必修4之《辅助角公式》
三角辅助角公式
三角辅助角公式
asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。
1.辅助角公式是一种高等三角函数公式,其主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。
该公式已被写入中学课本,表达式为asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。
在使用该公式时,无论用正弦还是余弦来表示asinx+bcosx,分母的位置永远是用来表示函数名称的系数。
2.三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。
辅助角公式
For personal use only in study and research; not for commercial use推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。
又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据诱导公式得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。
其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,分母的位置永远是你用来表示函数名称的系数。
例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。
如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。
疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。
而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。
提出者公式应用例1求sinθ/(2cosθ+√5)的最大值解:设sinθ/(2cosθ+√5)=k 则sinθ-2kcosθ=√5k∴√[1+(-2k)²]sin(θ+α)=√5k平方得k²=sin²(θ+α)/[5-4sin²(θ+α)]令t=sin²(θ+α) t∈[0,1]则k²=t/(5-4t)=1/(5/t-4)当t=1时有kmax=1辅助角公式可以解决一些sin与cos角之间的转化例2化简5sina-12cosa解:5sina-12cosa=13(5/13*sina-12/13*cosa)=13(cosbsina-sinbcosa)=13sin(a-b)其中,cosb=5/13,sinb=12/13例3π/6≤a≤π/4 ,求sin²a+2sinacosa+3cos²a的最小值解:令f(a)=sin²a+2sinacosa+3cos²a=1+sin2a+2cos²a=1+sin2a+(1+cos2a)(降次公式)=2+(sin2a+cos2a)=2+(√2)sin(2a+π/4)(辅助角公式)因为7π/12≤2a+π/4≤3π/4所以f(a)min=f(3π/4)=2+(√2)sin(3π/4)=3仅供个人用于学习、研究;不得用于商业用途。
(完整版)必修4之《辅助角公式》
高一数学期末复习————必修4之《辅助角公式》一.知识点回顾对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =++++a b x aa b x b a b 222222(sin cos )··。
记a a b 22+=cos θ,ba b 22+=sinθ,则cos cos sin ))y x x x θθθ+=+由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(*cos ,θ=sin θ=来确定。
通常称式子(*)为辅助角公式,它可以将多个三角式的函数问题,最终化为y=Asin(ϕ+ωx )+k 的形式。
二.训练1.化下列代数式为一个角的三角函数(1)1sin 2αα+; (2cos αα+;(3)sin cos αα- (4)sin()cos()6363ππαα-+-.(5)5sin 12cos αα+ (6)sin cos a x b x +2.函数y =2sin ⎝ ⎛⎭⎪⎫π3-x -cos ⎝ ⎛⎭⎪⎫π6+x (x ∈R)的最小值等于 ( )A .-3B .-2C .-1D .- 53.若函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为 ( )A .1B .2C 1D 24.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π8对称,那么a= ( )(A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ⎝⎛⎭⎪⎫x +π3的最大值是________.7.已知向量(cos(),1)3a x π=+r ,1(cos(),)32b x π=+-r , (sin(),0)3c x π=+r ,求函数()h x =2a b b c ⋅-⋅+r r r r 的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21cos ,sin cos sin 222a αααα+==)。
高中数学必修四-二倍角公式及辅助角公式
二倍角公式及辅助角公式知识集结知识元辅助角公式的简单应用知识讲解辅助角公式一、辅助角公式及其应用函数可化为其中,,,此公式称为辅助角公式,通过辅助角公式可以将函数化为标准型的形式,从而解决许多相关问题,比如值域、最值、对称性、单调区间和周期等.二、公式汇编1、两角和与差的正弦、余弦和正切公式(1);(2);(3);(4);(5);(6).2、正弦、余弦和正切的二倍角公式(1);(2);(3).3、辅助角公式.例题精讲辅助角公式的简单应用例1.函数图象的一个对称中心为()A.B.C.(0,0)D.例2.已知函数的图象关于直线对称,若f(x1)f(x2)=-4,则|x1-x2|的最小值为()A.B.C.4D.例3.函数f(x)=sin2x+cos2x的对称中心坐标为()A.(+,0)(k∈Z)B.(+,0)(k∈Z)C.(+kπ,0)(k∈Z)D.(+kπ,0)(k∈Z)利用二倍角公式求非特殊角的三角函数值知识讲解二倍角的正弦、余弦和正切公式二倍角公式及其推导1、正弦二倍角公式推导∵,由角的任意性可将上式中的用替换:,化简得:,此公式称为正弦的二倍角公式,记作.2、余弦二倍角公式的推导∵,由角的任意性可将上式中的用替换:,又∵,,∴,此公式称为余弦的二倍角公式,记作.3、正切二倍角公式的推导∵,由角的任意性可将上式中的用替换:,此公式称为正切的二倍角公式,记作.二倍角公式的注意事项:1、在公式、和中,当时,就可以得到公式、和.在公式和中,角没有限制,在公式中,只有当时,公式才成立.2、二倍角公式不仅可用于的2倍情况,还可以运用于诸如将作为的2倍,将作为的二倍等.例如:.3、在一般情况下,,如.当且仅当时,才成立.同样,一般情况下,,.例题精讲利用二倍角公式求非特殊角的三角函数值例1.若sin66°=m,则cos12°=()A.B.C.D.例2.(sin15°+cos15°)2的值为()A.B.C.D.例3.已知,则=()A.B.1C.2D.利用二倍角公式进行化简知识讲解1.二倍角的三角函数【二倍角的三角函数】二倍角的正弦其实属于正弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:sin2α=2sinα•cosα;其可拓展为1+sin2α=(sinα+cosα)2.二倍角的余弦其实属于余弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α.二倍角的正切其实属于正切函数和差化积里面的一个特例,即α=β的一种特例,其公式为:tan2α=.对于这个公式要求是能够正确的运用其求值化简即可.例题精讲利用二倍角公式进行化简例1.若,α是第二象限的角,则的值为()A.B.2C.4D.-4例2.cos15°∙cos75°=()A.B.C.D.例3.已知tan A=2,则=()A.B.C.3D.5利用二倍角公式进行给值求值运算知识讲解1.二倍角的三角函数【二倍角的三角函数】二倍角的正弦其实属于正弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:sin2α=2sinα•cosα;其可拓展为1+sin2α=(sinα+cosα)2.二倍角的余弦其实属于余弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α.二倍角的正切其实属于正切函数和差化积里面的一个特例,即α=β的一种特例,其公式为:tan2α=.对于这个公式要求是能够正确的运用其求值化简即可.例题精讲利用二倍角公式进行给值求值运算例1.若4cosα+1=0(0<α<π),则sin2α=()A.B.C.D.例2.已知,则tan2θ=()A.B.C.D.例3.在△ABC中,若,则sin2A的值为()A.B.C.D.利用半角公式求值知识讲解一、半角公式及其推导1、正弦半角公式由二倍角公式得.2、余弦半角公式由二倍角公式得.3、正切半角公式由正弦半角公式和余弦半角公式得,∴,∴.综上:.半角公式说明:1、和中的角是任意角,中的角要求.要注意半角是相对的,不能认为才是半角,比如是的半角,是的半角等.2、半角公式的结构特点:上述半角公式中由于含有根式,因此也成为半角公式无理式.其特点是用表示、和.可以将半角公式看作倍角公式的变形.3、正负号的选取:它取决于、和的正负,而不是取决于的正负,取正负号的关键是判断出角终边所在的象限,从而确定、和的符号,当角的范围不明确时,需要在根号前保留正负号.例题精讲利用半角公式求值例1.已知cosα=,α∈(),则cos等于()A.B.-C.D.-例2.如果|cosθ|=,<θ<4π,那么cos的值等于()A.B.-C.D.-例3.已知α是第二象限角,且3sinα+4cosα=0,则tan=()A.2B.C.-2D.-降幂升角公式的简单应用知识讲解降幂升角公式及其推导1、升角公式由得.2、降幂升角公式由得;由得.例题精讲降幂升角公式的简单应用例1.已知tan A=2,则=()A.B.C.3D.5例2.cos475°-sin475°的值为()A.-B.C.-D.例3.已知tanα=3,则=()A.2B.-2C.3D.-3三角函数关系式的综合应用知识讲解利用三角函数关系处理综合性问题。
函数辅助角公式
函数辅助角公式好的,以下是为您生成的文章:函数中的辅助角公式,那可是解决很多数学难题的一把“神奇钥匙”!咱先来说说这辅助角公式到底是啥。
辅助角公式是 asinx + bcosx =√(a² + b²)sin(x + φ) ,其中φ 由tanφ = b/a 确定。
听起来有点复杂是不?别担心,咱们通过一些实际的例子就能搞明白。
就拿我之前教过的一个学生小明来说吧。
有一次课堂上,我给他们出了一道题:已知函数f(x) = 2sinx + 2√3cosx ,求其最大值。
小明一开始那是抓耳挠腮,完全没头绪。
我就引导他,咱们不是学了辅助角公式嘛,你试试看。
他试着把 a = 2 ,b = 2√3 代入辅助角公式,先算出√(2² + (2√3)²) = 4 ,然后再算tanφ = 2√3 / 2 = √3 ,得出φ = π/3 。
于是f(x) = 4sin(x + π/3) ,最大值就是 4 。
当他算出答案的那一刻,脸上那惊喜的表情,我到现在都还记得。
这辅助角公式在解决三角函数的化简、求值、求最值等问题时,那可真是大显身手。
比如说,对于形如 y = asinx + bcosx 的函数,通过辅助角公式就能将其化为一个单一的三角函数,从而方便我们研究它的性质。
再比如,在物理中,振动、波动的问题也经常会用到辅助角公式。
就像简谐运动的位移-时间方程,很多时候都需要用辅助角公式来进行化简和分析。
那怎么才能熟练掌握辅助角公式呢?多做题那是必不可少的。
但也不是盲目地做,得先理解透彻公式的原理和推导过程。
比如说,你得明白为啥要提出√(a² + b²) 这个系数,为啥φ 要用tanφ = b/a 来确定。
还有啊,平时得多观察式子的特点,一看到 asinx + bcosx 这种形式,就得马上想到辅助角公式。
就像条件反射一样,形成这种思维习惯。
总之,辅助角公式虽然看起来有点复杂,但只要用心去学,多练习,它就能成为我们解决数学和物理问题的得力助手。
辅助角公式(高一必修四新授课)
两角和与差的正弦、余弦、正切公式的化归
-辅助角公式
教学目标:
知识与技能:熟练利用两角和与差的正弦、余弦、正切公式化归以及辅助角公式的应用。
过程与方法:讲练结合法
情感、态度及价值观:会用联系变化的观点看待事物,增强解决问题的能力。
教学重点:熟练掌握两角和与差的正弦、余弦、正切公式和辅助角公式的应用。
教学难点:在应用辅助角公式进行化归求值的过程中,涉及两角和与差的正弦、余弦、正切公式的使用。
教学过程:
一、讲解新知:
课本6、化简
解:原式
解:原式
解:原式
知识点讲解:
辅助角公式:
有原式
或原式
其中,叫辅助角。
或
二、当堂训练:
课本6、化简
课本13、化简
答案:课本6、化简原式
课本13、化简原式原式
原式原式
三、课堂小结
四、课后作业。
高中数学必修4辅助角公式
高中数学必修4辅助角公式
学习高中数学必修4要学会对辅助角的公式进行归纳整理,高中数学必修4辅助角公式有哪些呢?下面是店铺为大家整理的高中数学必修4辅助角公式,希望对大家有所帮助!
高中数学必修4辅助角公式1.两角和差公式 (写的都要记) sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
高中数学必修4辅助角公式2.用以上公式可推出下列二倍角公式tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面这个余弦的很重要)
sin2A=2sinA*cosA
高中数学必修4辅助角公式3.半角的只需记住这个
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
高中数学必修4辅助角公式4.用二倍角中的余弦可推出降幂公式(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
高中数学必修4辅助角公式5.用以上降幂公式可推出以下常用的化简公式
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2。
必修4之《辅助角公式》
高一数学期末复习————必修 4 之《辅助角公式》一.知识点回顾对于形如y=asinx+bcosx的三角式,可变形如下:y=asinx+bcosx a2b2(sin x·a2 cos x·b2 ) 。
记a=cos 2b a2b a22a bθ,b=sin θ,则ya2b2 (sin x cos cosx sin )a2b2 sin( x ) a2b2由此我们得到结论:asinx+bcosx=a2b2sin( x) ,(*)其中θ由acos,ba2b2 sin来确定。
通常称式子(* )为辅助角公式,它可以将多个三角式的函数问a2b2题,最终化为y=Asin(x)+k 的形式。
二.训练1.化下列代数式为一个角的三角函数(1)1sin3cos ;( 2)3sin cos ;22(3)sincos (4)2sin(3)6cos() .663(5)5sin12cos(6)a sin x b cos x2 . 函 数y = 2sinπ- x - cosπ +x ( x ∈ R) 的 最 小 值 等 于36()A .- 3B.- 2C .- 1D .- 53. 若函数 f ( x) (13 tan x)cos x , 0 x,则 f (x) 的最大值为() 2A . 1B. 2C. 3 1D . 3 24.( 2009 安徽卷理) 已知函数 f (x)3sin x cos x(0) , yf ( x) 的图像与直线 y2的两个相邻交点的距离等于 ,则 f (x) 的单调递增区间是( )A. [k, k 5], kZB.[ k 5 , k 11 ], kZ12 1212 12C. [k, k ], k ZD.[k, k 2], kZ36635.如 果 函 数 y=sin2x+acos2x的 图 象 关 于 直 线 x=对 称 , 那 么 a=8( )( A ) 2 ( B )2(C ) 1 (D ) -1 6.函数 y = cos x + cos x+ π的最大值是 ________.37. 已知向量 a(cos(x),1) , b(cos(x),1) , 33 2c (sin( x),0) , 求函数 h( x) = a b b c 2的最大值及相应的 x 的值 .3(本题中可以选用的公式有 cos21 cos2 ,sin a cos1sin 2 )22。
辅助角公式
辅助角公式Revised on November 25, 2020推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。
又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。
其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。
例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。
如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。
疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。
而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。
提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。
出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。
生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。
[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。
[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。
辅助角公式
辅助角公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。
又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。
其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。
例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。
如果用余弦来表示,那反正切就要变成a/b(余弦的系数b 在分母)。
疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。
而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。
提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。
出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。
生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。
[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。
三角形辅助角公式
三角形辅助角公式
三角形辅助角公式是解决三角形问题中的一个重要公式。
它是在一个三角形中,对于一角的正弦、余弦、正切等三角函数,可以通过另外两个角的三角函数来表示。
这个公式可以帮助我们在解决三角形问题时,更方便地计算三角函数值,从而得到需要的角度或边长。
三角形辅助角公式包括以下几个公式:
1. 正弦定理:a/sin A = b/sin B = c/sin C,其中a、b、c为三角形的边长,A、B、C为对应的角度。
2. 余弦定理:a = b + c - 2bc cos A,b = a + c - 2ac cos B,
c = a + b - 2ab cos C,其中a、b、c为三角形的边长,A、B、C 为对应的角度。
3. 正切公式:tan A = sin A/cos A,其中A为三角形中的一个角度。
通过这些公式,我们可以更加便捷地计算出三角形中各个角度和边长的值,从而解决各种三角形问题。
在实际应用中,三角形辅助角公式是非常重要的基础知识,可以用于测量、建筑、地理、物理等领域。
- 1 -。
辅助角公式
推导对于fx=asinx+bcosxa>0型函数;我们可以如此变形;设点a;b为某一角φ-π/2<φ<π/2终边上的点;则;因此就是所求辅助角公式..又因为;且-π/2<φ<π/2;所以;于是上述公式还可以写成该公式也可以用余弦来表示针对b>0的情况;设点b;a为某一角θ-π/2<θ<π/2终边上的点;则;因此同理;;上式化成若正弦和余弦的系数都是负数;不妨写成fx=-asinx-bcosx;则再根据得记忆很多人在利用辅助角公式时;经常忘记反正切到底是b/a还是a/b;导致做题出错..其实有一个很方便的记忆技巧;就是不管用正弦还是余弦来表示asinx+bcosx;的位置永远是你用来表示函数名称的系数..例如用正弦来表示asinx+bcosx;则反正切就是b/a即正弦的系数a 在分母..如果用余弦来表示;那反正切就要变成a/b余弦的系数b在分母..疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为-π/2;π/2 其实是在分类讨论a>0或b>0的时候;已经把辅助角的终边限定在一、四象限内了;此时辅助角的范围是2kπ-π/2;2kπ+π/2k是整数..而根据三角函数的周期性可知加上2kπ后函数值不变;况且在-π/2;π/2内辅助角可以利用反正切表示;使得公式更加简洁明了..提出者;原名李心兰;字竟芳;号秋纫;别号壬叔..出身于读书世家;其先祖可上溯至南宋末年汴梁今人李伯翼..生于1811年 1月22日;逝世于1882年12月9日;人;是中国近代着名的数学家、天文学家、力学家和;创立了二次的幂级数展开式..1就是现在的他研究各种;和对数函数的幂级数展开式;这是李善兰也是19 世纪中国数学界最重大的成就..1在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献..他的译书也为中国近代物理学的发展起了启蒙作用..同治七年;李善兰到北京担任同文馆天文﹑算学部长﹐执教达13年之久﹐为造就中国近代第一代科学人才作出了贡献.. 李善兰为近代科学在中国的传播和发展作出了开创性的贡献..继之后;李善兰成为清代数学史上的又一杰出代表..他一生翻译西方科技书籍甚多;将近代科学最主要的几门知识从天文学到植物细胞学的最新成果介绍传入中国;对促进近代科学的发展作出卓越贡献..1公式应用例1求sinθ/2cosθ+√5的最大值解:设sinθ/2cosθ+√5=k 则sinθ-2kcosθ=√5k∴√1+-2k2sinθ+α=√5k平方得k2=sin2θ+α/5-4sin2θ+α令t=sin2θ+α t∈0;1则k2=t/5-4t=1/5/t-4当t=1时有kmax=1辅助角公式可以解决一些sin与cos角之间的转化例2化简5sina-12cosa解:5sina-12cosa=135/13sina-12/13cosa=13cosbsina-sinbcosa=13sina-b其中;cosb=5/13;sinb=12/13例3π/6≤a≤π/4 ;求sin2a+2sinacosa+3cos2a的最小值解:令fa=sin2a+2sinacosa+3cos2a=1+sin2a+2cos2a=1+sin2a+1+cos2a公式=2+sin2a+cos2a=2+√2sin2a+π/4辅助角公式因为7π/12≤2a+π/4≤3π/4所以famin=f3π/4=2+√2sin3π/4=3。
必修四第三章辅助角公式
作业:
必修四教材 第137页 第13题 (1) (2) (3) (4)
a2 b2
a2 b2
(其中 tan = b ) 一般地,0
a
2
说明:
利用辅助角公式可以将形如 asin x bcosx 的
式子 ,转化为一个角的一种三角函数形式。便于后面 求三角函数的最小正周期、最大(小)值、单调区间 等。
课堂练习: 化简:(1) 2sin 2 cos (2) 2sinx - 6 cos x
( 2 sin cos cos sin )
3
3
2sin
3
思考:2 b cos x 如何化简呢
辅助角公式
asin x bcos x a2 b2 sin(x )
其中 cos a ,sin b .
探究:
1.公式的逆用
sin cos
12 4
cos sin
12 4
sin(
12
)
4
sin
3
3 2
sincos cos sin
4
4
sin( )
4
2.将下面式子化为只含正弦的形式:
2 sin 2 cos
2
2
sin( )
(3)sin 2x cos2x
延伸拓展:
化简: 2 3 sin x cos x 2 cos2 x 1
解:原式 3 sin 2x cos 2x
( 2 3 sin 2x 1 cos 2x)
2
2
( 2 sin2x cos cos2x sin )
6
必修之《辅助角公式》
高一数学期末复习 必修 4之《辅助角公式》一.知识点回顾对于形如y=asinx+bcosx 的三角式,可变形如下:t =sine,贝9 y 寸 a 2 b 2 (sin xcoscosxsin ) V?sin(x)、a 2 b 2a),(*)其中 e 由 =-cos<a b丁b ,sin 来确定。
通常称式子(*)为辅助角公式,它可以将多个三角式的函 数问题,最终化为y=Asin( x )+k 的形式 .训练1.化下列代数式为一个角的三角函数(1) -sin 2 cos ; 2 (2) . 3sin cos(3) sin cos (5) 5sin 12cos (4)si n(— 6 3cos(3).2 .函 数 y = 2si n _ — x - —cos 7 + x (x € R)的最小值等于( )A .— -3B . — 2C.—1 D. — , 53.若函数 f (x) (13 tan x) cosx , 0x2, 则f (x)的最大值为( )A . 1B . 2C.3 1D. .3 2(6) asinx bcosxy=as in x+bcosx 、a 2 b 2 (sin x •a a 2b 2cosx •占)。
记 d=cose ,由此我们得到结论: asinx+bcosx= a 2 b 2 sin(x4. (2009安徽卷理)已知函数f(x) 、_3sin x cos x( 0) , y f(x)的图像与直线y 222的两个相邻交点的距离等于 ,则f(x)的单调递增区间是(A ) 2 (B ) 2 (C ) - (D )--n函数y = cos x + cos x + 3 的最大值是7.已知向量 a (cos(x ),1), b (cos(x ),-)3 3 2(本题中可以选用的公式有 cos 2 ——C0S ——,si nacos-si n2 ) A.[k 于存k Z B.C.[k -,k -], k ZD. 11E Z 討Z5. 如果函数 y=sin2x+acos2x 的图象关于直线x=8对称,那么a=6. c (sin(x),0),求函数 h(x)=ac 2的最大值及相应的x 的值.。
辅助角公式
学案
一、知识回顾:
两角和与差的正余弦公式:
二、新课探究:
1、利用和差角公式计算下列各式的值:
练习:
2、求证:cos2sin()
6
π
ααα
=+
3、将sin cos
a x
b x
+化为一个角的正弦形式。
P(a,b)总有一个角φ的终边经过点P ,设
由三角函数定义可知: b= a=
辅助角公式推导
对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式 其中辅助角φ
由
cos __________
sin ___________
φφ== 确定,即辅助角φ(通常02φπ≤≤)
的终边经过点P (,)a b
------------------我们称上述公式为辅助角公式,其中角φ为
辅助角。
4、 将下列各式化为一个角的正弦形式
5、
求函数sin y x x =+的周期、最大值与最小值。
课堂检测: 思考:
6、求函数44sin cos cos y x x x x =+-的最小正周期、最大值与最小值;并写出该函数在[0,]π上的单调递增区间。
辅助角公式总结
辅助角公式总结辅助角公式在三角函数的学习中可是个相当重要的家伙!它能帮我们把形如 $a\sin x + b\cos x$ 的式子化简成一个单一的三角函数形式,让解题变得轻松不少。
先来说说辅助角公式的表达式:$\sqrt{a^2 + b^2}\sin(x + \varphi)$ ,其中 $\tan\varphi = \frac{b}{a}$ 。
咱们拿个具体的例子来瞅瞅。
比如说,$3\sin x + 4\cos x$ ,这时候咱们就可以用辅助角公式啦。
先算出 $\sqrt{3^2 + 4^2} = 5$ ,然后$\tan\varphi = \frac{4}{3}$ ,所以 $\varphi$ 约等于 $53^{\circ}$ 。
于是,$3\sin x + 4\cos x = 5\sin(x + 53^{\circ})$ 。
我记得之前给学生讲这部分内容的时候,有个学生特别迷糊,怎么都弄不明白。
我就跟他说:“你就把这公式想象成一个魔法盒子,把两个三角函数扔进去,它就能给你变出一个更厉害的!” 那孩子听了之后,眼睛瞪得大大的,好像突然来了兴趣。
再说说辅助角公式的应用吧。
在求三角函数的最值、周期、单调区间等问题时,它可真是大显身手。
比如说,求函数 $y = 2\sin x +2\sqrt{3}\cos x$ 的最大值。
用辅助角公式一化简,变成 $4\sin(x +\frac{\pi}{3})$ ,一下子就能看出最大值是 4 啦。
还有啊,在解三角形的时候,辅助角公式也能帮上忙。
比如已知三角形的两边和夹角,要求第三边的长度。
通过正弦定理和余弦定理把式子变成含有三角函数的形式,再用辅助角公式化简,就能更方便地求出结果。
我曾经在课堂上出了一道题:已知函数 $f(x) = \sin x + \sqrt{3}\cos x$ ,求它在区间 $[0, 2\pi]$ 上的最小值。
有个学生很快就用辅助角公式算出了结果,还得意洋洋地跟旁边的同学炫耀。
必修4辅助角公式
02 辅助角公式的推导过程
利用三角函数的和差化积公式推导
总结词
通过三角函数的和差化积公式,我们可以将复杂的三角函数式转化为单一的三角函数形式,从而简化计算。
详细描述
利用三角函数的和差化积公式,我们可以将两个或多个三角函数的和差形式转化为单一的三角函数形式。例如, 利用正弦和差化积公式,我们可以将表达式$sin(x+alpha)-sin(x)$转化为 $2cos(x+frac{alpha}{2})sin(frac{alpha}{2})$,从而简化计算。
算精度来减小。
近似误差
由于辅助角公式是利用近似值进 行计算的,因此存在近似误差。 这种误差的大小取决于公式的近
似程度和角度的范围。
范围限制误差
由于辅助角公式适用于特定范围 内的角度,因此当角度超出这个 范围时,公式可能不准确,导致
误差。
辅助角公式的适用范围与局限性
适用范围
辅助角公式适用于解决一些特定类型 的三角函数问题,如求三角函数的值、 化简三角函数表达式等。
利用三角函数的倍角公式推导
总结词
通过三角函数的倍角公式,我们可以将一个角的三角函数转化为两个角相等的三 角函数形式,从而简化计算。
详细描述
利用三角函数的倍角公式,我们可以将一个角的三角函数转化为两个角相等的三角 函数形式。例如,利用正弦的倍角公式,我们可以将表达式$sin(2x)$转化为 $2sin(x)cos(x)$,从而简化计算。
03 辅助角公式的应用实例
三角函数图像的变换
辅助角公式在三角函数图像变换中的应用,可以将正弦、余 弦、正切函数等三角函数图像进行平移、伸缩、翻转等变换 ,从而得到新的三角函数图像。
例如,利用辅助角公式可以将正弦函数图像向右平移,得到 余弦函数图像;也可以将正弦函数图像进行伸缩变换,得到 周期不同的三角函数图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学期末复习————必修4之《辅助角公式》
一.知识点回顾
对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =
++++a b x a a b
x b a b
222
2
2
2
(sin cos )·
·。
记
a a b
2
2
+=cos
θ,
b a b 22
+=sin
θ,则cos cos sin ))y x x x θθθ+=+
由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(*
cos ,θ=
sin θ=来确定。
通常称式子(*)为辅助角公式,它可以将多个三角式的函数问
题,最终化为y=Asin(ϕ+ωx )+k 的形式。
二.训练
1.化下列代数式为一个角的三角函数 (1
)1sin 2αα+; (2
cos αα+;
(3)sin cos αα- (4
)sin()cos()6363
ππ
αα-+-.
(5)5sin 12cos αα+ (6)sin cos a x b x +
2.函数
y =2sin ⎝ ⎛⎭⎪⎫
π
3-x -cos ⎝ ⎛⎭
⎪⎫
π
6+x (x ∈R)的最小值等于
( )
A .-3
B .-2
C .-1
D .- 5
3.若函数()(1)cos f x x x =,02
x π
≤<,则()f x 的最大值为
( )
A .1
B .2
C 1
D 2
4.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈
5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π
8
对称,那么a= ( )
(A )2 (B )-2 (C )1 (D )-1
6.函数y =cos x +cos ⎝
⎛⎭⎪⎫x +π3的最大值是________.
7.已知向量(cos(),1)3a x π=+r ,1
(cos(),)32
b x π=+-r ,
(sin(),0)3
c x π
=+r ,求函数()h x =2a b b c ⋅-⋅+r r r r 的最大值及相应的x 的值.
(本题中可以选用的公式有21cos 21
cos ,sin cos sin 222
a αααα+=
=)。