定积分的应用练习题
定积分典型例题20例答案
定积分典型例题20例答案定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n=?的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =?.例2 2202x x dx -?=_________.解法1 由定积分的几何意义知,2202x x dx -?等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -?=2π.解法2 本题也可直接用换元法求解.令1x -=sin t (2 2t ππ-≤≤),则222x x dx -?=2221sin cos t tdt ππ--?=2221sin cos t tdt π-?=2202cos tdt π=2π 例3 (1)若22()x t xf x e dt -=?,则()f x '=___;(2)若0()()xf x xf t dt =?,求()f x '=___.分析这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?.解(1)()f x '=422x x xe e ---;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =?,则可得()f x '=0()()xf t dt xf x +?.例4 设()f x 连续,且31()x f t dt x -=?,则(26)f =_________.解对等式310()x f t dt x -=?两边关于x 求导得32(1)31f x x -?=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)x F x dt x t =->?的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求.例6 求0()(1)arctan xf x t tdt =-?的极值点.解由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=?,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解由已知条件得2(0)(0)0t f g e dt -===?,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=?==-.例8 求 22000sin lim(sin )x x xtdtt t t dt→-??;分析该极限属于型未定式,可用洛必达法则.解 22000sin lim (sin )x x xtdtt t t dt→-?=2202(sin )lim (1)(sin )x x x x x x →-??-=220()(2)lim sin x x x x →-?-=304(2)lim 1cos x x x→-?-x(,0)-∞0 (0,1)1 (1,)+∞()f x '+-=2012(2)lim sin x x x→-?=0.注此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+?成立.分析易见该极限属于型的未定式,可用洛必达法则.解 20201lim sin x x t dt x b x a t →-+?=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x →→?-+201lim 11cos x x b x a →==-,由此可知必有0li m(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-,得4a =.即4a =,1b =为所求.例10 设sin 20()sin x f x t dt =?,34()g x x x =+,则当0x →时,()f x 是()g x 的().A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→?=+ 2200cos sin(sin )lim lim34x x x x x x →→=?+ 22011lim 33x x x →==.故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++.例11 计算21||x dx -?.分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -?=0210()x dx xdx --+??=220210[][]22x x --+=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21 x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+?,则()________f x =.分析本题只需要注意到定积分()baf x dx ?是常数(,a b 为常数).解因()f x 连续,()f x 必可积,从而10()f t dt ?是常数,记1()f t dt a =?,则()3f x x a =+,且11(3)()x a dx f t dt a +==??.所以2101[3]2x ax a+=,即132a a +=,从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-?.分析由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解 2112211x x dx x-++-?=211112221111x x dx dx x x--++-+-?.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-?, 于是2112211x x dx x -++-?=2102411x dx x +-?=22120(11)4x x dx x--?=11200441dx x dx --?? 由定积分的几何意义可知12014x dx π-=, 故211122444411x x dx dx xππ-+=-?=-+-?.例14 计算220()xd tf x t dt dx -?,其中()f x 连续.分析要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于220()xtf x t dt -?=2221()2x f x t dt-?.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -?=201()()2x f u du -?=201()2x f u du ?,故220()x d tf x t dt dx -?=201[()]2x d f u du dx ?=21()22f x x=2()xf x .错误解答220()x d tf x t dt dx -?22()(0)xf x x xf =-=.错解分析这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==?中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π.分析被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π30(c o s )x d x π=-?33[(c o s )](c o s )x x x d x ππ=?---? 30cos 6xdx ππ=-+?326π=-.例16 计算120ln(1)(3)x dx x +-?.分析被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-?=101ln(1)()3x d x +-?=1100111[ln(1)]3(3)(1)x dx x x x +-?--+? =101111ln 2()2413dx x x-++-?11ln 2ln324=-.例17 计算20sin x e xdx π.分析被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解由于2sin xe xdx π20sin xxde π=?220[sin ]cos xx e x e xdx ππ=-?220cos x e e xdx ππ=-?,(1)而20cos xe xdx π20cos xxde π=?220[cos ](sin )xx e x e x dx ππ20sin 1x e xdx π=-?,(2)将(2)式代入(1)式可得20sin xe xdx π220[sin 1]x e e xdx ππ=--?,故20sin xe xdx π21(1)2e π=+.例18 计算1arcsin x xdx ?.分析被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ?210arcsin ()2x xd =?221100[arcsin ](arcsin )22x x x d x =?-?21021421x dx x π.(1)令sin x t =,则2121x dx x-?222sin sin 1sin td t tπ=-?220sin cos cos ttdt t π=??220sin tdt π=?201cos22t dt π-==?20sin 2[]24t t π-4π=.(2)将(2)式代入(1)式中得1arcsin x xdx =8π.例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=?,求(0)f '.分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解由于0[()()]cos f x f x xdx π''+?00()sin cos ()f x d x xdf x ππ'=+??{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++??()(0)2f f π''=--=.故(0)f '=2()235f π'--=--=-.例20 计算243dxx x +∞++?.分析该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++?=20lim 43t t dx x x →+∞++?=0111lim ()213t t dx x x →+∞-++? =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。
定积分及其应用练习 带详细答案
定积分及其应用题一 题面:求由曲线2(2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323.变式训练一题面:函数f (x )=错误!的图象与x 轴所围成的封闭图形的面积为( ) A.错误! B .2 C .3D .4答案:D. 详解:画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为错误!×2×2+∫错误!02cos x d x =2+2sin x 错误!=4.变式训练二 题面:由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) A .2错误! B .9-2错误! C.错误!D 。
错误!答案: 详解:注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的面积为错误!(3-x 2-2x )d x =错误!错误!=3×1-错误!×13-12-错误!错误!=错误!,选D.题二 题面:如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .错误!C .错误!D .错误!变式训练一题面:函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.答案:错误!. 详解:设A(x0,0),则ωx0+φ=错误!,∴x0=错误!-错误!.又y=ωcos(ωx+φ)的周期为错误!,∴|AC|=错误!,C错误!。
依题意曲线段错误!与x轴围成的面积为S=-∫错误!-错误!+错误!错误!-错误!ωcos(ωx+φ)d x=2。
∵|AC|=πω,|y B|=ω,∴S△ABC=错误!.∴满足条件的概率为错误!.变式训练二题面:(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.答案:C.详解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.金题精讲题一题面:(识图求积分,二星)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为().A.错误!B.错误!C.错误!D.错误!答案:变式训练一题面:如图求由两条曲线y =-x 2,y =-错误!x 2及直线y =-1所围成的图形的面积.答案:错误!。
定积分典型例题20例标准答案
定积分典型例题20例答案例1 求33322321lim(2)n n n n n®¥+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x nD =,然后把2111n n n =×的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n ®¥+++=333112lim ()n n n n nn ®¥+++=13034xdx =ò.例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³) 与x 轴所围成的图形的面积.故2202x x dx -ò=2p. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp --ò=22021sin cos t tdt p-ò=2202cos tdt pò=2p例3 (1)若22()x t x f x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt =ò,求()f x ¢=___.分析 这是求变限函数导数的问题,利用下面的公式即可这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解 (1)()f x ¢=422x x xee---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)xF x dt x t =->ò的单调递减开区间为_________.解 1()3F x x ¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求. 例6 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下: 故1x =为()f x 的极大值点,0x =为极小值点.为极小值点. 例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0tf g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例8 求 22sin lim(sin )x x x tdt t t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt ®-òò=2202(sin )lim(1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)lim sin x x x®-×=0.注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.x (,0)-¥(0,1)1 (1,)+¥()f x ¢-+-例9 试求正数a 与b ,使等式2021lim1sin xx t dt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+201lim 11cos x x b xa ®==-,由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim11cos x x xaa®==-,得4a =.即4a =,1b =为所求.为所求. 例10 设sin 20()sin xf x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的(). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小.D .低阶无穷小. 解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x x x ®®=×+ 22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f xg x x x x ®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解2112211x x dx x -++-ò=211112221111xxdx dx x x--++-+-òò.由于22211x x +-是偶函数,而211xx +-是奇函数,有112011x dx x-=+-ò, 于是于是 2112211x xdx x-++-ò=212411x dx x+-ò=2212(11)4x x dx x--ò=11200441dx x dx --òò由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例14 计算22()x d tf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()x tf x t dt -ò=201()()2xf u du -ò=21()2x f u du ò,故220()x d tf x t dt dx -ò=201[()]2x d f u du dx ò=21()22f x x ×=2()xf x . 错误解答 22()x d tf x t dt dx -ò22()(0)xf x x xf =-=.错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元. 例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解 3s i n x x d x pò3(c o s )x d x p=-ò330[(c o s )](co s )x x x d x pp=×---ò 30cos 6xdx pp=-+ò326p=-. 例16 计算1200ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-.例17 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin xe xdx pò20sin xxde p=ò220[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx p p=-ò,(1) 而2cos xe xdx pò20cos xxde p=ò2200[cos ](sin )xxe x e x dx p p=-×-ò 2sin 1xe xdx p=-ò, (2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx p p=--ò,故20sin xe xdx pò21(1)2e p=+.例18 计算10arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1) 令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t tp =-ò220sin cos cos t tdt tp=×ò220sin tdt p=ò 201cos 22t dt p-==ò20sin 2[]24t t p-4p =. (2) 将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx p ¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=. 故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dx x x +¥++ò. 分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。
定积分及其应用计算题
3
(1) 求它与 x 轴所围成的面积; (2) 求它的弧长; (3) 求它与 x 轴围成区域绕 x 轴旋转而成的旋转体的体积和 表面积. 15* 设曲线 y ax a 0, x 0 与 y 1 x 相交于点 A ,过坐标原点 O 和点 A 的直线与曲线 y ax 围成一个平面图形,问 a 为何值时,该 图形绕??轴旋转一周所得的旋转体的体积最大 ?最大体积为多 少? 16. 过点 1,0 作曲线 y x 2 的切线,该切线与上述曲线及 x 轴 围成一个平面图形 A .(1) 求 A 的面积; (2) 求 A 绕 x 轴旋转 一周所成的旋转体的体积. 17* 设函数 f x 在闭区间 0,1 上连续,在开区间 0,1 内大于零, 并满足 3a xf x f x x (a 为常数);
1 2
y a1 cos t ,
(1) 求它绕 x 轴旋转一周生成的旋转体的体积与侧面积; (2) 求它绕 y 轴旋转一周生成的旋转体的体积与侧面积. 12. 13. 14.
x 2 求曲线 y 在 0 x 2 区间段的弧长. 2 x at sin t , 求外旋轮线的方程为 0 t 2 , a 0 的弧长. y a1 cos t ,
要求汽锤每次击打桩时所做的功与前一次击打时所做的功之 比为常数 r ( 0 r 1 ).问: (1) 汽锤击打 3 次后,可将桩打进地下多深? (2) 若击打次数不限,汽锤至多能将桩打进地下多深? 广义积分问题 1. 计算
3 2 1 2
dx xx
x2 0
2
.
定积分应用练习题
定积分的应用练习题1. 抛物线22y x = 把圆228x y +=分为两部分,分别求出这两部分的面积。
2. 直线将椭圆2236x y y +=分成两部分,分别求出这两部分的面积。
3. 在抛物线21y x =-上找一点00(,)P x y ,其中00x ≠,过00(,)P x y 作抛物线的切线,使该切线与抛物线及两坐标轴所围成的图形的面积最小。
4. 从抛物线21y x =-上的点00(,)P x y 引另一条抛物线2y x =的切线,求该切线与2y x=所围成的图形的面积。
5. 求有抛物线24(0)y ax a =>与过焦点的弦所围成图形面积的最小值。
6. 求星形线33cos (02)sin x a t t y a tπ⎧=≤≤⎨=⎩所围成的图形的面积A ,全长L ,绕Ox 轴旋转一周所形成的旋转体的体积,和该旋转体的侧表面积。
7. 求伯努利双纽线22cos 2a ρθ=的面积A ,及绕Ox 轴旋转的旋转体的体积和侧表面积。
8. 求圆域222()()x y b ab a +-≤>绕Ox 轴旋转而成的圆环体的体积。
9. (1)求曲线32y x x =-与2y x =所围成的图形的面积;(2)若该图形绕Oy 绕一周,求所得旋转体的体积。
10. 求螺线(0)m ae θρθπ=≤≤与Ox 轴所围成的面积A ,弧长L ,绕Ox 轴旋转一周所形成的旋转体的体积,和该旋转体的侧表面积。
11. 在曲线2(04)3y x =≤≤上人一点的密度等于该点至原点一段曲线的弧线长度,求其质量。
12. 半径为R ,长为l 的圆柱体平放在深度为2R 的水池中(柱体的侧面与水面相切),设柱体的密度为(1)ρρ>,问将柱体移出水中需要做多少功?13. 设半径为R ,高为h 的圆柱体水池盛满了水,若将水池中的水吸干,要做多少功?14. 将半径为的半圆形板竖直放入水中,是其直径与水面相齐。
(1)求该板一侧所受的压力;(2)欲使压力增加一倍,该板应下移多少米?15. 一根半径为R 的圆环金属丝,其线密度为ρ,以等角速度ω绕其某一条直径旋转,求金属丝的动能。
最新定积分的几何应用例题与习题(学生用)
定积分的几何应用例题与习题1曲线】的极坐标方程T=「COSR(0),求该曲线在所对应的点处的切线L的2 4直角坐标方程,并求曲线〕、切线L与x轴所围图形的面积。
2、设直线y=ax与抛物线y=x2所围成的面积为S n它们与直线x =1所围成的面积为务并且a <1(1)试确定a的值,使S ' S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积。
3、设xoy平面上有正方形D = {(x, y) 0兰x乞1,0兰y兰1}及直线L:x+y = t(t^O)x若S(t)表示正方形D位于直线I左下部分的面积,试求S(t)dt(x _0)4、求由曲线y =e»J sinx|(x Z0)与x轴所围图形绕x轴旋转所得旋转体的体积乂35、求由曲线^aC0S3t(a -0^n<-)与直线y=x及y轴所围成的图形[y=asi n3t 4 2绕x轴旋转所得立体的全表面积。
X _x6. 曲线y = e e—与直线x = 0, x =t(t • 0)及y = 0围成一曲边梯形,该曲边梯2形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x = t处的底面积为F(t)(1) 求的值;(2)计算极限limV(t) t-和F(t)泄2伽抄 (1)V(t) -::F(t)7、求由摆线x=a(t -sint),y= a(1-cost)的一拱(0辽t辽2二)与横轴所围成的平面图形的面积, 及该平面图形分别绕x轴、y轴旋转而成的旋转体的体积。
(1)A=3二a2 , (2)V x =5二2a3 , (3)V y =6二3a38、设平面图形A由x2y2 -2x及y-x所确定,求图形A绕直线x=2旋转一周所得旋转体的体积。
兀2 2V 二2 39设函数f (x), g(x)可微,且f (x)二g(x), g (x)二f (x), f (0) = 0, g(x) = 0.求:1)F(x)二丄©;(2)作出函数曲线y二F(x)的图形;(3)计算由曲线y = F(x)及直线g(x)x=0,x二b(b 0)和y =1围成的面积•(1) F(x)=1—飞^.e +1(2) 当XA0时,F"(x)c0,曲线上凸;当xc0时,F"(x)>0,曲线下凹,所以(0,0)为拐点,且y二_1为其水平渐近线•b b 2(3) S= °(1-F(x))dx= °孑”dx = 2b I n2-ln( 2b 1).10. 已知曲线y=a.x,(a 0)与曲线y = In ■■、x在点(x0, y0)处有公共切线,求(1常数a及切点(x0, y0);(2)两曲线与x轴围成的平面图形的面积;(3)两曲线与x轴围成的平面图形绕x轴旋转一周所得旋转体的体积V(1 a =1 ,切点(e2,1) RjsJe2—1(3)V x :e 6 2 2x11. 对于指数曲线y =e2(1)试在原点与x(x 0)之间找一点.-v x (0 ::: x :: 1),使这点左右两边有阴影部分的面积相等,并写出 v的表达式(2)求lim v -?x T十x xt xe" -2e2 2lim J xj •2_ xx(e2 -1)12、抛物线y=ax2・bx,c通过点(0,0),且当0_x_1时,y_0,它和直线x = 1及y=0所围的图形的面积是4,问这个图形绕x轴旋转而成的旋转体的体积为最小值时,a,b与c的9值应为多少?5a ,b = 2,c = 0313、过点P(1,0)作抛物线y x-2的切线,该切线与上述抛物线及x轴围成一平面图形(如图),求此图形绕x轴旋转所成旋转体的体积。
(完整word版)定积分典型例题20例答案
定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->⎰的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-x(,0)-∞0 (0,1)1 (1,)+∞()f x '-+-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x→→⋅-+201lim 11cos x x b x a →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x x dx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s )x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰222sin sin 1sin td t tπ=-⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。
(完整版)定积分应用题附答案
《定积分的应用》复习题一.填空:1.曲线ln ,ln ,ln (0)y x y a y b a b y ===<<及轴所围成的平面图形的面积为A =ln ln by ae dy ⎰=b-a______2.2y x y ==曲线和 ____13____二.计算题:1.求由抛物线 y 2 = 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。
解:(1)确定积分变量为y ,解方程组2222y x y x ⎧=⎨=-+⎩ 得12121/22,12x x y y ==⎧⎧⎨⎨==-⎩⎩ 即抛物线与直线的交点为(21,1)和( 2 , - 2 ).故所求图形在直线y = 1和y = - 2 之间,即积分区间为[-2,1 ]。
(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近似于高为[(1-21y )-21y 2 ],底为dy 的矩形面积,从而得到面积元素 dA = [(1-21y)- 21y 2 ]dy (3)所求图形面积 A =⎰-12[(1- 21y )-21y 2 ]dy = [y - 41y 2 – 61y 3]12-= 942.求抛物线 y = - x 2 + 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。
解:由y = - x 2 + 4x – 3 得 '24,'(0)4,'(3)2y x y y =-+==-。
抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 y = - 2x + 6 ; 两切线的交点坐标为 ( 32,3 )。
故 面积A =332223029[(43)(43)][(26)(43)]4x x x dx x x x dx --+-+-+-+-=⎰⎰3.求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱(02t π≤≤)与横轴所围成的图形的面积。
第6章定积分的应用习题集及答案
第六章 习题 定积分的应用一.选择题1.曲线x y ln =、a y ln =、b y ln =(b a <<0)和y 轴所围图形的面积为( C ) (A )⎰ba xdx ln ln ln ; (B )⎰be a e xdx e ; (C )⎰ba ydy e ln ln ; (D )⎰ae b e xdx ln .2.曲线x e y =下方与该曲线过原点的切线左方和y 轴右方所围图形的面积为(a )(A )⎰-10)(dx ex e x ; (B )⎰-edy y y y 1)ln (ln ; (C )⎰-e x x dx x e e 1)(; (D )⎰-10)ln (ln dy y y y .3.摆线)sin (t t a x -=、)cos 1(t a y -=(0>a )的一拱(π20≤≤t )与x 轴所围图形绕x 轴旋转一周所成旋转体的体积为( D )(A )⎰-ππ2022)cos 1(dt t a ; (B )⎰--at t a d t a ππ2022)]sin ([)cos 1(; (C )⎰-a dt t a ππ2022)cos 1(; (D )⎰--ππ2022)]sin ([)cos 1(t t a d t a . 4.曲线θρcos 2a =(0>a )所围图形的面积为( D )(A )⎰22)cos 2(21πθθd a ; (B )⎰-ππθθd a 2)cos 2(21;(C )⎰πθθ202)cos 2(21d a ; (D )⎰202)cos 2(212πθθd a .5.连续曲线)(x f y =与直线a x =、b x =(b a <≤0)及x 轴围成的图形绕y 轴旋转一周生成的旋转体体积为( B )(A )⎰ba dx x xf )(2π;(B )⎰ba dx x f x )(2π;(C )⎰ba dx x xf )(22π;(D )⎰ba dx x f x )(22π. 6.半径为R 的半球形水池已装满水.要将水全部吸出水池,需做功的为 ( C )(A )⎰-Rdy y R 022)(π;(B )⎰Rdy y 02π;(C )⎰-Rdy y R y 022)(π;(D )⎰Rdy y 03π.二.计算题1.求曲线221x y =与822=+y x 所围图形(上半平面部分)的面积.解:易知:曲线221x y =与822=+y x 的交点为(2,2)±。
高考定积分练习题
高考定积分应用常见题型大全含答案一.选择题共21小题1.2012福建如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率 CA.B.C.D.解答:解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01﹣xdx=﹣|01=, 则正方形OABC中任取一点P,点P 取自阴影部分的概率为=;2.2010山东由曲线y=x2,y=x3围成的封闭图形面积为 AA.B.C.D.解答:解:由题意得,两曲线的交点坐标是1,1,0,0故积分区间是0,1 所求封闭图形的面积为∫01x2﹣x3dx═,3.设fx=,函数图象与x轴围成封闭区域的面积为A.B.C.D.解答:根据定积分,得所围成的封闭区域的面积S=故选C4.定积分的值为A.B.3+ln2 C.3﹣ln2 D.6+ln2 解答:解:=x2+lnx|12=22+ln2﹣12+ln1=3+ln2 故选B.5.如图所示,曲线y=x2和曲线y=围成一个叶形图阴影部分,其面积是A.1B.C.D.解答:解:联立得,解得或,设曲线与直线围成的面积为S, 则S=∫01﹣x2dx=故选:C6.=A.πB.2C.﹣πD.4解答:解:∵ x2++sinx′=x+cosx,∴x+cosxdx= x2+sinx=2.故答案为:B7.若a=,b=,则a与b的关系是A.a<b B.a>b C.a=b D.a+b=0解答:解:∵a==﹣cosx=﹣cos2﹣﹣cos=﹣cos2≈﹣°=°, b==sinx=sin1﹣sin0=sin1≈°,∴b>a.故选A.8.的值是A.B.C.D.解答:解;积分所表示的几何意义是以1,0为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积之差.即=﹣=﹣=故选A 9.若fx=e为自然对数的底数,则=A.+e2﹣e B.+e C.﹣e2+e D.﹣+e2﹣e解答:解:===故选C.10.已知fx=2﹣|x|,则A.3B.4C.D.解答:解:由题意,=+=2﹣+4﹣2=故选C.11.设fx=3﹣|x﹣1|,则∫﹣22fxdx=A.7B.8C.D.解答:解:∫﹣22fxdx=∫﹣223﹣|x﹣1|dx=∫﹣212+xdx+∫124﹣xdx=2x+x2|﹣21+ 4x﹣x2|12=7 故选A.12.积分=A.B.C.πa2D.2πa2解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.故选B.13.已知函数的图象与x轴所围成图形的面积为A.1/2 B.1C.2D.3/2解答:解:由题意图象与x轴所围成图形的面积为=﹣|01+sinx=+1=故选D.14.由函数y=cosx0≤x≤2π的图象与直线及y=1所围成的一个封闭图形的面积是A.4B.C.D.2π解答:解:由函数y=cosx0≤x≤2π的图象与直线及y=1所围成的一个封闭图形的面积, 就是:∫01﹣cosxdx=x﹣sinx|0=.故选B.15.曲线y=x3在点1,1处的切线与x轴及直线x=1所围成的三角形的面积为A.B.C.D.解答:解:∵y=x3,∴y'=3x2,当x=1时,y'=3得切线的斜率为3,所以k=3;所以曲线在点1,1处的切线方程为:y﹣1=3×x﹣1,即3x﹣y﹣2=0.令y=o得:x=,∴切线与x轴、直线x=1所围成的三角形的面积为:S=×1﹣×1=故选B.16.图中,阴影部分的面积是A.16 B.18 C.20 D.22解答:解:从图象中知抛物线与直线的交点坐标分别为2,﹣2,8,4.过2,﹣2作x轴的垂线把阴影部分分为S1,S2两部分,分别求出它们的面积A1,A2:A1=∫02dx=2 dx=,A2=∫28dx=所以阴影部分的面积A=A1+A2==18 故选B.17.如图中阴影部分的面积是A.B.C.D.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为﹣3,﹣6和1,2抛物线y=3﹣x2与x轴负半轴交点﹣,0设阴影部分面积为s,则==所以阴影部分的面积为, 故选C.18.曲线与坐标轴围成的面积是A.B.C.D.解答:解:先根据题意画出图形,得到积分上限为,积分下限为0曲线与坐标轴围成的面积是:S=∫0﹣dx+∫dx=∴围成的面积是故选D.19.如图,点P3a,a是反比例函y=k>0与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为A.y=B.y=C.y=D.y=解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P3a,a是反比例函y=k>0与⊙O的一个交点.∴3a2=k且=r∴a2=×22=4.∴k=3×4=12,则反比例函数的解析式是:y=.故选C.。
定积分典型例题20例答案
定积分典型例题20例答案例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x '=()0F x '<3>,解之得109x <<,即1(0,)9为所求.例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →=-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰,故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰22sin t π=⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。
(完整版)§定积分的应用习题与答案
第六章 定积分的应用(A )1、求由下列各曲线所围成的图形的面积 1)221x y =与822=+y x (两部分都要计算)2)xy 1=与直线x y =及2=x3)xe y =,xe y -=与直线1=x4)θρcos 2a =5)t a x 3cos =,t a y 3sin =1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的面积2、求对数螺线θρae=()πθπ≤≤-及射线πθ=所围成的图形的面积3、求由曲线x y sin =和它在2π=x 处的切线以及直线π=x 所围成的图形的面积和它绕x 轴旋转而成的旋转体的体积4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体的体积5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积6、计算曲线()x y -=333上对应于31≤≤x 的一段弧的长度7、计算星形线t a x 3cos =,t a y 3sin =的全长8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm )成正比,即:kS =→F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0=x 移到a x =时,克服介质阻力所作的功10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水面相齐,计算闸门的一侧所受的水压力12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处有一质量为m 的质点M ,试求这细棒对质点M 的引力(B)1、设由抛物线()022>=p px y 与直线p y x 23=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积2、求由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体积3、求由x y sin =,x y cos =,0=x ,2π=x 所围成的图形的面积,并求该图形绕x 轴旋转所成旋转体的体积4、求抛物线px y 22=及其在点⎪⎭⎫⎝⎛p p ,2处的法线所围成的图形的面积5、求曲线422+-=x x y 在点()4,0M 处的切线MT 与曲线()122-=x y 所围成图形的面积6、求由抛物线ax y 42=与过焦点的弦所围成的图形面积的最小值7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=2)θρsin a =,()θθρsin cos +=a ,0>a8、由曲线()16522=-+y x 所围成图形绕x 轴旋转所成旋转体的体积9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积10、计算半立方抛物线()32132-=x y 被抛物线32x y =截得的一段弧的长度(C)1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为⎪⎭⎫ ⎝⎛-=32H R H V π2、分别讨论函数x y sin =⎪⎭⎫⎝⎛≤≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值3、求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线x y =所围成的平面图形的面积最小4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?第六章 定积分应用 习 题 答 案(A )1、1)342+π,346-π 2)2ln 23- 3)21-+ee 4)2a π 5)283a π2、23a π 3、()ππ2224--e e a 4、12-π,42π 5、7128π,564π 6、3334R 7、3432- 8、a 6 9、kJ 18.0 10、3732727a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒⎪⎪⎭⎫⎝⎛+-=2211t a aGmu F y 22t a a Gmu F x +-=λ(B)1、1)⎰-=⎪⎪⎭⎫ ⎝⎛--=pp p dy p y y p S 322316223 或()⎰⎰=⎪⎭⎫⎝⎛+-++=20229231622322pp p p dx px x p dx px px S2)⎰⎰--=⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=pp p p p dy p y dy y p V 33322215272223πππ 2、()⎰=-=10231dx x x A ()()ππ⎰=⎪⎭⎫⎝⎛-=10222103dx x x V3、()()⎰⎰-=-+-=244222cos sin sin cos πππdx x x dx x x A()()()()()()⎰⎰=-+-=24224022cos sin sin cos πππππdx x x dx x x V4、抛物线在点⎪⎭⎫⎝⎛p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A = 5、MT :x y 24-=,切线MT 与曲线()122-=x y 的交点坐标为⎪⎭⎫⎝⎛1,23,()2,3- ⎰-=⎪⎪⎭⎫ ⎝⎛---=122491224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α则弦所在直线的方程为()a x y -=αtan由()a x y -=αtan ,ax y 42=得两交点纵坐标为()()21csc 2csc 2y ctg a ctg a y =+<-=αααα所以()()dy a y yctg a A y y ⎰⎥⎦⎤⎢⎣⎡-+=2142αα ()()32222csc 34csc 4csc 4ααααa ctg a a -+=()()3232csc 34csc 4ααa a -=()32csc 38αa =因为πα<<0 当2πα=时 ()3csc α取得最小值为1所以 当2πα=时 过焦点的弦与抛物线ax y 42=所围成的图形面积()32csc 382απa A =⎪⎭⎫ ⎝⎛最小7、1)()()πθθθθπππ45cos 321cos 1212232302=⎥⎦⎤⎢⎣⎡++=⎰⎰d d A2)()()[]⎰⎰-=++=ππππθθθθθ22220241cos sin 21sin 21a d a d a A 8、()()⎰⎰------+=44442222165165dx xdx xV ππ()()⎰-=⎭⎬⎫⎩⎨⎧----+=4422222160165165ππdx xx9、解法同题810、提示:()32132-=x y ,32x y = 联立得交点⎪⎪⎭⎫ ⎝⎛36,2,⎪⎪⎭⎫ ⎝⎛-36,2 所求弧长()⎰+=212'12dx y s由()32132-=x y 得()yx y 2'1-=于是()()()()()1231321134222'-=--=⎪⎪⎭⎫ ⎝⎛-=x x x y x y于是得()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+=⎰12598123122321221dx x S(C)1、证明:此处球缺可看作由如图阴影(图222R y x =+的一部分)绕y 轴旋转而成所以()⎰⎰---==RHR RHR dy y R dy x V 222ππR HR R HR y yR ---=332ππ()[]()[]3323H R R H R R R -----=ππ⎪⎭⎫ ⎝⎛-=32H R H π2、解:()⎰-=tdx x t S 11sin sin ()⎰-=22sin sin πtdx t x S()()⎰-=tdx x t t S 1sin sin +()⎰-2sin sin πtdx t x=⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛-+201sin 22cos 2ππt t t t ()0cos 22'=⎪⎭⎫⎝⎛-=t t t S π,得驻点2421ππ==t t易知()()002''1''<>t S t S122max -=⎪⎭⎫ ⎝⎛=∴ππS S ,124min -=⎪⎭⎫⎝⎛=πS S3、解:设()00,y x 为曲线x y =()40≤≤x 上任一点,易得曲线于该点处的切线方程为:()00021x x x y y -=- 即0022x x y y +=得其与0=x , 4=x 的交点分别为⎪⎭⎫ ⎝⎛2,00y ,⎪⎪⎭⎫⎝⎛+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =所围的平面图形面积为:3164222004000-+=⎪⎪⎭⎫ ⎝⎛-+=⎰x y dx x x x y S3164200-+=x x 问题即求31642-+=xx S ()40≤≤x 的最小值 令022321=+=--xxS 得唯一驻点2=x 且为唯一极小值所以 当2=x 时,S 最小 即所求切线即为:2222+=x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面上提升时,做功微元为()()dx x r x r g dW +-=22π()()g r dx x r x r g dW W r r r r 42234ππ⎰⎰--=+-==。
定积分应用题附答案
定积分应⽤题附答案填空:1曲线y In x, y In a, y In b (0 ab )及y 轴所围成的平⾯图形的⾯积ln b为 A = e y dy =b-aIn a J2.曲线yx 2和y 代所围成的平⾯图形的⾯积是—1—计算题:1. 求由抛物线y 2 = 2x 与直线2x + y -2 = 0 所围成的图形的⾯积。
解:(1确定积分变量为y ,解⽅程组y 2 2x xi1/2x 22得,y 2x 2y i 1y ?21⼀即抛物线与直线的交点为(,1)和(2,- 2 ). 故所求图形在直线y = 1和2y = - 2 之间,即积分区间为[—2, 1 ]。
(2)在区间[—2, 1]上,任取⼀⼩区间为]y , y + dy ],对应的窄条⾯积1 12 近似于⾼为](1 — — y ) - —y 2],底为dy 的矩形⾯积,从⽽得到⾯积元素 22和(3, 0)处的切线所围成的图形的⾯积。
解:由 y = - x 2 + 4x -3 得 y' 2x 4, y'(0) 4, y'(3) 2。
抛物线在点(0, - 3)处的切线⽅程为y = 4x -3 ;在点(3, 0)处的切线⽅程为 y = - 2x + 6 ;两切线的交点坐标为(-,3 )dA = [( 1 — 1y)-22y ]dy(3)所求图形⾯积A =/ 1 、 1 2[(1- 2y )-2y]dy = [y -3] 1 6' 24y 2 -右3] 4 62 故⾯积A =l[(4x 3) (x 2 4x 3)]dx:[( 2x26) (x 24x3)] dx 93?求由摆线x = a (t—sint) , y = a( 1- cost)的⼀拱( t 2 )与横轴所围成的图形的⾯积解:A y(x)dx2 a(1 cost) a(1cost)dt(12cost cos2t⼩2「t 3a4.求由下列曲线所围成的图形的公共部分的⾯积: r = 3 cos r = 1 + cos解:两曲线的交点由 3cos1 cos21 3(3cos 2 )2d 03(1 2cos1 cos22)d 9⾏1cos2 )d545.计算由摆线 x = a (t -sint) , y = a ( 1- cost)的⼀拱(0 t 2 ),直线y = 0所围成的图形分别绕X 轴、丫轴旋转⽽成的旋转体的体积。
定积分的几何应用例题与习题
2V2 31、曲线 的极坐标方程1 cos ,(0-),求该曲线在2直角坐标方程,并求曲线 、切线L 与x 轴所围图形的面积。
设直线y ax 与抛物线y 面积为5,并且a 1 (1) 试确定a 的值,使S —所对应的点处的切线L 的 42、 x 2所围成的面积为S-i ,它们与直线x 1所围成的 (2) 求该最小值所对应的平面图形绕S 2达到最小,并求出最小值; x 轴旋转一周所得旋转体的体积。
3、 设xoy 平面上有正方形D (x, y) 0 x 1,0 y 1及直线L: x y t(t 0) x 若S(t)表示正方形D 位于直线I 左下部分的面积,试求S(t)dt(x 0) 0 4、求由曲线y e % J|sinx|(x 0)与x 轴所围图形绕x 轴旋转所得旋转体的体积 V 3 - x acos t 5、求由曲线 3 (a y asin t 0,4 绕X 轴旋转所得立体的全表面积。
t )与直线y=x 及y 轴所围成的图形 2 11 2 2、(S=( ) a ) 5 40x x- -—与直线x 0, x 2 形绕x 轴旋转一周得一旋转体,其体积为 V(t),侧面积为S(t),在x t 处的底面积为F(t)(1)求型的值;(2)计算极限V(t) 抄2,limV(t) t6.曲线y t(t 0)及y 0围成一曲边梯形,该曲边梯 S(t) F(t) S(t) F(t)7、求由摆线x=a(t 及该平面图形分别绕 (1)A 3 a 2, cost)的一拱(0 t 2 )与横轴所围成的平面图形的面积, sin t),y= a(1 x 轴、y 轴旋转而成的旋转体的体积⑵V xo 5 2a 3 , (3)V y 6 3a 38、设平面图形 旋转体的体积。
2x 及y x 所确定,求图形A 绕直线x 2旋转一周所得3V9设函数 f(x),g(x)可微,且 f (x) g(x), g(x) f(x), f(0) 0,g(x) 0.求:1)F(x)丄©;(2)作出函数曲线y F(x)的图形;(3)计算由曲线y F(x)及直线 g(x) x 0,x b(b 0)和y 1围成的面积•(1) F(x) 1 1.e 1(2) 当x 0时,F"(x) 0,曲线上凸;当x 0时,F"(x) 0,曲线下凹, 所以(0,0)为拐点,且y 1为其水平渐近线.b b 2(3) S 0(1 F(x))dx 0p dx 2b ln2 In (2 b 1).0 0e 110.已知曲线y a . x,( a 0)与曲线y In ■■、x 在点(x 0,y 0)处有公共切线,求(1常数a 及切点(X 0,y °);两曲线与x 轴围成的平面图形的面积;两曲线与X 轴围成的平面图形绕 a -,切点(e 2,1) e4,问这个图形绕x 轴旋转而成的旋转体的体积为最小值时,9值应为多少?5,b 2,c 013、过点P(1,0)作抛物线y x 2的切线,该切线与上述抛物线及 X 轴围成一平面图形(如图),求此图形绕 X 轴旋转所成旋转体的体积。
定积分及应用
∫
2 0
x 2 − 4 x + 4dx
2
解
∫
2
0
x − 4x + 4dx = ∫
2
x
0
1 (x − 2) dx = ∫ x − 2 dx = ∫ (2 − x)dx = (2x − x2 ) = 2 0 0 2 0
2 2 2
2
例 10
∫ t (t + sin t )dt 求 lim ∫ t dt
)
此题属于
0 型未定式的极限,由洛必达法则有 0
原式= lim
sin x 2 1 = x →0 3x 2 3
例6
∫
a
−a
x sin 8 xdx = (
)
解 例7
因 x sin 8 x 为奇函数且积分区间[-a,a]关于原点对称,故
∫
a
−a
x sin 8 xdx =0
d x 1 + t 4 dt = ( dx ∫ 0
0
a2
1 2 t
π
0
dt = ∫ tf (t )dt = ∫ xf ( x)dx
π
例2
设
∫
x 0
f ( t )dt = x sin x ,则 f(x)=(
(B)sinx-xcosx,
x 0
) (D) -(sinx+xcosx)
(A)sinx+xcosx, 解 例3 由
(C)xcosx-sinx,
∫
x 0
f (t )dt = x sin x ,则 ( ∫ f (t )dt )′ = ( x sin x)′ ,即 f(x)=sinx+xcosx,应选 B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的应用练习题 Final revision by standardization team on December 10, 2020.
题型
1.由已知条件,根据定积分的方法、性质、定义,求面积
2.由已知条件,根据定积分的方法、性质、定义,求体积
内容
一.微元法及其应用
二.平面图形的面积
1.直角坐标系下图形的面积
2.边界曲线为参数方程的图形面积
3. 极坐标系下平面图形的面积
三.立体的体积
1.已知平行截面的立体体积
2.旋转体的体积
四.平面曲线的弦长
五.旋转体的侧面积
六.定积分的应用
1.定积分在经济上的应用
2.定积分在物理上的应用
题型
题型I微元法的应用
题型II求平面图形的面积
题型III 求立体的体积
题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用
自测题六
解答题
4月25日定积分的应用练习题
一.填空题
1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________
2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________
3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为
4.曲线3
3
1x x y -
=相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2
2
π
θπ
≤
≤-上的一段弧所围成的图形面积
为 .
6.椭圆)0,0(1sin 1
cos b a t b y t a x ⎩⎨⎧+=+=所围成的图形的面积为
二.选择题
1. 由曲线22,y x x y ==所围成的平面图形的面积为( )
A . 31
B . 32
C . 21
D . 2
3
2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( )
A .
223a π B . 243a π C . 2
8
3a π D . 23a π 3. 曲线2
x
x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )
A . 2
a
a e e -+ B . 2a a e e -- C .
12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。
A.dy y ⎰2
1
ln B.dy e e x ⎰2
0 C.dy y ⎰2
ln 1ln D.()d x e x ⎰-2
1
2
三.解答题
1. 求曲线2
2,2,4
x y x xy y ===所围成的平面图像的面积.
2. 求C 的值(0<C <1=,使两曲线2x y =与3Cx y =所围成图形的面积为3
2 3. 已知曲线)0(2>=k ky x 与直线x y -=所围图形的面积为
48
9
,试求k 的值. 4. 求a 的值,使曲线)1(2x a y -=)0(>a 与在点(-1,0)和(1,0)处的法线所围成的平面图形的面积最小.
5.在第一象限内求曲线12+-=x y 上的一点,使该点处的切线及两坐标轴所围成图形的面积最小,并求此最小面积
6. 求椭圆1322
=+y x 与13
22
=+y x 所围公共图形的面积 7.求由下列各平面图形的面积:
(1)ϑcos 2a r = (2)θsin 2=r 与1=r 的公共部分 (3))cos 1(3θ+=r (4)θsin 2=r 与θ2cos 2=r 的公共部分 8. 求由下列曲线所
围区域的面积:(②,③,④图应补全)
①内摆线
sin ,cos 33==t
a y t a x ; ②
431,t y t t x -=-=;
③⎥⎦
⎤
⎢⎣⎡∈==2,0,sin ,cos 44πt t y t x ; ④3222,2t t y t t x -=-=.
4月26日定积分的应用练习题
基础题:
1. 由曲线x y sin =和它在2
π
=
x 处的切线以及直线π=x 所围成的图形的面积是
__________,以及它绕x 轴旋转而成的旋转体的体积为__________
2. 星形线t a x 3cos =,t a y 3sin =的全长为________
3. 由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体
积为__________ 4. 半立方抛物线()32132
-=
x y 被抛物线3
2x y =截得的一段弧的长度为__________ 5. 轴与求抛物线x x x y 22-=所围成的图形绕y 轴旋转所成的旋转体体积为___________
6. 由3,2,0y x x y ===所围成的图形,分别绕x 轴及y 轴旋转,计算所得两个旋转体的体积分别为
______________
7.由曲线4,==x y x 和x 轴所围成的平面图形绕x 轴旋转生成的旋转体的体积为
( )
A . π16
B . π32
C . π8
D . π4
8. 曲线2
x
x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )
A . 2
a
a e e -+ B . 2a a e e -- C .
12++-a a e e D .12-+-a a e e 9. 水下由一个矩形闸门,铅直地浸没在水中.它的宽为2m ,高为3m ,水面超过门顶2m ,则闸门上所受水的压力为( )
A . 245kN
B . 245N
C . 205.8N
D . 205.8kN 10..(1)由曲线x y x y ==,2所围成的图形绕x 轴旋转生成的旋转体的体积
为 .
(2)由双曲线x
y 1
=
和直线1,-=-=x e x 与x 轴围成的平面图形绕y 轴旋转生成的旋转体的体积为 .
(3)曲线3
3
1x x y -
=相应于区间[1,3]上的一段弧的长度为 . (4) 曲线16)5(22=-+y x 绕x 轴旋转所得旋转体的体积为 . 11. 如右图,阴影部分面积为( ) A .[()()]b
a f x g x -⎰d x
B .[()()][()()]c b
a c g x f x dx f x g x -+-⎰⎰d x C .[()()][()()]b
b
a c f x g x dx g x f x -+-⎰⎰d x
D .[()()]b
a g x f x +⎰d x
12.如图,设点P 从原点沿曲线y =x 2
向点A (2,4)
移动,
记直线OP 、曲线y =x 2及直线x =2所
围成
的面积
分别记为S 1,S 2,若S 1=S 2,则点P 的坐标为________.
13. 求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线
x y =
所围成的平面图形的面积最小
14. 曲线222x y -=和21x y -=围成一平面图形.求 (1)该平面图形的面积.
(2)将该平面分别绕x 轴和y 轴旋转而成的旋转体的体积.
15. 求曲线)20()
cos (sin )
sin (cos π≤≤⎩⎨⎧-=+=t t t t a y t t t a x 的弧长
16. 一截面为等要梯形的贮水池,上底宽6m,下底宽4m ,深2m ,长8m .要把满池水全部抽到距水池上方20m 的水塔中,问需要做多少功
17. 有一立体以抛物线x y 22=与直线2=x 所围成的图形为底,而垂直于抛物线轴的截面都是等边三角形,求其体积。
18.设1D 是由抛物线2
2x y =和直线0y ,a x ==所围成的平面区域,2D 是由抛物线
22x y =和直线2,==x a x 及0=y 所围成的平面区域,其中20<<a .试求:
(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V . (2)求常数a 的值,使得1D 的面积与2D 的面积相等.
19.设平面图形由曲线2x y =,22x y =与直线1=x 所围成.
(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积.
(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.
20.设由抛物线2(0)y x x =≥,直线2(01)y a a =<<与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2(0)y x x =≥,直线2(01)y a a =<<与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另
12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值。