八年级数学下册第十七章勾股定理17.1勾股定理第3课时利用勾股定理作图与计算作业课件新版新人教版

合集下载

2024八年级数学下册第十七章勾股定理17.1勾股定理第3课时应用勾股定理解数学问题课件新版新人教版

2024八年级数学下册第十七章勾股定理17.1勾股定理第3课时应用勾股定理解数学问题课件新版新人教版
网格(每个小正方形的边长均为1)画出相应的△ABC,并求
出它的面积;

【解】△ABC如图①,S△ABC= .

探索创新:
(3)若△ABC三边的长分别为 a,2 a, a(a>0),请利
用图③中的正方形网格(每个小正方形的边长均为a)画出相
应的△ABC,并求出它的面积;
【解】△ABC如图②,可得
∵∠ABC=120°,AB=BC,
∴∠BAC=∠BCA=30°, ∵∠AOB=90°,

∴OB= a,



∴OF=OB+BF= ,OA=OC= .


∴AC=CE= a.
易得∠PFO=∠OEM=90°.
∵点P的坐标为(-2 ,3),

∴ =3,即a=2.


∴OE=OC+CE=
=3
( − ) + 的最小值.
【解】如图,作BD=12,过点B作AB⊥BD,过点D作
ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.则AE的长
即为代数式 + + ( − ) + 的最小值.
过点A作AF⊥DE交ED的延长线于点F,得到长方形ABDF,
则AB=DF=2,AF=BD=12,∴EF=ED+DF=3+2=5.
∴AE= + =13,即 +
+ ( − ) + 的最小值为13.
利用勾股定理探求格点三角形面积
11.[新考法 构图求面积法]问题背景:
在△ABC中,AB,BC,AC三边的长分别为 , ,
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个
∴∠CAD=45°=∠ACD.
∴AD=CD=2 cm.

人教版习题word版:第十七章 勾股定理

人教版习题word版:第十七章  勾股定理

第十七章勾股定理17.1 勾股定理第1课时勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a2+b2=c2.2.在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,能得到勾股定理吗?解:∵梯形的面积为12(a+b)(a+b)=12ab+12ab+12c2,∴a2+2ab+b2=ab+ab+c2.∴a2+b2=c2.知识点2 利用勾股定理进行计算3.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是(C)A.a2+b2=c2 B.b2+c2=a2C.a2+c2=b2 D.c2-a2=b24.(2019·平顶山期末)在△ABC中,∠B=90°.若BC=3,AC=5,则AB等于(C) A.2 B.3 C.4 D.345.已知直角三角形中30°角所对的直角边的长是2 3 cm,则另一条直角边的长是(C)A.4 cm B.4 3 cmC.6 cm D.6 3 cm6.(2019·毕节)如图,点E在正方形ABCD的边AB上.若EB=1,EC=2,则正方形ABCD的面积为(B)A. 3 B.3 C. 5 D.57.(2019·洛阳期中)如图,在△ABC中,AB⊥AC,AB=5 cm,BC=13 cm,BD是AC边上的中线,则△BCD的面积是15__cm2.8.(2019·郑州高新区期末)如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为64.【变式】如图,以Rt△ABC的三边为直径分别向外作三个半圆S1,S2,S3.若S2=32π,S3=18π,则斜边上半圆的面积S1=50π.知识点3 赵爽弦图9.【关注数学文化】(2019·咸宁)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(B),A) ,B) ,C) ,D)10.(2019·大庆)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是1.易错点直角边不确定时漏解11.(2019·洛阳期中)已知Rt△ABC的三边长为a,4,5,则a的值是(C)A.3 B.41C.3或41 D.9或4102 中档题12.(本课时T8变式)如图,分别以Rt△ABC的三边为边长向外作等边三角形.若AB=4,则三个等边三角形的面积之和是(A)A.8 3 B.6 3C.18 D.1213.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6C.3 2 D.2114.(2019·河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O.若点O 是AC 的中点,则CD 的长为(A)A .2 2B .4C .3 D.1015.(2018·荆州)为了比较5+1与10的大小,可以构造如图所示的图进行推算,其中∠C=90°,BC =3,D 在BC 上且BD =AC =1.通过计算可得5+1>10.(填“>”“<”或“=”)16.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为32或42.17.如图,在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.解:在△ABC 中,AB =15,BC =14,AC =13,设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2.∴152-x 2=132-(14-x)2.解得x =9.∴AD=12.∴S△ABC=12BC·AD=12×14×12=84., 03 综合题)18.(2019·毕节改编)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A =60°,AC=10,求CD的长度.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°.∴AB=2AC=20,BC=AB2-AC2=10 3.∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=12BC=12×103=5 3.∴CM=BC2-BM2=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°.∴MD=BM=5 3.∴CD=CM-MD=15-5 3.第2课时勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.2.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:①测得BD的长度为15米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高为1.6米.求风筝的高度CE.解:在Rt△CDB中,由勾股定理,得CD=CB2-BD2=252-152=20(米).∴CE=CD+DE=20+1.6=21.6(米).答:风筝的高度CE为21.6米.3.(2019·郑州管城区月考)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,它们同时出发,一个半小时后,甲、乙两渔船相距多少海里?解:由题意,得BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,AB=BO2+AO2=15(海里).答:甲、乙两渔船相距15海里.知识点2 两次勾股定理的应用4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C)A.0.7米 B.1.5米C.2.2米 D.2.4米5.(教材P25例2变式)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.知识点3 利用勾股定理求两点间的距离6.(2019·常州)平面直角坐标系中,点P(-3,4)到原点的距离是5.7.(教材P26练习T2变式)如图,在平面直角坐标系中,A(4,4),B(1,0),C(0,1),则B,C两点间的距离是2;A,C两点间的距离是5;A,B两点间的距离是5.8.(2019·大庆)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1.732);(2)确定C港在A港的什么方向.解:(1)由题意,得∠PBC=30°,∠MAB=60°.∴∠CBQ=60°,∠BAN=30°.∴∠ABQ=30°.∴∠ABC=∠ABQ+∠CBQ=90°.∵AB=BC=10,∴在Rt△ABC中,AC=AB2+BC2=102≈14.1.答:A,C两港之间的距离约为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°.∴∠CAM=60°-45°=15°.∴C港在A港北偏东15°的方向上.02 中档题9.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D)A.4米 B.8米C.9米 D.7米10.(2019·南京)无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.11.【方程思想】如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5 m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1 m,离秋千支柱AD的水平距离BE为1.5 m(不考虑支柱的直径).求秋千支柱AD的高.解:设AD=x m,则由题意可得AB=(x-0.5)m,AE=(x-1)m.在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2.解得x=3.答:秋千支柱AD的高为3 m.12.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100 m的P 处.这时,一辆轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3 s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80 km/h的限制速度?解:在Rt△APO中,∠APO=60°,则∠PAO=30°.∴AP=2OP=200 m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100 m.∴AB=AO-BO=(1003-100)m.∴从A到B小车行驶的速度为(1003-100)÷3≈24.4(m/s)=87.84 km/h>80 km/h. ∴此车超过80 km/h的限制速度.03 综合题13.【分类讨论思想】如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P 从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.∴BC=4 cm.(2)由题意,知BP=t cm,①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,∴t=4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm ,在Rt△ACP 中,AP 2=AC 2+CP 2=32+(t -4)2.在Rt△BAP 中,AB 2+AP 2=BP 2,即52+[32+(t -4)2]=t 2.解得t =254. ∴当△ABP 为直角三角形时,t =4或254. 第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.(教材P27练习T1变式)(2019·河南期末)如图,数轴上点A 对应的数是0,点B 对应的数是1,BC⊥AB,垂足为B ,且BC =2,以点A 为圆心,AC 长为半径画弧,交数轴于点D ,则点D 表示的数为(D)A .2.2B. 2C. 3D. 52.在数轴上作出表示10的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),则线段AB 的长度为(C) A. 2 B. 3 C. 5 D .34.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD⊥AC 于点D ,则CD 的长为(A)A.255B.355C.455D.455.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:如图所示.知识点3 等腰三角形中的勾股定理6.将一副三角尺按如图所示叠放在一起,若AB =12 cm ,则AF =62cm.7.(2019·天水)如图,等边△OAB 的边长为2,则点B 的坐标为(B)A .(1,1)B .(1,3)C .(3,1)D .(3,3)8.(教材P27练习T2变式)如图,在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的底边上的高与面积.解:过点A 作AD⊥BC 于点D ,∵AB=AC =13 cm ,∴BD=CD =12BC =12×10 =5(cm).∴AD=AB 2-BD 2=132-52=12(cm),即等腰三角形底边上的高为12 cm.∴S △ABC =12BC·AD=12×10×12=60(cm 2).02 中档题9.(2019·驻马店汝南县期末)如图,在Rt△ABC 中,∠ACB=90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D.若 AC =3,BC =4,则BD 的长是(A)A .2B .3C .4D .510.如图,图中小正方形的边长为1,△ABC 的周长为(B)A .16B .12+4 2C .7+7 2D .5+11 211.(教材P27练习T1变式)如图,数轴上点A 所表示的实数是5-1.12.点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离为355.13.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形,∴CB=CD ,∠CDE=∠DCE=60°.∴∠BDC=∠DBC=12∠DCE=30°. ∴∠BDE=90°.在Rt△BDE 中,DE =4,BE =8,∴BD=BE 2-DE 2=82-42=4 3.14.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图1中,以格点为端点,画线段MN=13;(2)在图2中,以格点为顶点,画正方形ABCD,使它的面积为10.解:(1)如图.(2)如图.03 综合题15.仔细观察图形,认真分析下列各式,然后解答问题.OA22=(1)2+1=2,S1=1 2;OA23=(2)2+1=3,S2=2 2;OA24=(3)2+1=4,S3=3 2;…(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S21+S22+S23+…+S210的值.解:(1)OA2n=(n-1)2+1=n,S n =n 2(n 为正整数). (2)OA 210=(9)2+1=10, ∴OA 10=10.(3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104=1+2+3+…+9+104=1+102×104=554.小专题(二) 利用勾股定理解决最短路径问题——教材P39复习题T12的变式与应用【例】 如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路程,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的直线AA′剪开,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.解:如图,由题意可得:AA′=12,A′B=12×2π×3=9.在Rt△AA′B中,根据勾股定理,得AB2=A′A2+A′B2=122+92=225.∴AB=15.∴需要爬行的最短路程是15 cm.几何体中最短路径基本模型如下:图例圆柱――→展开长方体阶梯问题基本思路将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线→构造直角三角形→利用勾股定理求解.1.(2018·禹州期中)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)2.如图是一个三级台阶,它的每一级的长、宽、高分别为24 dm,3 dm,3 dm,点A 和点B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是30__dm.3.如图,长方体的高为5 cm,底面长为4 cm,宽为1 cm.(1)点A1到点C2之间的距离是多少?(2)若一只蚂蚁从点A2爬到C1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm,底面长为4 cm,宽为1 cm,∴A2C2=42+12=17(cm).∴A1C2=52+(17)2=42(cm).(2)如图1所示,A2C1=52+52=52(cm).如图2所示,A2C1=92+12=82(cm).如图3所示,A2C1=62+42=213(cm).∵52<213<82,∴一只蚂蚁从点A2爬到C1,爬行的最短路程是5 2 cm.小专题(三) 方程思想在勾股定理中的应用——教材P39复习题T10的解法剖析及变式应用【教材母题】 一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)解:设AB =x 尺,根据题意,得∠BAC=90°,AB +BC =10尺,∴BC=(10-x)尺.∵AC 2+AB 2=BC 2,∴32+x 2=(10-x)2,解得x =41120. 答:折断处离地面41120尺.在一个直角三角形中,若已知两边长,可直接运用勾股定理求第三边长,若已知一边长,且知另两边具有一定的数量关系,可利用方程思想,设出一边长,利用数量关系表示另一边长,借助勾股定理这一等量关系列出方程解决问题,其中两边的数量关系主要有两种呈现形式:一是直角三角形中有特殊角,二是出现图形的折叠.类型1 利用直角三角形中的特殊角揭示两边的数量关系1.求下列直角三角形中未知的边长.解:如图1,设AC =x ,∵∠ACB=90°,∠B=30°,∴AB=2x.∵A B 2=AC 2+BC 2,∴(2x)2=x 2+32.∴x=3或-3(负值舍去). ∴AC=3,AB =2 3.如图2,设AC =x ,∵∠ACB=90°,∠A=45°,∴BC=AC =x.∵AB 2=AC 2+BC 2,∴x 2+x 2=(32)2.∴x=3或-3(负值舍去).∴AC=BC =3.类型2 利用图形的折叠找两边的数量关系2.如图,在Rt△ABC 中,AB =6,BC =4,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为(C)A.53B.52C.83D .53.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.4.如图,把长方形纸片ABCD折叠,使其对角顶点A与C重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为25.类型3 利用勾股定理和方程思想求点的坐标5.如图,在平面直角坐标系中,A(1,3),试在x轴上找一点P,使△OAP为等腰三角形,求出P点的坐标.解:过点A作AB⊥x轴,垂足为B.∵A(1,3),∴OB=1,AB=3.∴OA=12+32=10.当AO=AP时,以A为圆心,AO长为半径画弧与x轴交于点O与点P1,∵AB⊥x轴,∴BP1=BO=1,即P1(2,0);当OA=OP时,以O为圆心,OA长为半径画弧与x轴交于点P2,P3,∵OA=10,∴P2(10,0),P3(-10,0);当PA=PO时,作OA的垂直平分线交x轴于点P4.设OP4=x,则BP4=x-1,AP4=OP4=x.在Rt△ABP4中,AP24=AB2+BP24,∴x2=32+(x-1)2.解得x=5,即P4(5,0).综上所述,使△OAP为等腰三角形的点P有:P1(2,0),P2(10,0),P3(-10,0),P4(5,0).17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C)A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b2.(2019·安徽)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b 互为相反数,那么a+b=0.逆命题是真命题.(填“真命题”或“假命题”)知识点2 勾股定理的逆定理3.(2019·郑州期末)下面四组数,其中是勾股数组的是(A)A.3,4,5 B.0.3,0.4,0.5C.32,42,52 D.6,7,84.(2019·洛阳洛龙区期中)由线段a,b,c组成的三角形不是直角三角形的是(D) A.a2-b2=c2B.a=54,b=1,c=34C.a=2,b=3,c=7D.∠A∶∠B∶∠C=3∶4∶55.(2019·益阳)已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是(B)A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形6.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出两组不同于以上所给出的基本勾股数:答案不唯一,如:5,12,13;7,24,25.7.已知:在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a=3,b=22,c=5;(2)a=5,b=7,c=9;(3)a=5,b=26,c=1.解:(1)是,∠B是直角.(2)不是.(3)是,∠A是直角.8.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC =90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,∴根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5.∵AC2+CD2=52+122=25+144=169,AD2=132=169,∴AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.02 中档题9.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10 B.11 C.12 D.1310.下列定理中,没有逆定理的是(B)A .等腰三角形的两个底角相等B .对顶角相等C .三边对应相等的两个三角形全等D .直角三角形两个锐角的和等于90°11.【关注数学文化】(2018·长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为(A)A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米12.如图,方格中的点A ,B 称为格点(横线的交点),以AB 为一边画△ABC,其中是直角三角形的格点C 的个数为(B)A .3B .4C .5D .613.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.14.(教材P34习题T6变式)如图,在正方形ABCD 中,E ,F 分别BC ,CD 边上的一点,且BE =2EC ,FC =29DC ,连接AE ,AF ,EF ,求证:△AEF 是直角三角形.证明:设FC =2a ,则DC =9a ,DF =7a.∴AB=BC =AD =CD =9a.∵BE=2CE ,∴BE=6a ,EC =3a.在Rt△ECF 中,EF 2=EC 2+FC 2=(3a)2+(2a)2=13a 2.在Rt△ADF 中,AF 2=AD 2+DF 2=(9a)2+(7a)2=130a 2.在Rt△ABE 中,AE 2=AB 2+BE 2=(9a)2+(6a)2=117a 2.∵13a 2+117a 2=130a 2,∴EF 2+AE 2=AF 2.∴△AEF 是以∠AEF 为直角的直角三角形.15.(教材P34习题T5变式)如图,在四边形ABCD 中,AB =BC =1,CD =3,DA =1,且∠B=90°.求:(1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号); (3)将△ABC 沿AC 翻折至△AB′C,如图所示,连接B′D,求四边形ACB′D 的面积.解:(1)∵AB=BC =1,∠B=90°,∴∠BAC=∠ACB=45°,AC =AB 2+BC 2= 2.又∵CD=3,DA =1,∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC=90°.∴∠BAD=∠BAC+∠DAC=135°.(2)∵S △ABC =12AB·BC=12,S△ADC=12AD·AC=22,∴S四边形ABCD=S△ABC+S△ADC=1+22.(3)过点D作DE⊥AB′,垂足为E,由(1)知∠DAC=90°.根据折叠可知∠B′AC=∠BAC=45°,AB=AB′=1,S△AB′C=S△ABC=1 2 .∴∠DAE=∠DAC-∠B′AC=45°.∴AE=DE.设DE=AE=x,在Rt△ADE中,AE2+DE2=AD2. ∴x2+x2=1.∴x=2 2.∴S△ADB′=12×1×22=24.∴S四边形ACB′D=S△AB′C+S△ADB′=12+24=2+24.03 综合题16.(2019·呼和浩特改编)如图,在△ABC中,内角∠A,∠B,∠C所对应的边分别为a,b,c.(1)若a,b,c满足aa-b+c=12(a+b+c)c,求证:△ABC是直角三角形;(2)若a=m-n,b=2mn,c=m+n,(其中m,n都是正整数,且m>n),求证:△ABC 是直角三角形.证明:(1)原式可变形为a a +c -b =a +b +c 2c, ∴(a+c)2-b 2=2ac ,即a 2+2ac +c 2-b 2=2ac.∴a 2+c 2=b 2.∴△ABC 是以∠B 为直角的直角三角形.(2)∵a 2=(m -n)2,b 2=(2mn)2=4mn ,c 2=(m +n)2,∴(m-n)2+4mn =(m +n)2,即a 2+b 2=c 2.∴△ABC 是以∠C 为直角的直角三角形.章末复习(二) 勾股定理01 分点突破知识点1 勾股定理(河南中招2019T9选,2018T9选,2017T18(2)解,2016T6选,2015T7选,2014T7选)1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A.6 B.6 2C.6 3 D.122.如图,阴影部分是一个正方形,则此正方形的面积为64cm2.3.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴在△ACD中,AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2 勾股定理的应用4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 mB.13 mC.16 mD.17 m5.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在宽0.9 m,长1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5__m长.6.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3 逆命题及逆定理7.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4 勾股定理的逆定理及其应用8.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形9.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且a2-b2=c2,则下列说法正确的是(C)A.∠C是直角 B.∠B是直角C.∠A是直角 D.∠A是锐角02 易错题集训10.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是100或28.11.(2018·襄阳)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为23或27.03 河南常考题型演练12.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+113.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A)A.8 cm B.6 cmC.5.5 cm D.1 cm14.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD15.(2019·信阳罗山县模拟)如图,在△ABC中,点M是AC边上一个动点.若AB=AC =10,BC=12,则BM的最小值为(B)A.8 B.9.6 C.10 D.4 516.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.17.(2019·枣庄)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=6-2.18.(2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为13km.19.如图,有一块空白地,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2.解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°.∴S四边形ABCD=S Rt△ACB-S Rt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96 m2.04 核心素养专练20.(2019·邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是4.周测(第十七章)(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(C) A.8,15,17 B.2,3, 5C.3,2, 5 D.1,2, 52.已知命题:等边三角形是等腰三角形,则下列说法正确的是(B)A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.点A(-3,-4)到原点的距离为(C)A .3B .4C .5D .74.如图,数轴上点A 表示的数是0,点B 表示的数是1,BC⊥AB,垂足为B ,且BC =1,以A 为圆心,AC 的长为半径画弧,与数轴交于点D ,则点D 表示的数为(B)A .1.4 B. 2 C. 3D .25.将直角三角形的三条边长同时扩大一倍,得到的三角形是(C)A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形6.在△ABC 中,∠A∶∠B∶∠C=1∶2∶3.若AC =4,则AB 的长为(D)A .8B .6C.433D.8337.下面各三角形中,面积为无理数的是(C)8.如图,将边长为12的正方形ABCD 折叠,使得点A 落在CD 边上的点E 处,折痕为MN.若CE 的长为7,则MN 的长为(B)A .10B .13C .15D .无法求出9.已知直角三角形两条直角边的长之和为6,斜边长为2,则这个三角形的面积是(B) A .0.25 B .0.5C .1D .2 310.已知一个直角三角形的斜边长为3,若以三边为斜边分别向外作等腰直角三角形,则所作的三个等腰直角三角形的面积和为(A)A.92B.94C .3D .9二、填空题(每小题4分,共20分)11.直角三角形斜边长是6,一直角边的长是5,则此直角三角形的另一直角边长为11.12.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 的坐标为(-1,0).13.如图,每个小正方形的边长均为1,则△ABC 边AC 上的高BD 的长为85.14.如图,在△ABC 中,AB∶BC∶CA=3∶4∶5,且周长为36 cm ,点P 从点A 开始沿AB 边向点B 以每秒1 cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2 cm 的速度移动.若同时出发,则过3秒时,△BPQ 的面积为18cm 2.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以AB,AC,BC为边在AB 的同侧作正方形ABEF,ACPQ,BCMN,四块阴影部分的面积分别为S1,S2,S3,S4,则S1+S2+S3+S4等于18.三、解答题(共50分)16.(8分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)求△ABC的面积;(2)求AB,AC的长.解:(1)S△ABC=12×7×5=17.5.(2)由勾股定理,得AB=32+52=34,AC=42+52=41.17.(10分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BC=6,AC=8,求AB与CD的长.解:在△ABC中,∠ACB=90°,BC=6,AC=8,由勾股定理,得AB=BC2+AC2=10,∵S△ABC=12AB·CD=12AC·BC,∴CD=AC·BC AB =8×610=4.8.18.(10分)如图,∠AOB=90°,OA =45 cm ,OB =15 cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?解:因为小球滚动的速度与机器人行走的速度相等,运动时间相等,所以BC =CA. 设AC =BC =x ,则OC =45-x ,由勾股定理可知OB 2+OC 2=BC 2.又因为OB =15,所以152+(45-x)2=x 2.解得x =25.答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是25 cm.19.(10分)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》:用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步:S 6=n ;第二步:n =k ;第三步:分别用3,4,5乘k ,得三边长.当面积S 等于150时,请用“积求勾股法”求出这个直角三角形的三边长. 解:当S =150时,k =n =S 6=1506=25=5, ∴三边长分别为3×5=15,4×5=20,5×5=25.∴这个直角三角形的三边长为15,20,25.20.(12分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H(点H 与点D 不重合),通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于点E ,延长EG 交CD 于点F.如图1,当点H 与点C 重合时,易证得FG =FD(不要求证明);如图2,当点H 为边CD 上任意一点时,求证:FG =FD.【应用】 在图2中,已知AB =5,BE =3,则FD =54,△EFC 的面积为154.(直接写结果)证明:连接AF ,由折叠的性质可得,AB =AG =AD.在Rt△AGF 和Rt△ADF 中,⎩⎪⎨⎪⎧AG =AD ,AF =AF ,∴Rt△AGF≌Rt△ADF(HL).∴FG=FD.。

人教版八年级数学下册《勾股定理》PPT精品教学课件

人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2

3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了

习题word版:第十七章 勾股定理

习题word版:第十七章  勾股定理

第十七章 勾股定理17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,能得到勾股定理吗?解:∵梯形的面积为12(a +b)(a +b)=12ab +12ab +12c 2,∴a 2+2ab +b 2=ab +ab +c 2. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C ) A .a 2+b 2=c 2 B .b 2+c 2=a 2 C .a 2+c 2=b 2 D .c 2-a 2=b 2 4.(2019·平顶山期末)在△ABC 中,∠B =90°.若BC =3,AC =5,则AB 等于(C ) A .2 B .3 C .4 D .34 5.已知直角三角形中30°角所对的直角边的长是2 3 cm ,则另一条直角边的长是(C ) A .4 cm B .4 3 cm C .6 cm D .6 3 cm 6.(2019·毕节)如图,点E 在正方形ABCD 的边AB 上.若EB =1,EC =2,则正方形ABCD 的面积为(B ) A .3 B .3 C . 5 D .57.(2019·洛阳期中)如图,在△ABC 中,AB ⊥AC ,AB =5 cm ,BC =13 cm ,BD 是AC 边上的中线,则△BCD 的面积是15__cm 2.8.(2019·郑州高新区期末)如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为64.【变式】 如图,以Rt △ABC 的三边为直径分别向外作三个半圆S 1,S 2,S 3.若S 2=32π,S 3=18π,则斜边上半圆的面积S 1=50π.知识点3赵爽弦图9.【关注数学文化】(2019·咸宁)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(B),A) ,B) ,C) ,D)10.(2019·大庆)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是1.易错点直角边不确定时漏解11.(2019·洛阳期中)已知Rt△ABC的三边长为a,4,5,则a的值是(C)A.3 B.41C.3或41 D.9或4102中档题12.(本课时T8变式)如图,分别以Rt△ABC的三边为边长向外作等边三角形.若AB=4,则三个等边三角形的面积之和是(A)A.8 3 B.6 3C.18 D.1213.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB 上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6C.3 2 D.2114.(2019·河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为(A)A.2 2 B.4C.3 D.1015.(2018·荆州)为了比较5+1与10的大小,可以构造如图所示的图进行推算,其中∠C =90°,BC =3,D 在BC 上且BD =AC =1.通过计算可得5+1>10.(填“>”“<”或“=”)16.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为32或42. 17.如图,在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84., 03 综合题) 18.(2019·毕节改编)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,求CD 的长度.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =60°,AC =10, ∴∠ABC =30°.∴AB =2AC =20,BC =AB 2-AC 2=10 3. ∵AB ∥CF ,∴∠BCM =∠ABC =30°.∴BM =12BC =12×103=5 3.∴CM =BC 2-BM 2=15. 在△EFD 中,∠F =90°,∠E =45°, ∴∠EDF =45°. ∴MD =BM =5 3.∴CD =CM -MD =15-5 3.第2课时勾股定理的应用01基础题知识点1勾股定理在平面图形中的应用1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.2.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:①测得BD的长度为15米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高为1.6米.求风筝的高度CE.解:在Rt△CDB中,由勾股定理,得CD=CB2-BD2=252-152=20(米).∴CE=CD+DE=20+1.6=21.6(米).答:风筝的高度CE为21.6米.3.(2019·郑州管城区月考)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,它们同时出发,一个半小时后,甲、乙两渔船相距多少海里?解:由题意,得BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,AB=BO2+AO2=15(海里).答:甲、乙两渔船相距15海里.知识点2两次勾股定理的应用4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米5.(教材P25例2变式)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC 上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.知识点3利用勾股定理求两点间的距离6.(2019·常州)平面直角坐标系中,点P(-3,4)到原点的距离是5.7.(教材P26练习T2变式)如图,在平面直角坐标系中,A(4,4),B(1,0),C(0,1),则B,C两点间的距离是2;A,C两点间的距离是5;A,B两点间的距离是5.8.(2019·大庆)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km 至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1.732);(2)确定C港在A港的什么方向.解:(1)由题意,得∠PBC=30°,∠MAB=60°.∴∠CBQ=60°,∠BAN=30°.∴∠ABQ=30°.∴∠ABC=∠ABQ+∠CBQ=90°.∵AB=BC=10,∴在Rt△ABC中,AC=AB2+BC2=102≈14.1.答:A,C两港之间的距离约为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°.∴∠CAM=60°-45°=15°.∴C港在A港北偏东15°的方向上.02中档题9.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D)A.4米B.8米C.9米D.7米10.(2019·南京)无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.11.【方程思想】如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5 m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1 m,离秋千支柱AD的水平距离BE为1.5 m(不考虑支柱的直径).求秋千支柱AD的高.解:设AD=x m,则由题意可得AB=(x-0.5)m,AE=(x-1)m.在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2.解得x=3.答:秋千支柱AD的高为3 m.12.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100 m的P处.这时,一辆轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3 s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80 km/h的限制速度?解:在Rt△APO中,∠APO=60°,则∠P AO=30°.∴AP=2OP=200 m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100 m.∴AB=AO-BO=(1003-100)m.∴从A到B小车行驶的速度为(1003-100)÷3≈24.4(m/s)=87.84 km/h>80 km/h.∴此车超过80 km/h的限制速度.03综合题13.【分类讨论思想】如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC 以1 cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.∴BC=4 cm.(2)由题意,知BP=t cm,①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,∴t=4;②当∠BAP为直角时,如图2,BP=t cm,CP=(t-4)cm,AC=3 cm,在Rt△ACP中,AP2=AC2+CP2=32+(t-4)2.在Rt△BAP中,AB2+AP2=BP2,即52+[32+(t-4)2]=t2.解得t =254.∴当△ABP 为直角三角形时,t =4或254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数 1.(教材P 27练习T 1变式)(2019·河南期末)如图,数轴上点A 对应的数是0,点B 对应的数是1,BC ⊥AB ,垂足为B ,且BC =2,以点A 为圆心,AC 长为半径画弧,交数轴于点D ,则点D 表示的数为(D )A .2.2B . 2C . 3D . 52.在数轴上作出表示10的点(保留作图痕迹,不写作法). 解:略.知识点2 网格中的无理数3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),则线段AB 的长度为(C ) A . 2 B . 3 C . 5 D .34.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D ,则CD 的长为(A ) A .255 B .355 C .455 D .455.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:如图所示.知识点3 等腰三角形中的勾股定理6.将一副三角尺按如图所示叠放在一起,若AB =12 cm ,则AF =62cm .7.(2019·天水)如图,等边△OAB 的边长为2,则点B 的坐标为(B ) A .(1,1) B .(1,3) C .(3,1) D .(3,3)8.(教材P27练习T2变式)如图,在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的底边上的高与面积.解:过点A 作AD ⊥BC 于点D , ∵AB =AC =13 cm ,∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52 =12(cm),即等腰三角形底边上的高为12 cm.∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 9.(2019·驻马店汝南县期末)如图,在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D.若 AC =3,BC =4,则BD 的长是(A )A .2B .3C .4D .510.如图,图中小正方形的边长为1,△ABC 的周长为(B )A .16B .12+4 2C .7+7 2D .5+11 211.(教材P 27练习T 1变式)如图,数轴上点A 所表示的实数是5-1.12.点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离为355.13.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8, ∴BD =BE 2-DE 2=82-42=4 3.14.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点. (1)在图1中,以格点为端点,画线段MN =13;(2)在图2中,以格点为顶点,画正方形ABCD ,使它的面积为10.解:(1)如图. (2)如图.03 综合题15.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n=(n -1)2+1=n ,S n =n2(n 为正整数). (2)OA 210=(9)2+1=10, ∴OA 10=10.(3)S 21+S 22+S 23+…+S 210 =(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 利用勾股定理解决最短路径问题 ——教材P39复习题T12的变式与应用【例】 如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路程,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的直线AA ′剪开,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.解:如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根据勾股定理,得 AB 2=A ′A 2+A ′B 2=122+92=225. ∴AB =15.∴需要爬行的最短路程是15 cm.图例圆柱――→展开长方 体阶梯 问题基本 思路将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线→构造直角三角形→利用勾股定理求解.1.(2018·禹州期中)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)2.如图是一个三级台阶,它的每一级的长、宽、高分别为24 dm,3 dm,3 dm,点A和点B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是30__dm.3.如图,长方体的高为5 cm,底面长为4 cm,宽为1 cm.(1)点A1到点C2之间的距离是多少?(2)若一只蚂蚁从点A2爬到C1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm,底面长为4 cm,宽为1 cm,∴A2C2=42+12=17(cm).∴A1C2=52+(17)2=42(cm).(2)如图1所示,A2C1=52+52=52(cm).如图2所示,A2C1=92+12=82(cm).如图3所示,A2C1=62+42=213(cm).∵52<213<82,∴一只蚂蚁从点A2爬到C1,爬行的最短路程是5 2 cm.小专题(三)方程思想在勾股定理中的应用——教材P39复习题T10的解法剖析及变式应用【教材母题】一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)解:设AB=x尺,根据题意,得∠BAC=90°,AB+BC=10尺,∴BC =(10-x )尺. ∵AC 2+AB 2=BC 2, ∴32+x 2=(10-x )2,解得x =41120.答:折断处离地面41120尺.在一个直角三角形中,若已知两边长,可直接运用勾股定理求第三边长,若已知一边长,且知另两边具有一定的数量关系,可利用方程思想,设出一边长,利用数量关系表示另一边长,借助勾股定理这一等量关系列出方程解决问题,其中两边的数量关系主要有两种呈现形式:一是直角三角形中有特殊角,二是出现图形的折叠.类型1 利用直角三角形中的特殊角揭示两边的数 量关系1.求下列直角三角形中未知的边长.解:如图1,设AC =x ,∵∠ACB =90°,∠B =30°, ∴AB =2x.∵AB 2=AC 2+BC 2,∴(2x)2=x 2+32.∴x =3或-3(负值舍去). ∴AC =3,AB =2 3.如图2,设AC =x ,∵∠ACB =90°,∠A =45°,∴BC =AC =x.∵AB 2=AC 2+BC 2,∴x 2+x 2=(32)2.∴x =3或-3(负值舍去). ∴AC =BC =3.类型2 利用图形的折叠找两边的数量关系2.如图,在Rt △ABC 中,AB =6,BC =4,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为(C )A .53B .52C .83D .53.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.4.如图,把长方形纸片ABCD 折叠,使其对角顶点A 与C 重合.若长方形的长BC 为8,宽AB 为4,则折痕EF 的长度为25.类型3 利用勾股定理和方程思想求点的坐标5.如图,在平面直角坐标系中,A(1,3),试在x 轴上找一点P ,使△OAP 为等腰三角形,求出P 点的坐标.解:过点A 作AB ⊥x 轴,垂足为B. ∵A(1,3),∴OB =1,AB =3. ∴OA =12+32=10.当AO =AP 时,以A 为圆心,AO 长为半径画弧与x 轴交于点O 与点P 1, ∵AB ⊥x 轴,∴BP 1=BO =1,即P 1(2,0);当OA =OP 时,以O 为圆心,OA 长为半径画弧与x 轴交于点P 2,P 3, ∵OA =10,∴P 2(10,0),P 3(-10,0);当PA =PO 时,作OA 的垂直平分线交x 轴于点P 4. 设OP 4=x ,则BP 4=x -1,AP 4=OP 4=x.在Rt △ABP 4中,AP 24=AB 2+BP 24, ∴x 2=32+(x -1)2.解得x =5,即P 4(5,0).综上所述,使△OAP 为等腰三角形的点P 有:P 1(2,0),P 2(10,0),P 3(-10,0),P 4(5,0).17.2 勾股定理的逆定理01 基础题 知识点1 互逆命题1.下列各命题的逆命题不成立的是(C ) A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b 2.(2019·安徽)命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为如果a ,b 互为相反数,那么a +b =0.逆命题是真命题.(填“真命题”或“假命题”)知识点2 勾股定理的逆定理 3.(2019·郑州期末)下面四组数,其中是勾股数组的是(A ) A .3,4,5 B .0.3,0.4,0.5 C .32,42,52 D .6,7,8 4.(2019·洛阳洛龙区期中)由线段a ,b ,c 组成的三角形不是直角三角形的是(D ) A .a 2-b 2=c 2B .a =54,b =1,c =34C .a =2,b =3,c =7D .∠A ∶∠B ∶∠C =3∶4∶5 5.(2019·益阳)已知M ,N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出两组不同于以上所给出的基本勾股数:答案不唯一,如:5,12,13;7,24,25.7.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a=3,b=22,c=5;(2)a=5,b=7,c=9;(3)a=5,b=26,c=1.解:(1)是,∠B是直角.(2)不是.(3)是,∠A是直角.8.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,∴根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5.∵AC2+CD2=52+122=25+144=169,AD2=132=169,∴AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.02中档题9.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10 B.11 C.12 D.1310.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°11.【关注数学文化】(2018·长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为(A)A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.如图,方格中的点A,B称为格点(横线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为(B)A.3 B.4 C.5 D.613.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.14.(教材P34习题T6变式)如图,在正方形ABCD中,E,F分别BC,CD边上的一点,且BE=2EC,FC=2 9DC,连接AE,AF,EF,求证:△AEF是直角三角形.证明:设FC =2a ,则DC =9a ,DF =7a. ∴AB =BC =AD =CD =9a. ∵BE =2CE ,∴BE =6a ,EC =3a.在Rt △ECF 中,EF 2=EC 2+FC 2=(3a)2+(2a)2=13a 2. 在Rt △ADF 中,AF 2=AD 2+DF 2=(9a)2+(7a)2=130a 2. 在Rt △ABE 中,AE 2=AB 2+BE 2=(9a)2+(6a)2=117a 2. ∵13a 2+117a 2=130a 2, ∴EF 2+AE 2=AF 2.∴△AEF 是以∠AEF 为直角的直角三角形.15.(教材P 34习题T 5变式)如图,在四边形ABCD 中,AB =BC =1,CD =3,DA =1,且∠B =90°.求: (1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号);(3)将△ABC 沿AC 翻折至△AB′C ,如图所示,连接B′D ,求四边形ACB′D 的面积.解:(1)∵AB =BC =1,∠B =90°, ∴∠BAC =∠ACB =45°,AC =AB 2+BC 2= 2. 又∵CD =3,DA =1, ∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°.(2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.(3)过点D 作DE ⊥AB′,垂足为E , 由(1)知∠DAC =90°.根据折叠可知∠B′AC =∠BAC =45°,AB =AB′=1,S △AB′C =S △ABC =12.∴∠DAE =∠DAC -∠B′AC =45°. ∴AE =DE.设DE =AE =x ,在Rt △ADE 中,AE 2+DE 2=AD 2. ∴x 2+x 2=1.∴x =22.∴S △ADB′=12×1×22=24.∴S 四边形ACB′D =S △AB′C +S △ADB′=12+24=2+24.03 综合题16.(2019·呼和浩特改编)如图,在△ABC 中,内角∠A ,∠B ,∠C 所对应的边分别为a ,b ,c.(1)若a ,b ,c 满足aa -b +c=12(a +b +c )c ,求证:△ABC 是直角三角形;(2)若a =m -n ,b =2mn ,c =m +n ,(其中m ,n 都是正整数,且m>n),求证:△ABC 是直角三角形.证明:(1)原式可变形为aa +c -b=a +b +c 2c ,∴(a +c)2-b 2=2ac ,即a 2+2ac +c 2-b 2=2ac. ∴a 2+c 2=b 2.∴△ABC 是以∠B 为直角的直角三角形.(2)∵a 2=(m -n)2,b 2=(2mn)2=4mn ,c 2=(m +n)2, ∴(m -n)2+4mn =(m +n)2,即a 2+b 2=c 2. ∴△ABC 是以∠C 为直角的直角三角形.章末复习(二)勾股定理01分点突破知识点1勾股定理(河南中招2019T9选,2018T9选,2017T18(2)解,2016T6选,2015T7选,2014T7选) 1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A.6 B.6 2C.6 3 D.122.如图,阴影部分是一个正方形,则此正方形的面积为64cm2.3.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴在△ACD中,AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 mB.13 mC.16 mD.17 m5.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在宽0.9 m,长1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5__m长.6.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO 长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题及逆定理7.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用8.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形9.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且a2-b2=c2,则下列说法正确的是(C)A.∠C是直角B.∠B是直角C.∠A是直角D.∠A是锐角02易错题集训10.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是100或28.11.(2018·襄阳)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为23或27.03河南常考题型演练12.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+113.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A)A.8 cm B.6 cmC.5.5 cm D.1 cm14.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD15.(2019·信阳罗山县模拟)如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为(B)A.8 B.9.6 C.10 D.4 516.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.17.(2019·枣庄)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=6-2.18.(2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D 间的距离为13km.19.如图,有一块空白地,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2.解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°.∴S四边形ABCD=S Rt△ACB-S Rt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96 m2.04核心素养专练20.(2019·邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c=10,则小正方形ABCD的面积是4.周测(第十七章)(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(C)A.8,15,17 B.2,3, 5C.3,2, 5 D.1,2, 52.已知命题:等边三角形是等腰三角形,则下列说法正确的是(B)A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.点A(-3,-4)到原点的距离为(C)A.3 B.4 C.5 D.74.如图,数轴上点A表示的数是0,点B表示的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC 的长为半径画弧,与数轴交于点D,则点D表示的数为(B)A .1.4 B. 2 C. 3 D .25.将直角三角形的三条边长同时扩大一倍,得到的三角形是(C ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .等腰三角形6.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3.若AC =4,则AB 的长为(D ) A .8 B .6 C .433 D .8337.下面各三角形中,面积为无理数的是(C )8.如图,将边长为12的正方形ABCD 折叠,使得点A 落在CD 边上的点E 处,折痕为MN.若CE 的长为7,则MN 的长为(B )A .10B .13C .15D .无法求出9.已知直角三角形两条直角边的长之和为6,斜边长为2,则这个三角形的面积是(B ) A .0.25 B .0.5 C .1 D .2 310.已知一个直角三角形的斜边长为3,若以三边为斜边分别向外作等腰直角三角形,则所作的三个等腰直角三角形的面积和为(A )A .92B .94C .3D .9 二、填空题(每小题4分,共20分)11.直角三角形斜边长是6,一直角边的长是5,则此直角三角形的另一直角边长为11.12.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB x 轴的负半轴于点C ,则点C 的坐标为(-1,0).13.如图,每个小正方形的边长均为1,则△ABC 边AC 上的高BD 的长为85.14.如图,在△ABC 中,AB ∶BC ∶CA =3∶4∶5,且周长为36 cm ,点P 从点A 开始沿AB 边向点B 以每秒1 cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2 cm 的速度移动.若同时出发,则过3秒时,△BPQ 的面积为18cm 2.15.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4.分别以AB ,AC ,BC 为边在AB 的同侧作正方形ABEF ,ACPQ ,BCMN ,四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于18.三、解答题(共50分)16.(8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上.(1)求△ABC 的面积;(2)求AB ,AC 的长. 解:(1)S △ABC =12×7×5 =17.5.(2)由勾股定理,得AB =32+52=34,AC =42+52=41.17.(10分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,BC =6,AC =8,求AB 与CD 的长.解:在△ABC 中,∠ACB =90°,BC =6,AC =8,由勾股定理,得AB =BC 2+AC 2=10,∵S △ABC =12AB·CD =12AC·BC , ∴CD =AC·BC AB =8×610=4.8.18.(10分)如图,∠AOB =90°,OA =45 cm ,OB =15 cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?解:因为小球滚动的速度与机器人行走的速度相等,运动时间相等,所以BC =CA.设AC =BC =x ,则OC =45-x ,由勾股定理可知OB 2+OC 2=BC 2.又因为OB =15,所以152+(45-x)2=x 2.解得x =25.答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是25 cm .19.(10分)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》:用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步:S 6=n ;第二步:n =k ;第三步:分别用3,4,5乘k ,得三边长.当面积S 等于150时,请用“积求勾股法”求出这个直角三角形的三边长.解:当S =150时,k =n =S 6=1506=25=5, ∴三边长分别为3×5=15,4×5=20,5×5=25.∴这个直角三角形的三边长为15,20,25.20.(12分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H(点H 与点D 不重合),通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于点E ,延长EG 交CD 于点F.如图1,当点H 与点C 重合时,易证得FG =FD(不要求证明);如图2,当点H 为边CD 上任意一点时,求证:FG =FD.【应用】 在图2中,已知AB =5,BE =3,则FD =54,△EFC 的面积为154.(直接写结果)证明:连接AF ,由折叠的性质可得,AB =AG =AD.在Rt △AGF 和Rt △ADF 中,⎩⎪⎨⎪⎧AG =AD ,AF =AF , ∴Rt △AGF ≌Rt △ADF(HL ).∴FG =FD.。

八年数学下册第17章勾股定理17.1勾股定理第3课时勾股定理在几何中的应用课件新版新人教版

八年数学下册第17章勾股定理17.1勾股定理第3课时勾股定理在几何中的应用课件新版新人教版
第十七章 勾股定理
17.1 勾股定理
第3课时 勾股定理的几 何应用
1 课堂讲解 用勾股定理在数轴上表示实数
勾股定在几何问题中的应用
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
某拍卖行贴出了如下的一个土地拍卖广告: 如下图,有面积为560英亩的土地拍卖,土地共分三 个正方形,面积分别为74英亩、116英亩、370英亩.三 个正方形恰好围着一个池塘,如果有人能计算出池塘的 准确面积.则池塘不计入土 地价钱白白奉送.英国数学 家巴尔教授曾经巧妙地解答 了这个问题,你能解决吗?
知1-练
解:如图所示.作法: (1)在数轴上找出表示4的点A,则OA=4; (2)过A作直线l垂直于OA; (3)在直线l上取点B,使AB=1; (4)以原点O为圆心,以OB为半径作弧,弧与 数轴的交点C即为表示 1 7 的点.
知1-练
2 如图,点C表示的数是( D )
A.1
B. 2 C.1.5
D. 3
图1
如图2,先作出与已知线段AB垂直,
且与已知线段的端点A相交的直线l,
在直线l上以A为端点截取长为2a的线
段AC,连接BC,则线段BC即为所求.
解:如图2,BC就是所ห้องสมุดไป่ตู้作的线段.
图2
总结
知1-讲
这类问题要作的线段一般是直角三角形的斜 边,根据勾股定理由要作的线段确定两直角边的 长是解题的关键.
1 在数轴上做出表示 1 7 的点.
知2-练
1 如图,等边三角形的边长是6.求: (1)高AD的长; (2)这个三角形的面积.
解:(1)由题意可知,在Rt△ADB中, AB=6,BD= 1 BC=3,∠ADB=90°. 2 由勾股定理,

第十七章 勾股定理 单元解读 课件(共13张PPT)2024-2025学年人教版八年级数学下册

第十七章 勾股定理 单元解读 课件(共13张PPT)2024-2025学年人教版八年级数学下册
勾股定理
单元教材解 读
课标解读
教学内容
课标要求
17.1 勾股定理 17.2 勾股定理的逆定理
探索勾股定理及其逆定理,并能运用它们解决 一些简单的实际问题
学习目标
教学内容
学习目标
17.1 勾股定理
1.经历勾股定理的探索过程,了解关 于勾股定理的文化历史背景. 2.会运用勾股定理在数轴上确定无理 数对应的点. 3.能利用勾股定理解决一些简单问题.
直角三角形是一种极常见而特殊的三角形,它有许多性质.本章所研究的勾股 定理,就是直角三角形非常重要的性质之一,有极其广泛的应用.不仅在平面 几何中是重要的定理,而且在三角学、解析几何学、微积分学中都是理论的基 础,对现代数学的发展也产生了重要而深远的影响.本章教学时间约需9个课 时,具体安排如下(仅供参考):
互逆定理
一般的,如果一个定理的逆命题经过证明是正确的, 那么它也是一个定理,称这两个定理互为逆定理.
知识结构
内容
a2 b2 c(2 a , b, c为三角形的
三边长) 直角三角形
勾股定理 的逆定理
互逆定理
勾股定理
应用 勾股数
判断三角形是否为直角三角形
能够成为直角三角形三条边长 的三个正整数
课时安排
通过这一节内容的学习,可以培养 学生逻辑思维能力、分析问题和解 决问题的能力.
教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.
17.2 勾股定理的逆定出猜想,然后 通过全等三角形证明了勾股定理的逆定理.并在其中穿插介绍了逆命题、逆定理的概 念,通过举例说明原命题成立其逆命题不一定成立.
17.1 勾股定理 17.2 勾股定理的逆定理

人教版八下数学17.1 课时3 利用勾股定理作图或计算教案+学案

人教版八下数学17.1 课时3 利用勾股定理作图或计算教案+学案

人教版八年级下册数学第17章勾股定理17.1 勾股定理课时3 利用勾股定理作图或计算教案【教学目标】1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【教学重点】会运用勾股定理确定数轴上表示实数的点及解决网格问题.【教学难点】灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【教学过程设计】一、情境导入[过渡语] 上一节课,我们学会了利用勾股定理解决生活中的实际问题.本节课我们将继续研究勾股定理的综合运用.我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢?[设计意图] 在七年级时,学生只能找到数轴上的表示有理数的点,而对于表示像,这样的无理数的点却找不到.学习了勾股定理后,这样的问题就可以得到解决.由旧入新,开门见山导入新课.[过渡语]同学们,我们一起来欣赏一幅图片:这个美丽的图案是怎么画出来的呢?它依据的是什么数学知识?[设计意图] 以图案导入,在直观形象的图案欣赏中吸引了学生的注意力,加上巧妙设问,为新课的展开做好了铺垫.二、合作探究1.利用勾股定理证明HL定理[过渡语]让我们一起来探究下面的问题:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?师生共同画图,写出已知、求证.引导学生关注画图的过程,思考哪些元素相等.已知:如图所示,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.求证:Rt△ABC≌Rt△A'B'C'.〔解析〕要证明Rt△ABC≌Rt△A'B'C',难以找到锐角对应相等,只有找第三边相等,发现可以根据勾股定理得到BC=,B'C'=,容易得到BC=B'C'.证明:在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,根据勾股定理,得:BC=,B'C'=.又AB=A'B',AC=A'C',∴BC=B'C'.∴△ABC≌△A'B'C'(SSS).2.利用勾股定理在数轴上表示无理数思路一[过渡语]下面我们回到导入一的问题,一起来看:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢?学生回忆以前的作法,并运用勾股定理计算,长为的线段是两条直角边的长都为1的直角三角形的斜边.学生尝试在数轴上找到表示的点.OB是以数轴的单位长度为边的正方形的对角线,以数轴的原点为圆心、OB长为半径画弧,交数轴正半轴于点A,则点A表示的数是.小组交流讨论:找到长为的线段所在的直角三角形.教师可指导学生寻找长为,……这样的包含在直角三角形中的线段.逐步引导学生得出,由于在数轴上表示的点到原点的距离为,所以只需画出长为的线段即可.设c=,两直角边为a,b,根据勾股定理得a2+b2=c2,即a2+b2=13,若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3.所以长为的线段是直角边长为2,3的直角三角形的斜边.学生在数轴上画出表示的点.教师根据巡视情况指导步骤如下:(1)在数轴上找到点A,使OA=3;(2)作直线l垂直于OA,在l上取一点B,使AB=2;(3)连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.学生自由作图,教师适当指导.利用勾股定理作出长为,,……的线段,按照同样方法,在数轴上画出表示,,……的点.[设计意图]利用勾股定理和数轴上的点表示实数,将数与形进一步联系在一起,渗透数形结合思想,加深对勾股定理、数轴和实数的理解.思路二引导学生观察图案发现:图形由若干个直角三角形形成,是根据我们所学的勾股定理来完成的.最后教师总结画图的方法:先构造出直角边长为1的等腰直角三角形,并以前一个三角形的斜边及长度为1的线段为直角边,以此向外画直角三角形,就可以得到问题中的图案了.提问:我们知道是两条直角边的长都为1的直角三角形的斜边的长,可是在数轴如何表示出?如何表示出呢?学生根据观察的结果思考在数轴上如何表示出,.教师根据情况指点.追问:你能在数轴上找出表示的点吗?学生讨论:利用勾股定理把长为的线段看成一个直角三角形的斜边,那么两条直角边长分别是哪两个正整数?学生发现()2=22+32后,尝试作图,教师讲解,师生再共同完成.作法:在数轴上找到点A,使OA=3;过点A作直线l垂直于OA,在l上取一点B,使AB=2,连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C 即为表示的点.[设计意图]通过观察感知,讨论分析,规范作图,一步紧扣一步,让学生明白如何利用勾股定理在数轴上找到表示无理数的点.[知识拓展]在数轴上表示无理数时,将在数轴上表示无理数的问题转化为画长为无理数的线段问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中两条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点为圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.3.例题讲解(补充)如图所示,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.学生讨论:如何构造直角三角形?比较发现:可以连接AC,或延长AB,DC交于F,或延长AD,BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单.解:延长AD,BC交于E,如图所示.∵∠A=60°,∠B=90°,∴∠E=30°.∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==4.DE2=CE2-CD2=42-22=12,DE==2.∴S四边形ABCD=S△ABE-S△CDE= AB·BE- CD·DE=6.[解题策略]不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.三、课堂小结师生共同回顾本节课所学主要内容:1.用勾股定理在数轴上表示无理数,构造长为无理数的线段放在直角三角形中,有时是直角边,有时是斜边.2.求不规则图形的面积,应用割补法把图形分解为特殊图形,四边形中常常通过作辅助线构造直角三角形,以利用勾股定理.【板书设计】17.1 勾股定理课时3 利用勾股定理作图或计算1.利用勾股定理证明HL定理2.利用勾股定理在数轴上表示无理数3.例题讲解例题.【教学反思】在课堂教学中注重数学与生活的联系,注重数学知识的应用,从学生认知规律和接受水平出发,循序渐进地引入新课,成功地引导学生会将长为无理数的线段看成一个直角三角形的斜边,再按照尺规作图的要求,在数轴上找出表示无理数的点.由于学生尺规作图的能力较差,学生在确定了作图思路之后,却难以按照尺规作图的步骤完成作图.教师指导在数轴上找出表示无理数的点,示范作图步骤.教学中,根据学生的基础情况,适当进行复习,帮助学生解决学习中的困难.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时3 利用勾股定理作图或计算学案【学习目标】1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【学习重点】会运用勾股定理确定数轴上表示实数的点及解决网格问题.【学习难点】灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【自主学习】一、知识回顾1.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表示3,-2.5的点吗?2.求下列三角形的各边长.二、合作探究知识点1:勾股定理与数轴呢?(提示:可以构造直角三角形想一想 1.你能在数轴上表示出2的点吗?2作出边长为无理数的边,就能在数轴上画出表示该无理数的点.)2.长为13的线段能是这样的直角三角形的斜边吗,即是直角边的长都为正整数?3.13.(1)在数轴上找到点A,使OA=______;(2)作直线l____OA,在l上取一点B,使AB=_____;(3)以原点O为圆心,以______为半径作弧,弧与数轴交于C点,则点C即为表示______的点.要点归纳:利用勾股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.类似地,利用勾股定理可以作出长2,3,5为线段,形成如图所示的数学海螺.【典例探究】例1如图,数轴上点A所表示的数为a,求a的值.易错点拨:求点表示的数时注意画弧的起点不从原点起,因而所表示的数不是斜边长.【跟踪检测】1.如图,点A表示的实数是()A. 3B. 5C. 3D.5--2.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2B.5 1C.10 1D.53.你能在数轴上画出表示17的点吗?知识点2:勾股定理与网格综合求线段长【典例探究】第1题图第2题图例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC 各顶点的坐标,并求出此三角形的周长.方法总结:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.例3 如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求AB边上的高.方法总结:此类网格中求格点三角形的高的题,常用方法是利用网格求面积,再用面积法求高.【跟踪检测】1.如图是由4个边长为1的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多可以作出多少条长度为5的线段?2.如图,在5×5正方形网格中,每个小正方形的边长均为1,画出一个三角形的长分别为2,2,10.知识点3:勾股定理与图形的计算【典例探究】例4 如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.方法总结:折叠问题中结合勾股定理求线段长的方法:(1)设一条未知线段的长为x(一般设所求线段的长为x);(2)用已知线数或含x的代数式表示出其他线段长;(3)在一个直角三角形中应用勾股定理列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.变式题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.【跟踪检测】1.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD 的面积.三、知识梳理利用勾股定理作图或计算在数轴上表示出无理数的点利用勾股定理解决网格中的问题通常与网格求线段长或面积结合起来利用勾股定理解决折叠问题及其他图形的计算通常用到方程思想四、学习中我产生的疑惑【学习检测】1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.25BA2.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后点D做一条垂直于数轴的线段CD,CD为3个单位第1题图第2题图第3题图长度,以原点为圆心,以到点C的距离为半径作弧,交数轴于一点,则该点位置大致在数轴上()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的高为_______.4.边长分别为2cm和3cm的长方形的一条对角线长为_______cm.5.如果等腰直角三角形的斜边长为_______cm,那么这个三角形的面积是_______cm2.6. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为_______.7. 如图,A是数轴上一点,以OA为边长作正方形ABCO,以OB为半径作半圆交数轴于P1、P2两点.(1)当点A表示的数是1时,P1表示的数是_______,P2表示的数是_______;(2) 当点A表示的数是2时,P1表示的数是_______,P2表示的数是_______.8. 边长为3的正方形的一条对角线长是_______.9.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.10. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,求重叠部分△AFC的面积.11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角,则梯子的顶端沿墙面升高了多少米?12.问题背景:在△ABC中,AB、BC、AC三边的长分别为5103a、、,求这个三角形的面积.王琼同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)求△ABC的面积;a a a(a>0),请利用图②的正方形网格(每(2)若△ABC三边的长分别为5,22,17个小正方形的边长为a)画出相应的△ABC,并求出它的面积.图①图②13.如图所示,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是,点B表示的数是.14.如图所示,在Rt△AOB中,OB=1,AB=2,以原点O为圆心,OA为半径画弧,交数轴负半轴于点P,则点P表示的实数是.15.如图所示,4×4方格中每个小正方形的边长都为1.(1)直接写出图(1)中正方形ABCD的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的格点上),并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.。

勾股定理的计算、作图听课手册

勾股定理的计算、作图听课手册

2
2
第3课时 利用勾股定理计算、作图
目标二 利用勾股定理解决一些数学问题
例 2 教材补充例题 如图 17-1-12,折叠长方形的一边 AD, 使点 D 落在 BC 边的点 F 处,已知 AB=8 cm,BC=10 cm,求 CE 的 长.
图 17-1-12
第3课时 利用勾股定理计算、作图
[解析] 由折叠的性质知,AF=AD,DE=EF, 可设 CE=x cm,则 DE=(8-x)cm. 在 Rt△ABF 中,AF=10 cm,AB=8 cm, 根据勾股定理,可知 BF=6 cm, 所以 CF=4 cm. 在 Rt△CEF 中,根据勾股定理可得关于 x 的方程.
2 2
1 1 14 28 即 AD=4,所以△ABC 的面积为 BC·AD= × ×4= . 2 2 3 3
第3课时 利用勾股定理计算、作图
【归纳总结】运用勾股定理的“三注意”: (1)已知直角三角形的两边求第三边时,若未明确哪一条边是 斜边,则需分类讨论; (2)涉及三角形的高求边长时,若题目未附图,则需分高在三 角形内部和高在三角形外部两种情况求解; (3)若不能直接利用勾股定理求线段的长,则需设未知数,然 后建立方程求解.如例 2,例 3.
第3课时 利用勾股定理计算、作图
如图 17-1-14,在长方形 ABCD 中,AB=3,AD=1,AB 在数 轴上,若以点 A 为圆心,对角线 AC 的长为半径作弧,交数轴的正 半轴于点 M,则点 M 在数轴上对应的数为________.
图 17-1-14
第3课时 利用勾股定理计算、作图
解:∵在长方形 ABCD 中,AB=3,AD=1, ∴BC=AD=1. ∴AC= AB +BC = 3 +1 = 10. ∵圆弧交数轴的正半轴于点 M, ∴点 M 在数轴上对应的数为 10. 以上解答正确吗?若正确,请说明理由;若不正确,请写出 正确解答.

【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

微课堂第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.4个全等的直角三角形的直角边分别为a ,b ,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为 c 2+2×12ab =c 2+ab ,也可以表示为a 2+b 2+2×12ab =a 2+b 2+ab ,∴c 2+ab =a 2+b 2+ab. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 24.已知在Rt △ABC 中,∠C =90°,AC =2,BC =3,则AB 的长为(C )A .4B . 5C .13D .55.已知直角三角形中30°角所对的直角的边长是2 3 cm ,则另一条直角边的长是(C )A .4 cmB .4 3 cmC .6 cmD .6 3 cm 6.(2016·阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为6. 7.在△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.(1)a =7,b =24,求c ; (2)a =4,c =7,求b.解:(1)∵∠C =90°,∴△ABC 是直角三角形.∴a 2+b 2=c 2. ∴72+242=c 2.∴c2=49+576=625.∴c=25.(2)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴42+b2=72.∴b2=72-42=49-16=33.∴b=33.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.解:(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.02中档题9.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(C) A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C) A.48 B.60 C.76 D.8011.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(2016·东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于(C) A.10 B.8C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为13或119.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD =3.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是76.16.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15.(1)求AB 的长;(2)求CD 的长.解:(1)∵在Rt △ABC 中,∠ACB =90°,BC =15,AC =20, ∴AB =AC 2+BC 2=202+152=25.(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD .∴20×15=25CD .∴CD =12.17.(2016·益阳)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程. 作AD ⊥BC 于点D , 设BD =x ,用含x的代数式表示CD.→根据勾股定理,利用 AD 作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD 的长,再计算三角形面积.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017个等腰直角三角形的斜边长是(2)2017.习题解析第2课时 勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m 处折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是(D )A .5 mB .12 mC .13 mD .18 m第1题图 第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为15米;(注:BD ⊥CE)②根据手中剩余线的长度计算出风筝线BC 的长为25米; ③牵线放风筝的小明身高1.6米. 求风筝的高度CE.解:在Rt △CDB 中,由勾股定理,得CD =CB 2-BD 2=252-152=20(米).∴CE =CD +DE =20+1.6=21.6(米). 答:风筝的高度CE 为21.6米.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h 后相距30海里,问乙船每小时航行多少海里?解:设码头所在的位置为C ,1.5 h 后甲船所在位置为A ,乙船所在位置为B ,则 AC 与正北方向的夹角为45°,BC 与正北方向的夹角为45°, ∴∠ACB =90°.在Rt △ABC 中,∵AC =16×32=24(海里),AB =30海里.由勾股定理,得 BC 2=AB 2-AC 2=302-242=324.解得BC =18. ∴18÷32=12(海里/小时).答:乙船每小时航行12海里.知识点2勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC=0.5,AB=2,OB=OC.设OA=x,则OB=OA+AC=x+0.5.在Rt△OAB中,OA2+AB2=OB2,∴x2+22=(x+0.5)2.解得x=3.75.∴水深3.75尺.6.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?解:B为猴子的初始位置,则AB=10 m,C为池塘,则AC=20 m.设BD=x m,则树高AD=(10+x)m.由题意知BD+CD=AB+AC,∴x+CD=20+10.∴CD=(30-x)m.在Rt△ACD中,∠A=90°,由勾股定理得AC2+AD2=CD2,∴202+(10+x)2=(30-x)2.∴x=5.∴AD=10+5=15(m).故这棵树有15 m高.知识点3两次勾股定理的应用7.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B 距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草(D)A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D) A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了2cm.第11题图第12题图习题解析12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=220-150=70(cm).∴彩旗下垂时的最低处离地面的最小高度h为70 cm.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt △APO 中,∠APO =60°,则∠PAO =30°. ∴AP =2OP =200 m ,AO =AP 2-OP 2=2002-1002=1003(m ).在Rt △BOP 中,∠BPO =45°,则BO =OP =100 m .∴AB =AO -BO =1003-100≈73(m ). ∴从A 到B 小车行驶的速度为73÷3≈24.3(m /s )=87.48 km /h >80 km /h . ∴此车超过每小时80千米的限制速度.03 综合题15.如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度移动,设运动的时间为t s .(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值.解:(1)在Rt △ABC 中,由勾股定理,得BC 2=AB 2-AC 2=52-32=16. ∴BC =4 cm .(2)由题意,知BP =t cm ,①当∠APB 为直角时,如图1,点P 与点C 重合,BP =BC =4 cm , ∴t =4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 即52+[32+(t -4)2]=t 2. 解得t =254.∴当△ABP 为直角三角形时,t =4或t =254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则线段AB 的长度为(A )A .5B .6C .7D .25知识点3 等腰三角形中的勾股定理3.在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的边上的高与面积.解:过点A 作AD ⊥BC 于D , ∵AB =AC =13 cm , ∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52=12(cm).∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 4.(2017·南充)如图,等边△OAB 的边长为2,则点B 的坐标为(D )A .(1,1,)B .(3,1)C .(3,3)D .(1,3) 5.(2017·成都)如图,数轴上点A 所表示的实数是5-1.第5题图 第6题图6.(2017·乐山)点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离355.7.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8,DB =BE 2-DE 2=82-42=4 3.03 综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …求:(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n =(n -1)2+1=n ,S n=n2(n 为正整数). (2)OA 210=(9)2+1=10,∴OA 10=10. (3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 巧用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解.【例1】 直角三角形纸片的两直角边AC =8,BC =6,现将△ABC 如图折叠,折痕为DE ,使点A 与点B 重合,则BE 的长为254.1.(2017·黔西南)如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是94cm .第1题图 第2题图2.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.类型2 利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】 (教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的AA ′剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.【解答】 如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根裾勾股定理得:AB 2=A ′A 2+A ′B 2=122+92=225.∴AB =15.∴需要爬行的最短路径是15 cm.3.如图是一个高为10 cm ,底面圆的半径为4 cm 的圆柱体.在AA 1上有一个蜘蛛Q ,QA =3 cm ;在BB 1上有一只苍蝇P ,PB 1=2 cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是16π2+25cm.(结果用带π和根号的式子表示)第3题图 第4题图4.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m (精确到0.01 m ).5.如图,长方体的高为5 cm ,底面长为4 cm ,宽为1 cm .(1)点A 1到点C 2之间的距离是多少?(2)若一只蚂蚁从点A 2爬到C 1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm , ∴A 2C 2=42+12=17(cm ). ∴A 1C 2=52+(17)2=42(cm ). (2)如图1所示,A 2C 1=52+52=52(cm ). 如图2所示,A 2C 1=92+12=82(cm ). 如图3所示,A 2C 1=62+42=213(cm ).∵52<213<82,∴一只蚂蚁从点A 2爬到C 1,爬行的最短路程是5 2 cm .17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b2.写出下列命题的逆命题,并判断它们是真命题还是假命题.(1)如果两个三角形全等,那么这两个三角形的面积相等;(2)等腰三角形的两个底角相等.解:(1)如果两个三角形的面积相等,那么这两个三角形全等.是假命题. (2)有两个内角相等的三角形是等腰三角形.是真命题.知识点2 勾股定理的逆定理3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(B) A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 4.下列各组数是勾股数的是(A )A .3,4,5B .1.5,2,2.5C .32,42,52D .13,14,155.在△ABC 中,AB =8,AC =15,BC =17,则该三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有(C )A .1个B .2个C .3个D .4个7.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形8.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a =3,b =22,c =5; (2)a =5,b =7,c =9; (3)a =2,b =3,c =7; (4)a =5,b =26,c =1.解:(1)是,∠B是直角.(2)不是.(3)是,∠C是直角.(4)是,∠A是直角.9.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是不是直角三角形?为什么?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理,得AB2=AD2+BD2,AC2=AD2+CD2,又∵AD=12,BD=16,CD=5,∴AB=20,AC=13.∴△ABC的周长为AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)△ABC不是直角三角形.理由:∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.02中档题10.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10B.11C.12D.13c-10=0,那么下列说法中不正确的是(C) 11.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.812.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°13.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF 的度数为(C)A.50°B.60°C.70°D.80°14.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.15.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5 cm.∵AC2+CD2=52+122=25+144=169,AD2=132=169,即AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.16.如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).解:(1)连接AC.∵AB=BC=1,∠B=90°,∴∠BAC=∠ACB=45°,AC=AB2+BC2= 2.又∵CD=3,DA=1,∴AC2+DA2=CD2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.03 综合题17.在一次“探究性学习”课中,老师设计了如下数表:(1)请你分别观察a ,b ,c b ,c ,则a =n 2-1,b =2n ,c =n 2+1;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形?证明你的结论. 解:以a ,b ,c 为边的三角形是直角三角形.证明:∵a 2+b 2=(n 2-1)2+(2n)2=n 4-2n 2+1+4n 2=(n 2+1)2=c 2, ∴以a ,b ,c 为边的三角形是直角三角形.章末复习(二)勾股定理01基础题知识点1勾股定理1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A. 6 B.6 2C.6 3 D. 12第1题图第2题图2.如图,阴影部分是一个正方形,则此正方形的面积为64.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=2.4.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用5.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 mC.16 m D.17 m第5题图第6题图6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B 两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.7.(2016·烟台)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题与逆定理8.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用9.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形02中档题10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+1第10题图第11题图11.(2016·漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD 长为正整数,则点D的个数共有(C)A.5个B.4个C.3个D.2个12.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为(C) A.90°B.60°C.45°D.30°第12题图第13题图13.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD14.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.15.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC .∵∠ADC =90°,∴△ADC 是直角三角形.∴AD 2+CD 2=AC 2,即82+62=AC 2,解得AC =10.又∵AC 2+CB 2=102+242=262=AB 2,∴△ACB 是直角三角形,∠ACB =90°∴S 四边形ABCD =S Rt △ACB -S Rt △ACD=12×10×24-12×6×8 =96(m 2).故这块空白地的面积为96 m 2.16.小明将一副三角板按如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD =2,求AC 的长.解:∵BD =CD =2,∴BC =22+22=2 2.∴设AB =x ,则AC =2x.∴x 2+(22)2=(2x)2.∴x 2+8=4x 2.∴x 2=83. ∴x =263. ∴AC =2AB =436.03 综合题17.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,CD =PC =2,CD ⊥CP ,求∠BPC 的度数.解:连接BD.∵CD⊥CP,CP=CD=2,∴△CPD为等腰直角三角形.∴∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD(SAS).∴DB=P A=3.在Rt△CPD中,DP2=CP2+CD2=22+22=8. 又∵PB=1,DB2=9,∴DB2=DP2+PB2=8+1=9.∴∠DPB=90°.∴∠CPB=∠CPD+∠DPB=45°+90°=135°.。

八年级下 - 第17章勾股定理

八年级下 - 第17章勾股定理

初中数学第17章勾股定理 努力学习,改变自己,从easy 精英学习网开始第十七章 勾股定理17.1 勾股定理:a ²+b ²=c ²应用:①已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c ,b ,a )②已知直角三角形的一边与另两边的关系,求直角三角形的另两边。

17.2 勾股定理的逆定理(1)逆定理:如果三角形的三边长a 、b 、c 满足,a ²+b ²=c ²,那这个三角形是直角三角形。

应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。

(2)勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②常见勾股数,如3,4,5;6,8,10;5,12,13;7,24,25等(3)直角三角形的性质①直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90° ②在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°+∠C=90°⇒BC=21AB ③直角三角形斜边上的中线等于斜边的一半∠ACB=90°+D 为AB 的中点⇒CD=21AB=BD=AD (4)经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)(5)证明判断一个命题的正确性的推理过程叫做证明。

(6)证明的一般步骤①根据题意,画出图形。

②根据题设、结论、结合图形,写出已知、求证。

③经过分析,找出由已知推出求证的途径,写出证明过程。

八年级数学下册第十七章勾股定理17.1勾股定理第3课时利用勾股定理作图或计算导学案无答案新版新人教

八年级数学下册第十七章勾股定理17.1勾股定理第3课时利用勾股定理作图或计算导学案无答案新版新人教

第十七章勾股定理17.1 勾股定理第3课时利用勾股定理作图或计算学习目标:1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.重点:会运用勾股定理确定数轴上表示实数的点及解决网格问题.难点:灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.一、知识回顾1.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表示3,-2.5的点吗?2.求下列三角形的各边长.一、要点探究探究点1:勾股定理与数轴想一想1.你能在数轴上表示出2的点吗?2呢?(提示:可以构造直角三角形作出边长为无理数的边,就能在数轴上画出表示该无理数的点.)2.长为13的线段能是这样的直角三角形的斜边吗,即是直角边的长都为正整数?3.以下是在数轴上表示出13的点的作图过程,请你把它补充完整.(1)在数轴上找到点A,使OA=______;(2)作直线l____OA,在l上取一点B,使AB=_____;(3)以原点O为圆心,以______为半径作弧,弧与数轴交于C点,则点C即为表示______的点.课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-12)要点归纳:利用勾股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.为线段,形成如图所示的数学海螺.例1如图,数轴上点A 所表示的数为a ,求a 的值.1.如图,点A 表示的实数是 ( )-2.A 为圆心,对角线AC 的长为半径作弧交数轴于点M ,则点M 表示的数为( )3.你能在数轴上画出表示17的点吗?探究点2:勾股定理与网格综合求线段长 例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC 各顶点的坐标,并求出此三角形的周长.方法总结:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定此类网格中求格点三角形的高的题,常用方法是利用网格求面积,再用面积法求高.的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.变式题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.ABCD的面积.1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.252.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后点D做一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,以到点C的距离为半径作弧,交数轴于一点,则该点位置大致在数轴上()A.2和3之间B.3和4之间3.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的高为_______.4.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.叠部分△AFC的面积.)画出相应的△ABC,并求出它的面积.图②。

人教版八年级数学下册171-勾股定理时

人教版八年级数学下册171-勾股定理时
小试身手
本课我们学习了哪些知识?用了哪些方法?你有哪些体会?
课堂小结
1. 请你利用今天学习的面积法证明教材习题17.1第13题.
2. 课下每个同学制作一张勾股定理的数学小报,并自己上网查阅与勾股定理有关的知识,证明方法和应用等,然后小组交流、展示.
作业
毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年.希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了.
即: ① 、 ② 、 ③的面积有什么关系?
自主探究
(1)观察右边 两幅图:
(2)填表(每个小正方形的面积为单位1):
A的面积
B的面积
C的面积
左图
右图
4 9
16 9


合作探究
(3)你是怎样得到正方形C的面积的?
课外延伸
请先用手中的全等直角三角形按图示进行摆放,然后根据图示的边长,选择其中一个图形,分析其面积关系后证明.
图1
图2
图3
如果直角三角形两直角边分别为a、b,斜边为c,那么
即 直角三角形两直角边的平方和等于斜边的平方.
表示为:Rt△ABC中,∠C=90°,
定理:
我国有记载的最早勾股定理的证明,是三国时,我国古代数学家赵爽在他所著的《勾股方圆图注》中,用四个全等的直角三角形拼成一个中空的正方形来证明的.每个直角三角形的面积叫朱实,中间的正方形面积叫黄实,大正方形面积叫弦实,这个图也叫弦图.2002年的国际数学家大会将此图作为大会会徽.
16 9
13
25

人教版八年级数学下《勾股定理 第3课时:用勾股定理在数轴上表示无理数》精品教学课件

人教版八年级数学下《勾股定理 第3课时:用勾股定理在数轴上表示无理数》精品教学课件

能画出长为 13的线段,就能在数轴上画出表示 13的点.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
步骤:
1 在数轴上找到点A,使OA=3;
2 作直线l⊥OA,在l上取一点B,使AB=2;
3 以原点O为圆心,以OB为半径作弧,弧与
13 3
数轴交于C点,则点C即为表示 13的点.
l
正整数的角三角形的斜边; 2 以原点为圆心,以无理数斜边为半径画弧与数轴
存在交点,弧与数轴的交点即为表示无理数的点.
原点左边的点表示负无理数,原点右边的点表示 正无理数.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
拓展
利用勾股定理可以作出这样一幅美丽的“海螺型” 图案,它被选为第七届国际数学教育大会的会徽.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
复习回顾
勾股定理
如果直角三角形的两条直角边长分别 b
c
为a,b,斜边长为c,那么a²b²c². a
变 求斜边:c a2 b2 形 求直角边:a c2 b2 ,b c2 a2
已知两边可求第三边
利用勾股定理还能解决哪些问题呢?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习 2.如图,O为数轴原点,A、B两点分别对应3、3,作腰 长为4的等腰△ABC,连接OC,以O为圆心,OC长为半
径画弧交数轴于点M,则点M对应的实数为 7 .
3 2 1 O 1 2M3
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
3.如图,已知△ABC是腰长为1的等腰直角三角形, 以Rt△BAC的斜边AC为直角边,画第二个等腰 Rt△ACD,再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE.依此类推,则第2018个

勾股定理作图与计算导学案

勾股定理作图与计算导学案

2020“空中课堂”三河市第八中学学科:数学章节:17.1《勾股定理作图与计算》主讲人:李伟时间:2020-2教师简介:李伟三河八中数学教师第十七章 勾股定理17.1 勾股定理第三课时 利用勾股定理作图与计算勾股定理:直角三角形两直角边的平方和等于斜边的平方.几何语言:∵在Rt △ABC 中 ,∠C =90°,∴a 2+b 2=c 2a AB C bc ∟勾股定理揭示了直角三角形三边之间的关系.已知一个直角三角形的两边,利用勾股定理可以求出第三边,这在求距离时有着重要作用.利用勾股定理证明“HL ”定理 在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等. 学习了勾股定理后,你能证明这一结论吗? 证明:在Rt △ABC 和Rt △A B C 中,∠C =∠C ′=90°,根据勾股定理,得22=-BC AB AC ,22-=B C A B A C .′′′′′′ A B C AB C ′ ′′∴△ABC ≌△A B C (SSS ).′′′′′′ 分析:先画出图形,再写已知、求证、证明 已知:如图,在Rt △ABC 和Rt △A B C 中,∠C =∠C ′=90°,AB =A B , AC =A C .求证:△ABC ≌△A B C .′′′ ∵ AB =A B , AC =A C , ∴ BC =B C .′′′′′′′′′′′′′我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出 的点吗?2分析:(1) 只要能画出长为 的线段,就能圆规截取 的长度, 在数轴上画出表示这个数的点。

(2) 是两条直角边都是1的直角三角形的斜边。

22知识点1:勾股定理与无理数2112l在数轴上表示作法:1.在数轴上找点A ,使OA =1;01A2.过点A 作直线l 垂直于OA,在l 上取点B ,使AB =1;B3.以原点O 为圆心,以OB 为半径作弧,弧与数轴的交点C 即为表示 的点.2222-2-22c知识点1:勾股定理与无理数思考:你能在数轴上表示出 的点吗?13分析:(1) 只要能画出长为 的线段,就能在数轴上画出表示这个数的点。

人教版八年级数学下册教案第十七章勾股定理

人教版八年级数学下册教案第十七章勾股定理

2013-2014年八年级下册教案设计第十七章勾股定理备课人:罗更新吕琳审核人:黄亚明17.1.1 勾股定理(一)教案总序号:10 时间:2014年2月26日星期三一、教学目的1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

进一步让学生确信勾股定理的正确性。

四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗?五、例习题分析例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.如图所示,方格纸上每个小正方形的边长都是1,则 AB2+BC2+AC2的值为( D )
A.4 B.1 C.2 D.8
9.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B ,点C均落在格点上. (1)计算AC2+BC2的值等于______1_1__; (2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的 矩形,使该矩形的面积等于AC2+BC2.
第十七章 勾股定理17.1 Nhomakorabea股定理第3课时 利用勾股定理作图与计算
知识点1:勾股定理与实数 1.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴 上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则 这个点表示的实数是( D ) A.2.5 B.2 2 C. 3 D. 5
12.如图所示,以数轴的单位长度线段为边作一个正方形,以数轴 上表示数1的点为圆心,正方形对角线长为半径画弧,交数轴正半轴于 点A,则点A表示的数是( D )
A.112 B.2.41 C. 3 D.1+ 2
13.如图,每个小正方形的边长为1,△ABC的三边长a,b,c的大小 关系是( C) A.a<c<b B.a<b<c C.c<a<b D.c<b<a
5.在数轴上作出表示 10的点. 解: 点A即为表示 10的点.
知识点2:利用勾股定理解决网格图形的问题 6.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都 是格点,则线段AB的长度为( A) A.5 B.6 C.7 D.25
7.如图,在单位长度为1的方格中,下列线段长为 5的是( A ) A.AB B.AC C.AD D.AE
14.(2016·台州)如图,数轴上点A,B分别对应1,2,过点B作 PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆 心,OC长为半径画弧,交数轴于点M,则点M对应的数是( B )
A. 3 B. 5 C. 6 D7
15.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点 A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数 为_____1_0_- __1_______.
(3)求 S21+S22+S23+…+S2100的值.
解:(3)原式=1+2+3+4 …+100=14×12×(1+100)×100 2 525
=2.
解:如图,作AD⊥BC,交BC于点D.∵BC=8 cm,∴BD=CD=4 cm. 又∵AB=AC=5 cm, ∴AD=3 cm. ① 当 点 P 运 动 t s 后 有 PA⊥AC 时 , 如 图 ① , ∵ AP2 = PD2 + AD2 = PC2 - AC2.∴PD2 + AD2 = PC2 - AC2 , ∴ PD2 + 32 = (PD + 4)2 - 52.∴PD = 2.25 cm.∴BP=4-2.25=1.75=0.25 t,∴t=7.
2.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心 ,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A A.-4和-3之间 B.3和4之间 C.-5和-4之间 D.4和5之间
3.(导学号69654034)(2016·烟台)如图,O为数轴原点,A,B两点分别 对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长 为半径画弧交数轴于点M,则点M对应的实数为___7_.
下列问题:
(1)OA1=____2_____,OA2=___3_____, OA3=___4_______,…,OAn=_____n_+__1___;
(2)如果第一个三角形的面积用 S1 表示,其他依此类推.那么 S1=
1
2
3
n
__2_____,S2=___2____,S3=__2____,…,Sn=____2___;
4.(导学号69654035)如图,OP=1,过点P作PP1⊥OP,且PP1= 1,得OP1= 2 ;再过P1作P1P2⊥OP1,且P1P2=1,得OP2= 3 ;又过P2 作P2P3⊥OP2,且P2P3=1,得OP3=2;……依此法继续作下去,得OP2 017=_______2_0_1_8_____.
图①
图②
②当点P运动t s后有PA⊥AB时,如图②,同理可证得PD=2.25 cm, ∴BP=4+2.25=6.25=0.25 t,∴t=25. 综上所述,当点P运动7 s或25 s时,点P与顶点A的连线PA与腰垂直.
图①
图②
18.(导学号 69654038)如图,细心观察图形,认真分析,然后回答
解:(2)略.
10.如图,方格纸上每个小正方形的边长都是1,在三个方格纸中分别 画出一个三角形,使第一个三角形有一边的长为无理数,第二个三角 形有两条边的长为无理数,第三个三角形的边长都是无理数.
解:答案不唯一.如:
易错点:忽视数轴上原点的位置 11.如图,以数轴的两个单位长度线段为边作一个正方形,以表示数2 的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示 的数是________2_-__2___2____.
16.(导学号69654036)如图,网格中的小正方形边长均为1,△ABC的 三个顶点均在格点上,则△ABC中AB边上的高为____5__1_31_3___.
17.(导学号69654037)如图所示,等腰三角形ABC的底边BC为8 cm, 腰长为5 cm,一动点P在底边上从点B向点C以0.25 cm/s的速度移动,请 你探究:当点P运动几秒时,点P与顶点A的连线PA与腰垂直?
相关文档
最新文档