求数列的前n项和公式
数列前n项和的求和公式
数列前n项和的求和公式
前n项求和公式:Sn=na1+0.5n(n-1)d,数列求和对按照一定规律排列的数进行求和。
求Sn实质上是求{an}的通项公式,应注意对其含义的理解。
常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。
数列是高中代数的重要内容,又是学习高等数学的基础。
在高考和各种数学竞赛中都占有重要的地位。
数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
求数列前N项和的七种方法含例题和答案
求数列前N 项和的七种方法点拨:1.公式法等差数列前n 项和:n(a 1+a n ) y 亠 n(n +1) _, Si — — na q 十 d2 ' 2特别的,当前n 项的个数为奇数时,S 2k 岀=(2k +1)_a k 41,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1 时,q H 1, s n = a1 " q),特别要注意对公比的讨论。
其他公式:用常用公式)1 1迂R _ 1丄 1一丄—2n21、S nn=Z k kd :3、S n [例1]弓(卄)2、 n =送k 3 k=12 计+1)] 2 1S n=!: k =-n(n+1)(2n+1)6—1 2 3 已知 log 3 X = - 7,求 X + X + X +…+log 23 x n +…的前n 项和.解:由log 3—1 =log 3 X = —log s 2 = log 2 3 1 x =— 2 由等比数列求和公式得S n = X + X 2 +(利_ x(1 -x n) —1-x[例 2]设 S n = 1+2+3+ …+n , n € N *,求 f (n)= S n(n + 32)S n屮 的最大值.解: 由等差数列求和公式得 1 1S n = — n(n +1) , S n* = -(n +1)(n + 2)2 2 (利用常用公式)f(n)= S n(n + 32)盼 2n 2 + 3 4n+64□ +34+^ (屛--)2+5O 50 •••当亦=2,即 n = 8 时,f(n)max\l n 50 2.错位相减法这种方法是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列 {a n • b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列[例 3]求和:S n =1+3x+ 5x 2+7x 3 + ”””+(2n - 1)x n " 解:由题可知,{ (2 n- 1)x n 』}的通项是等差数列{2n — 1}的通项与等比数列{x n」}的 通项之积设 xS n =1x+3x 2+5x 3+7x 4 + …+(2门_〔以 ①一②得(1-x)S n =1+2X +2X 2+2x 3+2x 4 + …+2x n 」一(2 门_ 1)x n(错位相减)nJ1 — x n再利用等比数列的求和公式得: (1 -x )S n =1+2x ・ -(2 n -1)x n1-x G (2n - 1)x n +—(2n + 1)x n +(1 +x)Sn =(1-x)2[例4]求数列贪…前n项的和.解:由题可知,{2n2n }的通项是等差数列{2n }的通项与等比数列{右}的通项之积 设S =2+土 十-6+ …+空以6--2小32n(错位相减)练习:求:S n =1+5x+9x 2+ ....... +(4n-3)x n "1解:Si=1+5x+9)(+ ........ +(4n-3)x n-1①两边同乘以X ,得23X S n =x+5 X +9x + ...... +(4 n-3)x①-②得,(1-x ) S=1+4(X+ X 2+X 3+当 x=1 时,S=1+5+9+ ......... + (4n-3)3.反序相加法求和再把它与原数列相加,就可以得到n 个(印+ a n )•[例 5]求sin 21 +sin 22 + sin 23 + …+sin 288 +sin 289 的值20 20 2 0 2 0 2解:设 S =sin 1 +sin 2 +sin 3 + …+sin 88 +sin 89将①式右边反序得S =si n 289 +si n 2 88 +…+sin3 +sin2 +si n 1(反序)2 2又因为 sinx=cos(90 -x),sin x + cosx=1 ①(反序相加)2S=(sin 21 +cos 21)+(sin 2 2 + cos 22 ) + …+ (sin 289 +cos 289 ) = 89S= 44.5担=;2(设制错位)十243 十2642n+(^1)Sn2+&p.,2_2n 22=2S n =41-产 n +2-尹2n 2n + =2n-n nx ) - (4n-3) x当X 工1时,S= I4x(1-x n)1-x(4n-3)这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),4.分组法求和有一类数列,既不是等差数列, 也不是等比数列, 若将这类数列适当拆开, 可分为几个组求和)将其每一项拆开再重新组合得(分组)=2(13 +23+…+n 3) +3(12 +22+ …+门2)+(1 + 2+…+n)2 2n 2(n +1)2 十 n(n +1)(2n +1)十 n(n + 1)(分组求和)n(n +1)2( n +2)等差、等比或常见的数列,然后分别求和,再将其合并即可[例6]求数列的前n 项和:1+1, 1+4, [ +7,…,n-2 ,-a a a 解: 1 1 1设 S n = (1 +1) +(- +4) +(p +7) + …”+(—+3n -2)a a a将其每一项拆开再重新组合得S n = (1 + 1a+…+1n」)+(1 +4 + 7+…+3n -2) a(分组)当a= 1时, S n=n+(3n—1)n(3n+ 1)n(分当a H 1时,-7 十(3n —1)n2a -a 1』+ (3n -1)n a —1[例7]求数列{n (n+1)(2n+1)}的前n 项和.解:设 a k =k(k +1)(2k +1) =2k 3+ 3k 2+kS n =2 k(k+1)(2k+1)=k 吕nZ (2k 3+3k 2+k)kTS nn2Z k3k 3 n+32:[例10]在数列{a n }中,a n =n +1 n +1 乙+…,又b n =—2一,求数列{b n }的前an r a n +n +11 1 1 1练习:求数列12,24,38^**(^2^)^*啲前n 项和。
数列求n项和的方法
数列求n项和的方法数列是数学中的一个重要概念,它是由一系列按照一定规律排列的数所组成的序列。
在数列中,常常需要求出前n项的和,也就是数列的部分和。
下面将介绍几种常见的求解数列部分和的方法。
一、等差数列的部分和等差数列是指数列中每一项与它的前一项之差都相等的数列。
例如:1,3,5,7,9……就是一个公差为2的等差数列。
对于一个公差为d的等差数列,前n项和Sn可以通过以下公式求得:Sn = n * (a1 + an) / 2其中n表示数列的项数,a1表示数列的首项,an表示数列的第n 项。
这个公式的推导过程可以使用数学归纳法证明。
例如:求1, 3, 5, 7, 9……的前10项和。
首先,确定该数列的公差为2,首项为1,第10项为19。
将这些数据代入公式中,得到:S10 = 10 * (1 + 19) / 2 = 100因此,该等差数列的前10项和为100。
二、等比数列的部分和等比数列是指数列中每一项与它的前一项之比都相等的数列。
例如:1,2,4,8,16……就是一个公比为2的等比数列。
对于一个公比为q的等比数列,前n项和Sn可以通过以下公式求得:Sn = a1 * (1 - q^n) / (1 - q)其中n表示数列的项数,a1表示数列的首项,q表示数列的公比。
这个公式的推导过程可以使用等比数列的通项公式证明。
例如:求1, 2, 4, 8, 16……的前5项和。
首先,确定该数列的公比为2,首项为1。
将这些数据代入公式中,得到:S5 = 1 * (1 - 2^5) / (1 - 2) = 31因此,该等比数列的前5项和为31。
三、调和数列的部分和调和数列是指数列中每一项的倒数之和都为一个定值的数列。
例如:1,1/2,1/3,1/4,1/5……就是一个调和数列。
对于一个调和数列,前n项和Sn可以通过以下公式求得:Sn = 1 + 1/2 + 1/3 + …… + 1/n其中n表示数列的项数。
这个公式的推导过程可以使用数学归纳法证明。
求数列前n项和8种的方法(史上最全)
求数列前n 项和8种的方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =时,1n S na =; (2)()1111nn a q q S q-≠=-,,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222216123(1)(21)n n n n ++++=++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n 1)-(2n ...531=++++.例1 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n s n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f .二.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
求数列前N项和的方法
求数列前N 项和的方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S 练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n )1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211n n 的前n 项和。
前n项求和公式方法
前n项求和公式方法前n项求和是数学中常见的问题,也是数学分析和离散数学中的重要内容。
在实际问题中,我们经常需要计算一系列数的和,而求和公式方法可以帮助我们快速、准确地得出结果。
本文将介绍前n项求和的常见方法,帮助读者更好地理解和运用这一数学工具。
一、等差数列求和公式。
等差数列是指数列中相邻两项之差保持不变的数列,其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
对于等差数列的前n项和Sn,我们可以利用等差数列求和公式来求解。
等差数列的前n项和公式为Sn=n(a1+an)/2,通过这一公式,我们可以快速求解等差数列的前n项和,而不必逐项相加。
二、等比数列求和公式。
等比数列是指数列中相邻两项之比保持不变的数列,其通项公式为an=a1q^(n-1),其中a1为首项,q为公比,n为项数。
对于等比数列的前n项和Sn,我们可以利用等比数列求和公式来求解。
等比数列的前n项和公式为Sn=a1(q^n-1)/(q-1),通过这一公式,我们可以快速求解等比数列的前n项和。
三、其他常见求和公式。
除了等差数列和等比数列的求和公式外,还有一些常见的数学序列和级数的求和公式,如调和级数、幂级数等。
这些求和公式在实际问题中也有着广泛的应用,可以帮助我们快速求解各种数学问题。
四、求和公式的应用。
前n项求和公式在实际问题中有着广泛的应用,如在物理、工程、经济学等领域都能看到其身影。
通过求和公式,我们可以快速计算各种数学模型中的累加和,从而得出有用的结论和推论。
因此,掌握前n项求和公式的方法对于解决实际问题具有重要意义。
五、总结。
通过本文的介绍,我们了解了前n项求和的常见方法,包括等差数列求和公式、等比数列求和公式以及其他常见求和公式。
这些方法在数学分析、离散数学以及实际问题中都有着广泛的应用,对于提高数学水平和解决实际问题具有重要意义。
希望读者通过本文的学习,能够更好地掌握前n项求和的方法,提高数学运算能力,为今后的学习和工作打下坚实的数学基础。
求数列前n项和的七种方法
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1解:S n =1+5x+9x 2+······+(4n -3)x n-1 ①①两边同乘以x ,得x S n =x+5 x 2+9x 3+······+(4n -3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ο ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k====++∑∑∑(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
求前n项和的几种方法
求前n 项和的几种方法求数列前N 项和的方法1. 公式法(1)等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公(2q=11q S ≠,(31、=S n 3、=S n [例1][例2]设2. 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.[例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1答案:当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n =11-x [4x(1-x n )1-x +1-(4n-3)x n ]3. 倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把[例5]求4. [例6]5. (1(3(5))2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)n n n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵ n n n n tan )1tan()1cos(cos 1sin -+=+(裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1 -+-+-+-∴6. [[例7. [例练习:求5,55,555,…,的前n 项和。
高中数列求和公式总结大全
高中数列求和公式总结大全
1. 等差数列求和公式:Sn = n/2 [2a + (n-1)d]其中,Sn表示前n 项和,a表示首项,d表示公差。
2. 等比数列求和公式:Sn = a(1-
q^n)/(1-q)其中,Sn表示前n项和,a表示首项,q表示公比。
3. 等差
数列前n项和公式:Sn = n/2 [a1 + an]其中,a1表示首项,an表示第
n项。
4. 等比数列前n项和公式:Sn = a(1-q^n)/(1-q)其中,a表示首项,q表示公比。
5. 等差数列通项公式:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
6. 等比数列通项公式:an = a1 * q^(n-1)其中,an表示第n项,a1表示首项,q表示公比。
7. 等差数列
求第n项公式:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
8. 等比数列求第n项公式:an = a1 * q^(n-1)其中,an表示第n项,a1表示首项,q表示公比。
9. 等差数列求公差公式:d = (an - a1)/(n-1)其中,d表示公差,an表示第n项,a1表示首项。
10. 等比数列求公比公式:q = (an/a1)^(1/(n-1))其中,q表示公比,an表示第n项,a1表示首项。
以上是高中数列求和公式的总结大全。
高考数学数列求和的8种常用方法(最全)
求数列前n 项和的8种常用方法一.公式法(定义法):i.等差数列求和公式:特别地,当前〃项的个数为奇数时,S2灯|=(2&+1).%1,即前〃项和为中间项乘以项数。
这个公 式在很多时候可以简化运算;2.等比数列求和公式:(1) q = 1, S n =叫:。
1(1-矿)(2)S n =—~,特别要注意对公比的讨论:3. 可转化为等差、等比数列的数列;4. 常用公式:(2)1» = l + 2 + 3+L +〃=_〃(〃+1):22 = ]2 + 22 + 32 +L + / =项〃 +1 )(2〃 +1 )=项〃 + '(〃 +1 ):4-1 63 2(3)£(2Sl)=l + 3+5+L +(2〃-1)=片.▲■I例 1 已知 log3X= T ,求x+x 2+x 3 + ...+x n 的前〃项和.log? 3解:由 log3 x = —zl_ => log 3 x = -log 3 2 n x = 5= x + x 2 + x 3 +L +y*n J = 1(1-1)A2(4)log 2 3由等比数列求和公式得x(l —x 1-X1&例 2 设S “=l + 2+3+ • +〃,解:易知 S =]_〃(〃+1), "2S..2",求_/•(〃)=— 的最大值.(〃 + 32)S tS . =!(〃+1)(〃+2)jt+i 2n .・'(〃)-(〃 + 32)s* — / + 34〃+ 64= ]_________1_______ 1〃 +34+丝 一(V ;-_L)2+50 - 50n JnQ1・•・当而-如即〃 =8时,f(n) =_.V82 50二.倒序相加法:如果一个数列{%},与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前〃项和即可用倒序相加法。
如:等差数列的前〃项和即是用此法推导的,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到〃个(0+4).例3求sii?1°+sin22°+sin23° +-+sin288°+sin289°的值解:设S=sin2l°+sin22°+sin23°+•••+sin288°+sin289°........①将①式右边反序得S=sin289°+sin288°+…+sin23°+sin22°+sin21°........②(反序)又因为sinx=cos(90°-x),sin2x+cos2x=1①得(反序相加)2S=(sin21°+cos2l°)+(sin22°+cos22。
数列前n项和Sn的求法
数列前n项和S n的求法数列前n项和S n=a1+ a 2+ a 3+…+ a n,对任何一个可求和数列求前n项和一般有下列几种方法。
一、直接求和法:对等差数列、等比数列或可以转化成等差等比数列的数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。
例1、(1)已知数列{a n}满足:a n=2n+3,求S n 。
(2)已知数列{a n}的通项公式a n=3•2n,求S n 。
例2、求数列1,2+3,4+5+6,7+8+9+10,…的前n项和S n。
练习:计算222 (共n个根号)的值。
2二、分项求和法:将数列的一项分成两项(或多项),然后重新去组合,再利用等差、等比数列的前n项和公式进行求解。
值得注意的是,通项公式是“分项”的依据,没有写出通项公式的数列首先要求出通项公式再根据通项公式进行“分项”。
例3、求数列{n+2n }的前n 项和。
例4、计算:22332222)1()1()1()1(n n aa a a a a a a 。
例5、求数列 0.9,0.99,0.999,0.9999,…的前n 项和 。
例6、计算:1)3(4)2(3)1(21 n n n n n 。
三、拆项求和法:将数列的一项拆成两项(或多项),使得前后项相抵消,留下的有限项,从而求出数列的前n 项和。
与分项求和法不同的是它靠抵消项而不是靠重新去组合来求和,相同的是通项公式是“拆项”的依据,没有写出通项公式的数列首先要求出通项公式再根据通项公式进行“拆项”。
例7、求数列{)12)(12(1n n }的前n 项和。
例8、计算:n32114321132112111的值。
四、错位相减求和法:差比数列的前n 项和用错位相减求和法求和,在和式的两边同乘以公比q ,再错位相减即可以求出前n 项和。
差比数列的定义:数列{n a }的通项公式形如:n n n c b a ,其中{n b }是等差数列,{n c }是等比数列的数列{n a }叫差比数列。
前n项和公式的推导
前n项和公式的推导1. 等差数列前n项和公式的推导。
- 方法一:倒序相加法。
- 设等差数列{ a_n}的首项为a_1,公差为d,其前n项和为S_n,则S_n=a_1+a_2+·s +a_n。
- 即S_n=a_1+(a_1 + d)+(a_1+2d)+·s+[a_1+(n - 1)d]。
- 把上式倒过来写,S_n=a_n+a_n - 1+·s+a_1。
- 也就是S_n=a_n+(a_n-d)+(a_n-2d)+·s+[a_n-(n - 1)d]。
- +得:2S_n=(a_1+a_n)+(a_1+a_n)+·s+(a_1+a_n)(共n个(a_1+a_n))。
- 所以2S_n=n(a_1+a_n),则S_n=frac{n(a_1+a_n)}{2}。
- 又因为a_n=a_1+(n - 1)d,所以S_n=frac{n<=ft[a_1+a_1+(n -1)d]}{2}=na_1+(n(n - 1))/(2)d。
- 方法二:利用通项公式的推导。
- 由等差数列通项公式a_n=a_1+(n - 1)d。
- S_n=a_1+a_2+·s+a_n- =a_1+(a_1+d)+(a_1+2d)+·s+[a_1+(n - 1)d]- 这是一个首项为a_1,末项为a_1+(n - 1)d,项数为n的数列求和。
- 根据等差数列求和公式S_n=frac{n<=ft(a_1+a_n)}{2}(这里a_n=a_1+(n -1)d),同样可以得到S_n=na_1+(n(n - 1))/(2)d。
2. 等比数列前n项和公式的推导。
- 方法一:错位相减法(q≠1时)- 设等比数列{ a_n}的首项为a_1,公比为q,其前n项和为S_n,则S_n=a_1+a_1q+a_1q^2+·s+a_1q^n - 1。
- 两边同乘以q得:qS_n=a_1q+a_1q^2+a_1q^3+·s+a_1q^n④。
数列前n项求和
n
2Sn
2 2 2 3 2 (n 1) 2 n 2
2 3 4 n
n1
两式相减得
Sn (2 2 2 2 ) n 2
2 3 n
n1
(n 1) 2 2
n1
练习 求数列 a, 2a 2 ,3a3 , , na n 的各项之和
裂项相消法
1 1 1 n(n 1) n n 1 1 1 1 1 ( ) (2n 1)(2n 1) 2 2n 1 2n 1 1 1 a b a b a b
1 1 1 1 pq q 3 3 5 5 7
1 1 1 2 n S n 1 (3 ) (3 2 ) (3 n ) 3 3 3 1 1 1 2 n (1 3 3 3 ) ( 2 n ) 3 3 3 3n 1 1 1 3 n 1 n 1 n (3 3 ) 2 2 2
数列求和
求数列的前n项和Sn,通常有以下方法: 1、公式法:常用公式有
n n 1 1 2 3 n , 2 1 3 5 (2n 1) n2 2 4 6 2n n n 1 n n 1 2n 1 1 2 3 n 6
对于通项型如
方法总结
1 an bn bn 1
公式求和
拆项重组
(其中 {bn } 为等差数列) 的数列,在求和时将每项 分裂成两项之差的形式, 一般除首末两项或附近 几项外,其余各项先后抵 消,可较易求出前n项和.
裂项相消
错位相减
方法总结
如果 {an }是等差数列,
公式求和
数列前n项和公式
数列前n项和公式
前n项和公式是Sn=na1(q=1)。
数列公式前n项和是Sn=na1(q=1),如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为
0(常数),这个数列就叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母q表示。
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差通常用字母d表示,如果{cn},cn=an·bn,其中{an}为等差数列,{bn}为等比数列,那么这个数列就叫做差比数列。
等差数列求和公式的特点
在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。
等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……(2n-1)。
等差数列{an}的通项公式为:an=a1+(n-1)d。
前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2,注意以上整数。
求数列前N项和的七种方法(含例题和答案)
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.练习:求:S n =1+5x+9x 2+······+(4n-3)x n-13. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例6] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
(完整版)数列前n项和的求法总结
数列前n 项和的求法总结核心提示:求数列的前n 项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。
当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。
一. 公式法(1) 等差数列前n 项和: S n=n(a 1+a n )2=na 1+n(n+1)2d(2) 等比数列前n 项和: q =1时, S n=na 1;q ≠1时, S n =a 1(1−q n )1−q(3) 其他公式: S n=1+2+3+⋯+n =12n (n +1)S n =12+22+32+⋯+n 2=16n(n +1)(2n +1)S n =13+23+33+⋯+n 3=[12n (n +1)]2例题1:求数列 112,214,318,……,(n +12n ),…… 的前n 项和S n解:点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。
练习:二.倒序相加法如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。
例题1:设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2解:Sn =a1+a2+a3+...+an①倒序得:Sn =an+an-1+an-2+…+a1②①+②得:2Sn =(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)又∵a1+an=a2+an-1=a3+an-2=…=an+a1∴2Sn =n(a2+an) Sn=n(a1+an)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+an=a2+an-1=a3+an-2=…=an+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。
数列的前n项和与通项公式
数列的前n项和与通项公式数列是数学中的重要概念之一,它是由一系列按照某种规律排列的数所组成的序列。
而数列的前n项和以及通项公式则是数列研究中的关键概念,对于数学的发展和应用都具有重要意义。
一、数列的前n项和数列的前n项和是指数列中前n项数的和。
对于某些特定的数列,我们可以通过一定的方法来求解其前n项和。
例如,对于等差数列,其前n项和可以通过求和公式来计算。
假设等差数列的首项为a,公差为d,则前n项和Sn可以表示为Sn= (n/2)(2a + (n-1)d)。
同样地,对于等比数列,其前n项和也可以通过求和公式来计算。
假设等比数列的首项为a,公比为r,则前n项和Sn可以表示为Sn = a(1 - r^n)/(1 - r)。
二、数列的通项公式数列的通项公式是指数列中的每一项的一般表示形式。
通过通项公式,我们可以根据数列的位置来计算其对应的数值。
通项公式的推导需要根据数列本身的特点和规律进行分析和推理。
以等差数列为例,其通项公式可以表示为an = a + (n-1)d,其中a为首项,d为公差,n为项数。
通过这个公式,我们可以根据数列的位置来计算出对应的数值。
例如,对于等差数列1, 3, 5, 7, 9,其首项a为1,公差d为2,那么第n项可以表示为an = 1 + (n-1)2。
同样地,对于等比数列,其通项公式可以表示为an = ar^(n-1),其中a为首项,r为公比,n为项数。
通过这个公式,我们可以根据数列的位置来计算出对应的数值。
例如,对于等比数列2, 4, 8, 16, 32,其首项a为2,公比r为2,那么第n项可以表示为an = 2 * 2^(n-1)。
三、数列的应用数列的前n项和和通项公式在数学的各个领域都有广泛的应用。
在数学分析中,数列的前n项和可以用于求解极限问题。
通过计算数列的前n项和,我们可以逼近数列的极限值,从而求解一些复杂的极限问题。
在数学建模中,数列的前n项和可以用于描述和分析一些实际问题。
数列的前n项和求法
数列的前n 项和一、公式法1、通项公式:(1)、等差数列的通项公式:a n =a 1+(n -1)d =a m +(n -m)d ; (2)、等比数列的通项公式:11-=n n q a a =m n m n q a a -=;2、a n 与Sn 的有关系:a n =⎩⎨⎧≥-=-)2(,)1(,11n S S n S n n3、前n 项和:(1)、等差数列前n 项和:Sn =2)(1n a a n +=na 1+d n n 2)1(- (2)、等比数列前n 项和:Sn =⎪⎩⎪⎨⎧≠--=--=)1(11)1()1(,111q q q a a q q a q na n n例1:已知n S =1+2+3+4+……+n ,(n ∈N +),求1)32(++n nS n S 的最大值。
【解析】: )1(21+=n n S n ,1)32(++n n S n S =64342++n n n=34641++nn ≤501变式练习1:在等比数列{n a }中,2a -1a =2,且22a 为31a 和3a 的等差中项,求数列{n a }的通项公式及前n 项和。
【解析】:设该数列的公比为q ,由已知,可得a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1.由于a 1(q -1)=2,因此q =1不合题意,应舍去.故公比q =3,首项a 1=1.所以,数列的前n 项和S n =312n -.变式练习2:已知{n a }是公差不为零的等差数列,1a =1,且1a ,3a ,9a 成等比数列。
(1)求数列{n a }的通项公式;(2)求数列{n a2}的前n 项和n S 。
【解析】:n a =n n S =221-+n二、分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。
例2: 求数列的前n 项和:121,241,381,……(n +n 21) 【解析】: n n n n S 2112)1(-++=变式练习1:求数列0.9,0.99,0.999,0.9999,0.99999……的前n 项和Sn 。
求数列前n项和的几种方法
六、分段求和法求和 【例 7】 已知数列{an}前 n 项和为 Sn,且 an+Sn=1(n∈N*). (1)求数列{an}的通项公式; (2)若数列{bn}满足 bn=3+log4an,设 Tn=|b1|+|b2|+…+|bn|,求 Tn.
1n n 6-n (2)法一:bn=3+log4( ) =3- = . 2 2 2 n11-n 当 n≤6 时,bn≥0,Tn=b1+b2+…+bn= ; 4 当 n≥7 时,bn<0, Tn=b1+b2+…+b6-(b7+b8+…+bn) 6×5 n2-11n+60 1 n-6n-7 1 = -[(n-6)(- )+ ×(- )]= , 4 2 2 2 4
(1)若数列{an}的通项能转化为 f(n+1)-f(n)的形式,常采用裂项相 消法求和. (2)使用裂项相消法求和时,要注意正、负项相消时,消去了哪些项,保 留了哪些项. 1 1 1 1 1 1 (3)常见的拆项有:① = - ,②a =a+ ,③ = b b nn+1 n n+1 n+ n+ 1 1 1 1 1 n+1- n,④ = ( - )等. 2n-12n+1 2 2n-1 2n+1
(1)解:由题设得 a3a4=10,且 a3,a4 均为非负整数, ∴a3 的可能值为 1,2,5,10. 3 若 a3=1,则 a4=10,a5= ,与题设矛盾; 2 35 若 a3=5,则 a4=2,a5= ,与题设矛盾; 2 3 若 a3=10,则 a4=1,a5=60,a6= ,与题设矛盾. 5 ∴a3=2.
综上可知,T = n -11n+60 4
n 2
n11-n 4
n≤6 . n≥7
1n n 6-n 法二:bn=3+log4( ) =3- = . 2 2 2 当 n≤6 时,bn≥0,|bn|=bn, n11-n ∴Tn=b1+b2+…+bn= . 4 当 n≥7 时,bn<0,|bn|=-bn, ∴Tn=b1+b2+…+b6-b7-b8-…-bn =2(b1+b2+…+b6)-(b1+b2+…+bn) n2-11n+60 =2T6-Sn′= ,(其中 Sn′表示{bn}的前 n 项和) 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n2
1,则a n
__2,_n _ 1
n
例2.若数列
a n
的前n项和
S
n
2 a
3n
1 3
,则 a 的 n
通项公式 a _(__2)_n_1 __ n
课题
展 角度三、由递推公式求数列的通项公式
例1.已知数列a 中,a 2,a a n,求数列a 的通项公式。
课题 求数列的通项公式
学段高中-三年级-数学 主讲人:任培培 单位:汝州市实验中学
课题
设计理念
数列是高中数学重要内容之一,每年高考题为必考 知识,题型为选择、填空或简答题17题,分值都是10分 或12分.数列考察点主要是性质、通项、求和与判定, 其中通项公式基本每年必考。从而引起学生对数列足够 重视,提高学习积极性。
要求:1.字迹工整 2.书写规范 3.格式完整 4.限时5分钟
课题
检
当堂检测答案
1, an
n
( 1 )n1 2
2, an n
3, an 2 3n1 1
课题
用
《名师伴你行》 真题演练集训2、3 、4(1)
课题
谢谢观看
学段高中- 三年级-数学
16
2
n2
n4 2
课题
评 1.求数列通项公式的三种情形: (1)已知数列类型套公式求通项公式; (2)由数列的前n项和求通项公式; (3)由递推公式求数列的通项公式 2.由递推公式求通项公式的方法: (1)累加法(2)累乘法(3)配凑法 3.由数列的前n项和求通项公式时注意检验。
课题
检
当堂检测
n
1
n1
n
n
解:由题目条件得:
a2 a1 1 a3 a2 2 .........
累加法 : 适用于an an1 f (n), n 2型
an an1 n 1 将以上各式相加,得:
an a1 1 2 ....... n 1
an
(n 1)(1 n 1) 2
问题2:数列中 an 与 Sn 的关系是什么? an a1 (n 1)d 问题3:等差数列的通项公式及通项公式的推 a广m (n m)d
公式分别是什么?
an a1 qn1
问题4:等比数列的通项公式及通项公式的推广am qnm (q 0)
公式分别是什么?
课题
2
课题
教学设计
教学 过程
一、导 二、思 三、议 四、展 五、评 六、检 七、用
3
课题
导
学习目标
1、能根据数列的具体类型求数列的通项公式源自2、会利用a n与
S n
的关系求数列的通项公式
3、能根据数列的递推公式求数列的通项公式
4
课题
思
2min
问题1:什么是数列的通项公式a与n 递S推Sn1公 S式n1,?,nn12
议
6min
角度一、已知数列类型求通项公式
角度二、由 a 与 S 的关系求通项公式
n
n
角度三、由递推公式求数列的通项公式
课题
展
角度二、由 a 与 S 的关系求通项公式
n
n
an
SSn1
S
n
1, n 2 ,n 1
2n 1, n 2
例1.已知数列 a
的前n项和
S n