平行线及三角形全等复习题
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题九(含答案) (86)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题九(含答案)阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.(1)当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,则Rt△ABC≌Rt△DEF(依据:________)(2)当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是________;A.全等B.不全等C.不一定全等(3)第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.【答案】(1)HL;(2)C;(3)证明见解析.【解析】【分析】(1)通过HL即可证明.(2)以F为圆心,AC长为半径画弧,交射线EM于D、D′;则DF=D′F=AC,△DEF≌△ABC,△D′EF和△ABC不全等;所以不一定全等.(3)过点C作CG⊥AB交AB的延长线于点G,过点F作DH⊥DE交DE的延长线于点H,先证明△CBG≌△FEH,得出CG=FH,再证明Rt△ACG≌Rt△DFH,得出∠A=∠D,再由AAS即可证出△ABC≌△DEF.【详解】解:(1)△ABC≌△DEF(依据:HL)(2)选择C理由:以F为圆心,AC长为半径画弧,交射线EM于D、D′;则DF=D′F=AC,△DEF≌△ABC,△D′EF和△ABC不全等;所以不一定全等.(3)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于点G ,过点F 作DH ⊥DE 交DE 的延长线于点H ,∵∠CBA=∠FED ,∴180°﹣∠CBA=180°﹣∠FED ,即∠CBG=∠FEH ,在△CBG 和△FEH 中,90CBG FEH G H BC EF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△CBG ≌△FEH (AAS ),∴CG=FH ,在Rt △ACG 和Rt △DFH 中,AC DF CG FH =⎧⎨=⎩, Rt △ACG ≌Rt △DFH (HL ),∴∠A=∠D ,在△ABC 和△DEF 中,A D CBA FED AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DEF (AAS ).【点睛】本题考查了全等三角形的判定与性质;熟练掌握三角形全等的判定方法,证明三角形全等是解决问题的关键.52.如图,点B、F、C、E在同一条直线上,AB//DE,AB=DE,BC=EF.求证:AC=DF.【答案】证明见解析.【解析】【分析】利用三角形全等即可证明.【详解】证明:∵AB DE∴B E∠=∠∵AB DE=,=BC EF∴△ABC≌△DEF=∴AC DF【点睛】掌握证明三角形全等的条件是解答本题的关键.53.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.求证:DE=EC.(用三种方法证明)【答案】证明见解析.【解析】【分析】本题是一道较为基础的题型,考查的是学生对于三角形全等证明的熟练程度,对于本题而言,根据题意给出证明即可解答.【详解】解:方法一:连接BE∵在三角形ABC中,∠C=90°, ∠A=30°,∴∠ABC=60°,∵DE垂直平分AB,∴BE=AE,∴∠DBE=∠A=30°,∴∠DBE=∠CBE,∴BE平分∠DBC,又∵ED⊥AB,CE⊥BC∴DE=EC方法二:连接CD,∵DE垂直平分AB,∴AD=BD,∵△ABC是直角三角形,∠B=60°∴△BCD是等边三角形∴∠BDC=∠BCD=60°∵∠CDE=90°-60°∠ECD=90°-60°∴∠CDE=∠ECD∴DE=CE方法三:构造等边三角形ABM如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB 和AC于点D,E延长BC、DE相交于点M,连接AM.在△ABC中,∵∠ACB=90°,∠A=30°∴∠B=60°又∵DE 垂直平分AB,∴AM=BM ,△ABM 是等边三角形,∴AD=CM在△ADE 和△MCE 中AED MEC ADE MCE AD MC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADE ≌△MCE (AAS )∴DE=CE.【点睛】由本题题干及题意可知,这是一道考查三角形全等的题,对于初中数学来说,牢牢掌握基础定义是解题的关键手段.54.如图,在平面直角坐标系中,已知A (0,8),B (4,8),C 是x 轴正半轴上一点,点P 满足下面两个条件:①P 到①AOC 两边的距离相等;①PA = PB . (1)利用尺规,作出点P 的位置(不写作法,保留作图痕迹);(2)点P 的坐标为 .【答案】(1)见解析;(2)P (2,2).【分析】(1)根据尺规作图法进行画图;(2)由角平分线和垂直平分线的定义作答.【详解】(1)(2)由题可知,C 的坐标为(4,0),由角平分线与垂直平分线定义知,∠POC=450,所以P 的坐标为(2,2).,【点睛】本题考查了尺规作图的步骤、角平分线与垂直平分线的定义,熟练掌握尺规作图、角平分线与垂直平分线的定义是本题解题关键.55.如图,点A ,B ,C ,D 在同一条直线上,AB DC =,E F ∠=∠,EC ①FB .求证:EA FD =.【答案】证明见解析.【分析】根据平行线的性质可得到∠1=∠2,根据等式的性由已知AB=CD 可得AC=BD ,从而可利用AAS 来判定△AEC ≌△DFB ,再根据全等三角形的对应边相等即可得到EA=FD .【详解】∵AB DC =(已知),∵AC DB =(等量加等量,和相等).∵EC ∵FB (已知),∵12∠=∠(两直线平行,内错角相等).在AEC 和DFB 中,,12,,E F AC DB (已知)(已证)(已证)∠=∠⎧⎪∠=∠⎨⎪=⎩∵AEC ∵DFB (AAS ).∵EA FD =( 全等三角形的对应边相等)【点睛】本题考查了全等三角形的判定和性质,平行线的性质的应用,注意:①全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,②全等三角形的对应边相等,对应角相等.56.如图,CD 平分∠ACB ,交AB 于点D ,AE ∥DC ,AE 与BC 的延长线相交于点E,∠ACE=80°,求∠CAE的度数.【答案】50°【解析】【分析】根据邻补角的定义求得∠ACB=100°;然后利用角平分线的定义求得∠DCA=50°;最后由平行线的性质和等量代换求得∠CAE的度数.【详解】∵∠ACE=80°(已知),∴∠ACB=100°(邻补角的定义),又∵CD平分∠ACB(已知),∴∠DCA=100°×12=50°,∵AE∥DC(已知),∴∠CAE=∠DCA=50°(两直线平行,内错角相等).【点睛】本题主要考查了平行线的性质和角平分线的定义,利用邻补角的定义求得∠ACB=100°是解题的关键.57.已知C是线段AB垂直平分线m上一动点,连接AC,以AC为边作等边三角形ACD,点D在直线AB的上方,连接DB与直线m交于点E,连接BC,AE.(1)如图1,点C在线段AB上.①根据题意补全图1;②求证:∠EAC=①EDC;(2)如图2,点C在直线AB的上方,0°<①CAB<30°,用等式表示线段BE,CE,DE之间的数量关系,并证明.【答案】(1)①补全图形见解析;②证明见解析;(2)BE=CE+DE,证明见解析.【解析】【分析】(1)①根据题意补全图形即可;②根据垂直平分线的性质可得EA=EB,CA=CB,根据等边三角形的性质可得CA=CD,因此CD=CB,即可证得∠EDC =∠B;(2)如图,在EB上截取EF,使EF=CE,连接CF.根据垂直平分线的性质以及等边三角形的性质可推出∠EDC=∠EAC,又因为∠1=∠2,可得∠DEA=60°,所以∠AEB=120°,进而可推出△CEF是等边三角形,因此△CDF≌△CBE,故BE=DF=CE+DE.【详解】(1)①补全图形如图所示.②∵直线m是AB的垂直平分线,∴EA=EB,CA=CB.∴∠EAC=∠B.∵△ACD是等边三角形,∴CA=CD.∴CD=CB.∴∠EDC=∠B.∴∠EAC=∠EDC.(2)BE=CE+DE.如图,在EB上截取EF,使EF=CE,连接CF.∵直线m是AB的垂直平分线,∴EA=EB,CA=CB.∴∠EAB=∠EBA,∠CAB=∠CBA.∴∠EAC=∠EBC.∵△ACD是等边三角形,∴CA=CD,∠ACD=60°.∴CD=CB.∴∠EDC=∠EBC.∴∠EDC=∠EAC.∵∠1=∠2,∴∠DEA=∠ACD=60°.∴∠AEB=120°.∵EA=EB,m⊥AB,∴∠AEC=∠BEC=60°.∴△CEF是等边三角形.∴∠CEF=∠CFE=60°.∴△CDF≌△CBE.∴DF=BE.∴BE=CE+DE.【点睛】本题主要考查了学生作图的能力、垂直平分线的性质、等边三角形的性质、全等三角形的判定及性质,熟练掌握这些知识点并综合运用是解答的关键.58.如图,在△ABC中,AB=AC,D是三角形内一点,连接AD,BD,CD,①BDC=90°,①DBC=45°.(1)求证:∠BAD=①CAD;(2)求∠ADB的度数.【答案】(1)证明见解析;(2)∵ADB =135°.【解析】【分析】(1)根据∠BDC=90°,∠DBC=45°可推出DBDC ,进而可证△ABD ≌△ACD ,即可证得∠BAD =∠CAD ;(2)根据△ABD ≌△ACD ,可得∠ADB =∠ADC ,又根据∠BDC =90°,∠ADB +∠ADC +∠BDC =360°,即可求出∠ADB 的大小.【详解】(1)∵∠BDC =90°,∠DBC =45°,∴∠DCB=∠DBC =45°.∴DB =DC .在△ABD 和△ACD 中AB AC AD AD BD CD ⎧⎪⎨⎪⎩=== ,, ∴△ABD ≌△ACD .∴∠BAD =∠CAD .(2)∵△ABD ≌△ACD ,∴∠ADB =∠ADC .∵∠BDC =90°,∴∠ADB =135°.【点睛】本题主要考查了等角对等边,全等三角形的判定与性质,解题的关键是要证出△ADB ≌△ACD.59.已知:如图,D 是BC 上的一点,AB=BD , DE ①AB ,①A=①DBE .求证: AC=BE .【答案】证明见解析.【解析】【分析】根据平行线的性质和全等三角形的判定和性质证明即可.【详解】∵DE ∵AB ,∵∵ABC=∵EDB .在△ABC 和△BDE 中A=DBE AB=BDABC=EDB ∠∠⎧⎪⎨⎪∠∠⎩∵∵ABC ∵∵BDE .∵AC=BE .【点睛】此题考查全等三角形的判定及性质的运用,解答时证明三角形全等是关键.60.(发现)(1)如图1,在△ABC中,AD是∠BAC的平分线,对于以下结论:①AD是△ABC的中线;①S△ABD:S△ACD=AB:AC;①AB:AC=BD:DC,其中正确的是(只填序号)(探究)(2)请你选择(1)中正确的一个选项,简述理由(应用)(3)如图2,①ABC的三个内角的角平分线相交于点O,且AB=40,BC=48,AC=32,则S ABO:S△BCO:S△ACO=::(拓展)(4)在(1)中的条件下,过点D作DE①AB于点E,DF①AB于点F,连接EF,求证:AD垂直平分EF.【答案】(1)②∵;(2)见解析;(3)5,6,4;(4)证明见解析.【解析】【分析】(1)根据角平分线的性质和三角形面积公式逐一判断可得;(2)②由AD平分∠BAC知点D到AB、AC的距离相等,设为h,由S△ABD=1 2AB•h,S△ACD=12AC•h可判断结论②;③作AP⊥BC,由S△ABD=12BD•AP,S△ACD=12CD•AP知S△ABD:S△ACD=BD:CD,结合S△ABD:S△ACD=AB:AC可得答案;(3)作OE⊥AB于E,OF⊥BC于F,OG⊥AC于G,根据角平分线的性质知OE=OF=OG,根据S△ABO=12AB•OE,S△BCO=12BC•OF,S△ACO=12AC•OG可得答案;(4)根据角平分线上的点到角的两边的距离相等可得DE=DF,再利用“HL”证明△ADE和△ADF全等,根据全等三角形的可得AE=AF,再利用等腰三角形的证明即可.【详解】(1)正确的是∵∵,故答案为:∵∵.(2)∵∵AD平分∠BAC,∴点D到AB、AC的距离相等,设为h,则S△ABD=12AB•h,S△ACD=12AC•h,∵S△ABD:S△ACD=AB:AC;∵如图1,作AP∵BC于点P,则S△ABD=12BD•AP,S△ACD=12CD•AP,∵S△ABD:S△ACD=BD:CD,又∵S△ABD:S△ACD=AB:AC,∵AB:AC=BD:CD.(3)如图2,过点O作OE∵AB于E,OF∵BC于F,OG∵AC于G,∵AO,BO,CO分别平分∠BAC,∵ABC,∵ACB,∵OE=OF=OG,∵S△ABO=12AB•OE,S△BCO=12BC•OF,S△ACO=12AC•OG,∵S ABO:S△BCO:S△ACO=AB:BC:AC=40:48:32=5:6:4,故答案为:5:6:4;(4)如图3,∵AD平分∠BAC,DE∵AB,DF∵AC,∵DE=DF,在△ADE和△ADF中,∵AD AD DE DF=⎧⎨=⎩,∵∵ADE∵∵ADF(HL),∵AE=AF,又∵AD平分∠BAC,∵AD垂直平分EF.【点睛】本题是三角形的综合问题,解题的关键是掌握角平分线的性质,三角形的面积公式,全等三角形的判定与性质等知识点.。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案) (48)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案)按要求画图,并解答问题(1)如图,取BC边的中点D,画射线AD;(2)分别过点B、C画BE⊥AD于点E,CF⊥AD于点F;(3)BE和CF的位置关系是;通过度量猜想BE和CF的数量关系是.【答案】(1)详见解析;(2)详见解析;(3)BE∥CF,BE=CF.【解析】【分析】(1)根据中点的定义和射线的概念作图即可;(2)根据垂线的概念作图即可得;(3)根据平行线的判定以及全等三角形的判定与性质进行解答即可得.【详解】解:(1)如图所示,射线AD即为所求;(2)如图所示BE、CF即为所求;(3)由测量知BE∥CF且BE=CF,∵BE⊥AD、CF⊥AD,∴∠BED=∠CFD=90°,∴BE∥CF,又∵∠BDE=∠CDF,BD=CD,∴△BDE≌△CDF(AAS),∴BE=CF,故答案为:BE∥CF,BE=CF.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握中点、射线、垂线的概念、平行线的判定及全等三角形的判定与性质等知识点.72.已知:如图,∠1=∠2,AD=AB,∠AED=∠C,求证:△ADE≌△ABC.【答案】见解析【解析】【分析】根据AAS证明△ADE≌△ABC.【详解】证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC,在△ADE 和△ABC 中,∵DAE BAC AED C AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△ABC (AAS ).【点睛】此题考查全等三角形的判定定理AAS ,根据图形的特点选择恰当的判定定理是解题的关键.73.在△ABC 中,AB 、AC 边的垂直平分线分别交BC 边于点M 、N(1)如图①,若∠BAC =110°,则∠MAN = °,若△AMN 的周长为9,则BC =(2)如图②,若∠BAC =135°,求证:BM 2+CN 2=MN 2;(3)如图③,∠ABC 的平分线BP 和AC 边的垂直平分线相交于点P ,过点P 作PH 垂直BA 的延长线于点H .若AB =5,CB =12,求AH 的长【答案】(1)40;9;(2)见详解;(3)3.5【解析】【分析】(1)根据线段垂直平分线的性质得到AM =BM ,NA =NC ,根据等腰三角形的性质得到BAM =∠B ,∠NAC =∠C ,结合图形计算即可;(2)连接AM 、AN ,仿照(1)的作法得到∠MAN =90°,根据勾股定理证明结论;(3)连接AP、CP,过点P作PE⊥BC于点E,根据线段垂直平分线的性质得到AP=CP,根据角平分线的性质得到PH=PE,证明Rt△APH≌Rt△CPE 得到AH=CE,证明△BPH≌△BPE,得到BH=BE,结合图形计算即可.【详解】解:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AB边的垂直平分线交BC边于点M,∴AM=BM,∴∠BAM=∠B,同理:NA=NC,∴∠NAC=∠C,∴∠MAN=110°﹣(∠BAM+∠NAC)=40°,∵△AMN的周长为9,∴MA+MN+NA=9,∴BC=MB+MN+NC=MA+MN+NA=9,故答案为:40;9;(2)如图②,连接AM、AN,∵∠BAC=135°,∴∠B+∠C=45°,∵点M 在AB 的垂直平分线上,∴AM =BM ,∴∠BAM =∠B ,同理AN =CN ,∠CAN =∠C ,∴∠BAM+∠CAN =45°,∴∠MAN =∠BAC ﹣(∠BAM+∠CAN )=90°,∴AM 2+AN 2=MN 2,∴BM 2+CN 2=MN 2;(3)如图③,连接AP 、CP ,过点P 作PE ⊥BC 于点E ,∵BP 平分∠ABC ,PH ⊥BA ,PE ⊥BC ,∴PH =PE ,∵点P 在AC 的垂直平分线上,∴AP =CP ,在Rt △APH 和Rt △CPE 中,PA PC PH PE =⎧⎨=⎩, ∴Rt △APH ≌Rt △CPE (HL ),∴AH =CE ,在△BPH 和△BPE 中,BHP BEP PBH PBE BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BPH ≌△BPE (AAS )∴BH =BE ,∴BC =BE+CE =BH+CE =AB+2AH ,∴AH =(BC ﹣AB )÷2=3.5.【点睛】本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.74.如图,点A 、F 、C 、D 在同一条直线上,已知AC =DF ,∠A =∠D ,AB =DE ,求证:BC ∥EF【答案】见详解【解析】【分析】由全等三角形的性质SAS 判定△ABC ≌△DEF ,则对应角∠ACB =∠DFE ,故证得结论.【详解】证明:在△ABC 与△DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DEF (SAS ),∴∠ACB =∠DFE ,∴BC ∥EF .【点睛】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形全等的条件.75.已知:如图,∠B =∠D ,∠1=∠2,AB =AD ,求证:BC =DE .【答案】见解析【解析】【分析】先利用ASA 证明△ABC ≌△ADE ,再根据全等三角形的性质即得结论.【详解】证明:∵∠1=∠2,∴∠DAC +∠1=∠2+∠DAC∴∠BAC =∠DAE ,在△ABC 和△ADE 中,B D AB ADBAC DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△ADE (ASA ),∴BC =DE .【点睛】本题考查了全等三角形的判定和性质,属于基础题型,熟练掌握全等三角形的判定和性质是解答的关键.76.(l)观察猜想:如图①,点B 、A 、C 在同一条直线上,DB BC ⊥,EC BC ⊥ 且90DAE ︒∠=,AD AE = ,则ADB ∆和EAC ∆是否全等?__________(填是或否),线段,,,AB AC BD CE 之间的数量关系为__________(2)问题解决:如图②,在Rt ABC ∆中,90ABC ∠=︒,AC = ,6AB = ,以AC 为直角边向外作等腰Rt DAC ∆ ,连接BD ,求BD 的长。
中考数学专题复习全等三角形之辅助线做平行线
中考数学专题复习全等三角形(辅助线做平行线)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=P A,连接PQ交AC于点D,则DE的长为()A.1B.1.8C.2D.2.52.如图,⊥ABC是边长为2的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC到点Q,使CQ=P A,连接PQ交AC于点D,则DE的长为()A.0.5B.0.9C.1D.1.25评卷人得分二、填空题3.如图,四边形ABCD中,AC与BD相交于点O,且AC⊥BD,AC=BD=CD,点P 是⊥OCD角平分线的交点,点M是AB的中点,给出下列结论:⊥⊥CPD=135°;⊥BA=BP;⊥⊥P AC⊥⊥PDB;⊥S△ABP=S△DCP;⊥PM=12CD.其中正确的是___.(填序号)评卷人得分三、解答题4.如图,⊥ABC中,点D,E在边AB上,点F在边BC上,且AD=AC,EF=EC,⊥CEF=⊥A,连接DF.(1)在图1中找出与⊥ACE相等的角,并证明;(2)求证:⊥BDF=⊥EFC;(3)如图2,延长FD,CA交于点G,连接EG,若EG=AG,DE=kAE,求DG DF的值(用含k的代数式表示).5.如图所示:ABC是等边三角形,D、E分别是AB及AC延长线上的一点,且BD CE=,连接DE交BC于点M.求让:MD ME=6.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.7.P为等边⊥ABC的边AB上一点,Q为BC延长线上一点,且P A=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.8.如图,点P为等边⊥ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,(1)求证:DP=DQ;(2)过P作PE⊥AC于E,若BC=4,求DE的长.9.已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.10.读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且⊥BAE=⊥CDE,求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.图(1):延长DE到F使得EF=DE图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F图(3):过C点作CF⊥AB交DE的延长线于F.参考答案:1.C【解析】【分析】过P作BC的平行线交AC于F,通过AAS证明PFD⊥QCD,得FD CD=,再由APF 是等边三角形,即可得出12DE AC=.【详解】解:过P作BC的平行线交AC于F,Q FPD∴∠=∠,ABC是等边三角形,60APF B∴∠=∠=︒,60AFP ACB∠=∠=︒,APF∴△是等边三角形,AP PF∴=,⊥CQ=P A,⊥PF CQ=在PFD中和QCD中,FPD QPDF QDCPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,PFD∴⊥()QCD AAS,FD CD∴=,PE AC⊥于E,APF是等边三角形,AE EF∴=,=AE DC EF FD ED∴+=+,12DE AC∴=,4AC=,2DE∴=,故选:C.【点睛】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键.2.C【解析】【分析】过P作BC的平行线交AC于F,通过AAS证明PFD≌QCD,得FD CD=,再由APF 是等边三角形,即可得出12DE AC=.【详解】解:过P作BC的平行线交AC于F,Q FPD∴∠=∠,ABC是等边三角形,60APF B∴∠=∠=︒,60AFP ACB∠=∠=︒,APF∴是等边三角形,AP PF∴=,在PFD中和QCD中,FPD QPDF QDCPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,PFD∴≌()QCD AAS,FD CD∴=,PE AC⊥于E,APF是等边三角形,AE EF ∴=,AE DC EF FD ∴+=+,12DE AC ∴=, 2AC =, 1DE ∴=,故选:C . 【点睛】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键. 3.⊥⊥⊥⊥ 【解析】 【分析】由角平分线的定义,可得⊥CDP +⊥DCP =12⊥CDO +12⊥DCO =45°,进而即可判断⊥;先证ACP DCP ≌,可得APD △是等腰直角三角形,进而得PAC PDB ≌,即可判断⊥;过点A 作AN ⊥BP 交PM 的延长线于点N ,可得AMN BMP ≌,再证明APN PDC ≌,从而得PM =12CD ,即可判断⊥;由ABP APM BMP APM AMN APN S S S S S S +=+==,即可判断⊥. 【详解】解:⊥AC ⊥BD ,点P 是⊥OCD 角平分线的交点,⊥⊥DOC =90°,⊥ODC +⊥OCD =90°,⊥CDP =12⊥CDO ,⊥DCP =12⊥DCO , ⊥⊥CDP +⊥DCP =12⊥CDO +12⊥DCO =45°,⊥⊥CPD =180°-(⊥CDP +⊥DCP )=135°,故⊥正确; ⊥CP ,DP 分别平分⊥DCO ,⊥CDO , ⊥⊥DCP =⊥ACP ,⊥CDP =⊥BDP , ⊥AC =CD ,PC =PC , ⊥ACP DCP ≌,⊥AP =DP ,⊥CAP =⊥CDP =⊥BDP ,⊥APC =⊥DPC =135°, ⊥⊥DP A =360°-135°-135°=90°,⊥APD △是等腰直角三角形, 又⊥AC =BD ,⊥CAP =⊥BDP,AP =DP , ⊥PAC PDB ≌,故⊥正确; ⊥⊥DPB =⊥APC=135°,PB =PC , ⊥⊥BPC =360°-135°-135°=90°,⊥BPC △是等腰直角三角形,找不到证明BA =BP 的条件,故⊥错误; 过点A 作AN ⊥BP 交PM 的延长线于点N ,⊥⊥N =⊥BPM ,⊥P AN +⊥APB =180°, ⊥点M 是AB 的中点,即AM =BM , 又⊥⊥AMN =⊥BMP , ⊥AMN BMP ≌,⊥MN =PM =12PN ,AN =PB =PC ,AMNBMPSS=,⊥⊥DP A =⊥BPC =90°, ⊥⊥APB +⊥DPC =180°, 又⊥⊥P AN +⊥APB =180°, ⊥⊥P AN =⊥DPC , 又⊥AP =DP ,AN =PC , ⊥APN PDC ≌,⊥CD =PN =2PM ,即:PM =12CD ,故⊥正确; ⊥APNPDCSS=,AMNBMPSS=,⊥ABPAPMBMPAPMAMNAPNS SSSSS+=+==,⊥ABPDCPSS=,故⊥正确.故正确的是⊥⊥⊥⊥. 【点睛】本题主要考查全等三角形的判定和性质,平行线的性质,等腰直角三角形的判定和性质,熟练掌握中线倍长模型和旋转全等模型,是解题的关键. 4.(1)⊥DEF =⊥ACE ,证明见解析;(2)见解析;(3)k 【解析】 【分析】(1)由三角形外角的性质可得出答案;(2)连接CD ,过点E 作AC 的平行线与CD 交于点M ,证明⊥DEF ⊥⊥MEC (SAS ),由全等三角形的性质可得出⊥EDF =⊥EMC ,证出⊥EMD =⊥EFC ,则可得出结论;(3)连接CD ,过点E 作AC 的平行线与CD 交于点M ,证明⊥EFG ⊥⊥ECD (ASA ),由全等三角形的性质可得出GF =DC ,证出GD =DM ,则根据平行线分线段成比例即可得出答案. 【详解】解:(1)⊥DEF =⊥ACE . 证明:⊥⊥DEC 是⊥ACE 的外角, ⊥⊥DEC =⊥A +⊥ACE , ⊥⊥DEC =⊥DEF +⊥CEF , ⊥⊥DEC +⊥CEF =⊥A +⊥ACE , ⊥⊥CEF =⊥A , ⊥⊥DEF =⊥ACE ;(2)证明:连接CD ,过点E作AC 的平行线与CD 交于点M ,⊥AD =AC ,⊥⊥ADC=⊥ACD,⊥EM⊥AC,⊥⊥EMD=⊥ACD,⊥CEM=⊥ACE,⊥⊥EDM=⊥EMD,⊥DEF=⊥CEM,⊥ED=EM,又⊥EF=EC,⊥⊥DEF⊥⊥MEC(SAS),⊥⊥EDF=⊥EMC,⊥⊥BDF+⊥EDF=⊥EMD+⊥EMC=180°,⊥⊥BDF=⊥EMC,⊥EM⊥AC,⊥⊥DEM=⊥A,⊥⊥A=⊥CEF,⊥⊥DEM=⊥CEF,⊥⊥DEM中,⊥EMD=1802DEM︒-∠,⊥FEC中,⊥EFC=1802CEF︒-∠,⊥⊥EMD=⊥EFC,⊥⊥BDF=⊥EFC;(3)连接CD,过点E作AC的平行线与CD交于点M,⊥EG=AG,⊥⊥GAE=⊥GEA,⊥⊥DAC+⊥GAE=⊥GEA+⊥GED=180°,⊥⊥DAC=⊥GED,⊥⊥CEF=⊥DAC,⊥⊥DEG=⊥CEF,⊥⊥DEG+⊥DEF=⊥CEF+⊥DEF,即⊥GEF=⊥DEC,⊥⊥DEF⊥⊥MEC,⊥⊥EFG=⊥ECD,DF=MC,又⊥EF=EC,⊥⊥EFG⊥⊥ECD(ASA),⊥GF=DC,⊥DC﹣MC=GF﹣DF,即GD=DM,⊥EM⊥AC,⊥DM DEk MC AE==,⊥GD DMk DF MC==.【点睛】本题考查了全等三角形的性质与判定,平行线分线段成比例,三角形的内角和定理,三角形的外角性质,添加辅助线证明三角形全等是解题的关键.5.见详解【解析】【分析】过点D作DE⊥AC,交BC于点E,根据等边三角形和平行线的性质得⊥MDE=⊥MEC,DE=CE,从而证明∆EMD≅∆CME,进而即可得到结论.【详解】过点D作DE⊥AC,交BC于点E,⊥ABC是等边三角形,⊥⊥B=⊥ACB=60°,⊥DE⊥AC,⊥⊥DEB=⊥ACB=60°,⊥MDE=⊥MEC,⊥BDE是等边三角形,⊥BD=DE,⊥DE=CE,又⊥⊥EMD=⊥CME,⊥∆EMD≅∆CME,⊥MDME =.【点睛】本题主要考查等边三角形的性质和判定定理以及全等三角形的判定和性质定理,添加辅助线,构造等边三角形和全等三角形,是解题的关键.6.(1)证明见解析;(2)DE=3.【解析】【分析】(1)过点P作PF⊥BC交AC于点F;证出△APF也是等边三角形,得出AP=PF=AF=CQ,由AAS证明△PDF⊥⊥QDC,得出对应边相等即可;(2)过P作PF⊥BC交AC于F.同(1)由AAS证明△PFD⊥⊥QCD,得出对应边相等FD=CD,证出AE+CD=DE12=AC,即可得出结果.【详解】(1)如图1所示,点P作PF⊥BC交AC于点F.⊥⊥ABC是等边三角形,⊥⊥APF也是等边三角形,AP=PF=AF=CQ.⊥PF⊥BC,⊥⊥PFD=⊥DCQ.在△PDF和△QDC中,PDF QDCDFP QCDPF QC∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥PDF⊥⊥QDC(AAS),(2)如图2所示,过P作PF⊥BC交AC于F.⊥PF⊥BC,△ABC是等边三角形,⊥⊥PFD=⊥QCD,△APF是等边三角形,⊥AP=PF=AF.⊥PE⊥AC,⊥AE=EF.⊥AP=PF,AP=CQ,⊥PF=CQ.在△PFD和△QCD中,PDF QDCDFP QCDPF QC∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥PFD⊥⊥QCD(AAS),⊥FD=CD.⊥AE=EF,⊥EF+FD=AE+CD,⊥AE+CD=DE12=AC.⊥AC=6,⊥DE=3.【点睛】本题考查等边三角形的判定与性质、全等三角形的判定(AAS)与性质、平行线的性质,熟练掌握等边三角形的性质,解题的关键是掌握等边三角形的判定与性质、全等三角形的判定(AAS)与性质、平行线的性质,熟练掌握等边三角形的性质.7.(1)证明见解析;(2)DE=3.【解析】【分析】(1)过点P作PF⊥BC交AC于点F;证出⊥APF也是等边三角形,得出AP=PF=AF=CQ,由AAS证明⊥PDF⊥⊥QDC,得出对应边相等即可;(2)过P作PF⊥BC交AC于F.同(1)由AAS证明⊥PFD⊥⊥QCD,得出对应边相等FD=CD,证出AE+CD=DE12=AC,即可得出结果.【详解】(1)如图1所示,点P作PF⊥BC交AC于点F.⊥⊥ABC是等边三角形,⊥⊥APF也是等边三角形,AP=PF=AF=CQ.⊥PF⊥BC,⊥⊥PFD=⊥DCQ.在⊥PDF和⊥QDC中,PDF QDCDFP QCDPF QC∠∠∠∠=⎧⎪=⎨⎪=⎩,⊥⊥PDF⊥⊥QDC(AAS),⊥PD=DQ;(2)如图2所示,过P作PF⊥BC交AC于F.⊥PF⊥BC,⊥ABC是等边三角形,⊥⊥PFD=⊥QCD,⊥APF是等边三角形,⊥AP=PF=AF.⊥PE⊥AC,⊥AE=EF.⊥AP=PF,AP=CQ,⊥PF=CQ.在⊥PFD和⊥QCD中,PDF QDCDFP QCDPF QC∠∠∠∠=⎧⎪=⎨⎪=⎩,⊥⊥PFD⊥⊥QCD(AAS),⊥FD=CD.⊥AE=EF,⊥EF+FD=AE+CD,⊥AE+CD=DE12=AC.⊥AC=6,⊥DE=3.【点睛】本题考查了等边三角形的判定与性质、等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.8.(1)详见解析(2)ED=2【解析】【分析】(1)过P作PF⊥BQ,可得△APF为等边三角形,所以AP=PF,再证△DCQ⊥⊥DFP,即可得PD=DQ;(2)根据等腰三角形三线合一的性质可得AE=EF,根据全等三角形对应边相等可得FD =CD,然后求出2DE=AC,代入数据进行计算即可得解.(1)证明:如图,过点P作PF⊥BC,则⊥DPF=⊥Q,⊥⊥ABC为等边三角形,⊥⊥APF是等边三角形,⊥AP=PF,又⊥AP=CQ,⊥PF=CQ,在△DPF和△DQC中,DPF QPDF QDC PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥DPF⊥⊥DQC(AAS),⊥DP=DQ;(2)⊥⊥P AF为等边三角形,PE⊥AC,可得AE=EF,由(1)知,⊥DPF⊥⊥DQC⊥FD=CD,⊥AC=AE+EF+FD+CD,⊥AC=2EF+2FD=2(EF+FD)=2ED,⊥AC=BC=4,⊥2ED=4,⊥ED=2.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,作辅助线构造出等边三角形和全等三角形是解题的关键,也是本题的难点.9.(1)DM=EM.理由见详解;(2)成立,理由见详解;(3)MD=12ME.【解析】【分析】(1)DM=EM;过点E作EF//AB交BC于点F,然后利用平行线的性质和已知条件可以证明△DBM⊥⊥EFM,接着利用全等三角形的性质即可证明题目的结论;(2)成立;过点E作EF//AB交CB的延长线于点F,然后利用平行线的性质与已知条件可以证明△DBM⊥⊥EFM,接着利用全等三角形的性质即可证明题目的结论;(3)MD=12ME.过点E作EF//AB交CB的延长线于点F,然后利用平行线的性质和已知条件得到△DBM⊥⊥EFM,接着利用相似三角形的性质即可得到结论;(1)解:DM=EM;证明:过点E作EF//AB交BC于点F,⊥AB=AC,⊥⊥ABC=⊥C;又⊥EF//AB,⊥⊥ABC=⊥EFC,⊥⊥EFC=⊥C,⊥EF=EC.又⊥BD=EC,⊥EF=BD.又⊥EF//AB,⊥⊥ADM=⊥MEF.在△DBM和△EFM中BDM FEMBMD FMEBD EF∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥DBM⊥⊥EFM,⊥DM=EM.(2)解:成立;证明:过点E作EF//AB交CB的延长线于点F,⊥AB=AC,⊥⊥ABC=⊥C;又⊥EF//AB,⊥⊥ABC=⊥EFC,⊥⊥EFC=⊥C,⊥EF=EC.又⊥BD=EC,⊥EF=BD.又⊥EF//AB,⊥⊥ADM=⊥MEF.在△DBM和△EFM中BDE FEM BMD FME BD EF ∠=∠⎧⎪∠=∠⎨⎪=⎩⊥⊥DBM ⊥⊥EFM ;⊥DM =EM ;(3)解:过点E 作EF //AB 交CB 的延长线于点F ,⊥⊥DBM =⊥EFM ,⊥DMB =⊥EMF⊥⊥DBM ⊥⊥EFM ,⊥BD :EF =DM :ME ,⊥AB =AC ,⊥⊥ABC =⊥C ,⊥⊥F =⊥ABC ,⊥⊥F =⊥C ,⊥EF =EC ,⊥BD :EC =DM :ME =1:2,⊥MD =12ME . 【点睛】本题主要考查了三角形综合,涉及了等腰三角形性质和判定、全等三角形的判定与性质、相似三角形的判定和性质,利用平行构造全等三角形是解题关键.10.选择(1)(3)证明,证明见解析【解析】【分析】如图(1)延长DE 到F 使得EF=DE,证明△DCE⊥⊥FBE,得到⊥CDE=⊥F,BF=DC,结合题干条件即可得到结论;如图3,过C 点作CF⊥AB 交DE 的延长线于F,得到△ABE⊥⊥FCE,AB=FC,结合题干条件即可得到结论,【详解】如图(1)延长DE 到F 使得EF=DE在△DCE 和△FBE 中,EF DE DEC FEB BE EC =∠=∠=⎧⎪⎨⎪⎩⊥△DCE⊥⊥ FBE (SAS)⊥⊥CDE=⊥F,BF=DC⊥⊥BAE=⊥CDE⊥BF=AB⊥AB= CD如图3,过C 点作CF⊥AB 交DE 的延长线于F在△ABE 和△FCE 中B ECF BE ECBAE F ∠=∠=∠=∠⎧⎪⎨⎪⎩⊥△ABE⊥⊥ FCE(AAS),⊥AB=FC⊥⊥BAE=⊥CDE⊥⊥F=⊥CDE⊥CD=CF⊥AB=CD【点睛】此题考查全等三角形的判定与性质和等腰三角形的性质,解题关键在于利用三角形全等的性质证明。
初中中考复习之三角形全等(精编含答案)
中考复习之三角形全等一、选择题:1.图是一个风筝设计图,其主体部分(四边形ABCD ABCD)关于)关于BD 所在的直线对称,所在的直线对称,AC AC 与BD 相交于点O ,且AB≠AD,则下列判断不正确...的是【的是【 】】 A .△ABD≌△CBD .△ABD≌△CBD B B B.△ABC≌△ADC .△ABC≌△ADC .△ABC≌△ADC C C C.△AOB≌△COB .△AOB≌△COB .△AOB≌△COB D D D.△AOD≌△COD .△AOD≌△COD .△AOD≌△COD2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件是【的条件是【 】】A. AB=ACB. ∠BAC=90°C. BD=AC A. AB=AC B. ∠BAC=90° C. BD=ACD. ∠B=45°D. ∠B=45°D. ∠B=45°3.如图,已知点A 、D 、C 、F 在同一条直线上,在同一条直线上,AB=DE AB=DE AB=DE,,BC=EF BC=EF,要使△ABC≌△DEF,还需要添加一个条件,要使△ABC≌△DEF,还需要添加一个条件是【是【 】】 A A.∠BCA=∠F .∠BCA=∠F .∠BCA=∠F B B B.∠B=∠E .∠B=∠E .∠B=∠EC .BC∥EF .BC∥EFD .∠A=∠EDF .∠A=∠EDF4.如图,AB∥CD,如图,AB∥CD,E E ,F 分别为AC AC,,BD 的中点,若AB=5AB=5,,CD=3CD=3,则,则EF 的长是【的长是【 】】A .4B .3C .2D .15.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【等的是【 】】 (A) (A)两条边长分别为两条边长分别为4,5,它们的夹角为β (B) (B)两个角是两个角是β,它们的夹边为4(C) (C)三条边长分别是三条边长分别是4,5,5 (D)5 (D)两条边长是两条边长是5,一个角是β6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是【的线段是【 】】 A A..PO B .PQ C PQ C..MO D .MQ7.如图,在菱形ABCD 中,对角线AC AC,,BD 相交于点O ,且AC≠BD,则图中全等三角形有【AC≠BD,则图中全等三角形有【 】】A.4对B. 6对.C.8对D.10对二、填空题:1.在Rt△ABC 中,∠ACB=90°,中,∠ACB=90°,BC=2cm BC=2cm BC=2cm,CD⊥AB,在,CD⊥AB,在AC 上取一点E ,使EC=BC EC=BC,过点,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm EF=5cm,则,则AE= cm AE= cm..2.如图所示,如图所示,AB=DB AB=DB AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件 ,, 使使ΔABC≌ΔDBE DBE.. ( (只需添只需添加一个即可加一个即可) )3.如图所示,已知点A 、D 、B 、F 在一条直线上,在一条直线上,AC=EF AC=EF AC=EF,,AD=FB AD=FB,要使△ABC≌△FDE,还需添加一个条件,,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是这个条件可以是 ..(只需填一个即可)(只需填一个即可)4.如图,点D ,E 分别在线段AB AB,,AC 上,上,BE BE BE,,CD 相交于点O ,AE=AD AE=AD,要使△ABE≌△ACD,需添加一个条,要使△ABE≌△ACD,需添加一个条件是件是 (只需一个即可,图中不能再添加其他点或线)(只需一个即可,图中不能再添加其他点或线).5.如图.点D 、E 在△ABC 的边BC 上,AB=AC AB=AC,,AD=AE AD=AE..请写出图中的全等三角形请写出图中的全等三角形 ( ( (写出一对即可写出一对即可写出一对即可)).6.如图,己知AC=BD AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是 ( ( (填一个即可填一个即可填一个即可) )三、解答题:1.已知:如图,AB AE =,1=2ÐÐ,=B E ÐÐ,求证:BC ED =2.如图,已知AB=DC AB=DC,,DB=AC(1)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.(2)在()在(11)的证明过程中,需要作辅助线,它的意图是什么?)的证明过程中,需要作辅助线,它的意图是什么?3.如图,点D 在AB 上,点E 在AC 上,上,AB=AC AB=AC AB=AC,∠B=∠C.求证:,∠B=∠C.求证:,∠B=∠C.求证:BE=CD BE=CD BE=CD..4.如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB AB,,AC 于E ,F 两点,再分别以E ,F为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP AP,交,交CD 于点M 。
中考数学最新真题专项汇总—平行线与三角形(含解析)
中考数学最新真题专项汇总—平行线与三角形(含解析)一.选择题1.(2022·内蒙古通辽)如图,一束光线AB 先后经平面镜OM ,ON 反射后,反射光线CD 与AB 平行,当35ABM ∠=︒时,DCN ∠的度数为( )A .55︒B .70︒C .60︒D .35︒【答案】A 【分析】根据题意得:∠ABM =∠OBC , ∠BCO =∠DCN ,然后平行线的性质可得∠BCD =70°,即可求解.【详解】解:根据题意得:∠ABM =∠OBC , ∠BCO =∠DCN ,∠∠ABM =35°,∠∠OBC =35°,∠∠ABC =180°-∠ABM -∠OBC =180°-35°-35°=110°, ∠CD ∠AB ,∠∠ABC +∠BCD =180°,∠∠BCD =180°-∠ABC =70°,∠∠BCO +∠BCD +∠DCN =180°, ∠BCO =∠DCN , ∠1(180)552DCN BCD ︒︒-∠=∠=.故选:A【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补是解题的关键.2.(2022·河北)要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案∠、∠,说法正确的是()A.∠可行、∠不可行B.∠不可行、∠可行C.∠、∠都可行D.∠、∠都不可行【答案】C【分析】用夹角可以划出来的两条线,证明方案∠和∠的结果是否等于夹角,即可判断正误【详解】方案∠:如下图,BPD∠即为所要测量的角∠HEN CFG∥∠AEM BPD∠=∠∠MN PD∠=∠故方案∠可行方案∠:如下图,BPD∠即为所要测量的角在EPF中:180∠+∠+∠=︒BPD PEF PFE则:180∠=︒-∠-∠故方案∠可行故选:CBPD AEH CFG【点睛】本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明3.(2022·河南)如图,直线AB,CD相交于点O,EO∠CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得90∠=︒,根据平角的定义即可求解.COE【详解】解:EO∠CD,90∴∠=︒,COE12180∠+∠+∠=︒,2180905436∴∠=︒-︒-︒=︒.故选:B .COE【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.4.(2022·湖北鄂州)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为( )A .10°B .15°C .20°D .30°【答案】B 【分析】由作图得ABC ∆为等腰三角形,可求出15ABC ∠=︒,由l 1∥l 2得1ABC ∠=∠,从而可得结论.【详解】解:由作图得,CA CB =,∠ABC ∆为等腰三角形,∠ABC CAB ∠=∠ ∠∠BCA =150°,∠11(180)(180150)1522ABC ACB ∠=︒-∠=︒-︒=︒∠l 1∥l 2∠115ABC ∠=∠=︒故选B【点睛】本题主要考查了等腰三角形的判定与性质,平行线的性质等知识,求出15ABC ∠=︒是解答本题的关键. 5.(2022·湖南郴州)如图,直线a b ∥,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c d ∥的是( )A .34∠=∠B .15180∠+∠=︒C .12∠=∠D .14∠=∠【答案】C 【分析】利用平行线的判定条件进行分析即可得出结果.【详解】解:A 、当34∠=∠时,c d ∥;故A 不符合题意;B 、当15180∠+∠=︒时,c d ∥;故B 不符合题意;C 、当12∠=∠时,a b ∥;故C 符合题意;D 、∠a b ∥,则12∠=∠,∠14∠=∠,则24∠∠=,∠c d ∥;故D 不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.6.(2022·山东潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒【答案】C 【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∠14010'∠=︒∠24010'∠=︒∠518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒ ∠l //m ∠659940'∠=∠=︒ 故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.7.(2022·北京)如图,利用工具测量角,则1∠的大小为( )A .30°B .60°C .120°D .150°【答案】A 【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,130∠=︒.故选A .【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.8.(2022·黑龙江)如图,ABC 中,AB AC =,AD 平分BAC ∠与BC 相交于点D ,点E 是AB 的中点,点F 是DC 的中点,连接EF 交AD 于点P .若ABC 的面积是24, 1.5PD =,则PE 的长是( )A.2.5B.2C.3.5D.3【答案】A【分析】连接DE,取AD的中点G,连接EG,先由等腰三角形“三线合一“性质,证得AD∠BC,BD=CD,再由E是AB的中点,G是AD的中点,求出S∠EGD=3,然后证∠EGP∠∠FDP(AAS),得GP=CP=1.5,从而得DG=3,即可由三角形面积公式求出EG长,由勾股定理即可求出PE长.【详解】解:如图,连接DE,取AD的中点G,连接EG,∠AB=AC,AD平分BAC∠与BC相交于点D,∠AD∠BC,BD=CD,∠S∠ABD=112422ABCS=⨯=12,∠E是AB的中点,∠S∠AED=111222ABDS=⨯=6,∠G是AD的中点,∠S△EGD=11622AEDS=⨯=3,∠E是AB的中点,G是AD的中点,∠EG∥BC,EG=12BD=12CD,∠∠EGP=∠FDP=90°,∠F是CD的中点,∠DF=12CD,∠EG=DF,∠∠EPG=∠FPD,∠∠EGP∠∠FDP(AAS),∠GP=PD=1.5,∠GD=3,∠S△EGD=12GD EG⋅=3,即1332EG⨯=,∠EG=2,在Rt∠EGP中,由勾股定理,得PE=,故选:A.【点睛】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.9.(2022·贵州遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若1AB BC==,30AOB∠=︒,则点B到OC的距离为()A B C .1 D .2【答案】B【分析】根据题意求得2OB =,进而求得OC【详解】解:在Rt ,Rt ABO BOC 中,30AOB ∠=︒,1AB BC ==,2OB ∴=,OC ∴设B 到OC 的距离为h ,1122OC h BC BO ∴⋅=⋅,h ∴==, 故选B .【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,掌握以上知识是解题的关键.10.(2022·广西)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如己知∠ABC 中,∠A =30°, AC =3,∠A 所对的边为满足已知条件的三角形有两个(我们发现其中如图的∠ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A.B .3C .D .3【答案】C 【分析】分情况讨论,当∠ABC 是一个直角三角形时,当∠AB 1C 是一个钝角三角形时,根据含30°的直角三角形的性质及勾股定理求解即可.【详解】如图,当∠ABC 是一个直角三角形时,即90C ∠=︒,30,A BC ∠=︒=2∴==AB BC如图,当∠AB 1C 是一个钝角三角形时,过点C 作CD ∠AB 1,90CDA CDB ∴∠=︒=∠,1CB CB =,1BD B D ∴=,30,3A AC ∠=︒=,1322CD AC ∴==, 3BC =1B D BD ∴===,1BB ∴11AB AB BB ∴=-综上,满足已知条件的三角形的第三边长为故选:C . 【点睛】本题考查了根据已知条件作三角形,涉及含30°的直角三角形的性质及勾股定理,熟练掌握知识点是解题的关键.11.(2022·山东烟台)如图,某海域中有A ,B ,C 三个小岛,其中A 在B 的南偏西40°方向,C 在B 的南偏东35°方向,且B ,C 到A 的距离相等,则小岛C 相对于小岛A 的方向是( )A .北偏东70°B .北偏东75°C .南偏西70°D .南偏西20°【答案】A 【分析】根据题意可得∠ABC =75°,AD ∠BE ,AB =AC ,再根据等腰三角形的性质可得∠ABC =∠C =75°,从而求出∠BAC 的度数,然后利用平行线的性质可得∠DAB =∠ABE =40°,从而求出∠DAC 的度数,即可解答.【详解】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∠BE,AB=AC,∠∠ABC=∠C=75°,∠∠BAC=180°﹣∠ABC﹣∠C=30°,∠AD∠BE,∠∠DAB=∠ABE=40°,∠∠DAC=∠DAB+∠BAC=40°+30°=70°,∠小岛C相对于小岛A的方向是北偏东70°,故选:A..【点睛】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2022·河北)如图,将∠ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是∠ABC的()A.中线B.中位线C.高线D.角平分线【答案】D【分析】根据折叠的性质可得CAD BAD∠=∠,作出选择即可.【详解】解:如图,∠由折叠的性质可知CAD BAD∠=∠,∠AD是BAC∠的角平分线,故选:D.【点睛】本题考查折叠的性质和角平分线的定义,理解角平分线的定义是解答本题的关键.13.(2022·广西贺州)如图,在Rt∠ABC中,∠C=90°,∠B=56°,则∠A的度数为()A.34︒B.44︒C.124︒D.134︒【答案】A【分析】根据直角三角形的两个锐角互余,即可得出∠A的度数.【详解】解:∠Rt∠ABC中,∠C=90°,∠B=56°,∠∠A=90°-∠B=90°-56°=34°;故选:A.【点睛】本题考查了直角三角形的性质:直角三角形的两个锐角互余;熟练掌握直角三角形的性质,并能进行推理计算是解决问题的关键.14.(2022·湖南永州)如图,在Rt ABC∠=°,点D为边AC∠=︒,60C△中,90ABC的中点,2BD=,则BC的长为()B.C.2D.4A【答案】C【分析】根据三角形内角和定理可得∠A=30°,由直角三角形斜边上的中线的性质得出AC=2BD=4,再利用含30度角的直角三角形的性质求解即可.【详解】解:∠∠ABC=90°,∠C=60°,∠∠A=30°,∠点D为边AC的中点,BD=2∠AC=2BD=4,∠BC=12AC=,2故选:C.【点睛】题目主要考查三角形内角和定理及直角三角形斜边上中线的性质,含30度角的直角三角形的性质等,理解题意,综合运用这些知识点是解题关键.15.(2022·湖南永州)下列多边形具有稳定性的是()A.B.C.D.【答案】D【分析】利用三角形具有稳定性直接得出答案.【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D.【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.16.(2022·广西玉林)请你量一量如图ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【答案】D【分析】作出三角形的高,然后利用刻度尺量取即可.【详解】解:如图所示,过点A作AO∠BC,用刻度尺直接量得AO更接近2cm,故选:D.【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键.17.(2022·黑龙江大庆)下列说法不正确...的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【答案】A【分析】利用等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,对各选项逐项分析可得出正确答案.【详解】解:A、设∠1、∠2为锐角,因为:∠1+∠2+∠3=180°,所以:∠3可以为锐角、直角、钝角,所以该三角形可以是锐角三角形,也可以是直角或钝角三角形,故A选项不正确,符合题意;B、如图,在∠ABC中,BE∠AC,CD∠AB,且BE=CD.∠BE ∠AC ,CD ∠AB ,∠∠CDB =∠BEC =90°,在Rt ∠BCD 与Rt ∠CBE 中,CD BE BC CB=⎧⎨=⎩, ∠Rt ∠BCD ∠Rt ∠CBE (HL ),∠∠ABC =∠ACB ,∠AB =AC ,即∠ABC 是等腰三角形.,故B 选项正确,不符合题意;C 、根据直角三角形的判定:有两个角互余的三角形是直角三角形,, 故C 选项正确,不符合题意;D 、底和腰相等的等腰三角形是等边三角形,故D 选项正确,不符合题意;故选:A .【点睛】本题综合考查了等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,要求学生在学习过程中掌握三角形的各种性质及推论,不断提升数学学习的能力.18.(2022·广西梧州)如图,在ABC 中,,AB AC AD =是ABC 的角平分线,过点D 分别作,DE AB DF AC ,垂足分别是点E ,F ,则下列结论错误..的是( )A .90ADC ∠=B .DE DF =C .AD BC = D .BD CD =【答案】C【分析】根据等腰三角形底边上的高线、顶角的角平分线、底边上的中线这三线合一及角平分线的性质即可判断求解.【详解】解:∠,AB AC AD =是ABC 的角平分线,∠,AD BC BD CD , ∠90ADC ∠=,故选项A 、D 结论正确,不符合题意;又AD 是BAC ∠的角平分线,,DE AB DF AC ,∠DE DF =,故选项B 结论正确,不符合题意;由已知条件推不出AD BC =,故选项C 结论错误,符合题意;故选:C .【点睛】本题考察了等腰三角形的性质及角平分线的性质,属于基础题,熟练掌握其性质即可.19.(2022·四川乐山)如图,等腰∠ABC 的面积为AB =AC ,BC =2.作AE ∠BC 且AE =12BC .点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF 的中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( )AB .3C .D .4【答案】D【分析】当P 与A 重合时,点F 与C 重合,此时点M 在N 处,当点P 与B 重合时,如图,点M 的运动轨迹是线段MN .求出CF 的长即可解决问题.【详解】解:过点A 作AD ∠BC 于点D ,连接CE ,∠AB =AC ,∠BD =DC =12BC =1,∠AE =12BC ,∠AE =DC =1,∠AE ∠BC ,∠四边形AECD 是矩形,∠S ∠ABC =12BC ×AD =12×2×AD∠ADCE =AD当P 与A 重合时,点F 与C 重合,此时点M 在CE 的中点N 处,当点P 与B 重合时,如图,点M 的运动轨迹是线段MN .∠BC =2,CE由勾股定理得BE =4,cos∠EBC =BC BE BE BF =,即244BF =, ∠BF =8,∠点N 是CE 的中点,点M 是EF 的中点,∠MN =12BF =4,∠点M 的运动路径长为4,故选:D .【点睛】本题考查点的轨迹、矩形的判定和性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找点M 的运动轨迹,学会利用起始位置和终止位置寻找轨迹,属于中考填空题中的压轴题.20.(2022·四川凉山)下列长度的三条线段能组成三角形的是( ) A .3,4,8B .5,6,11C .5,6,10D .5,5,10 【答案】C【分析】根据三角形的三边关系定理(任意两边之和大于第三边)逐项判断即可得.【详解】解:A 、3478+=<,不能组成三角形,此项不符题意;B 、5611+=,不能组成三角形,此项不符题意;C 、561110+=>,能组成三角形,此项符合题意;D 、5510+=,不能组成三角形,此项不符题意;故选:C .【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.21.(2022·四川成都)如图,在ABC 和DEF 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF =,只添加一个条件,能判定ABC DEF △≌△的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠【答案】B 【分析】根据三角形全等的判定做出选择即可.【详解】A 、BC DE =,不能判断ABC DEF △≌△,选项不符合题意;B 、AE DB =,利用SAS 定理可以判断ABC DEF △≌△,选项符合题意; C 、A DEF ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;D 、ABC D ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;故选:B .【点睛】本题考查三角形全等的判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.22.(2022·山东聊城)如图,ABC 中,若80BAC ∠=︒,70ACB ∠=︒,根据图中尺规作图的痕迹推断,以下结论错误的是( )A .40BAQ ∠=︒B .12DE BD = C .AF AC = D .25EQF ∠=︒【答案】D【分析】根据线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质判断即可.【详解】∠80BAC ∠=︒,70ACB ∠=︒,∠∠B =180°-∠BAC -∠ACB =30°,A .由作图可知,AQ 平分BAC ∠,∠1402BAP CAP BAC ∠=∠=∠=︒,故选项A 正确,不符合题意;B .由作图可知,MQ 是BC 的垂直平分线,∠90DEB ∠=︒,∠30B ∠=︒,∠12DE BD =,故选项B 正确,不符合题意;C .∠30B ∠=︒,40BAP ∠=︒,∠70AFC ∠=︒,∠70C ∠=︒,∠AF AC =,故选项C 正确,不符合题意;D .∠70EFQ AFC ∠=∠=︒,90QEF ∠=︒,∠20EQF ∠=︒;故选项D 错误,符合题意.故选:D .【点睛】本题考查了线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质等知识,解题的关键是读懂图象信息.23.(2022·海南)如图,直线m n∥,ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒【答案】B【分析】根据等边三角形的性质可得∠A=60°,再由三角形外角的性质可得∠AEF=∠1-∠A=80°,从而得到∠BEF=100°,然后根据平行线的性质,即可求解.【详解】解:∠ABC是等边三角形,∠∠A=60°,∠∠1=140°,∠∠AEF=∠1-∠A=80°,∠∠BEF=180°-∠AEF=100°,∠m n∥,∠∠2=∠BEF=100°.故选:B【点睛】本题主要考查了等边三角形的性质,三角形外角的性质,平行线的性质,熟练掌握等边三角形的性质,三角形外角的性质,平行线的性质是解题的关键.24.(2022·黑龙江齐齐哈尔)如图所示,直线a∠b,点A在直线a上,点B在直线b上,AC=BC,∠C=120°,∠1=43°,则∠2的度数为()A .57°B .63°C .67°D .73°【答案】D【分析】根据等腰三角形的性质可求出30ABC ∠=︒,可得出+173ABC ∠∠=︒,再根据平行线的性质可得结论.【详解】解:∠AC =BC ,∠ABC ∆是等腰三角形,∠=120C ∠︒ ∠11(180)(180120)3022ABC C ∠=︒-∠=︒-︒=︒∠1304373ABC ∠+∠=︒+︒=︒∠a ∠b ,∠2173ABC ∠=∠+∠=︒ 故选:D【点睛】本题主要考查了等腰三角形的判定与性质,以及平行线的性质,求出173ABC ∠+∠=︒是解答本题的关键. 25.(2022·湖北恩施)已知直线12l l ∥,将含30°角的直角三角板按图所示摆放.若1120∠=︒,则2∠=( )A.120°B.130°C.140°D.150°【答案】D【分析】根据平行线的性质可得∠3=∠1=120°,再由对顶角相等可得∠4=∠3=120°,然后根据三角形外角的性质,即可求解.【详解】解:如图,根据题意得:∠5=30°,∥,∠∠3=∠1=120°,∠∠4=∠3=120°,∠12l l∠∠2=∠4+∠5,∠∠2=120°+30°=150°.故选:D【点睛】本题主要考查了平行线的性质,对顶角相等,三角形外角的性质,熟练掌握平行线的性质,对顶角相等,三角形外角的性质是解题的关键.二.填空题26.(2022·辽宁锦州)如图,在ABC中,,30=∠=︒,点D为BC的中AB AC ABC点,将ABC绕点D逆时针旋转得到A B C''',当点A的对应点A'落在边AB上时,点C'在BA的延长线上,连接BB',若1AA'=,则BB D'△的面积是____________.【分析】先证明A AD ' 是等边三角形,再证明AO BC '⊥,再利用直角三角形30角对应的边是斜边的一般分别求出A B ''和A O ',再利用勾股定理求出OD ,从而求得BB D '△的面积.【详解】解:如下图所示,设A B ''与BD 交于点O ,连接A D '和AD ,∠点D 为BC 的中点,,30AB AC ABC =∠=︒,∠AD BC ⊥,A D B C '''⊥,A D '是B A C '''∠的角平分线,AD 是BAC ∠,∠120B A C ︒'''∠=,120BAC ︒∠=∠60BAD B A D ︒'∠'=∠=∠A D AD '=,∠A AD ' 是等边三角形,∠1A A AD A D ''===,∠18060BA B B A C ︒︒'''''∠=-∠=,∠BA B A AD '''∠=∠,∠//A B AD '',∠AO BC '⊥, ∠1122A O A D ''==,∠OD ==∠22A B A D '''==∠30A BD A DO ︒''∠=∠=,∠BO OD = ∠13222OB '=-=,2BD OD ==∠113222BB D S BD B O ''=⨯⨯==. 【点睛】本题考查等腰三角形、等边三角形和直角三角形的性质,证明A AD ' 是等边三角形是解本题的关键.27.(2022·湖南郴州)如图.在ABC 中,90C ∠=︒,AC BC =.以点A 为圆心,以任意长为半径作弧交AB ,AC 于D ,E 两点;分别以点D ,E 为圆心,以大于12DE 长为半径作弧,在BAC ∠内两弧相交于点P ;作射线AP 交BC 于点F ,过点F 作FG AB ⊥,垂足用G .若8cm AB =,则BFG 的周长等于________cm .【答案】8【分析】由角平分线的性质,得到CF GF=,然后求出BFG的周长即可.【详解】解:根据题意,在ABC中,90=,C∠=︒,AC BC由角平分线的性质,得CF GF=,∠BFG的周长为:()8++=-+=-+==;BG BF FG AB AG BC AB AC BC AB故答案为:8【点睛】本题考查了角平分线的性质,解题的关键是掌握角平分线的性质.28.(2022·江苏常州)如图,在ABC中,E是中线AD的中点.若AEC△的面积是1,则ABD△的面积是______.【答案】2【分析】根据ACE∆的面积DCE=∆的面积计算出各部=∆的面积,ABD∆的面积ACD分三角形的面积.【详解】解:AD是BC边上的中线,E为AD的中点,根据等底同高可知,ACE ∆的面积DCE =∆的面积1=,ABD ∆的面积ACD =∆的面积2AEC =∆的面积2=,故答案为:2.【点睛】本题考查了三角形的面积,解题的关键是利用三角形的中线平分三角形面积进行计算.29.(2022·黑龙江哈尔滨)在ABC 中,AD 为边BC 上的高,30ABC ∠=︒,20CAD ∠=︒,则BAC ∠是___________度.【答案】40或80##80或40【分析】根据题意,由于ABC 类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.【详解】解:根据题意,分三种情况讨论:∠高在三角形内部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602080BAC BAD CAD ∴∠=∠+∠=︒+︒=︒;∠高在三角形边上,如图所示:可知0CAD ∠=︒,20CAD ∠=︒,故此种情况不存在,舍弃;∠高在三角形外部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602040BAC BAD CAD ∴∠=∠-∠=︒-︒=︒;综上所述:80BAC ∠=︒或40︒,故答案为:40或80.【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.30.(2022·四川成都)如图,在ABC 中,按以下步骤作图:∠分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;∠作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.【答案】7【分析】连接EC,依据垂直平分线的性质得EB EC=.由已知易得∠∠=︒=,在Rt∠AEC中运用勾股定理求得AE,即可求得答案.BEC CEA90【详解】解:由已知作图方法可得,MN是线段BC的垂直平分线,连接EC,如图,所以BE CE=,所以45∠=∠=︒,ECB B所以∠BEC=∠CEA=90°,因为5AC=,4BE=,所以4CE=,在AEC△中,2222AE AC EC,543所以347AB AE BE=+=+=,因此AB的长为7.故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得AE 即可. 31.(2022·内蒙古通辽)在Rt ABC 中,90C ∠=︒,有一个锐角为60︒,6AB =,若点P 在直线..AB 上(不与点A ,B 重合),且30PCB ∠=︒,则AP 的长为_______. 【答案】92或9或3【分析】分∠ABC =60、∠ABC =30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当∠ABC =60°时,则∠BAC =30°, ∠132BC AB ==,∠AC =,当点P 在线段AB 上时,如图,∠30PCB ∠=︒,∠∠BPC =90°,即PC ∠AB ,∠9cos 2AP AC BAC =⋅∠==; 当点P 在AB 的延长线上时,∠30PCB ∠=︒,∠PBC =∠PCB +∠CPB ,∠∠CPB =30°,∠∠CPB =∠PCB ,∠PB =BC =3,∠AP =AB +PB =9;当∠ABC =30°时,则∠BAC =60°,如图,∠132AC AB ==,∠30PCB ∠=︒,∠∠APC =60°,∠∠ACP =60°,∠∠APC =∠P AC =∠ACP ,∠∠APC 为等边三角形,∠P A =AC =3.综上所述,AP 的长为92或9或3. 故答案为:92或9或3【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.32.(2022·湖南岳阳)如图,在ABC中,AB AC=,AD BCBC=,⊥于点D,若6则CD=______.【答案】3【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【详解】解:∠AB AC=,AD BC⊥,∠CD BD=,∠6BC=,∠3CD=,故答案为:3.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.33.(2022·江苏无锡)∠ABC是边长为5的等边三角形,∠DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在∠ABC内,∠DBC=20°,则∠BAF=________°;现将∠DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.【答案】804##4【分析】利用SAS证明∠BDC∠∠AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD∠BF时,∠FBC最大,则∠FBA 最小,此时线段AF长度有最小值,据此求解即可.【详解】解:∠∠ABC和∠DCE都是等边三角形,∠AC=BC,DC=EC,∠BAC=∠ACB=∠DCE=60°,∠∠DCB+∠ACD=∠ECA+∠ACD=60°,即∠DCB =∠ECA,在∠BCD和∠ACE中,CD CEBCD ACEBC AC=⎧⎪∠=∠⎨⎪=⎩,∠∠ACE∠∠BCD(SAS),∠∠EAC=∠DBC,∠∠DBC=20°,∠∠EAC=20°,∠∠BAF=∠BAC+∠EAC=80°;设BF与AC相交于点H,如图:∠∠ACE ∠∠BCD∠AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∠∠AFB =∠ACB =60°,∠A 、B 、C 、F 四个点在同一个圆上,∠点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ∠BF 时,∠FBC 最大,则∠FBA 最小,∠此时线段AF 长度有最小值,在Rt ∠BCD 中,BC =5,CD =3,∠BD=4,即AE =4,∠∠FDE =180°-90°-60°=30°,∠∠AFB =60°,∠∠FDE =∠FED =30°,∠FD =FE ,过点F 作FG ∠DE 于点G ,∠DG =GE =32,∠FE =DF =cos30DG ︒∠AF=AE-FE=4故答案为:80;4【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.34.(2022·湖南永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是25,小正方形的面积是1,则AE=______.【答案】3【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH=BG=x,结合图形得出AE=x-1,利用勾股定理求解即可得出结果.【详解】解:∠大正方形的面积是25,小正方形的面积是1,∠AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x-1,在Rt∆AED中,222+=,AE ED AD即()222-+=,x x15解得:x =4(负值已经舍去),∠x -1=3,故答案为:3.【点睛】题目主要考查正方形的性质,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.35.(2022·黑龙江齐齐哈尔)在∠ABC 中,AB =6AC =,45B ∠=,则BC =______________.【答案】3或3【分析】画出图形,分∠ABC 为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当∠ABC 为锐角三角形时,如图1所示:过A 点作AH ∠BC 于H ,∠∠B =45°,∠∠ABH 为等腰直角三角形, ∠363322ABAH BH ,在Rt∠ACH 中,由勾股定理可知:2236273CHAC AH , ∠333BC BH CH . 情况二:当∠ABC 为钝角三角形时,如图2所示:由情况一知:363322ABAH BH ,2236273CH AC AH , ∠333BC BH CH .故答案为:3或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将∠ABC 分成锐角三角形或钝角三角形分类讨论.36.(2022·贵州遵义)如图,在等腰直角三角形ABC 中,90BAC ∠=︒,点M ,N分别为BC ,AC 上的动点,且AN CM =,AB 当AM BN +的值最小时,CM 的长为__________.【答案】2【分析】过点A 作AD BC ∥,且AD AC =,证明AND CMA ≌△△,可得AM DN =,当,,B N D 三点共线时,BN AM +取得最小值,证明AB BM =,即可求解.【详解】如图,过点A 作AD BC ∥,且AD AC =,连接DN ,如图1所示, DAN ACM ∴∠=∠,又AN CM =,AND CMA ∴≌,AM DN ∴=,BN AM BN DN BD ∴+=+≥,当,,B N D 三点共线时,BN AM +取得最小值,此时如图2所示,在等腰直角三角形ABC 中,90BAC ∠=︒,AB =2BC ∴==,AND CMA ≌△△,ADN CAM ∴∠=∠,AD AC AB ==,ADN ABN ∴∠=∠,AD BC ∥,ADN MBN ∴∠=∠,ABN MBN ∴∠=∠,设MAC α∠=,90BAM BAC αα∴∠=∠-=︒-,245ABM ABN NBM α∴∠=∠+∠==︒,22.5α∴=︒,180180904567.5AMB BAM ABM α∴∠=︒-∠-∠=︒-︒+-︒=︒,9022.567.5BAM ∠=︒-︒=︒,AB BM ∴==2CM BC BM ∴=-=即BN AM +取得最小值为2 故答案为:2图1 图2【点睛】本题考查了等腰直角三角的性质,勾股定理,两点之间线段最短,转化线段是解题的关键.37.(2022·广西)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC 的大小为______【答案】135°##135度【分析】根据三角板及其摆放位置可得180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,求解即可.【详解】180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,18045135BAC ∴∠=︒-︒=︒,故答案为:135°.【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.38.(2022·广西桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=_____cm.【答案】4【分析】根据中点的定义可得AB=2AC=4cm.【详解】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点睛】本题主要考查中点的定义,熟知中点的定义是解题关键.39.(2022·贵州遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC OA∥,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π3≈,sin280.47︒≈,︒≈,cos280.88︒≈)tan280.53根据以上信息,北纬28°纬线的长度约为__________千米.【答案】33792【分析】根据平行线的性质可知28∠=∠=︒,在Rt BOD中,利用锐角三角B BOA函数求出BD ,即为以BC 为直径的圆的半径,求出周长即可.【详解】解:如图,过点O 作OD BC ,垂足为D ,根据题意6400OB OA ==,∠BC OA ∥,∠28B BOA ∠=∠=︒,∠在Rt BOD 中, 28B ∠=︒,∠cos28BD OB =︒,∠OD BC ,∠由垂径定理可知:12BD DC BC ==,∠以BC 为直径的圆的周长为22364000.8833792BD π⨯≈⨯⨯⨯=,故答案为:33792.【点睛】本题考查解直角三角形,平行线的性质,解题的关键是熟练三角函数的含义与解直角三角形的方法.三.解答题40.(2022·广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.【答案】见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.41.(2022·广西)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD ,其中 AB =CD =2米,AD =BC =3米,∠B =30(1)求证:∠ABC ∠∠CDA ;(2)求草坪造型的面积.【答案】(1)见解析(2)草坪造型的面积为23m【分析】(1)根据“SSS ”直接证明三角形全等即可;(2)过点A 作AE ∠BC 于点E ,利用含30°的直角三角形的性质求出AE 的长度,继而求出ABC 的面积,再由全等三角形面积相等得出32ABC CDASS ==,即可求出草坪造型的面积.(1)在ABC 和CDA 中,AB CD AC CA BC AD =⎧⎪=⎨⎪=⎩, ()ABC CDA SSS ∴≅;(2)过点A 作AE ∠BC 于点E ,90AEB ∴∠=︒,30,2m B AB ∠=︒=,11m 2AE AB ∴==, 3m BC =,211331m 222ABCS BC AE ∴=⋅=⨯⨯=, ABC CDA ≅,23m 2ABC CDA S S ∴==, ∴草坪造型的面积23m ABC CDA S S =+=,所以,草坪造型的面积为23m .【点睛】本题考查了全等三角形的判定和性质,含30°的直角三角形的性质,熟。
全等三角形平行线例题
1、题目:已知$ \bigtriangleup ABC$中,$AB = AC$,$D$是$BC$上一点,$AD = BD = 2$,则$\bigtriangleupABC$的面积是____.答案:$8$2、题目:已知$\bigtriangleup ABC$中,AB = AC,D是BC上一点,E、F分别是AB、AC上的点,且BD = CF,BE = DF,求证:DE = EF。
【分析】本题考查全等三角形的判定和性质,判定两个三角形全等的一般方法有:$SSS$、$SAS$、$ASA$、$AAS$、$HL$.注意:AAA、$SSA$不能判定两三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.根据已知条件结合全等三角形的判定定理进行证明即可。
【解答】证明:$\because AB = AC$,$\therefore\angle B = \angle C$.在$\bigtriangleup BDE$和$\bigtriangleup CDF$中,$\angle B = \angle C$,$\angle BED = \angle CFD$,$BD = CF$,$\therefore\bigtriangleup BDE \cong \bigtriangleup CDF$.$\therefore DE = DF$.在$\bigtriangleup ADE$和$\bigtriangleup AEF$中,$DE = DF$,$\angle ADE = \angle AEF$,$AE = AE$,$\therefore \bigtriangleup ADE \cong\bigtriangleup AEF$.$\therefore DE = EF$.故答案为:DE = EF.。
专题11 平行线与三角形-2022年中考数学真题分项汇编(全国通用)(原卷版)
专题11 平行线与三角形一.选择题1.(2022·湖北宜昌·中考真题)如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .182.(2022·浙江台州·中考真题)如图,点D 在ABC 的边BC 上,点P 在射线AD 上(不与点A ,D 重合),连接PB ,PC .下列命题中,假命题是( )A .若AB AC =,AD BC ⊥,则PB PC =B .若PB PC =,AD BC ⊥,则AB AC = C .若AB AC =,12∠=∠,则PB PC = D .若PB PC =,12∠=∠,则AB AC = 3.(2022·江苏宿迁·中考真题)若等腰三角形的两边长分别是3cm 和5cm ,则这个等腰三角形的周长是( )A .8cmB .13cmC .8cm 或13cmD .11cm 或13cm 4.(2022·浙江杭州·中考真题)如图,CD ⊥AB 于点D ,已知∠ABC 是钝角,则( )A.线段CD是ABC的AC边上的高线B.线段CD是ABC的AB边上的高线C.线段AD是ABC的BC边上的高线D.线段AD是ABC的AC边上的高线5.(2022·湖南邵阳·中考真题)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm6.(2022·云南·中考真题)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE 7.(2022·浙江湖州·中考真题)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,E C.若∠EBC=45°,BC=6,则△EBC的面积是()A.12B.9C.6D.8.(2022·江苏扬州·中考真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .,,AB BC CA B .,,AB BC B ∠ C .,,AB AC B ∠D .,,∠∠A B BC 9.(2022·山东泰安·中考真题)如图,30AOB ∠=︒,点M 、N 分别在边OA OB 、上,且3,5OM ON ==,点P 、Q 分别在边OB OA 、上,则MP PQ QN ++的最小值是( )A B C 2 D 210.(2022·浙江金华·中考真题)如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A .SSSB .SASC .AASD .HL11.(2022·浙江金华·中考真题)已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A .2cmB .3cmC .6cmD .13cm12.(2022·安徽·中考真题)已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△PAB ,△PBC ,△PCA 的面积分别记为0S ,1S ,2S ,3S .若12302S S S S ++=,则线段OP 长的最小值是( )A B C .D13.(2022·四川南充·中考真题)如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A .1BF =B .3DC = C .5AE =D .9AC =14.(2022·四川德阳·中考真题)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A .1km B .2km C .3km D .8km15.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A .40°B .45°C .50°D .60°16.(2022·浙江绍兴·中考真题)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°17.(2022·安徽·中考真题)两个矩形的位置如图所示,若1∠=α,则2∠=( )A .90α-︒B .45α-︒C .180α︒-D .270α︒- 18.(2022·浙江杭州·中考真题)如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A .10°B .20°C .30°D .40°19.(2022·湖南娄底·中考真题)一条古称在称物时的状态如图所示,已知180∠=︒,则2∠=( )A .20︒B .80︒C .100︒D .120︒20.(2022·江苏苏州·中考真题)如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50°二.填空题 21.(2022·湖南株洲·中考真题)如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.22.(2022·浙江嘉兴·中考真题)小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.23.(2022·浙江绍兴·中考真题)如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD ,则BCD ∠的度数是______.24.(2022·云南·中考真题)已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____. 25.(2022·山东滨州·中考真题)如图,屋顶钢架外框是等腰三角形,其中AB AC =,立柱AD BC ⊥,且顶角120BAC ∠=︒,则C ∠的大小为_______.26.(2022·山东泰安·中考真题)如图,△ ABC 中,∠BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED ,连 CE ,则线段 CE 的长等于_____27.(2022·湖北武汉·中考真题)如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ∠=︒,1600m BC =,105BCD ∠=︒,则C ,D 两点的距离是_________m .28.(2022·湖北黄冈·中考真题)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是________(结果用含m 的式子表示).29.(2022·江苏苏州·中考真题)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.30.(2022·江苏扬州·中考真题)将一副直角三角板如图放置,已知60E ∠=︒,45C ∠=︒,EF BC ∥,则BND ∠=________°.31.(2022·湖北黄冈·中考真题)如图,直线a ∠b ,直线c 与直线a ,b 相交,若∠1=54°,则∠3=_____度.32.(2022·四川达州·中考真题)如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数为_____.33.(2022·湖北黄冈·中考真题)如图,已知AB DE ∥,AB DE =,请你添加一个条件________,使ABC DEF △≌△.三.解答题34.(2022·浙江温州·中考真题)如图,BD 是ABC 的角平分线,DE BC ∥,交AB 于点E .(1)求证:EBD EDB ∠=∠.(2)当AB AC =时,请判断CD 与ED 的大小关系,并说明理由.35.(2022·四川乐山·中考真题)如图,B 是线段AC 的中点,,AD BE BD CE ∥∥,求证:ABD BCE △≌△.36.(2022·浙江杭州·中考真题)如图,在Rt △ACB 中,∠ACB =90°,点M 为边AB 的中点,点E 在线段AM 上,EF ⊥AC 于点F ,连接CM ,CE .已知∠A =50°,∠ACE =30°.(1)求证:CE =CM .(2)若AB =4,求线段FC 的长.37.(2022·陕西·中考真题)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .38.(2022·湖南衡阳·中考真题)如图,在ABC 中,AB AC =,D 、E 是BC 边上的点,且BD CE =,求证:AD AE =.39.(2022·湖南怀化·中考真题)如图,在等边三角形ABC 中,点M 为AB 边上任意一点,延长BC 至点N ,使CN =AM ,连接MN 交AC 于点P ,MH ⊥AC 于点H .(1)求证:MP =NP ;(2)若AB =a ,求线段PH 的长(结果用含a 的代数式表示).40.(2022·浙江丽水·中考真题)如图,将矩形纸片ABCD 折叠,使点B 与点D 重合,点A 落在点P 处,折痕为EF .(1)求证:PDE CDF △≌△;(2)若4cm,5cm CD EF ==,求BC 的长.41.(2022·四川自贡·中考真题)如图,△ABC 是等边三角形,,D E 在直线BC 上,DB EC =.求证:D E ∠=∠ .42.(2022·重庆·中考真题)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点D .(只保留作图痕迹)在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,∴______①____.∵EF BC ∥,∴______②_____.又∵____③______.∴ADC CFA △≌△(AAS ).同理可得:_____④______. 11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah =+=+==矩形矩形矩形.43.(2022·江西·中考真题)如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作ABC ∠的角平分线;(2)在图2中过点C 作一条直线l ,使点A ,B 到直线l 的距离相等.44.(2022·新疆·中考真题)如图,在ABC ∆巾,30ABC AB AC ∠=︒=,,点O 为BC 的中点,点D 是线段OC 上的动点(点D 不与点O ,C 重合),将ACD △沿AD 折叠得到AED ∆,连接BE .(1)当AE BC ⊥时,AEB ∠=___________︒;(2)探究AEB ∠与CAD ∠之问的数量关系,并给出证明;(3)设4AC =,ACD △的面积为x ,以AD 为边长的正方形的面积为y ,求y 关于x 的函数解析式.45.(2022·重庆·中考真题)如图,在锐角ABC 中,60A ∠=︒,点D ,E 分别是边AB ,AC上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB AC >,且BD CE =,BCD CBE ∠=∠,求CFE ∠的度数;(2)如图2,若AB AC =,且BD AE =,在平面内将线段AC 绕点C 顺时针方向旋转60︒得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段BF ,CF ,CN 之间存在的数量关系,并证明你的猜想;(3)若AB AC =,且BD AE =,将ABC 沿直线AB 翻折至ABC 所在平面内得到ABP △,点H 是AP 的中点,点K 是线段PF 上一点,将PHK △沿直线HK 翻折至PHK △所在平面内得到QHK △,连接PQ .在点D ,E 运动过程中,当线段PF 取得最小值,且QK PF ⊥时,请直接写出PQ BC的值.46.(2022·重庆·中考真题)在ABC 中,90BAC ∠=︒,AB AC ==D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90°得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:AM AF +=;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH △沿EH 翻折至ABC 所在平面内,得到B EH '△,连接B G ',直接写出线段B G '的长度的最小值.47.(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:AG CG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.。
中考数学 考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线
21.(2020·武汉)如图,直线 EF 分别与直线 AB,CD 交于点 E,F,EM 平 分∠BEF,FN 平分∠CFE,且 EM∥FN.求证:AB∥CD.
证明:∵EM∥FN, ∴∠FEM=∠EFN, ∵EM 平分∠BEF,FN 平分∠CFE, ∴∠FEB=2∠FEM,∠EFC=2∠EFN, ∴∠FEB=∠EFC,∴AB∥CD.
解释这一现象的数学知识是
( A)
A.两点之间,线段最短
B.垂线段最短
C.三角形两边之和大于第三边
D.两点确定一条直线
5.(2021·杭州)如图,设点 P 是直线 l 外一点,PQ⊥l,垂足为点 Q,点
T 是直线 l 上的一个动点,连接 PT,则
(C)
A.PT≥2PQ
B.PT≤2PQ
C.PT≥PQ
D.PT≤PQ
11.(2020·江西)如图,∠1=∠2=65°,∠3=35°,则下列结论中错
误的是
( C)
A.AB∥CD
B.∠B=30°
C.∠C+∠2=∠EFC
D.CG>FG
12.(易错题)若直线 a∥b∥c,a 与 b 之间的距离为 7 cm,b 与 c 之间的
距离为 3 cm,则 a 与 c 之间的距离为
第四章 三角形 第一节 几何初步及相交
线与平行线
1.(2021·百色)已知∠α=25°30′,则它的余角为 A.25°30′ B.64°30′ C.74°30′ D.154°30′
( B)
2.(2021·贺州)如图,下列两个角是同旁内角的是
( B)
A.∠1 与∠2 B.∠1 与∠3 C.∠1 与∠4 D.∠2 与∠4
其中※处填的依据是 A.两直线平行,内错角相等 B.内错角相等,两直线平行 C.两直线平行,同位角相等 D.两直线平行,同旁内角互补
平行线与三角形 试题及答案
平行线与三角形一、单选题1.如图(1),在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为()A .10︒B .20︒C .30°D .40︒2.如图(2),将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为()A .42°B .48°C .52°D .60°3.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A .3B .72C .2D .524.下列命题是真命题的是()A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点5.两个直角三角板如图(5)摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为()(1)A .60︒B .67.5︒C .75︒D .82.5︒6.某同学的作业如下框,其中※处填的依据是()如图,已知直线1234,,,l l l l .若12∠=∠,则34∠=∠.请完成下面的说理过程.解:已知12∠=∠,根据(内错角相等,两直线平行),得12//l l .再根据(※),得34∠=∠.A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补7.如图(7),直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2∠=()A .60︒B .55︒C .50︒D .45︒8.如图(8),AB ∥CD ∥EF ,若∠ABC =130°,∠BCE =55°,则∠CEF 的度数为()A .95°B .105°C .110°D .115°9.如图(9),直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是()A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒10.如图(10),已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒11.如图(11),在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是()A .2B .1C D .3212.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图(12),ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理13.如图(13),ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198B .2C .254D .7414.如图(14),点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为()A .60°B .70°C .75°D .85°15.在ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是()A .2CD ME=B .//ME ABC .BD CD=D .ME MD=16.如图(16),在ABC 和DCB 中,ACB DBC ∠=∠,添加一个条件,不能..证明ABC 和DCB 全等的是()A .ABC DCB∠=∠B .AB DC=C .AC DB=D .A D∠=∠17.如图(17),在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为()A .259B .258C .157D .20718.如图(18),()8,0A ,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为()A .()0,5B .()5,0C .()6,0D .()0,6(16)(17)19.如图(19),点B ,F ,C ,E 共线,∠B =∠E ,BF =EC,添加一个条件,不等判断△ABC ≌△DEF 的是()A .AB =DEB .∠A =∠DC .AC =DFD .AC ∥FD20.如图(20),在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是()A .2B .3C .4D .521.如图(21),在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,3BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为()A .33B .32C .1D .6222.如图(22),在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为()A .7.5B .8C .15D .无法确定23.如图(23)所示,直线EF //GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =()A .160°B .110°C .100°D .70°(18)(19)(20)(21)(22)24.如图(24),直线a ,b 被直线c 所截,则∠1与∠2的位置关系是()A .同位角B .内错角C .同旁内角D .邻补角25.将一副三角尺如图(25)摆放,点E 在AC 上,点D 在BC 的延长线上,//,90,45,60EF BC B EDF A F ∠=∠=︒∠=︒∠=︒,则CED ∠的度数是()A .15°B .20°C .25°D .30°26.有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A 顺时针旋转,使BC ∥DE ,如图②所示,则旋转角∠BAD 的度数为()A .15°B .30°C .45°D .60°27.如图(27),在ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,ABC 面积为10,则BM +MD 长度的最小值为()A .52B .3C .4D .5(23)(24)(25)(27)28.如图(28),ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒29.如图(29),在△ABC 中,AB =2,∠ABC =60°,∠ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ⊥l ,BF ⊥l ,垂足分别为E ,F ,则AE +BF 的最大值为()A 6B .2C .3D .230.如图(30),在四边形ABCD 中,//AD BC ,90D ∠= ,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为()A .42B .6C .210D .831.如图(31),在一个宽度为AB 长的小巷内,一个梯子的长为a ,梯子的底端位于AB 上的点P ,将该梯子的顶端放于巷子一侧墙上的点C 处,点C 到AB 的距离BC 为b ,梯子的倾斜角BPC ∠为45︒;将该梯子的顶端放于另一侧墙上的点D 处,点D 到AB 的距离AD 为c ,且此时梯子的倾斜角APD ∠为75︒,则AB 的长等于()(28)(29)(30)(31)(33)A .aB .bC .2bc +D .c32.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A .55°,55°B .70°,40°或70°,55°C .70°,40°D .55°,55°或70°,40°33.如图(33),已知ABC 和ADE 都是等腰三角形,90BAC DAE ∠=∠=︒,,BD CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ⊥;③AF 平分CAD ∠;④45AFE ∠=︒.其中正确结论的个数有()A .1个B .2个C .3个D .4个34.如图(34),,ABC ECD ∆∆都是等边三角形,且B ,C ,D 在一条直线上,连结,BE AD ,点M ,N 分别是线段BE ,AD 上的两点,且11,33BM BE AN AD ==,则CMN ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形35.如图(35)所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则ABC ∆的重心是()A .点DB .点EC .点FD .点G36.如图(36),在CEF △中,80E ∠=︒,50F ∠=︒,AB CF ,AD CE ,连接BC ,CD ,则A ∠的度数是()A .45°B .50°C .55°D .80°二、填空题(34)(35)(36)37.由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图(37),三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是______.38.下图(38)是可调躺椅示意图(数据如图),AE与BD的交点为C,且A∠,BÐ,E∠保持不变.为了舒适,需调整D∠的大小,使110EFD∠=︒,则图中D∠应___________(填“增加”或“减少”)___________度.39.如图(39),AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.40.如图(40),在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,连接BO 并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF值为____________.41.如图(41),在四边形ABCD中,AB BC BD==.设ABCα∠=,则ADC∠=______(用含α的代数式表示).42.如图(42),BE是ABC的中线,点F在BE上,延长AF交BC于点D.若3BF FE=,则BDDC=______.(37)(38)(39)(40)(41)43.如图(43),在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.44.如图(44),将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,DE =,则BC 的长为_______.45.如图(45),在△ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则△ABD 的周长是_____.46.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图(46),则水深为__尺.47.如图(47),四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为_____.48.如图(48),在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB(42)(44)(45)(46)(47)(48)(43)于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AFAB =,连接DF ,则CDF 的周长为___________.49.如图(49),在ABC 中,9,4BC AC ==,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点,M N 、作直线MN ,交BC 边于点D ,连接AD ,则ACD △的周长为________.50.如图(50),△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.51.如图(51),在ABC 中,84C ∠=︒,分别以点A 、B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M 、N ,作直线MN 交AC 点D ;以点B 为圆心,适当长为半径画弧,分别交BA 、BC 于点E 、F ,再分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线BP ,此时射线BP 恰好经过点D ,则A ∠=_____度.52.由4个直角边长分别为a ,b 的直角三角形围成的“赵爽弦图”如图(52)所示,根据大正方形的面积2c 等于小正方形的面积2()a b -与4个直角三角形的面积2ab 的和证明了勾股定理222+=a b c ,还可以用来证明结论:若0a >、0b >且22a b +为定值,则当a _______b 时,ab 取得最大值.53.如图(53),在ABC 中,90,ACB AC BC ∠=︒=,点P 在斜边AB 上,以PC 为直角边作等腰直角三角形PCQ ,90PCQ ∠=︒,则222,,PA PB PC 三者之间的数量关系是_____.54.如图(54),D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值(49)(50)(51)(53)的差为_____.55.勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(55)(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离为______km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为______km .三、解答题56.如图(56),//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.57.如图(57),BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.58.如图(58),90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.(54)(55)(56)(57)59.如图(59),在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.60.如图(60),//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.61.如图(61),点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.(58)(59)(60)62.已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m的值;若不存在,请说明理由.63.如图(63),AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC的度数.64.阅读与思考(61)(63)下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出30CD cm =,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则DCE ∠必为90︒.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS MN =,得到点S ,作直线SC ,则90RCS ∠=︒.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________;(2)根据“办法二”的操作过程,证明90RCS ∠=︒;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法依据的数学定理或基本事实(写出一个即可)65.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图(65),水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF上,已知20,45HFB FED∠=︒∠=︒,求GFH∠的度数.66.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF 交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.(65)67.已知AOB 和MON △都是等腰直角三角形22OM ON ⎛⎫<< ⎪⎝⎭,90AOB MON ︒∠=∠=.(1)如图1:连,AM BN ,求证:AOM BON ≌;(2)若将MON △绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:2222BN AN ON =+;②当点,,A M N 在同一条直线上时,若4,3OB ON ==,请直接写出线段BN 的长.68.如图1,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.69.(1)如图①,在四边形ABCD 中,AB CD ∥,点E 是BC 的中点,若AE 是BAD ∠的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证AEB FEC ∆∆≌得到AB FC =,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系________;(2)问题探究:如图②,在四边形ABCD 中,AB CD ∥,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是BAF ∠的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.70.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究:在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是,NB 与MC 的数量关系是;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用:如图3,在111A B C ∆中,118A B =,11160A B C ∠= ,11175B A C ∠= ,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A按顺时针方向旋转75 ,得到线段1AQ ,连接1B Q .求线段1B Q 长度的最小值.答案1、【答案】B解:∵AB∥CD,∴∠ABC=∠BCD,∵CB平分∠DCE,∴∠BCE=∠BCD,∴∠BCE=∠ABC,∵∠AEC=∠BCE+∠ABC=40°,∴∠ABC=20°,故选B.2、【答案】A解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A,由矩形对边平行,可得∠1=∠BAC,因为BC⊥AB,∴∠BAC+∠2=90°,∴∠1+∠2=90°,因为∠1=48°,∴∠2=42°;故选:A.3、【答案】A解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:○1腰长是的等腰直角三角形,②腰长是2的等腰直角三角形,的正方形,⑤边长分别是2,顶角分别是45 和135 的平行四边形,根据图2可知,图中抬起的“腿”的等腰直角三角形,和一个边长分别是2,顶角分别是45 和135 的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45 和135 的平行四边形的高是DB ,且DB =,的等腰直角三角形的面积是:112=,顶角分别是45 和135 2=,∴阴影部分的面积为:123+=,故选:A.4、【答案】BA、五边形的内角和是540︒,故原命题为假命题,不符合题意;B、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B.5、【答案】C由图可得6045B F ∠=︒∠=︒,,∵//BC EF ,∴45FDB F ∠=∠=︒,∴180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C.6、【答案】C解:∵12//l l ,∴34∠=∠(两直线平行,同位角相等).故选C .7、【答案】B解:如图,1=55∠︒ ,3=55,∴∠︒∵a ∥b ,∠3=55°,∴∠2=∠3=55°.故选B.8、【答案】B解://AB CD 130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD 180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B.9、【答案】D首先根据三角尺的直角被直线m 平分,∴∠6=∠7=45°;A 、∵∠1=60°,∠6=45°,∴∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∴∠2=∠8=75°结论正确,选项不合题意;B 、∵∠7=45°,m ∥n ,∴∠3=∠7=45°,结论正确,选项不合题意;C 、∵∠8=75°,∴∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∵∠7=45°,∴∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D.10、【答案】B 解:如图,∵//,140m n ∠=︒,∴∠4=∠1=40°,∵230∠=︒,∴34270∠=∠+∠=︒;故选B.11.(2021·四川广元市·中考真题)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是()A.2B.1D.3211、【答案】B解:以CD 为边作等边三角形CDE ,连接EQ ,如图所示:∵PDQ 是等边三角形,∴60,,CED PDQ CDE PD QD CD ED ∠=∠=∠=︒==,∵∠CDQ 是公共角,∴∠PDC =∠QDE ,∴△PCD ≌△QED (SAS ),∵90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,∴∠PCD =∠QED =90°,122CD DE CE BC ====,∴点Q 是在QE 所在直线上运动,∴当CQ ⊥QE 时,CQ 取的最小值,∴9030QEC CED ∠=︒-∠=︒,∴112CQ CE ==;故选B.12、【答案】BA .证法1给出的证明过程是完整正确的,不需要分情况讨论,故A 不符合题意;B .证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B 符合题意;C .证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C 不符合题意;D .证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D 不符合题意.故选择:.B 13、【答案】D解:∵∠ACB =90°,AC =8,BC =6,∴AB∵△ADE 沿DE 翻折,使点A 与点B 重合,∴AE =BE ,AD =BD =12AB =5,设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D.14、【答案】B解:∵25B ∠=︒,50C ∠=︒,∴在Rt △BEC 中,由三角形内角和可得105BEC ∠=︒,∵35A ∠=︒,∴170BEC A ∠=∠-∠=︒;故选B.15、【答案】A如图,设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G.∵AD 是BAC ∠的平分线,HF AB ⊥,HC AC ⊥,∴HC =HF ,∴AF =AC .∴在CAE V 和FAE 中,AF AC CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()CAE FAE SAS ≅ ,∴CE FE =,∠AEC =∠AEF =90°,∴C、E、F 三点共线,∴点E 为CF 中点.∵M 为BC 中点,∴ME 为CBF V 中位线,∴//ME AB ,故B 正确,不符合题意;∵在AGD △和ABD △中,90GAD BAD AD AD ADG ADB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴()AGD ABD ASA ≅ ,∴12GD BD BG ==,即D 为BG 中点.∵在BCG 中,90BCG ∠=︒,∴12CD BG =,∴CD BD =,故C 正确,不符合题意;∵90HDM DHM ∠+∠=︒,90HCE CHE ∠+∠=︒,DHM CHE ∠=∠,∴HDM HCE ∠=∠.∵HF AB ⊥,//ME AB ,∴HF ME ⊥,∴90HEM EHF ∠+∠=︒.∵AD 是BAC ∠的平分线,∴EHC EHF ∠=∠.∵90EHC HCE ∠+∠=︒,∴HCE HEM ∠=∠,∴HDM HEM ∠=∠,∴MD ME =,故D 正确,不符合题意;∵假设2CD ME =,∴2CD MD =,∴在Rt CDM 中,30DCM ∠=︒.∵无法确定DCM ∠的大小,故原假设不一定成立,故A 错误,符合题意.故选A.16、【答案】B选项A,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CB ACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABC ≌DCB (ASA),选项B,添加 AB DC =,在ABC 和DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ≌DCB ;选项C,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∴ABC ≌DCB (SAS);选项D,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC ≌DCB (AAS);综上,只有选项B 符合题意.故选B.17、【答案】D解:∵90,4,3ACB AC BC ∠=︒==,∴AB ==由折叠性质得:∠DAE=∠DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∴∠BFD =∠DFE=∠DAE ,∵∠DAE +∠B =90°,∴∠BDF +∠B =90°,即∠BDF =90°,∴Rt△ABC ∽Rt△FBD ,∴BD BC DF AC =即534AD AD -=,解得:AD =205,故选:D.18、【答案】D解:由题意可知:AC =AB ∵()8,0A,()2,0C -∴OA =8,OC =2∴AC =AB =10在Rt △OAB 中,6OB ===∴B (0,6)故选:D19、【答案】C解: BF =EC ,BC EF∴=A.添加一个条件AB =DE ,又,BC EF B E =∠=∠ ()ABC DEF SAS ∴△≌△故A 不符合题意;B.添加一个条件∠A =∠D 又,BC EF B E =∠=∠ ()ABC DEF AAS ∴≌故B 不符合题意;C.添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D.添加一个条件AC ∥FD ACB EFD ∴∠=∠又,BC EF B E =∠=∠ ()ABC DEF ASA ∴≌故D 不符合题意,故选:C.20、【答案】B解:如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有0个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有3个.故共有3个点,故选:B.21、【答案】C解:因为AD 垂直BC ,则△ABD 和△ACD 都是直角三角形,又因为45,60,B C ∠=︒∠=︒所以AD =BD =,因为sin∠C =32AD AC =,所以AC =2,因为EF 为△ABC 的中位线,所以EF =2AC =1,故选:C.22、【答案】A如图,过点D 作DE⊥BC 于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S △BCD =12BC•DE=12×5×3=7.5.故选A.23、【答案】B 解:∵AD ⊥EF ,∠A =20°,∴∠ABD =180°﹣∠A ﹣∠ABD =180°﹣20°﹣90°=70°,∵EF ∥GH ,∴∠ACH =∠ABD =70°,∴∠ACG =180°﹣∠ACH =180°﹣70°=110°,故选:B .24、【答案】A解:如图所示,∠1和∠2两个角都在两被截直线直线b 和a 同侧,并且在第三条直线c(截线)的同旁,故∠1和∠2是直线b、a 被c 所截而成的同位角.故选:A.25、【答案】A解:由三角板的特点可知∠ACB=45°、∠DEF=30°∵//EF BC ∴∠CEF=∠ACB=45°,∴∠CED=∠CEF-∠DEF=45°-30°=15°.故答案为A.26、【答案】B解:如图,设AD 与BC 交于点F ,∵BC ∥DE ,∴∠CFA =∠D =90°,∵∠CFA =∠B +∠BAD =60°+∠BAD ,∴∠BAD =30°故选:B .27、【答案】D解:由作法得EF 垂直平分AB ,∴MB =MA ,∴BM +MD =MA +MD ,连接MA 、DA ,如图,∵MA +MD ≥AD (当且仅当M 点在AD 上时取等号),∴MA +MD 的最小值为AD ,∵AB =AC ,D 点为BC 的中点,∴AD ⊥BC ,∵110,2ABC S BC AD == ∴1025,4AD ⨯==∴BM +MD 长度的最小值为5.故选:D .28、【答案】D解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D.29、【答案】A解:如图,过点C 作CK⊥l 于点K,过点A 作AH⊥BC 于点H,在Rt△AHB在Rt△AHC==,∵点D 为BC 中点,∴BD=CD,在△BFD 与△CKD 中,90BFD CKD BDF CDK BD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C 作CN⊥AE 于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN 中,AN<AC,当直线l⊥AC,综上所述,AE+BF.故选:A.30、【答案】A解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC.∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OC AOF COB ∠∠⎧⎪⎨⎪∠∠⎩===,∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42.故选:A .31、【答案】D过点C 作CE⊥AD 于点E,则CE//AB,45PCE BPC ∴∠=∠=︒180754560DPC ∠=︒-︒-︒=︒ ,且PD=PC,PCD ∴ 为等边三角形,CD PD a ∴==,60PCD CDP ∠=∠=︒,45PCE ∠=︒ ,604515DCE DCP PCE ∴∠=∠-∠=︒-︒=︒,75APD =︒∠ ,90DAP ∠=︒,∴907515PDA ∠=︒-︒=︒,∴15DCE PDA ∠=∠=︒,∴601575CDE PDC PDA ∠=∠+∠=︒+︒=︒,APD CDE ∴∠=∠,在Rt APD 和Rt CDE △中,DCE PDA CD PD CDE DPA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴Rt APD ≌Rt CDE △,CE DA c ==,故选:D.32、【答案】D(1)当70︒的内角为这个等腰三角形的顶角则另外两个内角均为底角,它们的度数为18070552︒-︒=︒(2)当70︒的内角为这个等腰三角形的底角,则另两个内角一个为底角,一个为顶角底角为70︒,顶角为180707040︒-︒-︒=︒综上,另外两个内角的度数分别是55,55︒︒或70,40︒︒故选:D.33、【答案】C解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD 和△CAE 中AB=AC,∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE 故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A 作AM⊥BD、AN⊥CE 垂足分别为M、N∵△BAD≌△CAE∴S △BAD =S △CAE ,∴1122BD AM CE AN ⋅=⋅∵BD=CE∴AM=AN∴AF 平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF 平分∠BFE,BF CF ⊥∴45AFE ∠=︒故④正确.故答案为C.34、【答案】C∵,ABC ECD ∆∆都是等边三角形,∴BC AC =,CE CD =,60BCA DCE ∠=∠=︒,∴+BCA ACE DCE ACE ∠∠=∠+∠,∴BCE ACD ∠=∠,在BCE 和ACD △中,BC AC BCE ACD CE CD ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCE ACD SAS ≅,∴BE AD =,CBM ACN ∠=∠,又∵11,33BM BE AN AD ==,∴BM AN =,在BCM 和ACN △中,BM AN CBM ACN BC AC ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCM ACN SAS ≅,∴BCM ACN ∠=∠,MC NC =,∴+60BCM ACM ACN ACM ∠∠=∠+∠=︒,∴CMN ∆是等边三角形.故答案选C.35、【答案】A根据题意可知,直线CD 经过ABC ∆的AB 边上的中点,直线AD 经过ABC ∆的BC 边上的中点,∴点D 是ABC ∆重心.故选A.36、【答案】B解:连接AC 并延长交EF 于点M.AB CF ,31∴∠=∠,AD CE ,24∴∠=∠,3412BAD FCE ∴∠=∠+∠=∠+∠=∠,180180805050FCE E F ∠=︒-∠-∠=︒-︒-︒=︒ ,50BAD FCE ∴∠=∠=︒,故选B.37、1解:∵地毯平均分成了33=,∴CD =在Rt ACD △中,根据勾股定理可得AD ==,根据裁剪可知1BD CE ==,∴1AB AD BD =-=-1-.38、【答案】减少10解:∵∠A +∠B =50°+60°=110°,∴∠ACB =180°-110°=70°,∴∠DCE =70°,如图,连接CF 并延长,∴∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF ,∴∠EFD =∠DFM +∠EFM =20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD =110°,则∠EFD 减少了10°,若只调整∠D 的大小,由∠EFD =∠DFM +∠EFM =∠D +∠DCF +∠E +∠ECF =∠D +∠E +∠ECD =∠D +30°+70°=∠D +100°,因此应将∠D 减少10度;故答案为:①减少;②10.39、【答案】40°解:在△DEF 中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为40°.40、【答案】12:15:10解:∵在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,∴BF ⊥AC ,∵AB =5,BC =4,AC =6,∴111222ABC S BC AD AB CE AC BF =⋅=⋅=⋅ ,∴5432ABC S AD CE BF === ,∴CE :AD :BF =12:15:10,故答案是:12:15:10.41、【答案】11802α︒-解:在△ABD 中,AB =BD ∴∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠在△BCD 中,BC =BD ∴∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠∵ABC ABD CBD α∠=∠+∠=∴ADC ADB CBD ∠=∠+∠=11909022ABD CBD ︒-∠+︒-∠=1180()2ABD CBD ︒-∠+∠=11802ABC ︒-∠=11802α︒-故答案为:11802α︒-.42、【答案】32解:连接ED BE 是ABC 的中线,ABE BCE S S ∴= ,AED EDCS S = 3BF FE = 3,3ABF BFD AFE FEDS S S S ∴== 设=,AEF EFD S x S y = ,33ABF BFD S x S y ∴== ,4,4,4ABE BEC BED S x S x S y ∴=== 44EDC BEC BED S S S x y∴=-=- ADE EDC S S = 44x y x y ∴+=-53x y ∴= ABD 与ADC 是等高三角形,53+33333833=516445325333ABD ADC y y S BD x y x y y S DC x y x y x y y y y ⨯++∴=====++--⨯- ,故答案为:32.43、【答案】15︒或75︒解:①当点P 在BC 的延长线上时,如图∵AB AC =,70B ∠=︒,∴70B ACB ∠=∠=︒∴40CAB ∠=︒∵以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,∴AC =PC ∴∠=∠P CAP∵70∠=∠+∠=︒ACB B CAP ∴35∠=∠= P CAP ∴403575∠=∠+∠=+= BAP BAC CAP ②当点P 在CB 的延长线上时,如图由①得70C ∠=︒,40CAB ∠=︒∵AC =PC ∴=55∠=∠P CAP ∴-55-4015∠=∠∠== BAP CAP BAC 故答案为:15︒或75︒44、【答案】4+解:∵把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE ,FG ,∴BE =AE ,AF =FC ,∠FAC =∠C =15°,∴∠AFE =30°,又AE =EF ,∴∠EAF =∠AFE =30°,∴∠AEB =60°,∴△ABE 是等边三角形,∠AED =∠BED =30°,∴∠BAE =60°,∵DE ,∴AE =BE =AB =cos30DE ︒=2,∴BF =BE +EF =4,∠BAF =60°+30°=90°,∴FC =AF =BC =BF +FC =4+4+.45、【答案】12.解:∵直线DE 垂直平分BC ,∴DB DC =,∴△ABD 的周长5712AB AD BD AB AD DC AB AC =++=++=+=+=,故答案为:12.46、【答案】12解:依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt△AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.47、【答案】2解:取AD 的中点O,连接OM,过点M 作ME⊥BC 交BC 的延长线于E,点点O 作OF⊥BC 于F,交CD 于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=12AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,﹣2,∴当O,M,E 共线时,ME 的值最小,最小值为﹣2.48、【答案】12解:根据题意可知,AD 是∠BAC 的角平分线,∴∠BAD=∠FAD,∵AB=AF=5,AD=AD,∴△ABD≌△AFD,∴BD=FD,∴FD+DC=BD+DC=BC=9,∵FC=AC -AF=8-5=3,∴CDF ∆的周长为:FD+DC+FC=9+3=12;故答案为:12.49、【答案】13∵在ABC 中,分别以A、B 为圆心,大于1AB 2的长为半径画弧,两弧交于M,N,作直线MN,交BC 边于D,连接AD;∴MN 为AB 的垂直平分线,∴AD=BD,∴ACD 的周长为:AD+DC+AC=BC+AC=13;故答案为13.50、【答案】解:过C 作CF ⊥AB 交AD 于E ,则此时,CE +EF 的值最小,且CE +EF 的最小值为CF ,∵△ABC 为等边三角形,边长为6,∴BF =12AB =12⨯6=3,∴CF ,∴CE +EF 的最小值为.51、【答案】32由作图可得,MN 是线段AB 的垂直平分线,BD 是∠ABC 的平分线,∴AD=BD,1=2ABD CBD ABC ∠=∠∠∴A ABD ∠=∠∴A ABD CBD ∠=∠=∠∵+180A ABC C ∠∠+∠=︒,且84C ∠=︒,∴+2180A ABD C ∠∠=︒-∠,即318084A ∠=︒-︒,∴32A ∠=︒.故答案为:32.52、【答案】=设22a b +为定值k ,则222kc a b +==由“张爽弦图”可知,2222()()ab c a b k a b =--=--即2()2k a b ab --=要使ab 的值最大,则2()a b -需最小又2()0a b -≥ ∴当a b =时,2()a b -取得最小值,最小值为0则当a b =时,ab 取得最大值,最大值为2k 故答案为:=.53、【答案】PA 2+PB 2=2PC 2解:过点C 作CD⊥AB,交AB 于点D ∵△ACB 为等腰直角三角形,CD⊥AB,∴CD=AD=DB,∵PA 2=(AD-PD)2=(CD-PD)2=CD 2-2CD•PD+PD 2,PB 2=(BD+PD)2=(CD+PD)2=CD 2-2CD•PD+PD 2,∴PA 2+PB 2=2CD 2+2PD 2=2(CD 2+PD 2),在Rt△PCD 中,由勾股定理可得PC 2=CD 2+PD 2,∴PA 2+PB 2=2PC 2,故答案为PA 2+PB 2=2PC 2.54、【答案】12解:如图1,以CD 为边向外作等边三角形CDE,连接BE,∵CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:1255、【答案】2013(1)由A 、B 两点的纵坐标相同可知:AB ∥x 轴,∴AB =12﹣(﹣8)=20;(2)过点C 作l ⊥AB 于点E ,连接AC ,作AC 的垂直平分线交直线l 于点D ,由(1)可知:CE =1﹣(﹣17)=18,AE =12,设CD =x ,∴AD =CD =x ,由勾股定理可知:x 2=(18﹣x )2+122,∴解得:x =13,∴CD =13.故答案为(1)20;(2)13.56、【答案】见解析证明:∵//AB CD ,∴DCF B ∠=∠.∵B D ∠=∠,∴DCF D ∠=∠.∴//AD BC .∴DEF F ∠=∠.57、【答案】(1)见解析;(2)35°解:(1) BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2) 65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒.58、【答案】见详解证明:∵90BAC ∠=︒,∴∠BAE +∠CAF =90°,∵BE ⊥AD ,CF ⊥AD ,∴∠BEA =∠AFC =90°,∴∠BAE +∠EBA =90°,∴∠CAF =∠EBA ,∵AB =AC ,∴△BAE ≌△ACF ,∴AF BE =.59、【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析(1)80ABC ∠=︒ ,BD BC =,50BDC BCD ∴∠=∠=︒.在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒ ,60ACB ∠=︒∴,CE BC = ,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC = ,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠, 在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.60、【答案】见解析证明:∵//BD AC ,∴EBD C ∠=∠.∵BD BC =,BE AC =,∴()EDB ABC SAS ≌.∴D ABC ∠=∠.61、【答案】见解析证明:点A ,B ,C ,D ,E 在一条直线上∵//,//AC DF BC EF ∴,A FDE ABC DEF∠=∠∠=∠在ABC 与DEF 中CAB FDE AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△62、【答案】(1);(2)见解析;(3)存在,m =(1)解90,60ACB CAD ∠=∠=︒︒ ,2cos60AC AB AC ︒==,BD AC = ,AD AC =∴,ADC ∴ 是等边三角形,60ACD ∴∠=︒Р 是CD 的中点,AP CD ∴⊥,在Rt APC 中,3AP =,2sin 60AP AC ∴==︒,tan 6023BC AC =︒=∴.(2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠ ,()CPA DPE AAS ∴ ≌,1,2AP EP AE DE AC ∴===,BD AC = ,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,BDE ∴ 是等边三角形,,60BD BE EBD ∴=∠=︒BD AC = ,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒= ,()CAB EBA SAS ∴≌,AE BC ∴=,2BC AP ∴=.(3)存在这样的,2m m =.过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ⊥AB 于G ,过E 作EN ⊥AB 于N ,则45∠=∠=︒BDE CAD ,sin 45∴=⨯ CG AC ,sin 45=⨯ EN DE 由(2)得AE =2AP ,DE =AC ,∴CG =EN ,∵2BC AP =,∴AE =BC ,∵∠ANE =∠BGC =90°,≌∴ AEN BCG ,∴∠EAN =∠CBG∵AE =BC ,AB =BA ,∴≌ CAB EBA ∴AC =BE ,∴DE =BE ,∴∠EDB =∠EBD =45°,∴∠DEB =90°,∴2=BD AC ,∵BD mAC =∴2m =63、【答案】(1)证明见解析;(2)78°.证明:(1)在△BEF 和△CDA 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△CDA (SAS ),∴∠D =∠2;(2)∵∠D =∠2,∠D =78°,∴∠D =∠2=78°,。
中考数学复习专题11平行线与三角形
平行线与三角形一、单选题1.(2021·山东临沂市)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B 【分析】根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∵AB ∥CD ,∴∠ABC =∠BCD ,∵CB 平分∠DCE ,∴∠BCE =∠BCD ,∴∠BCE =∠ABC ,∵∠AEC =∠BCE +∠ABC =40°,∴∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.2.(2021·四川眉山市)如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为( )A .42°B .48°C .52°D .60°【答案】A 【分析】先通过作辅助线,将∠1转化到∠BAC ,再利用直角三角形两锐角互余即可求出∠2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得∠1=∠BAC ,因为BC ⊥AB ,∴∠BAC +∠2=90°,∴∠1+∠2=90°,因为∠1=48°,∴∠2=42°;故选:A.【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.3.(2021·四川乐山市)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A.3 B.72C.2 D.52【答案】A【分析】根据由边长为4的正方形分割制作的七巧板,可得共5种图形,然后根据阴影部分的构成图形,计算阴影部分面积即可.【详解】解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:○1腰长是2的等腰直角三角形,的正方形,⑤边长分别是245和135的平行四边形,根据图2可知,图中抬起的“腿”的等腰直角三角形,和一个边长分别是2,顶角分别是45和135的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45和135的平行四边形的高是DB,且DB=,的等腰直角三角形的面积是:112=,顶角分别是45和135的平行四边形的面积是:2=,∴阴影部分的面积为:123+=,故选:A.【点睛】本题考查了七巧板中的图形的构成和面积计算,熟悉七巧板中图形的分类是解题的关键.4.(2021·湖南岳阳市)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.5.(2021·安徽)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∵//BC EF ,∴45FDB F ∠=∠=︒, ∴180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.6.(2021·浙江金华市)某同学的作业如下框,其中※处填的依据是( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补【答案】C 【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∠3和∠4是同位角关系,即可选出答案.【详解】解:∵12//l l ,∴34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.7.(2021·云南)如图,直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2∠=( )A .60︒B .55︒C .50︒D .45︒【答案】B 【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【详解】解:如图,1=55∠︒, 3=55,∴∠︒ ∵a ∥b ,∠3=55°,∴∠2=∠3=55°.故选B .【点睛】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.8.(2021·山东)如图,AB ∥CD ∥EF ,若∠ABC =130°,∠BCE =55°,则∠CEF 的度数为( )A .95°B .105°C .110°D .115°【答案】B 【分析】由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD 130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD 180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.9.(2021·山东泰安市)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D 【分析】根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∴∠6=∠7=45°;A 、∵∠1=60°,∠6=45°,∴∠8=180°-∠1-∠6=180-60°-45°=75°,m ∥n ,∴∠2=∠8=75°结论正确,选项不合题意;B 、∵∠7=45°,m ∥n ,∴∠3=∠7=45°,结论正确,选项不合题意;C 、∵∠8=75°,∴∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∵∠7=45°,∴∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补. 10.(2021·四川资阳市)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A .80︒B .70︒C .60︒D .50︒【答案】B 【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∵//,140m n ∠=︒,∴∠4=∠1=40°,∵230∠=︒,∴34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.11.(2021·四川广元市)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A .2B .1CD .32【答案】B【分析】以CD 为边作等边三角形CDE ,连接EQ ,由题意易得∠PDC =∠QDE ,PD =QD ,进而可得△PCD ≌△QED ,则有∠PCD =∠QED =90°,然后可得点Q 是在QE 所在直线上运动,所以CQ 的最小值为CQ ⊥QE 时,最后问题可求解.【详解】解:以CD 为边作等边三角形CDE ,连接EQ ,如图所示:∵PDQ 是等边三角形,∴60,,CED PDQ CDE PD QD CD ED ∠=∠=∠=︒==,∵∠CDQ 是公共角,∴∠PDC =∠QDE ,∴△PCD ≌△QED (SAS ),∵90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,∴∠PCD =∠QED =90°,122CD DE CE BC ====,∴点Q 是在QE 所在直线上运动, ∴当CQ ⊥QE 时,CQ 取的最小值,∴9030QEC CED ∠=︒-∠=︒,∴112CQ CE ==;故选B . 【点睛】本题主要考查等边三角形的性质、含30°直角三角形的性质及最短路径问题,熟练掌握等边三角形的性质、含30°直角三角形的性质及最短路径问题是解题的关键.12.(2021·河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A 与B ,利用理论与实践相结合可判断C 与D .【详解】解:A . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A 不符合题意;B . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B 符合题意;C . 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C 不符合题意;D . 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D 不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.13.(2021·四川凉山州)如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .74【答案】D【分析】先在RtABC 中利用勾股定理计算出AB =10,再利用折叠的性质得到AE =BE ,AD =BD =5,设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中根据勾股定理可得到x 2=62+(8-x )2,解得x ,可得CE .【详解】解:∵∠ACB =90°,AC =8,BC =6,∴AB ,∵△ADE 沿DE 翻折,使点A 与点B 重合,∴AE =BE ,AD =BD =12AB =5, 设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D . 【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.14.(2021·陕西)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B 【分析】由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∵25B ∠=︒,50C ∠=︒,∴在Rt △BEC 中,由三角形内角和可得105BEC ∠=︒,∵35A ∠=︒,∴170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键.15.(2021·安徽)在△ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( ) A .2CD ME =B .//ME ABC .BD CD = D .ME MD = 【答案】A【分析】设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .由题意易证△CAE ≌△FAE ,从而证明ME 为△CBF 中位线,即//ME AB ,故判断B 正确;又易证△AGD ≌△ABD ,从而证明D 为BG 中点.即利用直角三角形斜边中线等于斜边一半即可求出CD BD =,故判断C 正确;由90HDM DHM ∠+∠=︒、90HCE CHE ∠+∠=︒和DHM CHE ∠=∠可证明HDM HCE ∠=∠.再由90HEM EHF ∠+∠=︒、EHC EHF ∠=∠和90EHC HCE ∠+∠=︒可推出 HCE HEM ∠=∠,即推出HDM HEM ∠=∠,即MD ME =,故判断D 正确;假设2CD ME =,可推出2CD MD =,即可推出30DCM ∠=︒.由于无法确定DCM ∠的大小,故2CD ME =不一定成立,故可判断A 错误.【详解】如图,设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .∵AD 是BAC ∠的平分线,HF AB ⊥,HC AC ⊥,∴HC =HF ,∴AF =AC .∴在△CAE 和△FAE 中,AF AC CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△FAE ,∴CE FE =,∠AEC =∠AEF =90°,∴C 、E 、F 三点共线,∴点E 为CF 中点.∵M 为BC 中点,∴ME 为△CBF 中位线,∴//ME AB ,故B 正确,不符合题意;∵在AGD △和ABD △中,90GAD BAD AD AD ADG ADB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AGD ≌△ABD , ∴12GD BD BG ==,即D 为BG 中点.∵在BCG 中,90BCG ∠=︒,∴12CD BG =, ∴CD BD =,故C 正确,不符合题意;∵90HDM DHM ∠+∠=︒,90HCE CHE ∠+∠=︒,DHM CHE ∠=∠,∴HDM HCE ∠=∠. ∵HF AB ⊥,//ME AB ,∴HF ME ⊥,∴90HEM EHF ∠+∠=︒.∵AD 是BAC ∠的平分线,∴EHC EHF ∠=∠.∵90EHC HCE ∠+∠=︒, ∴HCE HEM ∠=∠,∴HDM HEM ∠=∠,∴MD ME =,故D 正确,不符合题意;∵假设2CD ME =,∴2CD MD =,∴在Rt △CDM 中,30DCM ∠=︒.∵无法确定DCM ∠的大小,故原假设不一定成立,故A 错误,符合题意.故选A .【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含30角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键.16.(2021·重庆)如图,在△ABC 和△DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明和△ABC 和△DCB 全等的是( )A .ABC DCB ∠=∠ B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在△ABC 和△DCB 中,ABC DCB BC CB ACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA ), 选项B ,添加AB DC =, 在△ABC 和△DCB 中,AB DC =,BC CB =,ACB DBC ∠=∠,无法证明△ABC ≌△DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ); 选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (AAS ); 综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.17.(2021·浙江丽水市)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∠DAE=∠DFE ,AD=DF ,然后根据角平分线的定义证得∠BFD=∠DFE =∠DAE ,进而证得∠BDF=90°,证明Rt △ABC ∽Rt △FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∴AB ==, 由折叠性质得:∠DAE=∠DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∴∠BFD =∠DFE=∠DAE ,∵∠DAE +∠B =90°,∴∠BDF +∠B =90°,即∠BDF =90°,∴Rt △ABC ∽Rt △FBD ,∴BD BC DF AC =即534AD AD -=,解得:AD =205,故选:D . 【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.18.(2021·四川自贡市)如图,()8,0A ,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6【答案】D 【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB ∵()8,0A ,()2,0C -∴OA =8,OC =2∴AC =AB =10在Rt △OAB 中,6OB ==∴B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键19.(2021·重庆)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断△ABC ≌△DEF 的是( )A .AB =DEB .∠A =∠DC .AC =DFD .AC ∥FD【答案】C 【分析】根据全等三角形的判定与性质逐一分析即可解题. 【详解】解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△ 故A 不符合题意;B. 添加一个条件∠A =∠D ,又,BC EF B E =∠=∠,∴△ABC ≌△DEF (AAS ),故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D. 添加一个条件AC ∥FD , ACB EFD ∴∠=∠,又,BC EF B E =∠=∠,△ABC ≌△DEF (ASA ),故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.20.(2021·江苏扬州市)如图,在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .5【答案】B 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰直角△ABC 底边;②AB 为等腰直角△ABC 其中的一条腰.【详解】解:如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有0个; ②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有3个.故共有3个点,故选:B .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.21.(2021·浙江宁波市)如图,在△ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D .2【答案】C【分析】根据条件可知△ABD 为等腰直角三角形,则BD =AD ,△ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC . 【详解】解:因为AD 垂直BC ,则△ABD 和△ACD 都是直角三角形,又因为45,60,B C ∠=︒∠=︒所以AD =BD =sin ∠C =AD AC =AC =2, 因为EF 为△ABC 的中位线,所以EF =2AC =1,故选:C .【点睛】本题主要考查了等腰直角三角形、锐角三角形函数值、中位线相关知识,根据条件分析利用定理推导,是解决问题的关键.22.(2021·青海)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【答案】A【详解】如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=12BC•DE=12×5×3=7.5.故选A.考点:角平分线的性质;全等三角形的判定与性质.二、填空题1.(2021·浙江)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是______.1【分析】据裁剪和拼接的线段关系可知CD =,1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∵地毯平均分成了3=,∴CD =在Rt ACD △中,根据勾股定理可得AD =,根据裁剪可知1BD CE ==,∴1AB AD BD =-=1.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键. 2.(2021·河北)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【答案】减少 10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF 与∠D 、∠E 、∠DCE 之间的关系,进行计算即可判断.【详解】解:∵∠A +∠B =50°+60°=110°,∴∠ACB =180°-110°=70°,∴∠DCE =70°,如图,连接CF 并延长,∴∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF ,∴∠EFD=∠DFM+∠EFM=20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD=110°,则∠EFD减少了10°,若只调整∠D的大小,由∠EFD=∠DFM+∠EFM=∠D+∠DCF+∠E+∠ECF=∠D+∠E+∠ECD=∠D+30°+70°=∠D+100°,因此应将∠D减少10度;故答案为:①减少;②10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.3.(2021·青海)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.【答案】40°【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.4.(2021·山东聊城市)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD 与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF 值为____________.【答案】12:15:10【分析】由题意得:BF ⊥AC ,再根据三角形的面积公式,可得5432ABC SAD CE BF ===,进而即可得到答案.【详解】解:∵在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,∴BF ⊥AC ,∵AB =5,BC =4,AC =6,∴111222ABC SBC AD AB CE AC BF =⋅=⋅=⋅, ∴5432ABC S AD CE BF ===,∴CE :AD :BF =12:15:10,故答案是:12:15:10. 【点睛】本题主要考查三角形的高,掌握“三角形的三条高交于一点”是解题的关键. 5.(2021·江苏南京市)如图,在四边形ABCD 中,AB BC BD ==.设ABC α∠=,则ADC ∠=______(用含α的代数式表示).【答案】11802α︒- 【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠,∠BDC =1902CBD ︒-∠,两角相加即可得到结论.【详解】解:在△ABD 中,AB =BD ∴∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在△BCD 中,BC =BD ∴∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∵ABC ABD CBD α∠=∠+∠= ∴ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠=1180()2ABD CBD ︒-∠+∠=11802ABC ︒-∠=11802α︒-故答案为:11802α︒-. 【点睛】此题主要考查了等腰三角形的性质和三角形内角和定理,分别求出∠ADB=1902ABD ︒-∠,∠BDC=1902CBD ︒-∠是解答本题的关键. 6.(2021·江苏连云港市)如图,BE 是ABC 的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC=______. 【答案】32【分析】连接ED ,由BE 是ABC 的中线,得到BE BCE S S =△A △,AED EDC S S =,由3BF FE =,得到3,3ABFBFDAFE FED S S S S ==,设=,AEF EFD S x S y =,由面积的等量关系解得53x y =,最后根据等高三角形的性质解得ABDADC S BD S DC =,据此解题即可. 【详解】解:连接EDBE 是ABC 的中线,ABE BCE S S ∴=,AED EDC S S = 3BF FE =3,3ABF BFD AFE FED S S S S ∴==设=,AEF EFD S x S y =,33ABF BFD S x S y ∴==, 4,4,4ABE BEC BED S x S x S y ∴===44EDC BECBED S S S x y ∴=-=-ADE EDC S S =44x y x y ∴+=-53x y ∴=ABD 与ADC 是等高三角形,53+33333833=516445325333ABD ADC y y SBD x y x y y S DC x y x y x y y y y ⨯++∴=====++--⨯-,故答案为:32. 【点睛】本题考查三角形的中线、三角形面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.(2021·浙江绍兴市)如图,在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.【答案】15︒或75︒【分析】分①点P 在BC 的延长线上,②点P 在CB 的延长线上两种情况,再利用等腰三角形的性质即可得出答案.【详解】解:①当点P 在BC 的延长线上时,如图∵AB AC =,70B ∠=︒,∴70B ACB ∠=∠=︒∴40CAB ∠=︒ ∵以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,∴AC =PC ∴∠=∠P CAP∵70∠=∠+∠=︒ACB B CAP ∴35∠=∠=P CAP ∴403575∠=∠+∠=+=BAP BAC CAP②当点P 在CB 的延长线上时,如图由①得70C ∠=︒,40CAB ∠=︒∵AC =PC ∴=55∠=∠P CAP∴-55-4015∠=∠∠==BAP CAP BAC 故答案为:15︒或75︒【点睛】本题主要考查了等腰三角形的性质,分类讨论不重不漏是解题的关键.8.(2021·四川广安市)如图,将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,DE =BC 的长为_______.【答案】4+【分析】由折叠的性质得出BE =AE ,AF =FC ,∠F AC =∠C =15°,得出∠AFE =30°,由等腰三角形的性质得出∠EAF =∠AFE =30°,证出△ABE 是等边三角形,得出∠BAE =60°,求出AE =BE =2,证出∠BAF =90°,利用勾股定理求出AF ,即CF ,可得BC .【详解】解:∵把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE ,FG , ∴BE =AE ,AF =FC ,∠F AC =∠C =15°,∴∠AFE =30°,又AE =EF ,∴∠EAF =∠AFE =30°,∴∠AEB =60°,∴△ABE 是等边三角形,∠AED =∠BED =30°,∴∠BAE =60°,∵DE =AE =BE =AB =cos30DE ︒=2,∴BF =BE +EF =4,∠BAF =60°+30°=90°,∴FC =AF =BC =BF +FC =4+,故答案为:4+.【点睛】此题考查了翻折变换的性质、等腰三角形的性质、等边三角形的判定与性质、直角三角形的性质;根据折叠的性质得出相等的边和角是解题关键.9.(2021·四川遂宁市)如图,在△ABC中,AB=5,AC=7,直线DE垂直平分BC,垂足为E,交AC于点D,则△ABD的周长是_____ .【答案】12.=,根据三角形的周长公式计算即可.【分析】根据线段的垂直平分线的性质得到DB DC=,【详解】解:∵直线DE垂直平分BC,∴DB DC∴△ABD的周长5712=++=++=+=+=,故答案为:12.AB AD BD AB AD DC AB AC【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.(2021·江苏宿迁市)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(示意图如图,则水深为__尺.【答案】12【分析】依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,利用勾股定理求出x的值即可得到答案..【详解】解:依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.三、解答题1.(2021·湖北武汉市)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【答案】见解析【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:∵//AB CD ,∴DCF B ∠=∠.∵B D ∠=∠,∴DCF D ∠=∠.∴//AD BC .∴DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.2.(2021·浙江温州市)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =. (1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证; (2)先求出∠ADE ,再利用平行线的性质求出∠ ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒. 【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.3.(2021·四川南充市)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD⊥于点E ,CF AD ⊥于点F .求证:AF BE =.【答案】见详解【分析】根据AAS 证明△BAE ≌△ACF ,即可得AF BE =.【详解】证明:∵90BAC ∠=︒,∴∠BAE +∠CAF =90°,∵BE ⊥AD ,CF ⊥AD ,∴∠BEA =∠AFC =90°,∴∠BAE +∠EBA =90°,∴∠CAF =∠EBA ,∵AB =AC ,∴△BAE ≌△ACF ,∴AF BE =.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.4.(2021·浙江绍兴市)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析【分析】(1)利用三角形的内角和定理求出ACB ∠的大小,再利用等腰三角形的性质分别求出BDC ∠,ABE ∠.(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含ABE ∠分别表示BEC ∠,BDC ∠,即可得到两角的关系.【详解】(1)80ABC ∠=︒,BD BC =,50BDC BCD ∴∠=∠=︒.在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒,60ACB ∠=︒∴,CE BC =,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC =,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠, 在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.【点睛】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于180︒ .三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.5.(2021·陕西中考真题)如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.【答案】见解析【分析】由题意易得EBD C ∠=∠,进而可证EDB ABC ≌△△,然后问题可求证. 【详解】证明:∵//BD AC ,∴EBD C ∠=∠.∵BD BC =,BE AC =,∴()EDB ABC SAS ≌.∴D ABC ∠=∠.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.6.(2021·湖南衡阳市)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC ≌△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上∵//,//AC DF BC EF ∴,A FDE ABC DEF ∠=∠∠=∠在△ABC 与△DEF 中CAB FDE AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△ 【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目.7.(2021·浙江)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===,求BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)(2)见解析;(3)存在,m =【分析】(1)先解直角三角形ABC 得出2AB AC =,从而得出△ADC 是等边三角形,再解直角三角形ACP 即可求出AC 的长,进而得出BC 的长;(2)连结BE ,先利用AAS 证出△CPA ≌△DPE ,得出AE =2PE ,AC =DE ,再得出△ADC 是等边三角形,然后由SAS 得出△CAB ≌△EBA ,得出AE =BC 即可得出结论;(3)过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ⊥AB 于G ,过E 作EN ⊥AB 于N ,由(2)得AE =2AP ,DE =AC ,再证明△AEN ≌△BCG ,从而得出△CAB ≌△EBA 得出DE =BE ,然后利用勾股定理即可得出m 的值.【详解】(1)解 90,60ACB CAD ∠=∠=︒︒,2cos60AC AB AC ︒==, BD AC =,AD AC =∴,∴△ADC 是等边三角形,60ACD ∴∠=︒Р是CD 的中点,AP CD ∴⊥,在Rt APC 中,AP =2sin 60AP AC ∴==︒,tan 60BC AC =︒=∴ (2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠, ,CP DP CPA DPE =∠=∠,∴△CPA ≌△DPE , 1,2AP EP AE DE AC ∴===, BD AC =,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案) (38)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,其中AB AC =,AE AD =,90BAC EAD ∠=∠=︒,45ABC ACB AED ADE ∠=∠=∠=∠=︒,B 、C 、E 在同一条直线上,连结DC .(1)请在图2中找出与ABE ∆全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC BE ⊥.【答案】(1)与ABE ∆全等的三角形为△ACD ,理由见解析;(2)见解析【解析】【分析】(1)根据等式的基本性质可得∠BAE=∠CAD ,然后利用SAS 即可证出ABE ∆≌△ACD ;(2)根据全等三角形的性质和已知条件可得∠ABE=∠ACD=45°,从而求出∠DCB=90°,然后根据垂直的定义即可证出结论.【详解】解:(1)与ABE ∆全等的三角形为△ACD ,理由如下∵90BAC EAD ∠=∠=︒∴∠BAC +∠CAE=∠EAD +∠CAE∴∠BAE=∠CAD在ABE ∆和△ACD 中AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴ABE ∆≌△ACD(2)∵ABE ∆≌△ACD ,45ABC ACB AED ADE ∠=∠=∠=∠=︒∴∠ABE=∠ACD=45°∴∠DCB=∠ACD +∠ACB=90°∴DC BE ⊥【点睛】此题考查的是全等三角形的判定及性质和垂直的判定,掌握利用SAS 判定两个三角形全等、全等三角形的对应角相等和垂直的定义是解决此题的关键.72.如图,AB 、ED 分别垂直于BD ,点B 、D 是垂足,且AB CD =,AC CE =,求证:ACE ∆是直角三角形.【答案】见解析【解析】【分析】利用HL 证出Rt △ABC ≌Rt △CDE ,从而得出∠ACB=∠CED ,然后根据直角三角形的性质和等量代换可得∠ACB +∠ECD=90°,从而求出∠ACE ,最后根据直角三角形的定义即可证明.【详解】证明:∵AB 、ED 分别垂直于BD∴∠ABC=∠CDE=90°在Rt △ABC 和Rt △CDE 中AB CD AC CE =⎧⎨=⎩∴Rt △ABC ≌Rt △CDE∴∠ACB=∠CED∵∠CED +∠ECD=90°∴∠ACB +∠ECD=90°∴∠ACE=180°-(∠ACB +∠ECD )=90°∴△ACE 为直角三角形【点睛】此题考查的是全等三角形的判定及性质和直角三角形的判定,掌握利用HL 判定两个三角形全等、全等三角形的对应角相等和直角三角形的定义是解决此题的关键.73.如图,在ABC ∆中,AB AC =,点D 在ABC ∆内,BD BC =,60DBC ∠=,点E 在ABC ∆外,150CBE ∠=,60ACE ∠=.(1)求ADC ∠的度数.(2)判断ACE ∆的形状并加以证明.(3)连接DE ,若DE CD ⊥,3AD =,求DE 的长.【答案】(1)∠ADC=150°;(2)△ACE 是等边三角形,证明见解析;(3)DE=6.【解析】【分析】(1)先证明△DBC 是等边三角形,根据SSS 证得△ADC ≌△ADB ,得到∠ADC=∠ADB 即可得到答案;(2)证明△ACD ≌△ECB 得到AC=EC ,利用60ACE ∠=即可证得ACE ∆的形状;(3)根据DE CD ⊥及等边三角形的性质求出∠EDB=30°,利用150CBE ∠=求出∠DBE=90°,根据△ACD ≌△ECB ,AD=3,即可求出DE 的长.【详解】(1)∵BD=BC ,∠DBC=60°,∴△DBC 是等边三角形.∴DB=DC ,∠BDC=∠DBC=∠DCB=60°.在△ADB 和△ADC 中,AC AB AD AD DC DB =⎧⎪=⎨⎪=⎩, ∴△ADC ≌△ADB .∴∠ADC=∠ADB.∴∠ADC=12(360°﹣60°)=150°.(2)△ACE是等边三角形.理由如下:∵∠ACE=∠DCB =60°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC=150°∴∠ADC=∠EBC.在△ACD和△ECB中,ACD ECB CD CBADC EBC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD≌△ECB.∴AC=CE.∵∠ACE=60°,∴△ACE是等边三角形.(3)连接DE.∵DE⊥CD,∴∠EDC=90°.∵∠BDC=60°,∴∠EDB=30°.∵∠CBE=150°,∠DBC=60°,∴∠DBE=90°.∴EB=12 DE.∵△ACD≌△ECB,AD=3,∴EB = AD =3.∴DE=2EB=6.【点睛】此题考查等边三角形的判定及性质,直角三角形的性质,三角形全等的判定及性质,(3)是此题的难点,证得∠EDB=30°,∠DBE=90°是解题的关键.74.如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,DE=DF,AF=AE,连结AD .求证:(1)∠FAD=∠EAD;(2)BD=CD.【答案】(1)见详解;(2)见详解.【解析】【分析】(1)根据BE⊥AC、CF⊥AB,DE=DF可直接得出AD是∠BAC的平分线,由角平分线的性质定理的逆定理,可知∠FAD=∠EAD;(2)由DE=DF,AD=AD可知Rt∠ADF∠Rt∠ADE,可得出∠ADF=∠ADE,由对顶角相等可知∠BDF=∠CDE,进而可得出∠ADB=∠ADC,进而得∠ABD ≌∠ACD ,进而即可得到结论.【详解】(1)∵BE ⊥AC 、CF ⊥AB ,DE=DF ,∴AD 是∠BAC 的平分线,∴∠FAD=∠EAD ;(2)∵∠ADF 与∠ADE 是直角三角形,DE=DF ,AD=AD ,∴Rt ∠ADF ∠Rt ∠ADE (HL ),∴∠ADF=∠ADE ,∵∠BDF=∠CDE ,∴∠ADF+∠BDF=∠ADE+∠CDE ,即∠ADB=∠ADC ,在∠ABD 与∠ACD 中,∵FAD EAD AD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∠ABD ∠∠ACD (ASA ),∴BD=CD .【点睛】本题主要考查三角形全等的判定和性质定理以及角平分线性质定理的逆定理,掌握HL ,ASA 判定三角形全等,是解题的关键.75.已知:如图,点E C ,在线段BF 上,//AC DF AC DF BE CF ==,,.求证://AB DE .【答案】见解析.【解析】【分析】根据题意先证明△ABC≌△DEF,据此求得∠ABC=∠DEF,再利用平行线的判定进一步证明即可.【详解】AC DF,∵//∴∠ACB=∠DFE,∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC与△DEF中,∵AC=DF,∠ACB=∠DFE,BC=EF,∴△ABC≌△DEF(SAS),∴∠ABC=∠DEF,∴AB∥DE.【点睛】本题主要考查了平行线的性质与判定及全等三角形的性质与判定,熟练掌握相关概念是解题关键.76.如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,OC 平分AOB ∠交AB 于点C ,点D 为线段AB 上一点,过点D 作//DE OC 交y 轴于点E ,已知AO m =,BO n =,且m n 、满足2(6)|2|0n n m -+-=.(1)求AB 、两点的坐标; (2)若点D 为AB 中点,延长DE 交x 轴于点F ,在ED 的延长线上取点G ,使DG DF =,连接BG .①BG 与y 轴的位置关系怎样?说明理由;②求OF 的长;(3)如图2,若点F 的坐标为1010(,),E 是y 轴的正半轴上一动点,P 是直线AB 上一点,且P 的坐标为66-(,),是否存在点E 使EFP △为等腰直角三角形?若存在,求出点E 的坐标;若不存在,说明理由.【答案】(1)点A 的坐标为(3,0),点B 的坐标为(0,6);(2)①BG ⊥y 轴,理由见解析;②32;(3)存在,点E 的坐标为(0,4) 【解析】【分析】(1)根据平方和绝对值的非负性即可求出m 和n 的值,从而求出点A 、B 的坐标;(2)①利用SAS 即可证出△BDG ≌△ADF ,从而得出∠G=∠AFD ,根据平行线的判定可得BG ∥AF ,从而得出∠GBO=90°,即可得出结论;②过点D 作DM ⊥x 轴于M ,根据平面直角坐标系中线段的中点公式即可求出点D 的坐标,从而求出OM=32,DM=3,根据角平分线的定义可得∠COA=45°,再根据平行线的性质和等腰三角形的判定可得△FMD 为等腰三角形,FM=DM=3,从而求出点F 的坐标;(3)过点F 作FG ⊥y 轴于G ,过点P 作PH ⊥y 轴于H ,利用AAS 证出△GFE ≌△HEP ,从而得出FG=EH ,GE=PH ,然后根据点F 和点P 的坐标即可求出OE 的长,从而求出点E 的坐标.【详解】解:(1)∵2(6)|2|0n n m -+-=,2(6)0,|2|0n n m -≥-≥∴60,20n n m -=-=解得:6,3n m ==∴AO=3,BO=6∴点A 的坐标为(3,0),点B 的坐标为(0,6);(2)①BG ⊥y 轴,理由如下∵点D 为AB 中点∴BD=AD在△BDG 和△ADF 中DG DF BDG ADF BD AD =⎧⎪∠=∠⎨⎪=⎩∴△BDG ≌△ADF∴∠G=∠AFD∴BG∥AF∴∠GBO=180°-∠AOB=90°∴BG⊥y轴;②过点D作DM⊥x轴于M∵点D为AB中点∴点D的坐标为(0360,22)=(3,32)∴OM=32,DM=3∵OC平分AOB∠∴∠COA=145 2AOB∠=︒∵//DE OC∴∠MFD=∠COA=45°∴△FMD为等腰三角形,FM=DM=3∴OF=FM-OM=32;(3)存在,过点F作FG⊥y轴于G,过点P作PH⊥y轴于H若EFP △为等腰直角三角形,必有EF=PE ,∠FEP=90°∴∠GFE +∠GEF=90°,∠HEP +∠GEF=90°∴∠GFE=∠HEP在△GFE 和△HEP 中90GFE HEP FGE EHP EF PE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△GFE ≌△HEP∴FG=EH ,GE=PH∵点F 的坐标为1010(,),点P 的坐标为66-(,)∴OG=10,PH=6∴GE=6∴OE=OG -GE=4∴点E 的坐标为(0,4).【点睛】此题考查的是非负性的应用、全等三角形的判定及性质、平行线的判定及性质和平面直角坐标系中线段中点坐标的求法,掌握平方和绝对值的非负性、构造全等三角形的方法、全等三角形的判定及性质、平行线的判定及性质和平面直角坐标系中线段中点坐标公式是解决此题的关键.77.过正方形ABCD (四边都相等,四个角都是直角)的顶点A 作一条直线MN .图(1) 图(2) 图(3)(1)当MN 不与正方形任何一边相交时,过点B 作BE MN ⊥于点E ,过点D 作DF MN ⊥于点F 如图(1),请写出EF ,BE ,DF 之间的数量关系,并证明你的结论.(2)若改变直线MN 的位置,使MN 与CD 边相交如图(2),其它条件不变,EF ,BE ,DF 的关系会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明;(3)若继续改变直线MN 的位置,使MN 与BC 边相交如图(3),其它条件不变,EF ,BE ,DF 的关系又会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明.【答案】(1)EF BE DF =+,证明见解析;(2)EF BE DF =-;(3)EF DF BE =-【解析】【分析】(1)根据同角的余角相等可证BAE ADF ∠=∠,再证ABE DAF ∆≅∆,根据全等三角形的对应边相等进行代换即可;(2)根据同角的余角相等可证BAE ADF ∠=∠,再证ABE DAF ∆≅∆,根据全等三角形的对应边相等进行代换即可;(3)根据同角的余角相等可证BAE ADF ∠=∠,再证ABE DAF ∆≅∆,根据全等三角形的对应边相等进行代换即可.【详解】(1)EF BE DF =+,证明:四边形ABCD 是正方形AB DA ∴=,90BAD ∠=︒90BAE DAF ∴∠+∠=︒又BE MN ⊥,DF MN ⊥90BEA DFA ∴∠=∠=︒90DAF ADF ∠∠=+︒∴BAE ADF ∠=∠在ABE ∆和DAF ∆中BEA DFA BAE ADF AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE DAF ∆≅∆()AASAF BE ∴=,AE DF =EF AF AE BE DF ∴=+=+(2)EF BE DF =-,理由是:四边形ABCD 是正方形AB DA ∴=,90BAD ∠=︒90BAE DAF ∴∠+∠=︒又BE MN ⊥,DF MN ⊥90BEA DFA ∴∠=∠=︒90DAF ADF ∠∠=+︒∴BAE ADF ∠=∠在ABE ∆和DAF ∆中BEA DFA BAE ADF AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE DAF ∆≅∆()AASAF BE ∴=,AE DF =∴EF=AF-AE=BE-DF(3)EF DF BE =-,理由是:四边形ABCD 是正方形AB DA ∴=,90BAD ∠=︒90BAE DAF ∴∠+∠=︒又BE MN ⊥,DF MN ⊥90BEA DFA ∴∠=∠=︒90DAF ADF ∠∠=+︒∴BAE ADF ∠=∠在ABE ∆和DAF ∆中BEA DFA BAE ADF AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE DAF ∆≅∆()AASAF BE ∴=,AE DF =EF=AE-AF=DF-BE【点睛】本题考查的是三角形全等的判定和性质,掌握三角形的判定方法及能利用同角的余角相等证明BAE ADF ∠=∠是关键.78.如图,已知B ,D 在线段AC 上,且AD CB =,BF DE =,90AED CFB ∠=∠=︒求证:(1)AED CFB ∆≅∆;(2)//BE DF .【答案】(1)详见解析;(2)详见解析;【解析】【分析】(1)根据已知条件直接用直角三角形的“HL ”判定即可;(2)由(1)中全等的三角形可得∠BDE=∠DBF ,再判定DBE BDF ∆≅∆,得出DBE BDF ∠=∠,根据“内错角相等,两直线平行”即可证明.【详解】(1)90AED CFB ∠︒∠==在RT AED ∆和RT CFB ∆中AD CB DE BF =⎧⎨=⎩AED CFB ∴∆≅∆()HL(2)AED CFB ∆≅∆BDE DBF ∴∠=∠在DBE ∆和BDF ∆中DE BF BDE DBF BD DB =⎧⎪∠=∠⎨⎪=⎩DBE BDF ∴∆≅∆(SAS)DBE BDF ∴∠=∠//BE DF ∴【点睛】本题考查的是三角形的全等,掌握三角形全等的判定方法是关键.79.如图,已知点A 、F 、E 、C 在同一条直线上,//AB CD ,ABE CDF ∠=∠,AF CE =,连结BC 、AD .(1)请直接写出图中所有的全等三角形(不添加其它的线);(2)从(1)中的全等三角形中任选一组进行证明.【答案】(1)△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DFA;(2)证明见解析.【解析】【分析】(1)利用平行和已知条件可得出△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DFA;(2)可证明△ABE≌△CDF,利用平行可得到∠BAF=∠DCF,且可得出AE=FC,可利用AAS证明.【详解】(1)∠ABE∠∠CDF,∠ABC∠∠CDA,∠BEC∠∠DFA,(2)选∠ABE∠∠CDF进行证明,证明:∠AB∠CD,∠∠BAE=∠DCF∠AF=CE,∠AF+EF=CE+EF,即AE=CF.在∠ABE 和∠CDF 中A =C F BAE DCF BE D AF CE ∠=∠⎧⎪∠∠⎨⎪=⎩, ∠∠ABE ∠∠CDF (AAS ).【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法SSS 、SAS 、ASA 、AAS 和HL 是解题的关键.80.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒, 所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒ 证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠, 180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,∴∠+∠+∠=︒--=︒,DBM CAM BDC1803045105∠+∠+∠的大小不变,是105.所以,DBM CAM BDC【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.。
最新北师大版平行线的证明+三角形全等的证明试题以及答案
平行线的证明1、如右图,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:DG∥BA。
2、如图:已知:AD⊥BC于D,EF⊥BC于F,∠1=∠3,求证:AD 平分∠BAC。
3、如图5-27,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,求证:∠B=∠C。
4、已知:如图,BE∥AO,∠1=∠2,OE⊥OA于O,EH⊥CD于H,求证:∠5=∠65、如图,已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,求证:CF ∥DO.6、如图,若AB∥CD,在下列三种情况下探究∠APC与∠PAB,∠PCD 的数量关系SSS证明1、点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,则AB 和DE有怎样的位置关系?请证明2、已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?3、如图,已知:AB=AD,AC=AE,BC=DE,求证:∠BAE=∠CAD4、如图,AB=AC,BD=CD,求证:∠1=∠25、在△ABC中,∠C=90°,且AD=BD,AE=BC,DE=DC,说明DE⊥AB。
6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CFASA或AAS证明1、如图,已知∠A=∠C,AE=CF,DE∥BF,说明AB、CD的关系。
2、如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF,求证:AC=BF3、如图,已知:BE=CD,∠B=∠C,求证:∠1=∠2。
4、如图,在△ABC中,∠ACB=90,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.5、如图,已知∠1=∠2=∠3,AB=AD.求证:BC=DE6、在△ABC中,DE⊥AB,DF⊥AC,DA平分∠EDF,说明:(1)∠1=∠2(2)DE=DF。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案) (39)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案)如图,ABC和DBE都是等腰直角三角形,AD CE.试猜想线段AD和,,,BD BEABC BA BC DBE∠==∠=9090=,连接,CE之间的数量关系和位置关系,并加以证明.【答案】,=⊥,证明见解析.AD CE AD CE【解析】【分析】根据已知条件利用SAS证明△ABD≌△CBE即可得到=∠=∠∴,延长AD交CE于,F AF交BC于G,利用AD CE BAD BCE,∠=∠,即可证得AD⊥CE.∠+∠+∠=︒,BGA FGC180BAD BGA ABC【详解】AD CE AD CE=⊥,,证明:延长AD交CE于,F AF交BC于G,由于ABC和DBE都是等腰直角三角形,∴==∠=∠=,BA BC BD BE ABC DBE,,90∴∠-∠=∠-∠,ABC DBC DBE DBC∴∠=∠,ABD CBE在ABD △和CBE △中BA BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩, ()ABD CBE SAS ≌,,AD CE BAD BCE =∠=∠∴.由于180BAD BGA ABC ∠+∠+∠=︒,180BCE FGC CFG ∠+∠+∠=︒,BGA FGC ∠=∠,FCG ABC ∴∠=∠,90FCG ∴∠=,AD CE ∴⊥,所以,AD CE AD CE =⊥.【点睛】此题考查等腰直角三角形的性质,旋转的性质,三角形全等的判定及性质,三角形内角和,对顶角相等.82.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:将△ABD绕点A逆时针旋转60°得到△ACE,可得AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是___________;(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.【答案】(1)DA=DB+DC;(2DA=DB+DC,证明见解析;【解析】【分析】(1)结论:DA=DB+DC.理由:由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,再证△ADE是等边三角形得DA=DE=DC+CE=DC+DB.(2.理由:延长DC到点E,使CE=BD,连接AE,先证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,据此可得∠DAE=∠BAC=90°,由勾股定理知DA2+AE2=DE2,继而可得2DA2=(DB+DC)2;【详解】(1)结论DA=DB+DC.理由如下:如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB;(2)结论: DA=DB+DC.理由如下:如图,将△ABD绕点A逆时针旋转90°得到△ACE∴AE =AD ,CE =BD ,∠ABD =∠ACE ,∠DAE =90°,∵∠BAC =90°,∠BDC =90°,∴∠ABD +∠ACD =180°,∵∠ABD =∠ACE ,∴∠ACE +∠ACD =180°,∴点D 、C 、E 在同一条直线上.∵∠DAE =90°,DA =EA∴△ADE 是等腰直角三角形,∴DA 2+AE 2=DE 2,∴2DA 2=( DB +DC )2DA =DB +DC .【点睛】考查了考查的是全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,解题关键是添加常用辅助线构造全等三角形.83.如图,已知BAD CAE ∠=∠,AB AD =,AC AE =.求证:B D ∠=∠.【答案】证明见解析.【解析】【分析】根据题意证明BAC DAE ∆≅∆即可求解.【详解】证明:∵BAD CAE ∠=∠∵BAD DAC CAE DAC ∠+∠=∠+∠,即:BAC DAE ∠=∠在ABC ∆和DAE ∆中AB AD BAC ADE AC AE =⎧⎪∠=∠⎨⎪=⎩∵()BAC DAE SAS ∆≅∆∵B D ∠=∠【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.84.如图,已知AE AB ⊥,AF AC ⊥,AE AB =,AF AC =.(1)求证:AEC ABF ∆∆≌;(2)求证:EC BF ⊥.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据垂直的定义和等式的基本性质可得∠EAC=∠BAF ,然后利用SAS 即可证出AEC ABF ∆∆≌;(2)设AB 与EC 的交点为O ,根据全等三角形的性质可得∠AEC=∠ABF ,然后根据对顶角相等可得∠AOE=∠BOM ,再根据三角形的内角和定理和等量代换即可求出∠OMB=90°,最后根据垂直的定义即可证明.【详解】解:(1)∵AE AB ⊥,AF AC ⊥,∴∠EAB=∠CAF=90°∴∠EAB +∠BAC=∠CAF +∠BAC∴∠EAC=∠BAF在△AEC 和△ABF 中AE AB EAC BAF AC AF =⎧⎪∠=∠⎨⎪=⎩∴AEC ABF ∆∆≌(SAS )(2)设AB 与EC 的交点为O ,如下图所示∵AEC ABF ∆∆≌∴∠AEC=∠ABF∵∠AOE=∠BOM∴∠OMB=180°-∠ABF -∠BOM=180°-∠AEC -∠AOE=∠EAB=90°∴EC BF ⊥【点睛】此题考查的是全等三角形的判定及性质、对顶角的性质和垂直的判定,掌握全等三角形的判定及性质、对顶角相等和垂直的定义是解决此题的关键.85.(问题)在ABC ∆中,AC BC =,90ACB ∠=︒,点E 在直线BC 上(,B C 除外),分别经过点E 和点B 作AE 和AB 的垂线,两条垂线交于点F ,研究AE 和EF 的数量关系.(探究发现)某数学兴趣小组在探究AE ,EF 的关系时,运用“从特殊到一般”的数学思想,他们发现当点E 是BC 中点时,只需要取AC 边的中点G (如图1),通过推理证明就可以得到AE 和EF 的数量关系,请你按照这种思路直接写出AE 和EF 的数量关系;(数学思考)那么点E 在直线BC 上(,B C 除外)(其他条件不变),上面得到的结论是否仍然成立呢?请你从“点E 在线段BC 上”“点E 在线段BC 的延长线上”“点E 在线段BC 的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论.【答案】(1)AE EF =;(2)AE EF =;(3)仍然成立AE EF =..【解析】【分析】(1)【探究发现】取AC 中点G ,连接EG ,根据三角形全等的判定即可证明EAG FEB ∆≅∆()ASA ,即可得出AE 和EF 的数量关系;(2)【数学思考】分三种情况讨论:①若点E 在线段BC 上, 在AC 上截取CG CE =,连接GE ;②若点E 在线段BC 的反向延长线上,在AC 反向延长线上截取CG CE =,连接GE ;③若点E 在线段BC 的延长线上,在AC 延长线上截取CG CE =,连接GE ; 根据三角形全等的判定即可证明EAG FEB ∆≅∆()ASA ,即可得出AE 和EF 的数量关系.【详解】(1)AE 和EF 的数量关系为:AE EF =.理由:如图1,取AC 中点G ,连接EG ,ABC ∆中,AC BC =,90ACB ∠=︒,45ABC ∴∠=︒,AG BE =,CEG ∆ 是等腰直角三角形,45CGE ∴∠=︒,135EGA ∠=︒,AE EF ⊥,AB BF ⊥,135EBF ∴∠=︒,EAG FEB ∠=∠,在EAG ∆和FEB ∆中EAG FEB AG BEEGA FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAG FEB ASA ∴∆≅∆,AE EF ∴=.(2)①如图2,若点E 在线段BC 上,在AC 上截取CG CE =,连接GE ,9045,,,90ACB CGE CEG AE EF AB BF AEF ABF ACB ∠=︒∴∠=∠=︒⊥⊥∴∠=∠=∠=︒FEB AEF AEB EAC ACB ∴∠+∠=∠=∠+∠,,,,45,135,FEB EAC CA CB AG BE CBA CAB AGE EBF ∴∠=∠=∴=∠=∠=︒∴∠=∠=︒在EAG ∆和FEB ∆中EAG FEB AG BEEGA FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAG FEB ASA ∴∆≅∆,AE EF ∴=.②如图3,若点E 在线段BC 的反向延长线上,在AC 反向延长线上截取CG CE =,连接GE ,9045,,,90ACB CGE CEG AE EF AB BF AEF ABF ACB ∠=︒∴∠==︒⊥⊥∴∠=∠=∠=︒,FEB AEF AEC EAG C AECFEB EAGCA CB ∠=∠+∠∠=∠+∠∴∠=∠=,45,45,AG BE CBA CAB AGE EBF ∴=∠=∠=︒∴∠=∠=︒在EAG ∆和FEB ∆中EAG FEB AG BEEGA FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAG FEB ASA ∴∆≅∆AE EF ∴=.③如图4,若点E 在线段BC 的延长线上,在AC 延长线上截取CG CE =,连接GE ,9045,,,90ACB CGE ABC AE EF AB BF AEF ABF ∠=︒∴∠=∠=︒⊥⊥∴∠=∠=︒+=90=+45FEB AEB EAG AEB EBF GFEB EAGCA CB ∴∠∠︒∠∠∠=︒=∠∴∠=∠=,在EAG ∆和FEB ∆中EAG FEB AG BEEGA FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAG FEB ASA ∴∆≅∆AE EF ∴=.【点睛】通过做辅助线得到CG CE =,利用等腰直角三角形的性质,全等三角形的判定定理,即可得出AE 和EF 的数量关系,运用“从特殊到一般”的数学思想,利用图形,数形结合推理论证即可,注意情况的分类.86.阅读下面材料:小明遇到这样一个问题:如图1,在ABC ∆中,AD 平分BAC ∠,2ABC C ∠=∠.求证:AC AB BD =+ 小明通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如图2,在AC 上截取AE ,使得AE AB =,连接DE ,可以得到全等三角形,进而解决问题方法二:如图3,延长AB 到点E ,使得BE BD =,连接DE ,可以得到等腰三角形,进而解决问题(1)根据阅读材料,任选一种方法证明AC AB BD =+(2)根据自己的解题经验或参考小明的方法,解决下面的问题:如图4,四边形ABCD 中,E 是BC 上一点,EA ED =,2DCB B ∠=∠,90DAE B ∠+∠=︒,探究DC 、CE 、BE 之间的数量关系,并证明【答案】(1)证明见解析;(2)BE DC CE =+,证明见解析【解析】【分析】(1)方法一,在AC 上截取AE ,使得AE AB =,连接DE ,用SAS 定理证明ABD AED ∆≅∆,然后得到BD ED =,2AED ABC C ∠=∠=∠,从而得到EDC C ∠=∠,然后利用等角对等边求证ED EC =,使问题得解;方法二,延长AB 到点E ,使得BE BD =,连接DE ,利用三角形外角的性质得到∠ABC=2∠E ,从而得到∠E=∠C ,利用AAS 定理证明△AED ≌△ACD ,从而求解;(2)在EB 上截取EF ,使得EF DC =,连接AF ,利用三角形外角的性质求得AEB AED CDE AED ∠+∠=∠+∠,从而得到AEB CDE ∠=∠,利用SAS 定理证明AEF EDC ∆≅∆,然后利用全等三角形的性质求解.【详解】解:(1)方法一:如图2,在AC 上截取AE ,使得AE AB =,连接DE ,∵AD 平分BAC ∠,∴BAO EAO ∠=∠又∵AB AE =,AD AD =∴ABD AED ∆≅∆∴BD ED =,2AED ABC C ∠=∠=∠∵AED C EDC ∠=∠+∠∴EDC C ∠=∠∴ED EC =∴BD EC =∴AC AE EC AB BD =+=+方法二:如图3,延长AB 到点E ,使得BE BD =,连接DE ,∵AD 平分BAC ∠,∴BAO EAO ∠=∠∵BE BD =∴∠ABC=2∠E又∵2ABC C ∠=∠∴∠E=∠C∵AD=AD∴△AED ≌△ACD∴AC=AE=AB+BE=AB+BD(2)在EB 上截取EF ,使得EF DC =,连接AF∵EA ED =∴EAD EDA ∠=∠∴2180DAE AED ∠+∠=︒∵90DAE B ∠+∠=︒∴22180DAE B ∠+∠=︒∴2AED B C ∠=∠=∠∵BED CDE C ∠=∠+∠∴AEB AED CDE AED ∠+∠=∠+∠∴AEB CDE ∠=∠∴AEF EDC ∆≅∆∴EC AF =,2AFE C B ∠=∠=∠∵AFE B BAF ∠=∠+∠∴ABF BAF ∠=∠∴BF AF =∴BF CE =∴BE EF BF DC CE =+=+.【点睛】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.87.如图,E 是AB 上一点,DE 与AC 交于点F ,AF CF =,//AB DC .线AE 与DC 有怎样的数量关系,证明你的结论.【答案】AE DC =,证明详见解析【解析】【分析】利用平行线的性质求得A DCF ∠=∠,然后利用ASA 定理证明AEF CDF ∆≅∆,从而使问题求解.【详解】证明: ∵//AB DC∵A DCF ∠=∠又∵AFE DFC ∠=∠,AF CF =∵AEF CDF ∆≅∆(ASA )∴AE DC =【点睛】本题考查平行线的性质,全等三角形的判定和性质,题目比较简单,掌握两直线平行,内错角相等及ASA定理证明三角形全等是解题关键.88.如图,利用尺规,在△ABC的边AC下方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD=AB.(尺规作图要求保留作图痕迹,不写作法)【答案】作图见解析,证明见解析.【解析】【分析】根据作一个角等于已知角的作法画出∠CAE并截取AD=BC即可画出图形,利用SAS即可证明△ACB≌△CAD,可得CD=AB.【详解】如图所示:∵AC=CA,∠ACB=∠CAD,AD=CB,∴△ACB≌△CAD(SAS),∴CD=AB.【点睛】本题考查尺规作图——作一个角等于已知角及全等三角形的判定与性质,正确作出图形并熟练掌握全等三角形的判定定理是解题关键.⊥,垂足分别是89.如图,点E、F是线段AB上的点,DE AD⊥,CF BC点D 和点C ,DE CF =,AF BE =,求证://AD BC .【答案】见解析【解析】【分析】先根据“HL ”证明△ADE ≌△BCF ,可证∠A=∠B ,然后根据内错角相等,两直线平行即可解答.【详解】∵DE AD ⊥,CF BC ⊥,∴∠D=∠C=90°.∵AF BE =,∴AE=BF .在△ADE 和△BCF 中,∵AE=BF ,DE CF =,∴△ADE ≌△BCF(HL),∴∠A=∠B ,∴//AD BC .【点睛】本题主要考查了平行线的判定,全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.90.如图,在等边ABC ∆中,10AB AC BC ===厘米,4DC =厘米,如果点M 以3厘米/的速度运动.(1)如果点M 在线段CB 上由点C 向点B 运动.点N 在线段BA 上由B 点向A 点运动,它们同时出发,若点N 的运动速度与点M 的运动速度相等:①经过“2秒后,BMN ∆和CDM ∆是否全等?请说明理由.②当两点的运动时间为多少秒时,BMN ∆刚好是一个直角三角形?(2)若点N 的运动速度与点M 的运动速度不相等,点N 从点B 出发,点M 以原来的运动速度从点C 同时出发,都顺时针沿ABC ∆三边运动,经过25秒时点M 与点N 第一次相遇,则点N 的运动速度是__________厘米/秒.(直接写出答案)【答案】(1)①BMN CDM ∆≅∆,理由详见解析;②当209t =秒或109t =秒时,BMN ∆是直角三角形;(2)3.8或2.6.【解析】【分析】(1)①根据题意得CM=BN=6cm ,所以BM=4cm=CD .根据“SAS ”证明△BMN ≌△CDM ;②设运动时间为t 秒,分别表示CM 和BN .分两种情况,运用特殊三角形的性质求解:I .∠NMB=90°;Ⅱ.∠BNM=90°;(2)点M 与点N 第一次相遇,有两种可能:∵.点M 运动速度快;②.点N 运动速度快,分别列方程求解.【详解】解:(1)∵BMN CDM ∆≅∆.理由如下:3N M V V ==厘米/秒,且2t =秒,236()CM cm ∴=⨯=236()BN cm =⨯=1064()BM BC CM cm =-=-=BN CM ∴=4()CD cm =BM CD ∴=60B C ∠=∠=︒,BMN CDM ∴∆≅∆.(SAS)∵设运动时间为t 秒,BMN ∆是直角三角形有两种情况:∵.当90NMB ∠=︒时,60B ∠=︒,90906030BNM B ∴∠=-∠=-︒=︒︒︒,2BN BM ∴=,32(103)t t ∴=⨯-209t ∴=(秒); ∵.当90BNM ∠=︒时,60B ∠=︒,90906030BMN B ∴∠=-∠=-︒=︒︒︒.2BM BN ∴=,10323t t ∴-=⨯109t ∴=(秒) ∴当209t =秒或109t =秒时,BMN ∆是直角三角形; (2)分两种情况讨论:∵.若点M 运动速度快,则3251025N V ⨯-=,解得 2.6N V =; ∵.若点N 运动速度快,则2520325N V -=⨯,解得 3.8N V =. 故答案是3.8或2.6.【点睛】本题考查等边三角形的性质和特殊直角三角形的性质及列方程求解动点问题,两次运用分类讨论的思想,难度较大.三、填空题。
七年级数学平行线与三角形复习题
一、选择题1.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交2.如果∠1与∠2互补,∠1与∠3互余,那么( )A.∠2>∠3B.∠2=∠3C.∠2<∠3D.∠2≥∠33.如图1,已知AD∥BC,∠B=300,DB平分∠ADE,则∠DEC为( )A.300 B.600 C.900 D.1200图1 图2 图3 图44.如图2,三角形地块中的点B在点A的北偏东350的方向,点C在点B的北偏西650的方向,则∠ABC 的度数是 ( )A.550 B.650 C.800 D.9005.如图3,以BC为边的三角形有()个.A.3个 B.4个 C.5个 D.6个6.三角形按角分类可以分为()A.锐角三角形、直角三角形、钝角三角形 B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形 D.以上答案都不正确7.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是()A.△ABC中,AD是BC边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高二、填空题8.已知∠AOB=40°,OC平分∠AOB,则∠AOC的补角等于_____.9.如图5,BD、CE是△ABC的两条高,AB=8,A C=6,且CE=10,则BD=_____.10.如图6,AD是△ABC中BC边上的中线,E,F分别是AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于.图5 图6 图7 图8 图9 11.已知三角形的边长分别为4、a、8,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.12.如图7,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=.13.如图8,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.14.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是.15.如图9,点D在△ABC边BC的延长线上,DE⊥AB于E,交AC于F,∠B=50°,∠CFD=60°,则∠ACB=.三、解答题16.如图,直线a∥b,△DCB中,∠DCB=90°,点A在线段BC上,直线b经过点C.若∠1+∠B=70°,求∠2的度数.17.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E,若∠AFD=158°,求∠EDF的度数.18.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.你能判断DF与AB的位置关系吗?请说明理由.19.如图,在Rt△ABC中,∠C=90°,AD是角平分线,且∠CED=∠CDE,求证:CF⊥AB.20.如图,在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AFG=40°,求∠ACB的度数.21.已知在四边形ABCD中,∠A=∠C=90°.(1)∠ABC+∠ADC=;(2)如图1,若DE平分∠ADC,BF平分∠ABC的外角,请写出DE与BF的位置关系,并证明.(3)如图2,若BE、DE分别四等分∠ABC、∠ADC的外角(即∠CDE=14∠CDN,∠CBE=14∠CBM),试求∠E的度数.。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案) (98)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案)已知,如图,点A 、D 、B 、E 在同一直线上,AC EF =,AD BE =,A E ∠=∠,CHD ∠=110°,求HBD ∠的度数.【答案】55°【解析】【分析】先根据SAS 即可证明ABC EDF ∆≅∆;可知HDB HBD ∠=∠,再利用三角形的外角关系即可求出HBD ∠的度数.【详解】解:AD BE =,AB ED ∴=,在ABC ∆和EDF ∆中,AC EF A E AB ED =⎧⎪∠=∠⎨⎪=⎩, ()ABC EDF SAS ∴∆≅∆;ABC EDF ∆≅∆,HDB HBD ∴∠=∠,110CHD HDB HBD ∠=∠+∠=︒,55HBD ∴∠=︒.【点睛】本题考查了全等三角形的判定和性质以及三角形的外角关系,属于基础性题目.解题关键是由SAS 证明ABC EDF ∆≅∆.72.如图所示,D 是BC 上一点,AB AD =,BC DE =,AC AE =,AC 与DE 交于点F .求证:C E ∠=∠.【答案】证明见解析.【解析】【分析】利用“边边边”证明ABC ∆和ADE ∆全等,根据全等三角形对应角相等证明即可;【详解】证明:在ABC ∆和ADE ∆中,AB AD BC DE AC AE =⎧⎪=⎨⎪=⎩, ()ABC ADE SSS ∴∆≅∆,C E ∴∠=∠(全等三角形对应角相等);【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.73.如图所示,在ABC 中,90BAC ∠=︒,AB AC =,MN 是经过点A 的直线,,BD MN CE MN ⊥⊥,垂足分别为D ,E .(1)求证:①BAD ACE =∠∠;②BD AE =;(2)请写出BD ,CE ,DE 三者间的数量关系式,并证明.【答案】(1)①见解析;②见解析;(2)BD=CE+DE ,证明见解析.【解析】【分析】(1)①根据∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,即可得出∠BAD=∠ACE ;②根据全等三角形的判定方法(AAS )得出△ABD ≌△CAE ,从而得出BD=AE ;(2)根据△ABD ≌△CAE ,得出BD=AE ,AD=CE ,再根据AE=AD+DE ,即可得出BD ,DE ,CE 三者间的数量关系.【详解】解:(1)△△△BAC=90°,△△BAD+△CAE=90°,△CE △MN ,△△ACE+△CAE=90°,△△BAD=△ACE ;△△BD △MN ,CE △MN ,△△BDA=△AEC=90°,在△ABD 和△CAE 中,∵∠BDA =∠AEC ,∠BAD =∠ACE ,AB =AC ,△△ABD △△CAE ,△BD=AE ;(2)△△ABD △△CAE ,△BD=AE ,AD=CE ,△AE=AD+DE ,△BD=CE+DE .【点睛】本题主要考查了直角三角形的性质,余角的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.74.如图,点E 在ABC 外部,点D 在BC 边上,DE 交AC 于点F ,若123∠=∠=∠,AC AE =,试说明:ABC ADE △≌△的理由.【答案】证明见详解.【解析】【分析】根据已知,利用三角形的内角和得到∠E=∠C ,再由已知可得∠BAC=∠DAE ,又因为AC=AE ,所以根据AAS 可判定△ABC ≌△ADE .【详解】∵∠2=∠3,∠AFE=∠CFD ,∴∠C=∠E ;∵∠1=∠2,∴∠1+∠DAF=∠2+∠DAF即:∠BAC=∠DAE .又∵AC=AE ,∠C=∠E ,∴△ABC ≌△ADE .【点睛】此题考查三角形内角和及全等三角形的判定的理解及运用,准确识图,熟练掌握和运用相关知识是解题的关键.75.如图ABC 中,60,,ABC AD CE ︒∠=分别平分,BAC ACB AD CE∠∠、、相交于点P .(1)求CPD ∠的度数;(2)求证:AE CD AC +=【答案】(1)∠CPD=60°;(2)详见解析【解析】【分析】(1)根据三角形的内角和定理及角平分线的定义,三角形的外角性质即可求出;(2)在AC 上截取AF=AE ,先证明△APE ≌△APF (SAS ),再证明△CFP ≌△CDP (ASA ),根据全等三角形的性质证明AE CD AC +=即可.【详解】解:(1)∵∠ABC=60°,∴∠BAC+∠ACB=180°-60°=120°,又∵AD 、CE 分别平分∠∠、BAC ACB , ∴12CAD BAC ∠=∠,12ACE ACB ∠=∠ ∴111()60222CAD ACE BAC ACB BAC ACB ∠+∠=∠+∠=∠+∠=︒, 又∵∠CPD 是△ACP 的外角,∴∠CPD=∠CAD+△ACE=60°,∴∠CPD=60°.(2)如图,在AC 上截取AF=AE ,连接PF ,∵∠CPD=60°,∴∠APC=120°,∠APE=60°∵AD 平分∠BAC ,CE 平分∠ACB ,∴∠BAD=∠CAD ,∠ACE=∠BCE在△APE 与△APF 中AE AF BAD CAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴△APE ≌△APF (SAS )∴∠APF=∠APE=60°,∴∠CPF=△AOC-△APF=60°,在△CFP 与△CDP 中,ACE BCE CP CPCPD CPF ∠=⎧⎪=⎨⎪∠=∠⎩∴△CFP ≌△CDP (ASA )∴CD=CF∴AC=AF+CF=AE+CD ,即AE CD AC +=.【点睛】本题考查了全等三角形的判定及性质、三角形内角和定理与角平分线的角度计算问题,解题的关键是通过在AC 上截取AF=AE 构造全等三角形.76.如图,点E 在四边形ABCD 的边AD 上,90BAE BCE ACD ∠=∠=∠=︒,且BC CE =,求证:AD AE AB =+.【答案】详见解析【解析】【分析】根据等量代换证明出∠ACB=△DCE 及∠ABC=△DEC ,再证明△ABC ≌△DEC (ASA ),由全等三角形的性质即可证明结论.【详解】解:∵90BCE ACD ∠=∠=︒∴∠ACB+∠ACE=△DCE+△ACE∴∠ACB=△DCE又∵90BAE BCE ∠=∠=︒,四边形ABCE 的内角和为360°,∴∠ABC+∠AEC=180°,又∵∠AEC+△DEC=180°,∴∠ABC=△DEC在△ABC 与△DEC 中ABC DEC BC CEACB DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEC (ASA )△AB=DE∴AD=AE+DE=AE+AB即AD AE AB =+.【点睛】本题考查了全等三角形的判定,结题的关键是通过等量代换证明∠ACB=△DCE 及∠ABC=△DEC .77.如图,A ,B ,D ,F 在同直线上,AD BF =,AE BC =,A B ∠=∠,求证:(1)AEF BCD ≌;(2)//AE BC .【答案】(1)见解析;(2)见解析【解析】【分析】(1)由AD=BF 得出AF=BD ,根据SAS 即可证得△AEF ≌△BCD ;(2)由∠A=∠B,根据平行线的判定方法:内错角相等,两直线平行即可证明.【详解】解:(1)∵AD=BF ,∴AD+DF=BF+FD ,即AF=BD ,在△AEF 和△BCD 中,AE BC A B AF BD =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△BCD (SAS );(2)∵∠A=∠B ,∴AE ∥BC.【点睛】本题考查了全等三角形的判定与性质和平行线的判定,比较简单,熟记全等三角形的判定方法SAS 是解决问题的关键.78.在数学活动课上,数学老师出示了如下题目:如图①,在四边形ABCD 中,E 是边CD 的中点,AE 是BAD ∠的平分线,AD BC ∥.求证:AB AD BC =+.小聪同学发现以下两种方法:方法1:如图②,延长AE 、BC 交于点F .方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CG .(1)请你任选一种方法写出这道题的完整的证明过程;(2)如图④,在四边形ABCD 中,AE 是BAD ∠的平分线,E 是边CD 的中点,60BAD ∠=︒,11802D BCD ∠+∠=︒,求证:CB CE =.【答案】(1)方法1:证明见解析;方法2:证明见解析;(2)证明见解析.【解析】【分析】(1)方法1:先根据角平分线的定义、平行线的性质得出BAF DAE F ∠=∠=∠,再根据等腰三角形的性质可得AB BF =,根据三角形全等的判定定理与性质得出AD FC =,然后根据线段的和差即可得证;方法2:先根据角平分线的定义得出DAE GAE ∠=∠,再根据三角形全等的判定定理与性质可得,DE GE D AGE =∠=∠,然后根据线段中点的定义、等腰三角形的性质可得ECG EGC ∠=∠,最后根据平行线的性质、平角的定义可得BCG BGC ∠=∠,由等腰三角形的定义可得BG BC =,由此根据线段的和差即可得证;(2)如图(见解析),参照方法1构造辅助线,先根据等腰三角形的性质得出EF 平分AFG ∠,从而有12EFC AFG ∠=∠,再根据平行线的性质、角的和差得出60EFC BFC ∠=∠=︒,ECF BCF ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】(1)方法1:如图②,延长AE 、BC 交于点FAE ∵是BAD ∠的平分线BAF DAE ∴∠=∠//AD BCDAE F ∴∠=∠BAF F ∴∠=∠AB BF FC BC ∴==+E 是边CD 的中点DE CE ∴=在ADE 和FCE △中,DAE FAED FECDE CE∠=∠⎧⎪∠=∠⎨⎪=⎩ ()ADE FCE AAS ∴≅AD FC ∴=AB FC BC AD BC ∴=+=+;方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CGAE ∵是BAD ∠的平分线DAE GAE ∴∠=∠在ADE 和AGE 中,AD AGDAE GAEAE AE =⎧⎪∠=∠⎨⎪=⎩()ADE AGE SAS ∴≅,DE GE D AGE ∴=∠=∠E 是边CD 的中点DE CE ∴=CE GE ∴=ECG EGC ∴∠=∠//AD BC180D BCD ︒∴∠+∠=,即180D ECG BCG ∠+∠+∠=︒180AGE EGC BCG ∴∠+∠+∠=︒,即180AGC BCG ∠+∠=︒又180AGC BGC ∠+∠=︒BCG BGC ∴∠=∠BG BC ∴=AB AG BG AD BC ∴=+=+;(2)如图,过点C 作//CG AD ,交AE 延长线于点G ,延长GC 交AB 于点F ,连接EF由方法1可知:,AF GF AE GE ==AFG ∴是等腰三角形EF ∴平分AFG ∠12EFC AFG ∴∠=∠ //CG AD ,60BAD ∠=︒60,180120BFC BAD AFG BAD ∴∠=∠=︒∠=︒-∠=︒60EFC ∴∠=︒//CG AD180D ECF ∴∠+∠=︒ 11802D BCD ︒∠+∠=,即1()1802D ECF BCF ∠+∠+∠=︒ 1()2ECF ECF BCF ∴∠=∠+∠ ECF BCF ∴∠=∠在ECF △和BCF 中,60EFC BFC CF CF ECF BCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ECF BCF ASA ∴≅CB CE ∴=.【点睛】本题考查了角平分线的定义、平行线的性质、三角形全等的判定定理与性质等知识点,较难的是题(2),参照方法1,通过作辅助线,构造全等三角形是解题关键.79.如图,在ABC 和DBE 中,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,A BDE ∠=∠,ABD CBE ∠=∠.(1)求证:ABC DBE ≅;(2)若 2.5AD DC ==,4BC =,求CDP 与BEP △的周长和.【答案】(1)证明见解析;(2)CDP 与BEP △的周长和为15.5.【解析】【分析】(1)先根据角的和差得出ABC DBE ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质得出5,4AC DE BC BE ====,再根据三角形的周长公式、线段的和差即可得.【详解】(1)ABD CBE ∠=∠ABD CBD CBE CBD ∴∠+∠=∠+∠,即ABC DBE ∠=∠在ABC 和DBE 中,A BDE AB DB ABC DBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DBE ASA ∴≅;(2) 2.5AD DC ==5AC AD DC ∴=+=由(1)知,ABC DBE ≅5,4AC DE BC BE ∴====CDP ∴与BEP △的周长和为CD CP DP PE BP BE +++++()()CD CP BP DP PE BE =+++++CD BC DE BE =+++2.5454=+++15.5=即CDP 与BEP △的周长和为15.5.【点睛】本题考查了三角形全等的判定定理与性质、角的和差等知识点,熟记三角形全等的判定定理与性质是解题关键.80.如图,在ABC 和DEF 中,点B 、F 、C 、E 在同一直线上,AB DE =,BF CE =,AB DE ∥,求证:ABC DEF △≌△.【答案】证明见解析.【解析】【分析】先根据线段的和差可得BC EF =,再根据平行线的性质可得B E ∠=∠,然后根据三角形全等的判定定理即可得证.【详解】BF CE =BF CF CE CF ∴+=+,即BC EF =//AB DEB E ∴∠=∠在ABC和DEF中,BC EFB E AB DE=⎧⎪∠=∠⎨⎪=⎩()ABC DEF SAS∴≅△△.【点睛】本题考查了线段的和差、平行线的性质、三角形全等的判定定理,熟记三角形全等的判定定理是解题关键.。
平行线和全等三角形练习题
初一数学姓名:1、已知A、F、C、D四点在同一条直线上,AC=DF,AB//DE,EF//BC,(1)试说明⊿ABC≌⊿DEF(2)∠CBF=∠FEC2、如果两个三角形有两个角和这两个角夹边的高对应相等,那么这两个三角形全等。
已知:在和中于D,于D’,且求证:3、如图⊿ABC和⊿ECD都是等腰直角三角形,点C在AD上,AE的延长线交BD于点F,求证:AF⊥BD4、如图(1)⊿ABC中, ∠ABC=45.,H是高AD和BE的交点,(1)请你猜想BH和AC的关系,并说明理由(2)若将图(1)中的∠A改成钝角,请你在图(2)中画出该题的图形,此时(1)中的结论还成立吗?请说明理由。
5、已知,如图AB//CD,BE、CE分别是、的平分线,点E在AD上,求证:6、如图⊿ ABC中,∠ACB=900,AC=AB,AE是BC边上的中线,过C作CF⊥AE于F ,过B作BD⊥BC交CF的延长线于D,求证:AE=CD7、如图所示,CF 、BE 是⊿ABC 的高,且BP=AC ,CQ=AB , (1)AP 与AQ 的关系(2)题中的⊿ABC 改为钝角三角形,其它条件不变,上述结论还正确吗?请画图并证明你的结论。
8、以知∠AOB=900,OM 平分∠AOB ,将一块直角三角板的直角顶点P 在射线OM 上移动,两直角边分别与边OA 、OB 交于点C 、D ,则线段PC 与PD 相等吗?为什么?QF P EC B ACB A9、如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。
若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?10、两个大小不同的等腰直角三角形三角板如图1所示放置,图2•是由它抽象出的几何图形,点B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:•结论中不得含有未标识的字母).(2)证明:DC⊥BE.答:2、证明:在和中(全等三角形对应边相等)在和中5、证明:AB//CD又BE、CE平分(三角形内角和定理)在BC上取BF=BA,连结EF在和中(全等三角形对应角相等)(等量代换)在和中(全等三角形对应边相等)。
西一中七下三角形、平行线期末复习试题(B)
七下几何部分期末复习试题检测(B )一、选择题(每小题4分,共24分)1、三角形一个外角小于与它相邻的内角,这个三角形( )A 、是直角三角形B 、是锐角三角形C 、是钝角三角形D 、属于哪一类不能确定 2、下面各角能成为某多边形的内角的和的是( ) A 、430° B 、4343° C 、4320° D 、4360°3、如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有( ) A.5个 B.4个 C.3个 D.2个4、小华用如图所示的胶滚沿从左到右将图案滚涂到墙上,下面给出的四个图案中,符合胶滚涂出的图案是( ).A .AB . BC . CD . D第3题第6题 5、装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )A. 1种B. 2种C. 3种D. 4种6、如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定7、若一个三角形的三边长是三个连续的自然数,其周长m 满足10<m <22,则这样的三角形有( )A. 2个B. 3个C. 4个D. 5个8、在△ABC 中,D ,E 分别为BC 上两点,且BD=DE=EC,则图中面积相等的三角形有( )对。
A.4对B.5对C.6对D.7对 9、若一个三角形的三个内角度数之比为3:2:1,则与之相邻的三个外角度数之比为( ) A. 3:2:1 B. 1:2:3 C. 5:4:3 D. 3:4:510、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( ) A.150° B.140° C.130° D.120°二、填空题(每空4分,共24分)1、如图,△ABC 中,∠A=40°,∠B=72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF=________度2、如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 °和 °.第9题图1AC B EBB 3、某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要_____元.第4题4、如图,AB ∥CD ,∠A =96°,∠B =∠BCA,则∠BCD =________5、如图,△ABC 中,∠A =35°,∠C =60°,BD 平分∠ABC ,DE ∥BC 交AB 于E,则 ∠BDE =______,∠BDC=_______.6、某多边形内角和与外角和共1080°,则这个多边形的边数是 _______。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题八(含答案) (49)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题八(含答案)如图,点D是AB边上的一点,请用尺规作出线段DE,使DE∥BC,交AC于E.【答案】见解析【解析】【分析】作∠ADE=∠ABC,射线DE交AC于点E,线段DE即为所求.【详解】解:如图所示线段DE为所求.【点睛】考核知识点:作平行线.利用平行线判定是关键.82.如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B (0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.(1)求m和n的值.(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.【答案】(1)42mn=-⎧⎨=⎩(2)详见解析;(3)NB﹣FB=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.【解析】【分析】(1)由点D,点B的坐标和四边形AOBD的面积为12,可列方程组,解方程组即可;(2)由(1)可知,AD=OA=4,OB=2,并可求出AB=BD=用SAS可证△DAC≌△AOB,并可得∠AEC=90°,利用三角形面积公式即可求证;(3)取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,证明△ABH≌△CAN,即可得到结论.【详解】解:(1)由题意()()218122m n n m m --=⎧⎪⎨++-=⎪⎩ 解得42m n =-⎧⎨=⎩; (2)如图2中,由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),∴AD =OA =4,OB =2,∴由勾股定理可得:AB =BD=∵AC =OC =2,∴AC =OB ,∵∠DAC =∠AOB =90°,AD =OA ,∴△DAC ≌△AOB (SAS ),∴∠ADC =∠BAO ,∵∠ADC +∠ACD =90°,∴∠EAC +∠ACE =90°,∴∠AEC =90°,∵AF ⊥BD ,DE ⊥AB ,∴S △ADB =12•AB •AE =12•BD •AF , ∵AB =BD ,∴DE =AF .(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,∵AG =BG ,∴∠GAB =∠GBA ,∵G 为射线AD 上的一点,∴AG ∥y 轴,∴∠GAB =∠ABC ,∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB ,即∠ABG =∠ACN ,∵∠GAN =∠GBO ,∴∠AGB =∠ANC ,在△ABG 与△ACN 中,ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△ACN (AAS ),∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB =2∴NB﹣FB=2×2=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.【点睛】本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.83.如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.(1)求证:∠ACB=∠ADB;(2)求证:AC+BC<2BD;(3)如图2,若∠ECF=60°,证明:AC=BC+CD.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D分别作AC,CE的垂线,垂足分别为M,N,证明Rt△DAM≌Rt△DBN,得出∠DAM=∠DBN,则结论得证;(2)证明Rt△DMC≌Rt△DNC,可得CM=CN,得出AC+BC=2BN,又BN <BD,则结论得证;(3)在AC上取一点P,使CP=CD,连接DP,可证明△ADP≌△BDC,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN =⎧⎨=⎩, ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM =∠DBN ,∴∠ACB =∠ADB ;(2)证明:由(1)知DM =DN ,在Rt △DMC 和Rt △DNC 中,DC DC DM DN =⎧⎨=⎩, ∴Rt △DMC ≌Rt △DNC (HL ),∴CM =CN ,∴AC +BC =AM +CM +BC =AM +CN +BC =AM +BN ,又∵AM =BN ,∵BN <BD ,∴AC +BC <2BD .(3)由(1)知∠CAD =∠CBD ,在AC 上取一点P ,使CP =CD , 连接DP ,∵∠ECF =60°,∠ACF =60°,∴△CDP 为等边三角形,∴DP =DC ,∠DPC =60°,∴∠APD =120°,∵∠ECF =60°,∴∠BCD =120°,在△ADP 和△BDC 中,APD BCD PAD CBD DA DB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADP ≌△BDC (AAS ),∴AP =BC ,∵AC =AP +CP ,∴AC =BC +CP ,【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.84.如图1,△ABC中,CD为△ABC的中线,点E在CD上,且∠AED =∠BCD.(1)求证:AE=BC.(2)如图2,连接BE,若AB=AC=2DE,∠CBE=14°,则∠ACD的度数为(直接写出结果),【答案】(1)详见解析;(2)28°.【解析】【分析】(1)延长CD到F使DF=CD,连接AF,由CD是△ABC的中线,得到AD=BD,推出△ADF≌△BCD,根据全等三角形的性质得到∠F=∠BCD,BC=AF,由等腰三角形的性质,利用等量代换即可得到结论;AB,CD为△ABC的中线,得DE=AD=DB,∠DEB=(2)根据DE=12∠DBE,可求得∠ABC=∠DEB+14°,并∠DEB=∠DCB+∠CBE,的∠DCB=∠DEB﹣14°,利用AC=AB,得∠ACB=∠ABC=∠DEB+14°,即可得∠ACD =∠ACB﹣∠DCB=28°.【详解】证明:(1)如图1,延长CD到F,使DF=CD,连接AF,∵CD为△ABC的中线,∴AD=BD,且∠ADF=∠BDC,且CD=DF,∴△ADF≌△BDC(SAS),∴AF=BC,∠F=∠BCD,∵∠AED=∠BCD,∴∠AED=∠F,∴AE=AF,∴AE=BC;(2)∵DE=12AB,CD为△ABC的中线,∴DE=AD=DB,∴∠DEB =∠DBE ,∴∠ABC =∠DBE +∠CBE =∠DEB +14°,∵∠DEB =∠DCB +∠CBE ,∴∠DCB =∠DEB ﹣14°,∵AC =AB ,∴∠ACB =∠ABC =∠DEB +14°∴∠ACD =∠ACB ﹣∠DCB =(∠DEB +14°)-(∠DEB ﹣14°)=28°, 故答案为:28°.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.三、填空题85.已知:如图,点B E C F 、、、在同一直线上,,,AB DE BE CF AC DF ===,62,40A DEF ∠=︒∠=︒,则F ∠=______.【答案】78【解析】【分析】先证明△ABC ≌△DEF, 得到∠A=∠D,由62,40A DEF ∠=︒∠=︒即可求得∠F 的度数.【详解】解:∵BE=CF ,∴BE+EC=CF+EC ,即BC=EF ,在△ABC 和△DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS),∴∠A=∠D∵62,40A DEF ∠=︒∠=︒,∴∠F=180°-62°-40°=78°,故答案为78°.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于基础题.86.已知:如图,点E F 、分别在等边三角形ABC 的边CB AC 、的延长线上,,BE CF FB =的延长线交AE 于点G ,则AGB ∠=_______.【答案】60【解析】【分析】利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=BC ,∠ABE=∠BCF=120°,然后结合已知条件可证△ABE ≌△BCF ,得到∠E=∠F ,因为∠F+∠CBF=60°,即可求出AGB ∠得度数.【详解】解:∵△ABC 是等边三角形,∴AB=BC∴∠ACB=∠ABC=60º,∴∠ABE=∠BCF=120°,在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF (SAS);∴∠E=∠F ,∵∠GBE=∠CBF ,∠F+∠CBF=60°∴AGB ∠=∠GBE+∠B=60°,故答案为60°.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,线段垂直平分线的性质等知识点.在证明两个三角形全等时,一定要找准对应角和对应边.87.如图,ABC ∆的面积为10,D 、E 分别是AC ,AB 上的点,且AD CD =,:=AE BE 2:1.连接BD ,CE 交于点F ,连接AF 并延长交BC 于点H .则四边形BEFH的面积为_____..【答案】53【解析】【分析】先画出图形,再作DJ∥EC交AB于J,交AH于K,作DG∥BC交AH于G.由题推出EF:FC=1:3,BH:CH=1:2,求出△BEF,△BFH的面积即可.【详解】根据题意画出图形:作DJ∥EC交AB于J,交AH于K作DG∥BC交AH于G. ∵DJ∥EC,AD=DC,∴AJ=JE,AK=KF,∴EF=2JK,DJ=2EF,CF=2DK,设JK=m,则EF=2m,DJ=4m,DK=3m,CF=6m,∴EF:CF=1:3,∵AE= 2BE,∴BE=EJ,∵EF∥DJ,∴BF=DF,∵GD∥BH,∴∠GDF=∠FBH,∵∠GFD=∠HFB,BF=DF,∴△DFG≌△BFH(ASA),∴DG=BH,∵DG∥CH,AD=DC,∴AG=GH,∴CH=2DG,∴BH=2CH,∵BE=13 AB,∴S△BEC=13S△ABC=103,∵EG=14 EC,∴S△BEF=14S△BEC=56,S△BFC=52,∵BH=13 BC,∴S△BHF=13×52=56,∴S四边形BEFH=56+56=53【点睛】本题考查三角形的全等及辅助线的做法,关键在于通过辅助线将面积分成两个三角形面积求证.88.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB 的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C 在一条直线上.若想知道两点A,B的距离,只需要测量出线段______________即可.【答案】DE【解析】【分析】由对顶角相等,两个直角相等及BD=CD,可以判断两个三角形全等;所以AB=DE.【详解】根据题意可知∠B=∠D=90°,BC=CD,∠ACB=∠ECD∴△ABC≌△EDC∴AB=DE即只需要测量出线段DE即可.故答案为:DE【点睛】解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系,做题时要认真观察图形,根据已知选择方法.89.如图,点B,F,C,E在一条直线上,已知AB=DE,AB//DE,请你添加一个适当的条件__________使得△ABC△△DEF.【答案】∠A=∠D(答案不唯一).【解析】【分析】由平行线得出∠B=∠E,结合AB=DE根据全等三角形的判定定理填空即可.【详解】添加∠A=∠D.理由如下:∵AB∥DE,∴∠B=∠E.在△ABC 与△DEF 中,B E AB DE A D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ).故答案是:∠A=∠D (答案不唯一).【点睛】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.90.如图,已知AC 与BD 交于点E ,且AB=CD ,请你再添加一个边或角的条件使△ABC ≌△DCB ,添加的条件是:________.(添加一个即可)【答案】AC=DB【解析】【分析】本题已知条件是一条公共边BC=BC 和AB=CD ,所填条件必须和已知条件构成或经推理可以得出SSS 、SAS ,所以添加的条件可以是一条边对应相等或一个夹角对应相等.【详解】添加AC=DB 或∠ABC=∠DCB 或△AOB ≌△DOC 后可分别根据SAS 、SSS 、SSS 判定△ABC ≌△DCB .故答案为:AC=DB或∠ABC=∠DCB或△AOB≌△DOC.(添加一个即可)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线与相交线复习题
七年级 姓名
(5)如图2-56
①∵AB//CD (已知),
∴∠ABC=__________( )
____________=______________(两直线平行,内错角相等),
∴∠BCD+____________=︒180( )
②∵∠3=∠4(已知),
∴____________∥_________( )
③∵∠FAD=∠FBC (已知),
∴_____________∥____________( )
(7)如图2-58,①直线DE ,AC 被第三条直线BA 所截,则∠1和∠2是________,如果∠1=∠2,则_____________//_____________,其理由是( ).
②∠3和∠4是直线__________、__________,被直线____________所截,因此____________//____________.∠3_________∠4,其理由是( ).
(8)如图2-59,已知AB//CD ,BE 平分∠ABC ,CE 平分∠BCD ,求证∠1+∠2=︒90.
证明:∵ BE 平分∠ABC (已知),
∴∠2=_________( )
同理∠1=_______________,
∴∠1+∠2=2
1____________( ) 又∵AB//CD (已知),
∴∠ABC+∠BCD=______________( )
∴∠1+∠2=︒90( )
(10)如图2-61,已知AB//CF ,AB//DE ,求证:∠B+∠D=∠BCF+
∠DCF .
证明: ∵AB//CF (已知),
∴∠______=∠________(两直线平行,内错角相等).
∵AB//CF ,AB//DE (已知),
∴CF//DE ( )
∴∠_________=∠_________( )
∴∠B+∠D=∠BCF+∠DCF (等式性质).
(11)如图2-95,∠1=∠2,AC 平分∠DAB ,求证:AB//CD .
F
E B C D A
证明:∵AC 平分∠DAB ( ),
∴∠1=∠3( ).
∵∠1=∠2( ),
∴∠3=∠2( ),
∴AB//CD ( ).
(12)如图2-65,已知CD 是∠ACB 的平分线,∠ACB=︒50,∠B=,
DE//BC ,求∠EDC 和∠BDC 的度数.
(13)已知:如图BC ∥EF ,BC=EF ,AB=DE ;
说明AC与D F相等。
解:∵BC ∥EF (已知)
∴∠ABC=∠__________( )
在△ABC 和△DEF 中
______=_______
∵ _______=________
______=________
∴△ABC ≌___________ ( )
∴ _______=__________ ( )
(14)已知:如图,AC BE C A ⊥=,D B 于点AC DF E ⊥,于点F ,且∠ABE=∠CDF
求证:AB ∥DC A
B C D
E
F
︒
70。