0).由c e a ==,得a =2b .①设椭圆上任一点M 的坐标为(x ,y ),点M 到点P 的距离为d ,则22222a y x a b =-,且2222222233()()22a d x y a y yb =+-=-+-2222913343()4342y y b y b =--++=-+++,其中b y b -≤≤.若12b <,则当y =-b 时,2d 取得最大值223()2b =+.解得3122b =>,与12b <矛盾.若12b ≥,则当12y =-时,2d 取得最大值2243b =+.②由①②,得b =1,a =2.故所求椭圆方程为2214x y +=.由12y =-,得椭圆上到点P 的点为1()2-,12-.本题是一道考查椭圆知识和函数最值的综合性问题,需要全面的掌握基础知识和基本方法,在建立二次函数求最值时,要特别注意通过椭圆的范围来确定自变量的取值范围.考点八与椭圆相关的实际问题例9在大西北的荒漠上,A ,B 两地相距2km ,正在准备在荒漠上围成一片以AB 为一条对角线的平行四边形区域,建立农艺园.按照规划,围墙总长度为8km .(1)农艺园的最大面积能达到多少?(2)该荒漠上有一条直线型水沟刚好过点A ,且与AB 成45︒角,现要对整条水沟进行加固改造,但考虑到今后农艺园内的水沟要重新设计改造,因此该水沟可能被农艺园围住的部分暂不加固,那么暂不加固的部分有多长?分析:(1)如图2.2-12所示,求农艺园的最大面积,实际就是求平行四边形ADBC 的面积的最大值.结合图形和椭圆的几何性质,易知当点C 位于短轴端点时,ACB ∆的面积最大,即平行四边形ADBC 的面积最大;(2)实质就是求弦长.解析:(1)如图2.2-12所示,由题意,知平行四边形相邻两边长之和为4km ,另两个端点C ,D 在以A ,B 为焦点的椭圆上.以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系,则椭圆方程为22143x y +=(0y ≠).因为max ()ABC S ∆=(点C 在短轴端点),所以农艺园的最大面积为2km .(2)由题可知,直线型水沟的方程是y =x +1,暂时不加固的部分的长度即直线被椭圆所截得的弦长.把直线方程代入椭圆方程,得27880x x +-=.1224|7x x -=.所以暂时不加固的部分长为247km .椭圆是天文学和日常生产、生活中常见的一个模型,因此,我们必须熟练掌握利用代数方法解决与椭圆有关的问题的技巧.。

高二上数学知识点椭圆

高二上数学知识点椭圆

高二上数学知识点椭圆椭圆是数学中一种重要的曲线,广泛应用于几何学以及物理学中。

下面将逐一介绍椭圆的定义、性质以及相关的定理。

一、椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的动点P的轨迹。

这两个定点F1和F2称为椭圆的焦点,而轨迹上的每个点P到两个焦点的距离之和等于常数2a。

二、椭圆的性质椭圆有以下几个重要的性质:1. 首先,在椭圆上任意取一点P,过点P分别作P到两个焦点的垂线,这两条垂线与椭圆的两条轴交于四个点A、B、C、D。

通过实际计算可以得到这四个点满足AC + BD = 2a,其中a为椭圆的长半轴。

2. 其次,根据椭圆定义可知,椭圆上到两个焦点的距离之和等于常数2a,所以对于椭圆上的任意一点Q,可以得到QF1 + QF2 = 2a。

3. 再次,椭圆是关于两条轴对称的,即椭圆上的任意一点Q关于两条轴对称的点Q'也在椭圆上。

4. 最后,与椭圆的焦点连线相交于椭圆上的两个点,则两焦点与这两个焦点之间的连线构成的四边形面积相等。

三、椭圆的相关定理1. 定理一:弦长定理若在椭圆上任取两点P、Q,并分别连接两焦点F1、F2与这两点,那么线段PF1 + QF2 的长度等于线段PQ的长度。

2. 定理二:切线性质椭圆上的切线与该点到两个焦点的连线垂直。

3. 定理三:切线的交点椭圆上一条切线与两个焦点连线的交点构成的线段,称为切线段。

两条不同的切线段交于一点,该点在椭圆上。

四、椭圆的方程椭圆的标准方程为:[(x - h)² / a²] + [(y - k)² / b²] = 1,其中(a>b>0)。

椭圆的中心坐标为(h, k),a为椭圆的长半轴,b为椭圆的短半轴。

五、椭圆的应用椭圆广泛应用于实际生活中的各个领域,例如天文学、卫星轨道设计、球类运动等。

在天文学中,行星、卫星以及彗星的轨道就可以近似看作椭圆。

而在卫星轨道设计以及导弹轨迹计算中,也离不开椭圆的存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 课题:椭圆课 型:复习巩固 上课时间:2013年10月3日 教学目标:(1)了解圆锥曲线的来历;(2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题;教学重点:椭圆方程、离心率;教学难点:与椭圆有关的参数取值问题;知识清单一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2.(2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当10<<e 时,点的轨迹是椭圆. 椭圆上一点到 焦点的距离可以转化为到准线的距离.二、椭圆的数学表达式:()0222121>>=+F F a a PF PF ; (){}.02,22121>>=+=F F a a PF PF P M三、椭圆的标准方程:焦点在x 轴: ()012222>>=+b a b y a x ;焦点在y 轴: ()012222>>=+b a bx a y .说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足.222c b a +=四、二元二次方程表示椭圆的充要条件方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:上式化为122=+CBy C Ax ,122=+BC y A C x .所以,只有C B A 、、同号,且BA ≠时,方程表示椭圆;当BC A C >时,椭圆的焦点在x 轴上;当BCA C <时,椭圆的焦点在y 轴上.五、椭圆的几何性质(以()012222>>=+b a by a x 为例)1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3.顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5.离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆.6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.例题选讲 一、选择题1.椭圆1422=+y x 的离心率为( )A .23 B .43 C .22 D .32 2.设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A . 4B .5C . 8D .103.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21, 则m=( )A .3B .23C .38D .324.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A .2 3 B .6 C .4 3 D .125.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .5526.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .32B .33C .22D .237.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )A .23B .62C .72D .24二、填空题:8. 在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 9. 已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 . 10.在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B在椭圆192522=+y x 上,则sin sin sin A CB+= . 11.椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.三、解答题12.已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.13.已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆 的标准方程.14.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 15.已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.16. 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=. 4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

二、导数的运算1. 常见函数的导数:(1)()kx b k '+=(k , b 为常数); (2)0C '=(C 为常数); (3)()1x '=; (4)2()2x x '=; (5)32()3x x '=;(6)211()x x'=-;(7)';(8)1()ααx αx -'=(α为常数);(9)()ln (0,1)x x a a a a a '=>≠; (10)11(log )log (0,1)ln a a x e a a x x a '==>≠;(11)()x x e e '=;(12)1(ln )x x '=; (13)(sin )cos x x '=;(14)(cos )sin x x '=-。

2. 函数的和、差、积、商的导数:(1)[()()]()()f x g x f x g x '''±=±; (2)[()]()Cf x Cf x ''=(C 为常数);(3)[()()]()()()()f x g x f x g x f x g x '''=+;(4)2()()()()()[](()0)()()f x f x g x f x g x g x g x g x ''-'=≠。

3. 简单复合函数的导数:若(),y f u u ax b ==+,则xu x y y u '''=⋅,即x u y y a ''=⋅。

三、导数的应用1. 求函数的单调性:利用导数求函数单调性的基本方法:设函数()y f x =在区间(,)a b 内可导, (1)如果恒()0f x '>,则函数()y f x =在区间(,)a b 上为增函数; (2)如果恒()0f x '<,则函数()y f x =在区间(,)a b 上为减函数; (3)如果恒()0f x '=,则函数()y f x =在区间(,)a b 上为常数函数。

利用导数求函数单调性的基本步骤:①求函数()y f x =的定义域;②求导数()f x ';③解不等式()0f x '>,解集在定义域内的不间断区间为增区间;④解不等式()0f x '<,解集在定义域内的不间断区间为减区间。

相关文档
最新文档