桥梁柱台桩顶反力计算表
桥台计算表
一辆挂车总重
等待土层厚度h=G/(Bγ Lo): 0.3623
侧土压力: 1640.186747
桥台基础底面外力汇总
1200 作用点距基础顶面: 2.153
1000 作用点距基础顶面: 2.135
1200 作用点距基础底面: 2.153
1000 作用点距基础底面: 2.135
序号
项目
水平力
竖直力
弯距
6 上部结构恒载
959.232
1417.26528
7 上部结构活载(汽)
870.92
1286.7843
8 上部结构活载(挂)
482.44
712.8051
9 桥台台身、基础及台内填土
18828.84976
-8746.716448
10 荷载组合一
1739.464738
20659.00176
-1853.552484
桥台重心至基底中心的距离:
-0.464538013
桥台重心至C点的距离 支座中心至桥台重心的水平距离
3.212
1.4775
填土表面与水平面的倾角β
墙背与填土间的摩擦角δ 系数μ
0
0.305432619 0.1377
0
2970.174837
弯距: 3607.2614 弯距: 3501.0803 弯距: 3607.2614 弯距: 3501.0803
853.5730512
27.6
23
635.9371966
4.42
2810.842409
11.1
23
256.0494141
2.95
755.3457715
224.0
23
5153.006112
桩柱式桥台计算
无锡至张家港高速公路桩柱式桥台台帽位移计算书中交第二公路勘察设计研究院年月日一、基础资料台后填土内摩擦角φ=30°,台帽长B =17.54m (计算宽度b 1=17.24m ),桩间距为6.1m ,桩径d =1.5m ,耳墙宽0.3m ,台后填土高H=5.0m 。
填土容重r =18.0 km/m 3,台帽背墙高为h1=1.2+1.83=3.03m ,桥台帽梁截面尺寸为b ×h =1.8×1.2m 。
桥跨上部构造为25m 小箱梁,上构恒载、桥跨活载产生的弯矩与台后土压力产生的弯矩方向相反,其值越小对结果越为不利,桥台位移计算时未考虑上述荷载产生的弯矩(最不利计算)。
搭板及台后活载产生的弯矩需计算,方法为由汽车荷载换算成等代均布土层厚度: h =rbl G 0∑ 式中,0l 为破坏棱体长度,b 为台帽长,当台背竖直时,0l =Htg θ,H=5.0m 。
由tg θ=-tg ω+))((αωωϕtg tg tg ctg -+=0.653,其中045=++=αδϕω得 0l =5×0.653=3.265m在破坏棱体长度范围内并排放三辆重车,车后轮重为2×140=280,三辆车并排折减系数为0.78,得∑G =3×280×0.78=655.2KN搭板产生的重力∑G =0.35×3.265×14.25×25=407.1KN所以 得:活载h =655.2/(17.24×3.265×18)=0.647m搭板h =407.1/(17.24×3.265×18)/2=0.201m计算时,把活载h 和搭板h 合计到p 1、p 2即考虑了搭板和台后活载引起对桥台的主动土压力。
二、计算桩径d =1.5m (台后填土高H=5.0m )土压力系数:台后填土内摩擦夹角φ=30°填土表面与水平面的夹角β=0°(台后填土水平)桥台背墙与垂直面的夹角α=0°(背墙竖直)台背或背墙与填土的夹角 δ= φ/2 =15°主动土压力系数后μ=222)cos()cos()sin()sin(1)cos(cos )(cos ⎥⎦⎤⎢⎣⎡-+-+++⋅-βαδαβϕδϕδαααϕ=222)00cos()150cos()030sin()1530sin(1)150cos(0cos )030(cos ⎥⎦⎤⎢⎣⎡︒-︒︒+︒︒-︒︒+︒+︒+︒⋅︒︒-︒=0.3014土压力强度:p 1=μ后×r ×h 1+活载p +搭板p = 0.3014×18×(3.03+0.647+0.201)=21.039(kn/m 2)p 2=μ后×r ×h 2+活载p +搭板p =0.3014×18×(5.0+0.647+0.201)=31.727(kn/m 2)① 台背高度范围内台后土压力及其产生的弯距H 1= 1/2×p 1×h 1×B 1=1/2×21.039×3.03×17.24=549.5(kn )e 1桩顶= ⨯31h 1=⨯31 3.03=1.01(m ) e 1地面=H- ⨯32h 1=5-⨯32 3.03=2.98(m ) M 1桩顶 =H 1×e 1桩顶=549.5×1.01=555.0(kn.m )M 1地面 =H 1×e 1地面=549.5×2.98=1637.5(kn.m )② 台身桩柱范围内台后土压力及其产生的弯距b =0.9×(d+1)=0.9×(1.5+1)=2.25mH 21 = 1/2×(p 2-p 1)×(H-h 1)×b ×n ×(H-h 1)/3= 1/2×(31.727-21.039)×(5-3.03)×2.25×3×(5-3.03)/3=46.6(kn )H 22 = p 1×(H-h 1)×b ×n ×(H-h 1)/2= 21.039×(5-3.03)×2.25×3×(5-3.03)/2=275.6(kn )M 2地面 = H 21×(H-h 1)/3+ H 22×(H-h 1)/2=46.6×1.97/3+275.6×1.97/2=302.1(kn.m )③ 台身桩柱范围内台前溜坡土压力及其产生的弯距主动土压力系数前μ=22cos )sin(sin 1cos ⎥⎦⎤⎢⎣⎡++ααϕϕϕα=atan (1/1.5)前μ=0.249土压力强度:h 前=5-(3+1.4-0.75)/1.5=2.567(m )p 前=μ前×r ×h 前=0.249×18×2.567=11.52(kn/m 2)H 前=-⨯21p 前×h 前×b ×3=-⨯2111.52×2.567×2.25×3=-99.8(kn ) e 前= ⨯31h 前=⨯31 2.567=0.856(m ) M 前 = H 前×e 前=-99.8×0.856=-85.4(kn.m )④ 桩顶及地面处的外力由于桥跨上构恒载、活载产生的弯矩与台后土压力产生的弯矩方向相反,其值愈小对结果愈为不利,本计算未考虑上述荷载产生的弯矩(最不利计算),其中由帽梁程序计算的单柱桩顶反力为:恒载1357.3 KN ,活载 678.5KN 。
桥梁桩基础计算书
桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R kN ⨯⨯=+⨯=(2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑iiyP +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21 = 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。
XXX大桥桩基(桩顶反力及配筋)受力计算完全
4#墩桩基计算
1、桩顶力及桩长计算
由桥梁博士“内力\组合内力\持久或短暂状况内力”查得在标准值组合作用下承台底面轴力和弯矩分别如下:
根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)公式8.5.1得
2,桩基布置示意图如右,则桩基坐标如下:x1=0x2=0x3=0x4=0x5=0x6=0y1= 2.1y2= 2.1y3=0y4=
0y5=0y6=0
故最大弯矩时单桩竖向力
4#墩处:
Nmax=
8899
kN
桩顶反力取
嵌岩桩(钻孔桩):
c1=0.4c2=
0.032
d=
1.6m
4#墩:ZK9嵌岩深度
h=
3.2m
Ra=15MPa 单桩轴向受压容许承载力[P]=19784.494kN kN
桩长满足
单桩轴向受压应力=
4.426
Mpa
2、桩基截面配筋
承载能力极限状态下4#墩承台底内力基本组合如下:
经计算得桩基配筋结果为:
构造配筋
已知桩基根数n=
下承台底面
交角90度
4)公式8.5.1得
基坐标如下:
8900
桩底高程为:。
新规范桥梁构件计算表格汇总(2020版)
新规范桥梁构件计算表格汇总(2020版)
截面半径r (mm):
600截面换算高度h (mm):1200截面纵向配筋半径r s (mm):
500g=r s /r=
0.8333截面有效高度h 0(mm):
1100
构件计算长度l 0(mm):
2000荷载偏心率对截面曲率影响系数ξ1:0.649ξ1计算值是否大于1NO 荷载偏心率对截面曲率影响系数ξ2:
1.000ξ2计算值是否大于1
YES 偏心距增大系数η:
1.008偏心距增大后数值ηe 0(mm):
184
构件混凝土强度等级f cu,k (Mpa):30混凝土轴心抗压设计强度f cd (Mpa):
13.8混凝土材料极限压应变εcu :0.0033普通钢筋弹性模量E S (MPa): 2.00E+05受拉钢筋设计强度f s d (MPa):330受压钢筋设计强度f's d (MPa):
330结构重要性系数γ0
1.10承载极限状态设计轴向压力N d (kN):1641γ0N d (kN):1805承载极限状态设计偏心弯矩M d (kN.m):300γ0M d (kN.m): 330
轴向力对截面重心轴的偏心距e 0(mm):
183
圆形截面偏心受压钢筋混凝土构件配筋计算几何信息
材料信息
设计荷载
20-11.70
22-9.67不同钢筋直径对应配筋根数
25-7.49
28-5.97
32-4.57。
桥梁桩基础计算
桩长计算一、计算参数根据XXX桥《岩土工程勘察报告》取如下参数:(1)桩长埋入黄土地基容许承载力[б0]黄土:[б0]=164KPa(2)钻孔桩桩周的摩阻力标准值τi黄土:τi =80KPa桩长验算例:1号桥墩二、上部和下部荷载(1)上部荷载支点最大反力:中梁:949 kN;边梁:893 kN每个桥墩上部荷载为2*949+2*893=3684kN(2)单个桥墩下部结构自重盖梁N1=26*22.1=574.6kN墩柱N2=26*2*16.78*3.1416*0.75*0.75=1541.9kN系梁N3=26*7.49=194.7kN承台N3=26*88.2=2293.2kN桩基N5=26*4*L*3.1416*0.75*0.75=183.8LkN 桩基取自重的一半计算91.9LkN每个桩基承受的荷载为1/4* 51N N+3684/4=1/4*(574.6+1541.9+194.7+2293.2+91.9L)+3684/4= 1151.1+23L+921=2072.1+23L(kN)二、桩基轴向受压承载力容许值[Ra]按照《公路桥涵地基与基础设计规范》 JTG D63-2007中5.3.3条 摩擦桩单桩轴向受压承载力容许值:[][][])3(21a 22001-+=+=∑=h k f m q q A l q u R a r n i r p i ik γλ 其中r q =0.7*0.7*(164+1.5*18*(L-3)=13.23L+40.67则单桩轴向受压承载力容许值[Ra]=1/2*4.71*(80*L )+3.1416*0.75*0.75*(13.23L+40.67)=211.8L+71.9三、结论当N<[Ra],桩长满足设计要求。
即2072.1+23L <211.8L+71.9L>10.6桩顶至冲刷线5m根据甘肃地区地震区带划分,本桥址地处青藏北部地震区南北地震带兰州—通渭地震亚带,桥址地震动峰值加速度为0.2g ,为8度区,加之桥址处为饱和黄土地质,地质情况较差,建议采用钻孔灌注桩群桩基础,桩径1.5m,桩长30m 。
桥墩桩柱计算书
织女桥第1号桥墩计算书注:1、加载方式为自动加载。
重要性系数为1.1。
2、横向布载时车道、车辆均采用1到2列分别加载计算。
注:集中荷载Pk已经乘以1.2系数,使得竖直力效应最大。
双孔加载按左孔或右孔的较大跨径作为计算跨径。
车辆荷载数据双孔、左孔、右孔分别加载时对应的冲击系数摩阻系数、温度力上部横断面宽度数据每片上部梁(板)恒载反力注:1、盖梁容重25kN/m3,墩身容重25,扩基容重25,水容重10。
活载支反力表(表2)注:1、“人群/每米”指横向1米宽度的支反力,不是总宽度对应的支反力。
总宽度为3.4米。
2、“总轴重”指一联加载长度内(双孔或左孔或右孔加载)的轮轴总重。
计算水平制动力使用。
3、“左、右支反力”未计入汽车冲击力的作用。
4、双孔加载车道均布荷载、集中荷载的跨径采用“单孔左或右跨不利作为计算跨径”。
5、双孔、左孔、右孔分别加载车道均布荷载为7.875、7.875、7.875kN/m,集中荷载为199.08、199.08、199.08kN。
6、双孔支反力合计:人群荷载56.028kN/m,1辆车辆荷载406.634kN,1列车道荷载329.697kN。
7、左孔(或右孔)加载时1辆车轮轴只作用在左孔(或右孔)内,同车辆的前后轮轴不进入另一孔。
注:1、左右孔的支座支撑线到墩盖梁中心线的桥轴方向距离分别是0.35米、0.35米。
弯矩的力臂按桥轴向距离投影到垂直于墩台轴线的方向计算。
2、“竖直力”向下为正,桥墩“水平力”指向小桩号为正,“弯矩”指向小桩号为正。
3、制动力“双孔加载”由最小制动力控制,“左孔加载”由最小制动力控制,“右孔加载”由最小制动力控制。
4、“竖直力”、“弯矩”未计入汽车冲击力的作用。
“弯矩”由竖直力产生(未计水平力引起的弯矩)。
5、“最小制动”指制动力标准值不得小于的规定值,见2004年桥涵通用规范4.3.6。
6、制动力作用的“加载长”计入一联的长度计算加载重。
注:1、表中活载横向作用视上部与盖梁为整体形成双悬臂多跨连续梁计算柱的横向分配系数得到柱顶竖直力。
公路装配式梁桥下部柱式墩通用计算表
公路装配式梁桥下部柱式墩通用计算表公路装配式梁桥下部柱式墩通用计算表编制:复核:说明:绿色单元格为输入项,粉红色单元格内数值适用于本XX项目可不做修改,黄色单元格根据批注判断是否手动输入;不得随意修改\编辑无填充色单元格;不得随意移动\复制单元格;如有问题应向编制人提出以做统一修改;本表以半幅一联为计算单位,多联桥应采用对应的分联类型分别计算;基本单位为kN,m本表用于:支座到墩中心的距离结构重要性系数单车道制动力橡胶支座的并联抗推刚度风荷载参数V k k k墩号上部恒载反力盖梁高盖梁重第一节墩墩高第二节墩墩高第三节墩墩高第一节墩直径第二节墩直径第三节墩直径第一节系梁重第二节系梁重第一节墩重第二节墩重第三节墩重墩身砼强度等级墩身砼抗弯弹模第一节墩截面惯性矩第二节墩截面惯性矩0.32169910.3216991第三节墩截面惯性矩墩的抗推刚度墩\支座的串联刚度制动力分配墩中心到联端的距离不动点位温度水平力3.8606534 3.8606534收缩徐变水平力4.632784 4.632784第一节墩风力33.426.4第二节墩风力10.110.1第三节墩风力0.00.0结构自重轴力单车道汽车荷载反力汽车荷载轴力汽车荷载弯矩(汽车荷载)003墩身计算温度力弯矩(其他可变)71.80815356.365539制动力弯矩(其他可变)3590.732818.53收缩徐变弯矩(永久)86.16978367.638647风力弯矩(其他可变)419.22466283.57706弯矩最大效应效应组合1M 5995.21884672.8974N9430.41769091.7539效应组合2M 6057.00344715.8905N 9699.24299360.5792H338.82319333.41334轴力最小效应效应组合1M 3783.32912936.6829N9251.20088912.5371效应组合2M 4312.063346.2038N9251.20088912.5371M dN d e h 1.6 1.6h0 1.53 1.53l0i ξ1ξ20.9756251η1.5191523 1.4063972等效于计算长度为0的截面设计值M 4600.75533316.2075N 配筋45以下进行抗裂验算短期效应组合M s2031.56321577.6085N s 4328.48484174.5467e 00.46934740.3779113ηs1.24780241e s 1.3156528 1.1079113γfzA sss43.014481-4.915648长期效应组合M l2031.56321577.6085N l 4362.88284208.9447ρC 111C 21.50397341.50412C 311d裂缝宽度W tk (mm)0.07185340.0420681进行桩截面验算桩顶力M 4600.75533316.2075N 4849.62154680.2896Q169.41159166.70667以下进行桩顶力计算系梁重恒载偏心弯矩单车道汽车荷载最大反力汽车荷载最大反力活载偏心矩活载偏心弯矩桩顶截面内力:M y4167.93263226.1112M x 8262.19166369.9375N 桩顶力M y 00M x 4593.93374593.9337N 桩顶力桩长组合II(使用时,应考虑容许承载力提高25%,即P=1.24[P]组合I风力横向弯矩桩径1/2桩重控制设计桩顶力6175.47516021.5371刚性扩大基础验算扩大基础高度22扩大基础襟边宽度0.80.8和扩基相接的墩柱直径 1.6 1.6扩基底面宽度(顺桥向) 4.8 4.8扩基底面长度(横桥向)11.95914311.959143扩基总重2263.82872263.8287基底截面模量(绕横桥向)45.9231145.92311基底截面模量(绕顺桥向)114.41689114.41689基底面积57.40388857.403888基底核心半径(顺桥向)0.80.8基底核心半径(横桥向) 1.9931906 1.9931906温度力对基底弯矩(其他可变)79.52945964.086846 制动力对基底弯矩(其他可变)3976.833204.63收缩徐变对基底弯矩(永久)95.43535176.904215风力对基底弯矩(顺桥向其他可变)506.12705356.4279 扩大基础稳定性基底验算效应组合1My3976.833204.63Mx4593.93374593.9337N10790.38610482.51基底形心偏心距(e x)0.36855310.3057121基底形心偏心距(e y)0.42574320.4382475e00.56310630.5343414核心半径(ρ1)0.83510970.8875919偏心矩与核心半径的比值0.67429020.6020125基底摩擦系数(μ)0.40.4抗倾覆稳定系数 6.51195197.8505235抗滑动稳定系数22.35770221.719782稳定分析结果安全安全效应组合2My4657.92193702.049Mx8262.19166369.9375N10790.38610482.51基底形心偏心距(e x)0.43167330.3531644基底形心偏心距(e y)0.76569940.6076729e00.8789980.7028453核心半径(ρ1)0.95155470.9417353偏心矩与核心半径的比值0.92374930.7463299基底最大压应力(KPa)361.61309318.89688与基底土压力比较,是否基底摩擦系数(μ)0.40.4抗倾覆稳定系数 5.5597596 6.7957025抗滑动稳定系数17.61734217.619969稳定分析结果稳定安全稳定安全基底偏心矩验算联26.2柱直径钢筋直径根数面积构造面积保护层厚度钢筋间距净距1.80.02832197.041127.23450.0517.2280914.22809 (使用组合II时,应考虑容许承载力提高25%,即P=1.24[P]组合I,是否安全。
桥台土压力计算
土应力
0 0.0018
-288.4 188.3
-0.6 0.0016
-177.4
178.9
-1.2 0.0014
-77
154
-1.8 0.0011
5.3
119.3
-2.4 0.0009
65.3
80.7
-3 0.0006
101.4
43.4
-3.6 0.0004
118.4
11.1
-4.2 0.0002
文档描述: 1
任务标识: 2
计算类别: 多 排弹性基础计 算
---------------------
---------------------
-----------------输入数据: h=12.000 m, lo=0.000 m alfa = 0.490, m= 15000.000, Co = 180000.000, Ao = 7.100 m*m, EA= 21991149.000 KN, EI = 1099557.000 KN-m*m 外力P = 10966.000 KN, H = 2071.000 KN, M=560.000 KN-m 基底不嵌入岩 石层 桩排信息: 桩排号 1 2 3
N= H= Mo=
N= H=
3615.449 725.8572 492.7826
KN KN KN.m
3686.483 KN 951.1493 KN
3. 恒载+台前荷 载:
Mo=
N= H= Mo=
4. 主+附:
N= H= Mo=
五. 桩基础计 算:
文档描述: 1
取最不利工况 恒载+前后荷载 计算 <<桥梁博士>>-
承台自动计算公式表
两桩承台计算(柱偏心):一,受弯计算:1,基桩竖向力设计值计算:桩数(对称布置的两桩承台):n=2方桩边长(圆桩换算边宽0.8d)(m):bp=0.4柱截面长边尺寸(m):hc=0.7(X方向)柱截面短边尺寸(m):bc=0.4(Y方向)作用于桩基上的竖向力设计值(kN):F=3261桩基承台和承台上土的自重设计值(kN):G=100.0柱端垂直于X轴向的弯矩设计值(kN-m)My=15桩i至柱中心线的距离(m):x10=0.90x20=2.97桩i至通过桩群重心的Y轴线的距离(m):xi0=1.94考虑弯矩作用时,第i桩的竖向反力设计值(kN):Nix=2556.5<=1.2倍基桩竖向承载力设计值(公式5.1.1-2)2,承台受弯计算:垂直Y轴方向自桩轴线到相应计算截面的距离(m):x1=0.55垂直X轴方向计算截面处的弯矩设计值(kN):My=1406.1公式(5.6.2-2)承台高度(mm):h=1800砼弯曲抗压强度设计值(N/mm^2):fcm=16.5钢筋强度设计值(N/mm^2):fy=310构件尺寸(mm):b=1000h=1800纵向受拉钢筋合力点至截面近边的距离(mm):as=65截面的有效高度(mm):h0=1735弯矩(kN-m)My=1406.1公式 4.1.5-1det=2839791.41x=49.83yetb*h0=944.4公式 4.1.5-2Asx=2652配筋率(%)rox=0.15二,受冲切计算:承台受柱冲切的承载力计算:自柱短边到最近桩边的水平距离(m):aox1=0.35aox2=2.42公式(5.6.6-3)alfaox1=1.80lmtaox1=0.20alfaox2=0.45lmtaox=1.39桩基的重要性系数:gamo=1.0砼的抗拉强度设计值(N/mm^2)ft=1.5公式(5.6.6-4)gamoFl=3261承台受柱冲切的承载力设计值(kN):R=5859.4>=gamoFl=3261满足受柱冲切的承载力要求.三,承台受剪计算:柱边至沿X向桩边的水平距离(m):ax1=0.35公式(5.6.8-2)betax=0.20lmtax=0.20桩基的重要性系数:gamo=1.0砼的抗压强度设计值(N/mm^2)fc=15公式(5.6.8-1)gamoVx=2556.5承台受剪的承载力设计值(kN):Rx=5205.0>=gamoVx=2556.5满足受剪的承载力要求.四,承台局部受压计算(按砼规范):砼局部受压净面积(m^2):Aln=0.28砼局部受压面积(m^2):Al=0.28砼局部受压时的计算底面积(m^2):Ab=1.00(计算底面积边长>=承台宽度时)公式(4.5.1-2)beta=1.89公式(4.5.1-1)Fl=3261砼局部受压的承载力设计值(kN):R=11905.9>=Fl=3261满足局部受压的承载力要求.三桩承台计算:一,受弯计算:1,基桩竖向力设计值计算:桩数:n=3方桩边长(圆桩换算边宽0.8d)(m):bp=0.64柱截面长边尺寸(m):hc=0.7(X方向)柱截面短边尺寸(m):bc=0.7(Y方向)作用于桩基上的竖向力设计值(kN):F=14000桩基承台和承台上土的自重设计值(kN):G=0.0作用于桩群上的外力对通过桩群重心的X轴的Mfx=100力矩设计值(kN-m):作用于桩群上的外力对通过桩群重心的Y轴的Mfy=150力矩设计值(kN-m):桩i至通过桩群重心的Y轴线的距离(m):xi0=1.2桩i至通过桩群重心的X轴线的距离(m):y10=1.6y20=0.8考虑Mfx时,第i桩的竖向反力设计值(kN):N1y=4708.3<=1.2倍基桩竖向承载力设计值(公式5.1.1-2)N2y=4687.5考虑Mfx,Mfy时,第i桩的竖向反力设计值(kN):Nimax=4750.0<=1.2倍基桩竖向承载力设计值(公式5.1.1-2)2,承台受弯计算:垂直Y轴方向自桩轴线到相应计算截面的距离(m):xi=0.9垂直X轴方向自桩轴线到相应计算截面的距离(m):y1=1.3y2=0.5垂直Y轴方向计算截面处的弯矩设计值(kN):Mx=5885.4公式(5.6.2-4)垂直X轴方向计算截面处的弯矩设计值(kN):My=4037.5公式(5.6.2-3)承台高度(mm):h=2000砼弯曲抗压强度设计值(N/mm^2):fcm=16.5钢筋强度设计值(N/mm^2):fy=310构件尺寸(mm):bx=1600(X向等效宽度)by=h=2000纵向受拉钢筋合力点至截面近边的距离(mm):as=60截面的有效高度(mm):h0=1940弯矩(kN-m)Mx=5885.4公式 4.1.5-1 (砼规范)det=3317735.10x=118.53yetb*h0=1056.0公式 4.1.5-2 (砼规范)Asy=10095按三向板带配筋时,单向板带配筋面积(mm^2):Asy1=5827弯矩(kN-m)My=4037.5公式 4.1.5-1det=3457728.79x=80.50yetb*h0=1056.0公式 4.1.5-2Asx=6856按三向板带配筋时,单向板带配筋面积(mm^2):Asx1=4570单向板带配筋面积取Asy1,Asx1中较大者:Ax1=5827二,受冲切计算:承台受基桩冲切的承载力计算:从承台底角桩内边缘引45度冲切线与承台顶面相a11=0.53A=1.89交点至角桩内边缘的水平距离A,柱边至桩内侧的水a12=0.93A=1.89平距离B,取两者中的较小者(m):从角桩内边缘至承台外边延长线角点的距离(m):c1=1.70c2=2.20公式(5.6.7-4)alfa11=1.01lmta11=0.27公式(5.6.7-6)alfa12=0.71lmta12=0.48桩基的重要性系数:gamo=1.0三桩承台角度sita1,sita2(度):sita1=sita2=60.0砼的抗拉强度设计值(N/mm^2)ft=1.5公式(5.6.7-3)gamoNl=4750.0承台受底部基桩冲切的承载力设计值(kN):R=6693.6>=gamoNl=4750.0公式(5.6.7-5)gamoNl=4708.3承台受顶部基桩冲切的承载力设计值(kN):R=6323.0>=gamoNl=4708.3满足受基桩冲切的承载力要求.三,承台受剪计算:柱边至沿X向桩边的水平距离(m):ax=0.53柱边至沿Y向桩边的水平距离(m):ay1=0.93ay2=0.13公式(5.6.8-2)betax=0.21lmtax=0.27公式(5.6.8-2)betay1=0.15lmtay1=0.48公式(5.6.8-2)betay2=0.20lmtay2=0.07桩基的重要性系数:gamo=1.0砼的抗压强度设计值(N/mm^2)fc=12.5公式(5.6.8-1)gamoVx=4750.0承台受剪的承载力设计值(kN):Rx=8122.9>=gamoVx=4750.0公式(5.6.8-1)gamoVy1=4708.3承台受剪的承载力设计值(kN):Ry1=5974.0>=gamoVy=4708.3公式(5.6.8-1)gamoVy2=9375.0承台受剪的承载力设计值(kN):Ry2=11640.0>=gamoVy=9375.0满足受剪的承载力要求.四,承台局部受压计算(按砼规范):砼局部受压净面积(m^2):Aln=0.49砼局部受压面积(m^2):Al=0.49砼局部受压时的计算底面积(m^2):Ab=4.41(按计算底面积的第三种简图)公式(4.5.1-2)beta=3.00公式(4.5.1-1)Fl=14000砼局部受压的承载力设计值(kN):R=27562.5>=Fl=14000满足局部受压的承载力要求.四桩承台计算:一,受弯计算:1,基桩竖向力设计值计算(不考虑承台效应):桩数(对称布置的四桩承台):n=4方桩边长(圆桩换算边宽0.8d)(m):bp=0.64柱截面长边尺寸(m):hc=0.7(X方向)柱截面短边尺寸(m):bc=0.7(Y方向)作用于桩基上的竖向力设计值(kN):F=18800桩基承台和承台上土的自重设计值(kN):G=0.0作用于桩群上的外力对通过桩群重心的X轴的Mfx=150力矩设计值(kN-m):作用于桩群上的外力对通过桩群重心的Y轴的Mfy=150力矩设计值(kN-m):桩i至通过桩群重心的Y轴线的距离(m):xi0=1.2桩i至通过桩群重心的X轴线的距离(m):yi0=1.2考虑Mfx时,第i桩的竖向反力设计值(kN):Niy=4731.3(公式5.1.1-2)考虑Mfy时,第i桩的竖向反力设计值(kN):Nix=4731.3(公式5.1.1-2)角桩的最大竖向反力设计值(kN):Nimax=4762.5<=1.2倍基桩竖向承载力设计值(公式5.1.1-2)2,承台受弯计算:垂直Y轴方向自桩轴线到相应计算截面的距离(m):xi=0.9垂直X轴方向自桩轴线到相应计算截面的距离(m):y i=0.9垂直Y轴方向计算截面处的弯矩设计值(kN):Mx=8043.1公式(5.6.2-1)垂直X轴方向计算截面处的弯矩设计值(kN):My=8043.1公式(5.6.2-2)承台高度(mm):h=1900砼弯曲抗压强度设计值(N/mm^2):fcm=16.5钢筋强度设计值(N/mm^2):fy=310构件尺寸(mm):b=4000h=1900纵向受拉钢筋合力点至截面近边的距离(mm):as=60截面的有效高度(mm):h0=1840弯矩(kN-m)Mx=8043.1公式 4.1.5-1 (砼规范)det=3141868.94x=67.47yetb*h0=1001.6公式 4.1.5-2 (砼规范)Asy=14364配筋率(%)roy=0.20弯矩(kN-m)My=8043.1公式 4.1.5-1det=3141868.94x=67.47yetb*h0=1001.6公式 4.1.5-2Asx=14364配筋率(%)rox=0.20二,受冲切计算:1,承台受柱冲切的承载力计算:自柱短边到最近桩边的水平距离(m):aox=0.53自柱长边到最近桩边的水平距离(m):aoy=0.53公式(5.6.6-3)alfaox=1.48lmtaox=0.29公式(5.6.6-3)alfaoy=1.48lmtaoy=0.29桩基的重要性系数:gamo=1.0砼的抗拉强度设计值(N/mm^2)ft=1.5公式(5.6.6-4)gamoFl=18800承台受柱冲切的承载力设计值(kN):R=20033.1>=gamoFl=18800满足受柱冲切的承载力要求.2,承台受基桩冲切的承载力计算:从承台底角桩内边缘引45度冲切线与承台顶面相a1x=0.53A=1.79交点至角桩内边缘的水平距离A,柱边至桩内侧的水a1y=0.53A=1.79平距离B,取两者中的较小者(m):从角桩内边缘至承台外边缘的距离(m):c1=1.12c2=1.12公式(5.6.7-2)alfa1x=0.98lmta1x=0.29公式(5.6.7-2)alfa1y=0.98lmta1y=0.29桩基的重要性系数:gamo=1.0砼的抗拉强度设计值(N/mm^2)ft=1.5公式(5.6.7-1)gamoNl=4762.5承台受基桩冲切的承载力设计值(kN):R=7519.2>=gamoNl=4762.5满足受基桩冲切的承载力要求.三,承台受剪计算:柱边至沿X向桩边的水平距离(m):ax=0.53柱边至沿Y向桩边的水平距离(m):ay=0.53公式(5.6.8-2)betax=0.20lmtax=0.29公式(5.6.8-2)betay=0.20lmtay=0.29桩基的重要性系数:gamo=1.0砼的抗压强度设计值(N/mm^2)fc=16.5公式(5.6.8-1)gamoVx=9462.5承台受剪的承载力设计值(kN):Rx=24781.8>=gamoVx=9462.5公式(5.6.8-1)gamoVy=9462.5承台受剪的承载力设计值(kN):Ry=24781.8>=gamoVy=9462.5满足受剪的承载力要求.四,承台局部受压计算(按砼规范):砼局部受压净面积(m^2):Aln=0.49砼局部受压面积(m^2):Al=0.49砼局部受压时的计算底面积(m^2):Ab=4.41(按计算底面积的第三种简图)公式(4.5.1-2)beta=3.00公式(4.5.1-1)Fl=18800砼局部受压的承载力设计值(kN):R=36382.5>=Fl=18800满足局部受压的承载力要求.五桩承台计算:一,受弯计算:1,基桩竖向力设计值计算(不考虑承台效应):桩数(对称布置的五桩承台):n=5方桩边长(圆桩换算边宽0.8d)(m):bp=0.64柱截面长边尺寸(m):hc=0.8(X方向)柱截面短边尺寸(m):bc=0.8(Y方向)作用于桩基上的竖向力设计值(kN):F=24000桩基承台和承台上土的自重设计值(kN):G=0.0作用于桩群上的外力对通过桩群重心的X轴的Mfx=200力矩设计值(kN-m):作用于桩群上的外力对通过桩群重心的Y轴的Mfy=200力矩设计值(kN-m):桩i至通过桩群重心的Y轴线的距离(m):xi0=2.0桩i至通过桩群重心的X轴线的距离(m):yi0=2.0考虑Mfx时,第i桩的竖向反力设计值(kN):Niy=4825.0(公式5.1.1-2)考虑Mfy时,第i桩的竖向反力设计值(kN):Nix=4825.0(公式5.1.1-2)角桩的最大竖向反力设计值(kN):Nimax=4850.0<=1.2倍基桩竖向承载力设计值(公式5.1.1-2)2,承台受弯计算:垂直Y轴方向自桩轴线到相应计算截面的距离(m):xi=1.6垂直X轴方向自桩轴线到相应计算截面的距离(m):y i=1.6垂直Y轴方向计算截面处的弯矩设计值(kN):Mx=15440.0公式(5.6.2-1)垂直X轴方向计算截面处的弯矩设计值(kN):My=15440.0公式(5.6.2-2)承台高度(mm):h=2000砼弯曲抗压强度设计值(N/mm^2):fcm=16.5钢筋强度设计值(N/mm^2):fy=310构件尺寸(mm):bx=4000by=4000h=2000纵向受拉钢筋合力点至截面近边的距离(mm):as=60截面的有效高度(mm):h0=1940弯矩(kN-m)Mx=15440.0公式 4.1.5-1 (砼规范)det=3295721.21x=124.59yetb*h0=1056.0公式 4.1.5-2 (砼规范)Asy=26525配筋率(%)roy=0.34弯矩(kN-m)My=15440.0公式 4.1.5-1det=3295721.21x=124.59yetb*h0=1056.0公式 4.1.5-2Asx=26525配筋率(%)rox=0.34二,受冲切计算:1,承台受柱冲切的承载力计算:自柱短边到最近桩边的水平距离(m):aox=1.28自柱长边到最近桩边的水平距离(m):aoy=1.28公式(5.6.6-3)alfaox=0.84lmtaox=0.66公式(5.6.6-3)alfaoy=0.84lmtaoy=0.66桩基的重要性系数:gamo=1.0砼的抗拉强度设计值(N/mm^2)ft=1.5公式(5.6.6-4)gamoFl=19200承台受柱冲切的承载力设计值(kN):R=20274.7>=gamoFl=19200满足受柱冲切的承载力要求.2,承台受基桩冲切的承载力计算:从承台底角桩内边缘引45度冲切线与承台顶面相a1x=1.28A=1.89交点至角桩内边缘的水平距离A,柱边至桩内侧的水a1y=1.28A=1.89平距离B,取两者中的较小者(m):从角桩内边缘至承台外边缘的距离(m):c1=1.12c2=1.12公式(5.6.7-2)alfa1x=0.56lmta1x=0.66公式(5.6.7-2)alfa1y=0.56lmta1y=0.66桩基的重要性系数:gamo=1.0砼的抗拉强度设计值(N/mm^2)ft=1.5公式(5.6.7-1)gamoNl=4850.0承台受基桩冲切的承载力设计值(kN):R=5718.5>=gamoNl=4850.0满足受基桩冲切的承载力要求.三,承台受剪计算:柱边至沿X向桩边的水平距离(m):ax=1.28柱边至沿Y向桩边的水平距离(m):ay=1.28公式(5.6.8-2)betax=0.13lmtax=0.66公式(5.6.8-2)betay=0.13lmtay=0.66桩基的重要性系数:gamo=1.0砼的抗压强度设计值(N/mm^2)fc=15公式(5.6.8-1)gamoVx=9650.0承台受剪的承载力设计值(kN):Rx=14553.1>=gamoVx=9650.0公式(5.6.8-1)gamoVy=9650.0承台受剪的承载力设计值(kN):Ry=14553.1>=gamoVy=9650满足受剪的承载力要求.四,承台局部受压计算(按砼规范):砼局部受压净面积(m^2):Aln=0.64砼局部受压面积(m^2):Al=0.64砼局部受压时的计算底面积(m^2):Ab=5.76(按计算底面积的第三种简图)公式(4.5.1-2)beta=3.00公式(4.5.1-1)Fl=24000砼局部受压的承载力设计值(kN):R=43200.0>=Fl=24000满足局部受压的承载力要求.筏形承台计算(按倒楼盖法计算):一,受弯计算:1,基桩竖向力设计值计算(不考虑承台效应):桩数:n=20nx=4方桩边长(圆桩换算边宽0.8d)(m):bp=0.64作用于桩基上的竖向力设计值(kN):F=94000桩基承台和承台上土自重设计值(kN):G=0.0作用于桩群上的外力对通过桩群重心的X轴的Mfx=5000力矩设计值(kN-m):作用于桩群上的外力对通过桩群重心的Y轴的Mfy=5000力矩设计值(kN-m):桩i至通过桩群重心的Y轴线的距离(m):xi0=2.040桩i至通过桩群重心的X轴线的距离(m):yi0=1.20 3.60考虑Mfx时,第i桩的竖向反力设计值(kN):Niy=4752.14856.34700.0考虑Mfy时,第i桩的竖向反力设计值(kN):Nix=4750.04800.04700.0角桩的最大竖向反力设计值(kN):Nimax=4956.3<=1.2倍基桩竖向承载力设计值(公式5.1.1-2)2,筏形承台受弯计算:垂直Y轴方向自桩轴线到相应计算截面的距离(m):xi=1.50垂直X轴方向自桩轴线到相应计算截面的距离(m):y i=1.50垂直Y轴方向计算截面处的弯矩设计值(kN):Mx=29137.5公式(5.6.2-1)垂直X轴方向计算截面处的弯矩设计值(kN):My=36000.0公式(5.6.2-2)承台高度(mm):h=2000砼弯曲抗压强度设计值(N/mm^2):fcm=16.5钢筋强度设计值(N/mm^2):fy=310构件尺寸(mm):bx=11200by=13600h=2000纵向受拉钢筋合力点至截面近边的距离(mm):as=60截面的有效高度(mm):h0=1940弯矩(kN-m)Mx=29137.5公式 4.1.5-1 (砼规范)det=3448259.09x=83.05yetb*h0=1056.0公式 4.1.5-2 (砼规范)Asy=49509配筋率(%)roy=0.23弯矩(kN-m)My=36000.0公式 4.1.5-1det=3442744.39x=84.54yetb*h0=1056.0公式 4.1.5-2Asx=61194配筋率(%)rox=0.23二,受冲切计算:1,筏形承台受单一基桩的冲切承载力计算:桩基的重要性系数:gamo=1.0砼的抗拉强度设计值(N/mm^2)ft=1.5公式(5.6.7-7)gamoNl=4956.3承台受柱冲切的承载力设计值(kN):R=18018.7>=gamoNl=4956.25满足受单一基桩的冲切承载力要求.2,筏形承台受桩群的冲切承载力计算:剪力墙内边至桩群外边缘的水平距离(m):aox=1.00aoy=1.00桩群外边缘的水平距离(m):bx=5.00桩群外边缘的竖向距离(m):by=5.00冲切锥体范围内各桩的竖向净反力设计值之和(kN):sigamNli=28200.0公式(5.6.6-3)alfaox=1.01lmta1x=0.52公式(5.6.6-3)alfaoy=1.01lmta1y=0.52桩基的重要性系数:gamo=1.0砼的抗拉强度设计值(N/mm^2)ft=1.5公式(5.6.7-1)gamoNl=28200.0承台受基桩冲切的承载力设计值(kN):R=70282.8>=gamoNl=28200.0满足受桩群的冲切承载力要求.三,受剪计算:剪力墙边至沿X向桩边的水平距离(m):ax=1.18剪力墙边至沿Y向桩边的水平距离(m):ay=1.18公式(5.6.8-2)betax=0.13lmtax=0.61公式(5.6.8-2)betay=0.13lmtay=0.61桩基的重要性系数:gamo=1.0砼的抗压强度设计值(N/mm^2)fc=15公式(5.6.8-1)gamoVx=24000.0承台受剪的承载力设计值(kN):Rx=52288.8>=gamoVx=24000.0公式(5.6.8-1)gamoVy=19425.0承台受剪的承载力设计值(kN):Ry=43061.4>=gamoVy=19425.0满足受剪的承载力要求.(大者)向承载力设计值介于0.2~1.0之间介于0.2~1.0之间介于0.3~3.0之间长>=承台宽度时)(y20为近距者)向承载力设计值向承载力设计值1600(Y向等效宽度)B=0.53B=0.93介于0.2~1.0之间介于0.2~1.0之间介于0.3~1.4之间介于0.3~1.4之间<0.3时,取为0.3向承载力设计值介于0.2~1.0之间介于0.2~1.0之间B=0.53B=0.53介于0.2~1.0之间介于0.2~1.0之间介于0.3~1.4之间介于0.3~1.4之间向承载力设计值介于0.2~1.0之间介于0.2~1.0之间B=1.28B=1.28介于0.2~1.0之间介于0.2~1.0之间介于0.3~1.4之间介于0.3~1.4之间ny=54700.0(公式5.1.1-2)4700.0(公式5.1.1-2)向承载力设计值介于0.2~1.0之间介于0.2~1.0之间介于0.3~1.4之间介于0.3~1.4之间。
桥梁桩基础承载力(桩长)计算--新规范(智能版)xls
274.5
单桩承载力容许值[Ra](kN)
xx互通主线桥
m0 0.775
λ 0.80
墩台号
[fa0] (kPa)
k2
200
3
0
γ2
qr (kPa)
9
542.5
桩周长 桩侧摩阻 是否考虑桩尖处土 u(m) 力q(kN) 极限承载力
桩顶反力(kN)
3.770 158.3
桩底土层
3.770 0.0 桩土承载力容许值
0
t/d
-32.8
-24.8
-32.8
0.6 -27.4 2
200
0.25
0.6 -27.4 1
0
0.6 -27.4 1
0
0.6 -27.4 1
0
0.6 -27.4 1
0
0.6 -27.4 1
0
0.6 -27.4 1
0
0.6 -27.4 1
0
0.6 -27.4 1
0
0.6 -27.4 1
0
H/d 透水土 不透水土
2.2
0.6 -27.4 1
0
-1.8
1.4
-1.8
0.6 -27.4 4
0
H/d
-8.8
-1.8
-8.8
0.6 -27.4 5
0 23.33333
-10.6
-8.8
-10.6
0.6 -27.4 5
0
0
-16.3
-10.6
-16.3
0.6 -27.4 5
0
-24.8
-16.3
-24.8
0.6 -27.4 5
层底标 地基容许承 桩底 高 载力(kPa) 标高
桥梁桩基础计算书
桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R kN ⨯⨯=+⨯= (2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=Ⅲ、双孔布载 2 3.524.485.4R kN =⨯=q —人群荷载集度 l —跨径 2、柱反力横向分布系数ϕ的计算柱反力横向分布影响线见图5。
70.50.51图5图5⑴、汽车荷载汽ϕ ()111.1670.7670.4780.078 1.24522q η=∑=+++=⑵、人群荷载人ϕ =1.33 三、荷载组合1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑iiyP +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21= 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。
抗震计算—桥墩墩身及桩基抗震计算
桥墩抗震计算 选用最不利的空心板处的独柱墩进行抗震计算(一)设计资料1、 上部构造:3孔25m 连续桥面简支空心板,25m 预制后张预应力空 心板,计算跨径为24.26m,每跨横向设6块板。
桥面现浇10cm 厚50 号混凝土,7cm 沥青混凝土。
2、 桥面宽度(单幅):0.5 (防撞护栏)+净 7.0(行车道)+ 0.5m (护栏)=8.0m 。
3、 设计荷载:公路H 级。
4、 支座:墩顶每块板板端设 GYZ250x52m 板式橡胶支座2个。
5、 地震动峰值加速度:0.10g 。
6、 下部构造:巨型独柱墩,1.3 x 1.5m ;钻孔桩直径1.5m ,均值长 40m 墩柱为30号混凝土,桩基础为30号混凝土,HRB335钢筋。
(二)恒载计算桥墩F II r 忙 I1、上部恒载反力(单孔)空心板:4.7843 X 25X 26= 3109.8kN桥面铺装(包括50号混凝土和沥青混凝土):7X 25X 0.1 X 26+ 7X 25X 0.07 X 24= 749kN防撞护栏:0.351 X 25X 25X 2 = 438.8kN合计:3109.8 + 749+ 438.8 = 4297.6kN 2、下部恒载计算1)盖梁加防震挡块重力P G= 23.358 X 26 = 607.3kN2)墩身重力P d= 3.23 X 13X26= 1091.7kN3)单桩自重力2P z= —X 1.5 X 40X 25= 1767.1kN4(三)水平地震力计算1、顺桥向水平地震力计算1)上部结构对板式橡胶支座顶面处产生的水平地震荷载ihs = —--C j C z K h '1 G spK i t pi W式中:C = 1.7 , C Z = 0.3 , K h= 0.2根据地质资料分析,桥位所在地土层属皿类场地,所以有0.45) 0.951 = 2.25 X (对于板式橡胶支座的梁桥其中:2G tpQ (K i K 2)G sp —{[G tp K i (K i K 2)G sp ]2 —4G p G sp K i K 2}1/2 3 1 = g —2G sp G tpn1= 'Kis i丄计算采用 3孔x 25m 为一联,故n = 2K負 G d A ris=iS t其中:n s = 2X 12= 24, G d = 1200kN/m由橡胶支座计算知— 2 2A r = x 0.25 2= 0.0491m 24' t = 0.032mis= 24 x1200°.°491= 44190kN/m0.032K1= 44190kN/mnK2=二 K ipi Tl i其中:墩柱采用30号混凝土,则E c = 3.00 x 104MPa 4 3 7 2E1= 0.8 x 3.00 x 10 x 10 = 2.4 x 10 kN/m按墩高H= 13+2=15m g 制设计,支座垫石+支座厚度=0.1 + 0.052 = 0.152mi=—-ip=3I 1E 1li = 15+ 0.142 = 15.152m柱惯矩:I 1= 0.4531m43 0.4531 2.4 107K P—3—9378.1kN/m15.152K= 9378.1kN/mG P—3X4297.6 -2—6446.4kNG P—G P + n G P其中:G cp —607.3kNGP— 1091.7kNn —0.16( X f2+2x f12+x f x 1+X f1 +1)2 f 2 2顺桥向作用于支座顶面的单位水平力在支座顶面处的水平位移为: X d—X—© o l 0 + X Q其中:l 0—l i —15.152mX3 3l 15 152 3Q—10——0.000107 3E1I1 3 2.4 10 0.4531桩的计算宽度:b i= 0.9(d+1) = 0.9 x (1.5 + 1) = 2.25m桩在土中的变形系数:a =普m 4—20000kN/m其中:桩采用30号混凝土,则E c—3.0 x 104MPa7 兀 4 6El —0.8 x 3.0 x 10 x — x 1.5 —5.964 x 10 64a — 5 20000 2f5-0.3763V 5.964H06桩长h = 40ma h = 0.3763 x 40= 15.052m > 2.5m取 a h = 4.0,故 K h = 0由公路桥涵地基与基础设计规范(JTJ 024-85)附表6.11查得B 3 D 4- B 4 D 3A 3B 4 - A 4 B 3A 3B 4 - A 4 B 32.441 1.6251。
桥梁桩基承载力计算表格
5.2 Análisis de la Capacidad de Carga de Pilotes de pila 15.2.1 Características de los materiales y la geometriala fuerza de reaccion de la fundicion horizontal y las pruebas de resorte de la base horizontal se calculan de la siguiente manera:25.2.2 Parámetros del suelo5.2.2.1 La capacidad de carga última de un pilote3.4.1.2KN/m 25.4.1y el esfuerzo máximo de trabajo o admisible La capacidad de carga última de un piloteFactor De Seguridad Tradicional Cuadro 5.13 for Estática Cuadro 3.2for Estática +Dinámica es la suma de la fricion generada entre el fuste y el suelo que le rodea y la carga resistida en la base o punta5.2.2.2 Capacidad de carga en suelos granulares(a) El componente de fricción puede ser expresado bajo la forma de5.4.1.1K Coeficiente de empuje lateral que actrúa sobre el fusteEsfuerzo vertical efectivo promedio en el tramo ,kPa Angulo de fricción entre el material del pilote y el suelo [°] Perímetro [m]Longitud del tramo analizado [m] Fricción entre el suelo y el pilote [kPa]Cuadro 5.3(b) el componente de la resistencia en la base se puede expresar como:5.4.1.1Capacidad admisible por punta del pilote (ton)puntafricion ult Q Q Q +=fricionQ punta Q FSQ q ult adm /=adm q FSult Q iLi I i s fricion l p K l p f Q ∆⋅⋅⋅=∆⋅⋅=∑∑=*tan *0'0δσ'0σi l ∆δ*p l ∆s f φδ0.1=()b b q b b punta A q A N A q Q lim '≤=⋅=σ=punta Q 3=FS 2=FSCapacidad de soporte del suelo a nivel de la punta [kpa]Esfuerzo vertical efectivo al nivel de la base del pilote (Tramo empotrado)Factor de capacidad de carga para una fundación profunda.Figura 5.1Área seccional del pilote en la base (m 2)Capacidad límite admisible por punta del pilote 5.2.2.3 Capacidad de carga en suelos cohesivos(condición no drenada)5.4.1.2Aherencia suelo-pilote que se deberá establecer con base en la resistencia al corte no drenada ( ) Resistencia al corte no drenada promedio del sueloÁrea del del fuste en contacto con el suelo(m 2)Área de la base pilote (m 2) Factor de capacidad dc carga para pilotes en arcilla (usualmente se toma como 9.0)En el caso de pilotes prcexcavados y colaclos en sitio, la adherencia se deberá calcular a partir de la siguiente expresión: (pilote redondo)donde L es la longitud del pilote en mfor Excavación sostenida con lodos 5.2.2.4 Capacidad de carga por fricción entre concreto y rocaEn el caso de que la carsa se transmita lateralmente a lo largo de la longitud empotrada en roca, la capacidad de carga última estará dada por la expresión: 5.6.1Capacidad de carga última [kN]Diámetro del pilote [m]Profundidad de empotramiento en la roca sana [rn]Resistenciá por fricción entre concreto y roca [kpa]5.2.3 Módulo de Reacción de la Fundación ks (ver "Análisis y Diseño de Ingeniería Fundamental", Bowles, Quinta Edición, CH4, 9, 16)5.2.3.1 Coeficiente ks del suelo:el resorte de tierra se asigna a la fundación de la pila. El resorte de tierra se calcula de la siguiente manera: Utilice la correlación de Yoshinda y Yoshinaka Módulo1 de reacción de la fundacion:Bowles páginas 442 Ecuación 9-10Para componentes horizontales o verticales, As es una constante Bs es el factor de profundidadZ es el punto de cálculo de la profundidad n es el índice más adecuado para ks través del estudio inverso de ksJE Bowles páginas 442 Ecuación 16-26aa ) Para pilotes cuadrados o pilotes HP, Fw1, Fw2 = 1,0b ) Para pilotes redondos, Fw1 = 1,5c ) Para pilotes redondos, Fw2 = 3.3C m =1.25,D>1200mmC=40n=0.5Método de reacción de la fundación Módulo 2JE Bowles páginas 441 Ecuación 9-6ab es la anchura del plano de proyección de la pila v es la relación de Poisson Módulo elástico del suelo JE Bowles páginas 823 Ecuación 16-29KN/m 2=b q =)*('L γσ=q N =b A φtan 50lim q N q =b c u b b punta A N c A q Q ⋅⋅=⋅=*fA fricion A C Q ⋅==A C uc =u c =f A =b A =*c N uA c C ⋅=αψαααα321=65.01=α)/75.01(,32L -=αα6.0=ψaS ult H D Q τπ⋅⋅⋅==ult Q =D =S H =a τns s s Z B A k +=)()5.0(21n q m w n s p c m w s Z N C C F N Z BS Z B N B cN C C F AS A γγγ=⨯=+==∧)1(2v b E k S S -=70650N E S =En el rango de altura de la unidad, el módulo del suelo es constanteJE Bowels páginas 819or Área elástica de apoyo para la unidad5..3.2 ks de Arena :Módulo elástico del sueloJE Bowels páginas 823 Ecuación 16-29KN/m 2Módulo de reacción de la fundaciónJE Bowels páginas 824 Formula 16-30cb es la anchura del plano de proyección de la pila 5.2.3.3 Ks de la Arcilla:Módulo de reacción de la fundaciónJE Bowels páginas 822C m =1.255.2.3.4 k s de las Rocas :k s =40C m (SF)qa=40C m quC m =1.25,D>1200mm)2)(6/(1,,-+∆=i s i s S k k L b k )2)(6/(1,,++∆=i s i s S k k L b k 70650N E S =bE k S S =cC k m s 360=L b ∆5.2.4 Diseño de la carga internamite de intensidad, ER: acción sísmica Caso A:carga de Todos los carriles5.2.5 Capacidad de carga de pilotesLos parámetros de diseño de ingeniería geotécnica y datos de perforación dados en la tabla a continuación se basan en el informe de prospección geológica。
桥台桩顶力计算_M01
弯矩以顺时针方向为+,水平力以指向河心方向为+
水平力偏心弯矩 (KN.m)
平力以指向河心方向为+
360 835
679 1409 486 3410
一个承台上所有桩合计 项目 上部结构恒载 车道活载 人群荷载 汽车制动力 支座摩阻力 台帽 台身 翼墙 搭板 承台 承台土重 土 压 力 台帽范围 台身范围 承台范围 合计 一根桩桩顶力N 5848 860.7 KN -2113 竖向分力 (KN) 696 229 竖向力偏心弯矩 水平分力 (KN.m) (KN) -35 -11 90 209 341 1261 203 171 2275 673 -133 -277 -348 -154 -1155 170 588 683
一个承台上所有桩合计项目上部结构恒载车道活载人群荷载汽车制动力支座摩阻力台帽台身翼墙搭板承台承台土重土压力台帽范围台身范围承台范围合计一根桩桩顶力n58488607kn2113竖向分力kn696229竖向力偏心弯矩水平分力knmkn35119020934112612031712275673133277偏心弯矩knm向河心方向为36083567914094863410
桥墩计算表格
1249.798
0.4
1.42
0.37739 0.98617 34.336
1234.909
0.6
2.14
0.52938 0.95861 48.164
1200.397
0.8
2.85
各梁支点反力计算表
表3-2
单孔单列荷 载B
593.590
双孔单列 荷载B
803.341
三车道折减系数
荷载横向分布情况
汽车荷载(KN)
计算方法 荷载位置
横向分布系数mcq
单孔布载
B
Ri
双孔布载 B
1号梁
0.010
5.936
双列行车公 路-Ⅰ级
对称布置 按杠杆原 理法计算
三列行车公 路-Ⅰ级
2号梁 3号梁 4号梁 5号梁 1号梁 2号梁 3号梁 4号梁
1.06
20
21.2
1402.16
1.24
1.2
20
24
1402.08
1.32
1.28
20
25.6
1402.14
1.26
1.29
20
25.8
1402.1
1.3
1.28
20
25.6
1402
1.4
1.35
20
27
1401.85
1.55
1.475
20
29.5
1401.64
1.76
1.655
20
33.1
1401.66
钢筋布置图见图4-3,
as=
60 mm
0.0058
表4-5
墩柱截面承载力复核
已知e0=
桩柱式墩台桩顶反力的简便算法
第20卷第1期2005年3月河北工业大学成人教育学院学报Journal of Adult Education School of Hebei University of TechnologyVol.20 No.1Mar.2005桩柱式墩台桩顶反力的简便算法赵宝平(河北省道路开发中心 石家庄 050071)摘 要 本文分析了桩与盖梁的受力模型,总结了盖梁在车辆荷载的间接作用下,桩柱反力影响线的绘制方法,推导出桩顶最大活载反力的简便计算方法,该方法对桩柱式墩台的设计及其程序编写具有实用的价值。
关键词 桥梁;反力;影响线作用在桥面上的车辆荷载,通过桥面铺装,将荷载传给主梁,主梁的荷载又通过支座传递给盖梁,最终荷载传递给桩柱,对于双柱式墩台盖梁,一般筒化为支双悬梁进行计算,如图1(a)所示。
为确定桩的入土深度以及盖梁的配筋,应计算桩顶最大活载反力和盖梁计算截面的最大活载内力。
1 传统的活载内力计算方法以桩柱活载最大反力为例,其计算步骤如下:(1)在横桥向布置车辆荷载;(2)利用(杠杆法或偏心压力法)计算各梁号的横向分布系数;(3)计算单列纵向最大活载的支座反力;(4)由支座反力值和各梁的横向分布系数计算各主梁所分配的反力值;(5)由各主梁所分配的反力值。
利用力矩平衡条件,计算桩柱反力。
例:在图1(a)中,已知车行道宽11m,主梁间距215m,两柱间距7m,计算跨径25m简支梁,设计荷载公路—Ⅰ级。
根据上述步骤,在双列汽车偏载作用下,各梁号的横向分配系数、分配的反力值以及桩柱最大反力的计算结果见表1。
表1 各梁号反力计算表梁号12345求和横向分布系数m i0.8480.6240.40.176-0.0482各梁号的反力m i×568.43KN(纵向双孔最大反力为568.43KN)482.03354.70227.37100.04-27.281136.86桩柱最大反力(由ΣM B=0推得)1023.17KN2 活载内力的简便算法211 内力影响线的绘制收稿日期:2005-01-26作者简介:赵宝平,男,1963年生,高级工程师。