向量与三角综合题选

合集下载

三角函数与向量综合测试

三角函数与向量综合测试

三角函数与向量综合测试一、选择题:1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A CD .A=B=C2.向量a ,b 的坐标分别为(1,-1),(2,3),则a ﹒b = ( )A.5B.4C.-2D.-13.已知sin A =21, 那么cos(A -23π)= ( ) A.-21 B. 21 C.-23 D. 23 4.已知角α的终边经过点(3,-4),则sin α+cos α的值为 ( ) A.-51 B. 51 C. ±51 D. ±51或±57 5、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为 ( ) A .-2 B .2 C .2316 D .-23166、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .2B 2C .12 D . 12-7、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象 ( )A .向左平移4π个单位 B 向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位8 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π+=x y 的图象( ) A .关于原点对称 B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称 11.若向量()1,1a = ,()1,1b =- ,()1,2c =- ,则c = ( ).A 1322a b -+ .B 1322a b - .C 3122a b - .D 3122a b -+ 12. 已知向量(1,2)a = ,2(2,)b m = ,若0=⋅→→b a ,则 m 的值为 ( )A. 2或-1B. -2或1C. ±2D. ±1二、填空题13.向量 a ,b 满足︱a ︱=3,︱b ︱=4,︱a +b ︱=5,则︱a -b ︱=_____14.cos 2x+cos 2(x+1200)+cos 2(x+2400)的值是________15. 已知|a |=4,|b |=5, a 与b 的夹角为60°,且(k a +b )⊥(a -2b ), 则k = ___16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 三、解答题:17.求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18.已知3tan 2απαπ=<<,求sin cos αα-的值.19.已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+。

向量与三角函数专题

向量与三角函数专题

向量与三角函数一、解三角形例5.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=,BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C = ,得13BC AC = , 由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--== ,所以60C = .例6. 如图,在ABC ∆中,2AC =,1BC =,43cos =C .(1)求AB 的值;(2)求()C A +2sin 的值. 解答过程:(Ⅰ) 由余弦定理,得2222..cos AB AC BC AC BC C =+- 341221 2.4=+-⨯⨯⨯=那么,AB(Ⅱ)由3cos 4C =,且0,C π<<得sin C 由正弦定理,得,sin sin AB BC C A=解得sin sin BC C A AB==所以,cos A .由倍角公式sin 2sin 2cos A A A =⋅=, 且29cos 212sin 16A A =-=,故()sin 2sin 2cos cos 2sin A C A C A C +=+例7.在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若AB,求BC 边的长.解:(Ⅰ)π()C A B =-+ ,1345tan tan()113145C A B +∴=-+=-=-- .又0πC << ,3π4C ∴=.(Ⅱ)由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin A =sin sin AB BC C A =,sin sin A BC AB C ∴== 二.求三角函数的定义域、值域或最值 典型例题例8.已知函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( )A.[]1,1-B.⎡⎤⎢⎥⎣⎦C.⎡-⎢⎣⎦D.1,⎡-⎢⎣⎦)),,444, 1.,,,24f x x x x f x x f x A C D x f x πππππ+-∴==--=-=解法1:(当时(故选C.11解法2:当时()=知不可能.又由时(知选C.22例9. 设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且. (Ⅰ)求实数m 的值;(Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =. (Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x的最小值为1例10.已知函数1)4()cos x f x xπ-=, (Ⅰ)求()f x 的定义域;(Ⅱ)设α是第四象限的角,且4tan 3α=-,求()f α的值.解答过程:(Ⅰ) 由cos 0x≠得()2x k k Z ππ≠+∈.故()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, (Ⅱ) 因为43tan ,cos ,55αα=-=且第四象限的角, 所以43sin ,cos ,55αα=-=故()()21)4cos 122)22cos 1sin 2cos 2cos 2cos 2sin cos cos 2cos sin 14.5f πααααααααααααααα-==-+=-==-=例11设)0(cos sin )(>+=ωωωx b x a x f 的周期π=T ,最大值4)12(=πf , (1)求ω、a 、b 的值;(2)的值终边不共线,求、、的两根,为方程、、若)tan(0)(βαβαβα+=x f .解答过程:(1))x sin(b a )x (f 22ϕ+ω+=, π=∴T , 2=ω∴, 又 )x (f 的最大值4)12(f =π , 22b a 4+=∴ ① , 且 122cos b 122sin a 4π+π= ②, 由 ①、②解出 a=2 , b=3.(2) )3x 2sin(4x 2cos 32x 2sin 2)x (f π+=+=, 0)(f )(f =β=α∴,)32sin(4)32sin(4π+β=π+α∴,32k 232π+β+π=π+α∴, 或)32(k 232π+β-π+π=π+α, 即 β+π=αk (βα、 共线,故舍去) , 或 6k π+π=β+α,33)6k tan()tan(=π+π=β+α∴ )Z k (∈.例12.设函数2()sin cos f x x x x a ωωω=++(其中0,a R ω>∈),且()f x 的图象在y 轴右侧的第一个最高点的横坐标为6π.(I )求ω的值;(II )如果()f x 在区间5,36ππ⎡⎤-⎢⎥⎣⎦a 的值.解答过程:(Ⅰ)1()2sin 22f x x x a ωω=+sin(2)3x a πω=+, 依题意得 2632πππω⋅+=, 解得 12ω=.(Ⅱ)由(Ⅰ)知,()sin()3f x x a π=+,又当5,36x ππ⎡⎤∈-⎢⎥⎣⎦时,70,36x ππ⎡⎤+∈⎢⎥⎣⎦,故11sin()123x -≤+≤,从而()f x 在5[,]36ππ-上取得最小值12a -.因此,由题设知12a -故a =例13.已知函数R x x x x f ∈++=),2sin(sin )(π(Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 的最大值和最小值; (Ⅲ)若43)(=αf ,求α2sin 的值.命题目的:本题考查利用三角函数的性质, 诱导公式、同角三角函数的关系式、两角和的公式,倍角公式等基本知识,考查运算和推理能力. 解答过程:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f(Ⅰ))(x f 的最小正周期为ππ212==T ;(Ⅱ))(x f 的最大值为2和最小值2-;(Ⅲ)因为43)(=αf ,即37sin cos 2sin cos .416αααα+=⇒=-即 1672sin -=α. 三.三角函数的图象和性质 典型例题 例14.已知函数22()sin 2sin cos 3cos ,f x x x x x x R =++∈.求:(Ⅰ)求函数()f x 的最大值及取得最大值的自变量x 的集合; (Ⅱ)函数()f x 的单调增区间. 解答过程:(I )解法一: ()1cos 23(1cos 2)sin 222x f x x θ-+=++2sin 2cos 2x x =++2)4x π=+. ∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 解法二:222()(sin cos )sin 22cos f x x x x x =+++ 1sin 21cos 2x x =+++2)4x π=+.∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.(Ⅱ)解: ()2)4f x x π=+由题意得222()242k x k k Z πππππ-≤+≤+∈,即3()88k x k k Z ππππ-≤≤+∈.因此, ()f x 的单调增区间是()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.例15.(本小题满分12分) 已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (II )求函数()()()h x f x g x =+的单调递增区间. 解:(I )由题设知1π()[1cos(2)]26f x x =++. 因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =, 即0 π2π6x k =-(k ∈Z ). 所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭, 当k 为奇数时,01π15()1sin 12644g x =+=+=. (II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π3113cos 2sin 2sin 2262222x x x x ⎫⎡⎤⎛⎫=+++=++⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎝⎭1π3sin 2232x ⎛⎫=++ ⎪⎝⎭. 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数, 故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ) 例16.已知函数22()sin cos 2cos ,.f x x x x x x R =+∈ (I )求函数()f x 的最小正周期和单调增区间;(II )函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到?解答过程:(I)1cos 2()2(1cos 2)22x f x x x -=+++132cos 2223sin(2).62x x x π=++=++ ()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(II )方法一:先把s i n 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3s i n (2)62y x π=++的图象.方法二: 把sin 2y x =图象上所有的点按向量3(,)122a π=- 平移,就得到3sin(2)62y x π=++的图象.例17.已知函数2())2sin ()().612f x x x x R ππ=-+-∈(I )求函数()f x 的最小正周期;(II )求使函数()f x 取得最大值的x 集合.解答过程:(Ⅰ) f(x)=3sin(2x -π6)+1-cos2(x -π12) = 2[32sin2(x -π12)-12 cos2(x -π12)]+1 =2sin[2(x -π12)-π6]+1 = 2sin(2x -π3) +1 .∴ T=2π2 =π.(Ⅱ)当f(x)取最大值时, sin(2x -π3)=1,有 2x -π3 =2k π+π2 , 即x=k π+ 5π12 (k ∈Z) ∴所求x 的集合为{x ∈R|x= k π+ 5π12 , k ∈Z}. 四.平面向量、三角函数的图象和性质 典型例题例18.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=-C .sin(2)3y x π=+ D .sin(2)3y x π=-解答过程:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=,因此选C.例19.已知向量(sin ,1),(1,cos ),.22a b ππθθθ==-<<(Ⅰ)若a b ⊥,求θ;(Ⅱ)求a b +的最大值.解:(Ⅰ),sin cos 0a b θθ⊥若则+=,由此得 tan 1ππθθ=- (-<<),22所以 ;4πθ=-(Ⅱ) 由(sin ,1),(1,cos )(sin 1,1cos ),a b b b θθθθ== α+=++ α+= = =得当sin()1,,, 1.44a b a b ππθθ+=+=+时取得最大值即当时例20.已知,,A B C 是三角形ABC ∆三内角,向量((),cos ,sin m n A A =-=,且1m n ⋅=(Ⅰ)求角A ;(Ⅱ)若221sin 23cos sin BB B+=--,求tan B .解答过程:(Ⅰ)∵1m n ⋅=,∴(()cos ,sin 1A A -⋅= ,cos 1A A -=.12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭. ∵50,666A A ππππ<<-<-<, ∴66A ππ-= . ∴3A π=.(Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --=∴cos 0B ≠ ∴2tan tan 20B B --=. ∴tan 2B =或tan 1B =-.而tan 1B =-使22cos sin 0B B -=,舍去. ∴tan 2B =.∴()tan tan C A B π=-+⎡⎤⎣⎦()tan A B =-+tan tan 1tan tan A B A B+=--=。

例谈用向量解与三角形的“心”有关的综合题

例谈用向量解与三角形的“心”有关的综合题
= ( n 1 2一 . 3 — )”
( 若 n+≥口 , 口的取值 范 围. Ⅱ) 求
改编题 目: ( 中 b =S 一3 将 I) ”的铺 垫 撤去, 直接求 通项公 式.
2 ( 0 8年 四 川 卷 理 科 2 .20 O题 ) 数 列 设 { 的前几项 和为 S , n) 已知 6 。 (一1 n 一2一 6 )
数 学教 学 研 究
2 3


1( + 6 口 )
顶 角 D, 以 0 OD 再 C,
为邻边 作 平 行 四边 形 , 它 的第 4个顶 点 为 H. ( 若 一口 I) ,
一 b Oe — c 用 a, c , , b,




÷ , c ,
一 一
= 一 一 c 6。 ~
(-) ÷ 1 h= A
消去 得 百 1十 =3 1: :


髓 =(+6 (-b c )c )
一c一b 一 l I一 l l 。 。 b c .
因为 0为△ABC的外 心 , 以 所
S.
3 课 堂小节 , 总结 出一 般性 问题 的处理 方法
1对 S 一k ) a +6既 可 以通 过递 归 写 出
S =k +6 两式 相 减 , 到关 于 { 数 a , 得 口}
列的递 推关 系式 , 可 以倒用 a 一S 一S一 也
转 化为关 于{ 的数 列进行 处理. S)
2 2
数 学教 学 研 究
第 2 卷 第 3期 9
21 0 0年 3月
例谈 用 向量解 与三角 形的“ 有关 的综 合题 心"
佘世 庆 李 学文
( . 肃 省 武威 第 十 五 中学 7 30 1甘 3 00 ・. 2 宁夏 同心 回民 中学 7 10 ) 5 30

三角函数测试题

三角函数测试题

三角,向量及复数综三角合测试题一, 选择题1,复数,1,21i z i z +==那么复数21z z ⋅在复平面上的对应点所在象限是 ( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限2,平面向量a 与b 的夹角为 ︒60,且,1,2==b a 则b a3-= ( )A5 B 7 C 19 D 53,△ABC 的外接圆的圆心为1,若,0=++C O B A A O 且,B A A O =则=⋅B C A C ( )A23B 3C 3D 324,在边长为1的菱形ABCD 中,∠BAD=E ,60︒是BC 的中点,则=⋅E A C A( )A333+ B 29 C3 D495,△ABC 中,,3222bc a c b +=+则=--)sin(cos sin 2C B C B ( )A 33B 23C 22D 216,若满足条件AB=3,C=3π,的三角形ABC 有两个,则边长BC 的取值范围 ( )A ()2,1B ()3,2 C()2,3 D ()2,27,设函数())0(sin )3sin(>++=w wx wx x f π相邻两条对称轴间的距离为2,则()1f = ( )A23 B 23- C 23 D 23- 8,若,542sin ,532cos-==αα则角θ的终边所在的直线为 ( ) A 0247=+y x B 0247=-y x C 0724=+y x D 0724=-y x9,已知函数=+=y x x y ,cos sin ,cos sin 22x x 则下列结论正确的是 ( )A 两个函数的图像均关于点()0,4π-成中心对称 B 两个函数的图像均关于直线4π-=x 成轴对称C 两个函数在区间()4,4ππ-上都是单调递增函数D 两个函数的最小正周期相同10,函数()ϕπ+=x y sin 的部分图像如图所示,设p 是图像的最高点,A,B 是图像与x 轴的交点,则tan ∠=APB ( )A 8B 81C 78D 87二,填空题11,若复数,,sin cos ,342121R z z i z i z ∈⋅+=+=θθ则=θtan _____________12,在△ABC 中,,21,2,1===ABC S AC AB 则=BC _______________ 13,已知正方形ABCD 的边长为1,则=-D B B A2______________14,若θθ,53sin =为第二象限角,则=θ2tan _______________ 15,已知函数()x f 满足下面关系:),2()2(ππ-=+x f x f 当(]π,0∈x 时,(),cos x x f -=给出下列命题:① 函数()x f 为周期函数 ② 函数()x f 是奇函数 ③ 函数()x f 的图像关于y 轴对称 ④ 方程()x x f lg =的解的个数是3, 其中正确命题的序号是_______________三,解答题16,(本题12分) 在△ABC 中,已知c B b aconB =-sin ()1 若,6π=B 求A ()2 求B A sin sin +的取值范围17,(本题12分) 已知向量)3,1()),2cos(),2(sin(=++=b x x aθθ,函数()b a x f ⋅=为偶函数,且[]πθ,0∈,()1 求函数()x f 的解析式;()2 设()1),2,0(=∈x f x π,求x 的值18,(本题12分) 已知函数(),233cos 33cos 3sin2-+=x x x x f ()1 求()x f 的最小正周期及对称中心;()2 若()π,0,21cos ∈≥x x ,试求x 的范围及此时函数()x f 3的值域;19,(本题13分) 在△ABC 中,若,1=⋅=⋅C B A B C A B A()1 求证:B A = ()2 求边长c的值,()3 若6=+C A B A,求△ABC 的面积;20,(本题13分) 已知向量(),)(),23,(cos ),1,(sin m n m x f x n x m⋅+==-= ()1当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求函数()x f y =的值域 ()2 锐角三角形ABC ,若,10232,27,245=⎪⎭⎫ ⎝⎛==B f b c a 求边c a ,;21,(本题13分) 某地有三个村庄,分别位于等腰直角三角形ABC 的三个顶点处,已知,6km AC AB ==现计划在BC 边上的高AO 上一点P 处建造一个变电站,记P 点到三个村庄的距离之和为y ;()1 若∠,α=PBO 把y 表示成α的函数关系式;()2变电站建于何处时,它到三个村庄的距离之和最小?2。

高中数学 第八章 向量的数量积与三角恒等变换 习题课—三角恒等变换素养练(含解析)新人教B版必修第三

高中数学 第八章 向量的数量积与三角恒等变换 习题课—三角恒等变换素养练(含解析)新人教B版必修第三

习题课——三角恒等变换课后篇巩固提升基础巩固1.(多选)函数f (x )=sin x cos x+√32cos 2x 的最小正周期和振幅分别是() A .πB .2C .1D .2πf (x )=sin x cos x+√32cos2x=12sin2x+√32cos2x=sin (2x +π3), 得最小正周期为π,振幅为1.2.已知A (1,sinαsin (α+2β)),B (sinαsin (α-2β)-2,1),且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,sin β≠0,sin α-k cos β=0,则k=()A .√2B .-√2C .√2或-√2D .以上都不对 由题意sinαsin (α-2β)-2+sinαsin (α+2β)=0,化简得sin α=±√2cos β,易知k=±√2,所以选C .3.若函数f (x )=sin x 3cos φ3+cos x 3sin φ3(φ∈[0,2π])是偶函数,则φ的值为()A .π2B .2π3C .3π2D .5π3(x )=sin x3cos φ3+cos x3sin φ3=sin (x3+φ3).由题意,知函数f (x )=sin (x3+φ3)(φ∈[0,2π])为偶函数,所以φ3=π2+k π,k ∈Z ,所以φ=3π2+3k π,k ∈Z .又φ∈[0,2π],故当k=0时,φ=3π2,选C .4.定义行列式运算|a 1 a 2a 3 a 4|=a 1a 4-a 2a 3.将函数f (x )=|√3 sinx 1 cosx|的图像向左平移n (n>0)个单位,所得图像对应的函数g (x )为奇函数,则n 的最小值为() A .π6B .π3C .5π6D .2π3 解析∵f (x )=√3cos x-sin x=2√32cos x-12sin x =2cos (x +π6),又平移后图像对应函数g (x )=2cos (x +n +π6)为奇函数,∴n+π6=k π+π2(k ∈Z ),即n=k π+π3(k ∈Z ),又n>0,∴n 的最小值为π3,故选B .5.(多选)已知函数f (x )=(sin x+cos x )cos x ,则下列说法错误的为() A .函数f (x )的最小正周期为2π B .f (x )的最大值为√2C .f (x )的图像关于直线x=-π8对称D .将f (x )的图像向右平移π8个单位,再向下平移12个单位后会得到一个奇函数的图像f (x )=(sin x+cos x )cos x ,得f (x )=√22sin (2x +π4)+12, 所以f (x )最小正周期为π,A 错; 所以f (x )的最大值为√22+12,B 错; f (x )的对称轴为x=π8+kπ2,k ∈Z ,所以x=-π8不是f (x )的对称轴,C 错;将f (x )的图像向右平移π8个单位得y=√22sin2x+12,再向下平移12个单位后会得到y=√22sin2x 为奇函数.6.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=.α是第三象限的角,∴k π+π2<α2<k π+3π4,k ∈Z , ∴tan α2<0. ∵cos α=-45,∴cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan 2α2=-45,解得tan α2=-3,∴tan (α2+π4)=tan α2+tanπ41-tan α2tanπ4=-3+11+3=-12. -127.函数f (x )=√3sin 23x-2sin 213x (π2≤x ≤3π4)的最小值是.f (x )=√3sin 23x-2sin 213x=√3sin 23x+cos 23x-1=2sin (23x +π6)-1,又π2≤x ≤3π4,所以23x+π6∈[π2,2π3].所以当2x+π6=2π3时,f (x )取得最小值√3-1.√3-18.已知向量a =(cos α,sin α),b =(cos β,-sin β),α,β均为锐角,且|a -b |=√105, (1)求cos(α+β)的值; (2)若cos α=1213,求cos β的值.由题意可得a -b =(cos α-cos β,sin α+sin β),∵|a -b |=√105= √(cosα-cosβ)2+(sinα+sinβ)2=√2-2cos (α+β),∴cos(α+β)=45.(2)∵cos(α+β)=45,α,β均为锐角,∴α+β仍为锐角,sin(α+β)=√1-cos 2(α+β)=35.∵cos α=1213,∴sin α=√1-cos 2α=513,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=45×1213+35×513=6365.9.已知函数f (x )=sin 2ωx+√3sin ωx ·sin (ωx +π2)(ω>0)的最小正周期为π. (1)求ω的值;(2)求函数f (x )在区间[0,2π3]上的取值X 围.f (x )=1-cos2ωx2+√32sin2ωx=√32sin2ωx-12cos2ωx+12=sin (2ωx -π6)+12. 因为函数f (x )的最小正周期为π,且ω>0, 所以2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin (2x -π6)+12, 因为0≤x ≤2π3,所以-π6≤2x-π6≤7π6,所以-12≤sin (2x -π6)≤1.因此0≤sin (2x -π6)+12≤32,所以f (x )的取值X 围是[0,32].能力提升1.设当x=θ时,函数f (x )=2sin x-cos x 取得最大值,则cos θ=() A .2√55B .-2√55C .√55D .-√55(x )=2sin x-cos x=√5sin(x-φ)=√5sin x ·cos φ-√5cos x sin φ;其中cos φ=√5,sin φ=√5;由题意得θ-φ=2k π+π2(k ∈Z ), 即θ=φ+2k π+π2(k ∈Z );所以cos θ=cos (φ+2kπ+π2)=cos (φ+π2)=-sin φ=-√5=-√55.2.若函数f (x )=sin ωx+√3cos ωx (x ∈R ),又f (α)=-2,f (β)=0,且|α-β|的最小值为3π4,则正数ω的值是() A .13B .32C .43D .23(x )=sin ωx+√3cos ωx=2sin (ωx +π3),又f (α)=-2,f (β)=0,从而当x=α时函数有最小值,x=β为平衡点,|α-β|的最小值是14T ,因此14×2πω=3π4,解得ω=23.3.已知函数f (x )=√3cos (π2+2x)+2sin 2(π2+x),x ∈[0,π2],则f (x )的最小值为() A .-1B .2C .3D .1-√3(x )=-√3sin2x+2cos 2x=-√3sin2x+1+cos2x=2cos (2x +π3)+1,因为0≤x ≤π2,所以π3≤2x+π3≤4π3,所以当2x+π3=π,即cos (2x +π3)=-1时,函数f (x )取最小值为-1.4.已知函数f (x )=cos x (sin x-√3cos x ),则() A .f (x )的周期为2π B .f (x )在区间[-π6,π6]上单调C .f (x )的图像关于直线x=-π12对称D .f (x )的图像关于点(π6,0)对称(x )=cos x sin x-√3cos 2x=12sin2x-√32·cos2x-√32=sin (2x -π3)−√32,所以T=2π2=π,排除A;令2k π-π2≤2x-π3≤2k π+π2(k ∈Z ),解得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )在区间[-π12,5π12]上单调,排除B;sin (-2π12-π3)=-1,所以f (x )的图像关于直线x=-π12对称,C 正确;f (π6)=sin (π3-π3)−√32≠0,所以f (x )的图像关于点(π6,0)不对称,排除D .5.已知向量a =(cos 2α,sin α),b =(1,2sin α-1),α∈(π2,π),若a ·b =25,则tan (α+π4)=() A .13B .27C .17D .23a ·b =25,得cos2α+sin α(2sin α-1)=25,求得sin α=35,又α∈(π2,π),则cos α=-45,所以tan α=-34,于是tan (α+π4)=tanα+tanπ41-tanαtanπ4=17.6.已知ω>0,a>0,f (x )=a sin ωx+√3a cos ωx ,g (x )=2cos (x +π6),h (x )=f (x )g (x ),这三个函数在同一直角坐标系中的部分图像如图所示,则函数g (x )+h (x )的图像的一条对称轴方程可以为()A .x=π6B .x=13π6C .x=-23π12D .x=-29π12f (x )=a sin ωx+√3a cos ωx=2a sin (ωx +π3),由题图可得2a=2,即a=1,f (x )=2sin (ωx +π3);而g (π3)=2cos (π3+π6)=0,h (x )=f (x )g (x )中,x ≠π3,所以{f (π3)=2sin (π3ω+π3)=0,f (0)=g (0);而ω>0,解得ω=2,即f (x )=2sin (2x +π3),所以F (x )=g (x )+h (x )=g (x )+f (x )g (x )=2cos (x +π6)+2sin(2x+π3)2cos(x+π6)=2cos (x +π6)+2sin (x +π6)=2√2sin (x +π6+π4)=2√2sin (x +5π12),而F (π6)≠±2√2,排除A;F (13π6)≠±2√2,排除B;F (-23π12)=2√2,即x=-23π12,即g (x )+h (x )的一条对称轴.7.(双空)已知向量a =(cos θ,sin θ),向量b =(√3,-1),则|2a -b |的最大值为,最小值为.2a -b =(2cos θ-3,2sin θ-1),则|2a -b |=√(2cosθ-√3)2+(2sinθ-1)2=√8-4√3cosθ-4sinθ=√8-8sin (θ+π3),当sin (θ+π3)=-1时,上式取最大值4,当sin (θ+π3)=1时,上式取最小值0.8.设f (x )=√3sin 3x+cos 3x ,若对任意实数x 都有m ≤f (x ),则实数m 的取值X 围是.(x )=√3sin3x+cos3x=2(√32sin3x +12cos3x)=2sin (3x +π6),所以f (x )min =-2,于是若对任意实数x 都有m ≤f (x ),则m ≤-2.-∞,-2]9.已知函数f (x )=sin (x -π6)+cos (x -π3),g (x )=2sin 2x2. (1)若α是第一象限角,且f (α)=3√35,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.(x )=sin (x -π6)+cos (x -π3)=√32sin x-12cos x+12cos x+√32sin x=√3sin x , g (x )=2sin 2x2=1-cos x , (1)由f (α)=3√35,得sin α=35,又α是第一象限角, 所以cos α>0.从而g (α)=1-cos α=1-√1-sin 2α=1-45=15. (2)f (x )≥g (x )等价于√3sin x ≥1-cos x , 即√3sin x+cos x ≥1.于是sin (x +π6)≥12. 从而2k π+π6≤x+π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z ,故使f (x )≥g (x )成立的x 的取值集合为{x |2kπ≤x ≤2kπ+2π3,k ∈Z}.10.若函数f (x )=sin x+√3cos x+a 在(0,2π)内有两个不同的零点α,β. (1)某某数a 的取值X 围; (2)求tan(α+β)的值.由题意得sin x+√3cos x=212sin x+√32cos x =2sin (x +π3), ∵函数f (x )=sin x+√3cos x+a 在(0,2π)内有两个不同的零点, ∴关于x 的方程sin x+√3cos x+a=0在(0,2π)内有相异二解, ∴方程sin (x +π3)=-a2在(0,2π)内有相异二解. ∵0<x<2π,∴π3<x+π3<7π3.结合正弦函数的图像可得若方程有两个相异解, 则满足-1<-a2<1,且-a2≠√32, 解得-2<a<2,且a ≠-√3.∴实数a 的取值X 围是(-2,-√3)∪(-√3,2).(2)∵α,β是方程的相异解,∴sin α+√3cos α+a=0,① sin β+√3cos β+a=0,②①-②,得(sin α-sin β)+√3(cos α-cos β)=0, ∴2sinα-β2cosα+β2-2√3sinα+β2sinα-β2=0.又sinα+β2≠0, ∴tanα+β2=√33,α+β21-tan2α+β2=√3.∴tan(α+β)=2tan。

专题四:三角形中的三角问题含向量

专题四:三角形中的三角问题含向量

高三数学微专题四三角形中的三角向量问题(含向量)一、基础回顾1.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC→=__2.在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE→=_______.3.在△ABC 中,a ,b ,c 为内角A ,B ,C 的对边,向量m =(1,3)与n =(cos A ,sin A )平行,且a cos B +b cos A =c sin C ,则角B =________.4.在△ABC 中,C =π2,AC =1,BC =2,则f (λ)=|2λCA →+(1-λ)CB →|的最小值是________.二、典型例题例1.如图,在△OAB 中,已知P 为线段AB 上的一点,OP →=x ·OA →+y ·OB →.(1)若BP →=P A →,求x ,y 的值;(2)若BP →=3P A →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°时,求OP →·AB →的值.例2.如图所示,已知△ABC 的面积为14 cm 2,D ,E 分别是AB ,BC 上的点,且AD DB =BE EC =2,AE CD P =I , 求△APC 的面积.例3..ABC ∆的三个内角A B C ,,依次成等差数列.(Ⅰ)若C A B sin sin sin 2=,试判断ABC ∆的形状;(Ⅱ)若ABC ∆为钝角三角形,且c a >,试求代数式2132222C A A sinsin cos +-的取值范围.例4.已知点A ,B ,C 是直线l 上不同的三点,点O 是l 外一点,向量OA →,OB →,OC →满足OA →-⎝ ⎛⎭⎪⎫12x 2+1OB →-(ln x -y )·OC →=0,记y =f (x ). (1)求函数y =f (x )的解析式;(2)若对任意的x ∈[1,2],不等式|a -ln x |-ln(f ′(x ))>0恒成立,求实数a 的取值范围.三、同步练习1.设O 是△ABC 内部的一点,P 是平面内任意一点,且OA →+2OB →+2PC →=2PO →,则△ABC 和△BOC 的面积之比为2.在四边形ABCD 中,AB →=DC →=(1,1),1|BA →|BA →+1|BC →|BC →=3|BD →|BD →,则四边形ABCD 的面积为________.3.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 所对的边,S 为△ABC 的面积,若向量p =(4,a 2+b 2-c 2),q =(1,S )满足p ∥q ,则C =________.4.设两个向量a =(λ+2,λ2-cos 2 α)和b =⎝ ⎛⎭⎪⎫m ,m 2+sin α,其中λ,m ,α为实数.若a=2b ,则λm 的取值范围是________.5. 在△ABC 中,M 是BC 的中点,|AM →|=1,AP →=2PM →,则P A →·(PB →+PC →)=________..6.△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7,则AO →·BC →=________. 7.在△ABC 中,已知BC =2,AB →·AC →=1,则△ABC 的面积S △ABC 最大值是____. 8. 给出下列三个命题(1)若0<tan A tan B <1,则△ABC 一定是钝角三角形;(2)若lgcosA=lgsin C -lgsinB =-12lg2, 则ΔABC 是等腰直角三角形;(3)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 一定是等边三角形以上正确命题的序号是:9.已知△ABC 所在平面上的动点M 满足2AM →·BC →=AC →2-AB →2,则M 点的轨迹过△ABC 的__ ______心.10.已知ABC ∆中,AB 边上的高与AB 边的长相等,则ACBC AB AC BC BC AC ⋅++2的最大值为11.△ABC 内接于以O 为圆心,1为半径的圆,且0543=++OC OB OA . (1)求数量积OA OC OC OB OB OA ⋅⋅⋅,,;(2)求△ABC 的面积.12.设函数f(x)=cos(2x+3π)+sin 2x. (1)求函数f(x)的最大值和最小正周期. (2)设A,B,C 为∆ABC 的三个内角,若cosB=31,f(3C)=-41,且C 为锐角,求sinA.13.在△ABC 中,A ,B ,C 所对边分别为a ,b ,c ,已知向量m =(1,2sin A ),n =(sin A,1+cos A ),且满足m ∥n ,b +c =3a . (1)求A 的大小;(2)求sin ⎝ ⎛⎭⎪⎫B +π6的值..14.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC→-12PQ →)=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE →·PF →的最值.专题四:三角形中的三角向量问题(含向量)一、基础回顾1.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=__-16解析 因为AM →=12(AB →+AC →),所以AB →+AC →=2AM →,又AC →-AB →=BC →,所以(AB →+AC →)2-(AC →-AB →)2=4AB →·AC →=4AM →2-BC →2=-64,所以AB →·AC→=-16. 2.在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=____-14____.解析 由题意画出图形如图所示,取一组基底{AB →,AC →},结合图形可得AD→=12(AB →+AC →),BE →=AE →-AB →=23AC →-AB →,∴AD →·BE →=12(AB →+AC →)·⎝ ⎛⎭⎪⎫23AC →-AB →=13AC →2-12AB →2-16AB →·AC →=13-12-16cos 60°=-14.3.在△ABC 中,a ,b ,c 为内角A ,B ,C 的对边,向量m =(1,3)与n =(cos A ,sin A )平行,且a cos B +b cos A =c sin C ,则角B =________.解析 由m 与n 平行,得 3cos A -sin A =0,所以tan A =3,A =π3.又由a cos B +b cos A =c sin C ,得sin C =1,C =π2,所以B =π6.4.在△ABC 中,C =π2,AC =1,BC =2,则f (λ)=|2λCA →+(1-λ)CB →|的最小值是__2______.解析 如图,以C 为原点,CA ,CB 所在直线为y 轴,x 轴建立直角坐标系,所以CA →=(0,1),CB →=(2,0),故2λCA →+(1-λ)CB →=(0,2λ)+(2-2λ,0)=(2-2λ,2λ),所以f (λ)=22λ2-2λ+1=22⎝⎛⎭⎫λ-122+12,故最小值为2,在λ=12时取得.二、典型例题例1.如图,在△OAB 中,已知P 为线段AB 上的一点,OP →=x ·OA →+y ·OB →. (1)若BP →=P A →,求x ,y 的值;(2)若BP →=3P A →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°时,求OP →·AB→的值. 解析 (1)因为BP →=P A →,所以BO→+OP →=PO →+OA →,即2OP →=OB →+OA →,所以OP →=12OA →+12OB →,所以x =12,y =12.(2)因为BP →=3P A →,所以BO →+OP →=3PO →+3OA →, 即OP →=34OA →+14OB →,所以x =34,y =14.故OP →·AB →=⎝ ⎛⎭⎪⎫34OA →+14OB →·(OB →-OA →)=14OB →·OB →-34OA →·OA →+12OA →·OB →=14×22-34×42+12×4×2×12=-9.例2.如图所示,已知△ABC 的面积为14 cm 2,D ,E 分别是AB ,BC 上的点,且AD DB =BE EC =2,求△APC 的面积.解析 设AB→=a ,BC →=b ,则AE →=a +23b ,DC →=13a +b .因为点A ,P ,E 和点D ,P ,C 均三点共线,所以存在λ和μ,使得AP →=λAE →=λa +23λb ,DP →=μDC →=13μa +μb .又因为AP →=AD →+DP →=⎝ ⎛⎭⎪⎫23+13μa +μb ,所以有⎩⎪⎨⎪⎧λ=23+13μ,23λ=μ,解得λ=67,μ=47,所以S △P AB =47S △ABC =47×14=8 (cm 2),S △PBC =14×⎝ ⎛⎭⎪⎫1-67=2 (cm 2),故S△APC=14-8-2=4(cm 2).例3..ABC ∆的三个内角A B C ,,依次成等差数列. (Ⅰ)若C A B sin sin sin 2=,试判断ABC ∆的形状; (Ⅱ)若ABC ∆为钝角三角形,且c a >,试求代数式212222C A A sin cos -的取值范围.答案 解:(Ⅰ)∴ABC ∆为正三角形.(Ⅱ)212cos 2sin 32sin 2-+A A C ==1223A cos A π⎛⎫-- ⎪⎝⎭ =A A A sin 43cos 41sin 23-+ =A A cos 41sin 43+ =)6sin(21π+A ∵223A ππ<<,∴25366A πππ<+<, ∴126sin A π⎛⎫<+< ⎪⎝⎭,114264sin A π⎛⎫<+< ⎪⎝⎭.∴代数式232cos 2sin 32sin 2++A A C 的取值范围是144⎛⎫ ⎪ ⎪⎝⎭,. 例4.已知点A ,B ,C 是直线l 上不同的三点,点O 是l 外一点,向量OA →,OB →,OC →满足OA →-⎝ ⎛⎭⎪⎫12x 2+1OB →-(ln x -y )·OC →=0,记y =f (x ).(1)求函数y =f (x )的解析式; (2)若对任意的x ∈[1,2],不等式|a -ln x |-ln(f ′(x ))>0恒成立,求实数a 的取值范围. 解析 (1)由题意,得OA →=⎝ ⎛⎭⎪⎫12x 2+1·OB →+(ln x -y )·OC →,且A ,B ,C 三点共线,所以⎝ ⎛⎭⎪⎫12x 2+1+(ln x -y )=1,所以y =f (x )=ln x +12x 2(x >0).(2)因为f ′(x )=1x +x ,所以|a -ln x |>ln ⎝ ⎛⎭⎪⎫x +1x ,即a <ln x -ln ⎝ ⎛⎭⎪⎫x +1x 或a >ln x +ln ⎝ ⎛⎭⎪⎫x +1x 恒成立.因为ln x -ln ⎝ ⎛⎭⎪⎫x +1x =ln x 2x 2+1=ln ⎝ ⎛⎭⎪⎫1-1x 2+1在[1,2]上取最小值-ln 2,ln x +ln ⎝ ⎛⎭⎪⎫x +1x =ln(x 2+1)在[1,2]上取最大值ln 5,所以a 的取值范围是(-∞,-ln 2)∪(ln 5,+∞).三、同步练习1.设O 是△ABC 内部的一点,P 是平面内任意一点,且OA →+2OB →+2PC →=2PO →,则△ABC 和△BOC 的面积之比为 5∶12.在四边形ABCD 中,AB→=DC →=(1,1),1|BA →|BA →+1|BC →|BC →=3|BD→|BD →,则四边形ABCD的面积为____3____.3.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 所对的边,S 为△ABC 的面积,若向量p =(4,a 2+b 2-c 2),q =(1,S )满足p ∥q ,则C =__π4______. 4.设两个向量a =(λ+2,λ2-cos 2 α)和b =⎝ ⎛⎭⎪⎫m ,m 2+sin α,其中λ,m ,α为实数.若a=2b ,则λm 的取值范围是___[-6,1]_____.解析 由a =2b ,得⎩⎪⎨⎪⎧λ+2=2m ,λ2-cos 2α=m +2sin α.由λ2-m =cos 2α+2sin α=2-(sin α-1)2,得-2≤λ2-m ≤2,又λ=2m -2,则-2≤4(m -1)2-m ≤2,∴⎩⎪⎨⎪⎧4m 2-9m +2≤0,4m 2-9m +6≥0.解得14≤m ≤2,而λm =2m -2m =2-2m ,故-6≤λm ≤1.5.在△ABC 中,M 是BC 的中点,|AM →|=1,AP →=2PM →,则P A →·(PB→+PC →)=_-49_______.解析 因为M 是BC 的中点,所以PB →+PC →=2PM →,又AP →=2PM →,|AM →|=1,所以P A →·(PB →+PC →)=P A →·2PM →=-4|PM →|2=-49|AM →|2=-49..6.△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7,则AO →·BC →=__52______. 7.在△ABC 中,已知BC =2,AB →·AC →=1,则△ABC 的面积S △ABC 最大值是____2. 解析 以线段BC 所在直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系,则B (-1,0),C (1,0).设A (x ,y )则AB →=(-1-x ,-y ),AC →=(1-x ,-y ),于是AB →·AC →=(-1-x )(1-x )+(-y )(-y )=x 2-1+y 2.由条件AB →·AC →=1知x 2+y 2=2,这表明点A 在以原点为圆心,2为半径的圆上.当OA ⊥BC 时,△ABC 面积最大,即S △ABC =12×2× 2 8. 给出下列三个命题(1)若0<tan A tan B <1,则△ABC 一定是钝角三角形;(2)若lgcosA=lgsin C-lgsinB =-12lg2, 则ΔABC 是等腰直角三角形;(3)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC一定是等边三角形以上正确命题的序号是: ⑴⑵⑶9.已知△ABC 所在平面上的动点M 满足2AM →·BC →=AC →2-AB →2,则M 点的轨迹过△ABC的__外______心.解析 如图,设N 是BC 的中点,则由2AM →·BC →=(AC →-AB →)·(AC →+AB →)=BC →·2AN →,得(AM →-AN →)·BC →=0,即NM →·BC →=0, 所以NM→⊥BC →,所以M 点的轨迹过△ABC 的外心. 10.已知ABC ∆中,AB 边上的高与AB 边的长相等,则ACBC AB AC BC BC AC ⋅++2的最大值为 22 11.△ABC 内接于以O 为圆心,1为半径的圆,且0543=++OC OB OA . (1)求数量积OA OC OC OB OB OA ⋅⋅⋅,,; (2)求△ABC 的面积.解析(1)OC OB OA 543-=+.两边平方,得222||25||1624||9OC OB OB OA OA =+⋅+,0=⋅∴OB OA .同理可得,54-=⋅OCOB ,54-=⋅OC OB .(2)由0=⋅OB OA ,可得,21||||21,=⋅=∴⊥∆OB OA S OB OA AOB . 由54-=⋅OCOB ,得53sin ,54cos =∠∴-=∠BOC BOC ,103sin ||||21=∠⋅=∴∆BOC OC OB S BOC 同理求得其他三角形面积, 所以565210321=++=++=∆∆∆∆AOC BOC AOB ABC S S S S . 12.设函数f(x)=cos(2x+3π)+sin 2x. (1)求函数f(x)的最大值和最小正周期.(2)设A,B,C 为∆ABC 的三个内角,若cosB=31,f(3C)=-41,且C 为锐角,求sinA. 解析(1)f(x)=1cos 213cos 2cos sin 2sin sin 23322x x x x ππ--+=- ∴函数f(x)的最大值为13+,最小正周期π. (2)f(3C )=132sin 23C -=-41,∴23sin 3C =,∵C 为锐角, ∴233C π=,∴2C π=,∴sinA =cosB=31.13.在△ABC 中,A ,B ,C 所对边分别为a ,b ,c ,已知向量m =(1,2sin A ),n =(sin A,1+cos A ),且满足m ∥n ,b +c =3a .(1)求A 的大小;(2)求sin ⎝ ⎛⎭⎪⎫B +π6的值.解析 (1) A =π3.(2)b +c =3a ,由正弦定理,得sin B +sin C =3sin A =32.因为B +C =2π3,所以sin B +sin⎝ ⎛⎭⎪⎫2π3-B =32.所以32cos B +32sin B =32,即sin ⎝ ⎛⎭⎪⎫B +π6=32.14.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC→-12PQ →)=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE →·PF→的最值.解析 (1)设P (x ,y ),则Q (8,y ).由(PC →+12PQ →)·(PC→-12PQ →)=0,得|PC |2-14|PQ |2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1.所以点P 在椭圆上,其方程为x 216+y 212=1.(2)因PE →·PF →=(NE →-NP →)·(NF →-NP →)=(-NF →-NP →)·(NF →-NP →)=(-NP →)2-NF →2=NP →2-1,是设P (x 0,y 0),则有x 2016+y 2012=1,即x 20=16-4y 203,又N (0,1),所以NP →2=x 20+(y 0-1)2=-13y 20-2y 0+17=-13(y 0+3)2+20.因y 0∈[-23,23],所以当y 0=-3时,NP →2取得最大值20,故PE →·PF →的最大值为19;当y 0=23时,NP →2取得最小值13-43,(此时x 0=0),故PE →·PF →的最小值为12-4 3.。

2023北京重点校高一(上)期末数学汇编:向量的数量积与三角恒等变换章节综合

2023北京重点校高一(上)期末数学汇编:向量的数量积与三角恒等变换章节综合

2023北京重点校高一(上)期末汇编 向量的数量积与三角恒等变换章节综合|2|AB AD +=( D .①④(秋北京高一北京师大附中校考期末)已知平面向量a ,b 是非零向量,2a =,()2a a b ⊥+,则向量b 在向量a 方向上的投影为(1−BD .22023秋·北京·高一北京师大附中校考期末)已知2a b ==,2a b ⋅=,则a b −=( ) 1B D .3或2二、填空题 2023秋·北京昌平·高一统考期末)已知向量,a b 在正方形网格中的位置如图所示.若网格纸上小正方形43a b −=__________.6.(2023秋·北京房山·高一统考期末)已知向量()1,1a =,非零向量b 满足a b a b +=−,请写出b 的一个坐标________.7.(2023秋·北京通州·高一统考期末)计算:2log sinlog 12π+=______.三、解答题 8.(2023秋·北京·高一北京师大附中校考期末)在ABC 中,D E 、为边BC AC 、上的点,且满足,BD CE m n BCEA==.(1)若ABC 为边长为,求AD BE ⋅;(2)若11,,32m n DE xAB yAC ===+,求x (3)若π,2,1,3A AB AC m n ∠====,求AD BE ⋅的最大值; 若将“D E 、为边BC AC 、上的点”改为“D E 、在ABC 的内部(包含边界),则AD BE ⋅是否为定值?若是,则写出该定值;若不是,则写出取值范围高一北京师大附中校考期末)已知函数(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移()()()F x f x g x =+.当130,24x ⎡∈⎢⎣tan15tan15;πtan 5m(1)若矩形ABCD 为正方形,求正方形(2)求矩形ABCD 面积的最大值.15.(2023秋·北京通州17.(2023秋·北京东城·高一统考期末)如图,单位圆被点1212,,,A A A 分为12等份,其中1(1,0)A .角α的始,,A中选择,写出所有满足要求的点)2122222|2|(2)441AB AD AB AD AB AB AD AD +=+=+⋅+=+25AB AD ∴+=故选:D. 2.D【分析】利用辅助角公式化简函数解析式,结合正弦函数性质判断命题①,结合平方关系,正弦函数性质化简不等式求方程的解,判断命题②,根据奇函数的定义及正弦函数和余弦函数性质判断命题③,根据三角恒等变换及余弦型函数的周期公式判断命题④,由此可得正确选项【分析】首先通过条件()2a a b ⊥+求得·2a b =−,然后根据数量积的运算公式求出·b cos θ,进而求解b 在a 方向上投影【详解】平面向量ab 、是非零向量,()22a a a b =⊥+,,()2·2?2?||2?42?a a b a a a b a a b a b ∴+=+=+=+0=,则·2a b =−.设a 与b 夹角为θ,···2a b a b cos θ==−,则2·1b cos aθ−==−, b ∴在a 方向上投影为1−.故选:A .C【分析】根据数量积的运算律,即可求出. 【详解】因为()22222a b a b a b a b −=−=+−⋅2222=+2a b −=. C.【分析】由图知||1,||2,,45a b a b ==<>=︒,应用向量数量积的运算律求得24310a b −=,即可得结果【详解】由图知:||1,||2,,45a b a b ==<>=︒,则12cos45a b ⋅=⨯⨯︒222431624916241810a b b b a a ⋅−=−=−++=,则4310a b −=. 故答案为:10 1,1(答案不唯一)【分析】设出向量b 的坐标,根据题意可得0a b ⋅=,进而即得. 【详解】设向量(),b x y =,220x y +≠,a b a b +=−,可得222222a a b b a a b b +⋅+=−⋅+,0a b ∴⋅=,又()1,1a =,所以0x y +=,1x =,可得()1,1b =−, 所以向量b 的坐标可为1,1. 故答案为:1,1. 【分析】根据给定条件利用对数运算法则,二倍角的正弦公式、特殊角的三角函数值计算作答2log sin log 12π+的中点,、AB AC 的夹角为60,()12AD AB AC =+,()122=−+BE AB AC ,计算AD BE ⋅即可;(2)若11,32m n ==,则距离是B 近的三等分点,E 近的AC 三等分点,则由2133=+=+DE DC CE BC AC 可得,x ,从而求出x +)11+==+CE AC n EAEA,()1=−+AD m AB mAC ,11=−++BE AB AC n ,且m ,由AD BE ⋅)1171++−+m m ,[]11,2+∈m ,令()[]13,1,2=+∈f x x x x ,由函数的单调性定义可得)13x x x=+在]1,2上单调递增,可求出AD BE ⋅的最大值;)以CB 的中点F 为原点,CB 所在的直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系,,设)(),E m n D 在以B 为圆心,半径为,点E 在三角形ABC 特殊位置可得答案.)若ABC 为边长为BC AC 、的中点,、AB AC 的夹角为60,()12AD AB AC =+,()()()1112222=+=−+−=−+BE BA BC AB AC AB AB AC , 所以()()124⋅=+⋅−+AD BE AB AC AB AC ()221113282244422⎛⎫=−−⋅+=⨯−−⨯⨯+=− ⎪⎝⎭AB AB AC AC ;,DE xAB yAC =+,则()212112333333=+=−=−−=−DE DC CE BC AC AC AB AC AC AB , 所以12,33==−x y ,121333+=−=−x y ;3)=CE n EA,所以11++===+CE CE EA AC n EAEAEA()()1=+=+=+−=−+AD AB BD AB mBC AB m AC AB m AB mAC ,11=+=−++BE BA AE AB AC n , 因为m n =,所以11=−++BE AB AC m ,且[]0,1m ∈, 所以()()111⎛⎫⋅=−+⋅−+⎪+⎝⎭AD BE m AB mAC AB AC m ()221113111−⎛⎫=−+−⋅+=+ ⎪+++⎝⎭m m m AB m AB AC AC m m m m )1171++−+m m ,[]11,2+∈m , ()[]13,1,2=+∈x x x x,设1212x x ≤<≤,)()()31133⎛⎫−=+−+=− ⎪x f x x x x x时AD BE ⋅有最大值为)1,12==BDCE BC EA,()223+−=+n n 310+=n ,为圆心,半径为1的三角形ABC 都为所在边的中点,点E 在三角形点重合时,12⎛==− ⎝AD AH ,0=BE , 所以0⋅=AD BE ,,112m n ==时,由()32⋅=−AD BE ,故AD BE ⋅不是定值.210,30,,,⎡==∈∠=⎣AB BD BE ABE ,所以向量AB 与BE 的夹角为150,设DBE θ∠=,则030,θ⎡⎤∈⎣⎦,3cos 12,θ⎡⎤∈⎢⎥⎣⎦,则()⋅=+⋅=⋅+⋅AD BE AB BD BE AB BE BD BE3cos 2θ=−⋅+⋅AB BE BD BE ()3cos 3cos θθ−+=−+BE BE BE ,所以()33cos ,132θ⎡⎤−+∈−−⎢⎥⎣⎦,而0,3⎡⎤∈⎣⎦BE ()33cos ,02θ⎡⎤−+∈−⎢⎥⎣⎦BE ,所以32⎡⎤⋅∈−⎢⎣AD BE9.(1)()π3sin 23f x x ⎛⎫=+ ⎪⎝⎭;(2)61,612⎡⎤−++⎢⎥⎣⎦. 【分析】(1)由图象可得()f xtan153tan15=25α=tan15tan45+tan15tan151tan45tan15=−⋅,根据两角和的正切公式逆用,即可得出;,根据两角差的正余弦公式以及诱导公式可得tan15tan45+tan15tan151tan45tan15=−⋅()tan 45+15tan 603===; cos 0α≠.π2,所以3ππcos sin 105=,3ππsin cos 105=.()()0x f x ,cos 2)cos()ln(1x x θ−+++2ln(1cos 2)cos cos x x θ−+−化简得,ln(1cos 2)cos x x −+ππ42x ≤<时,π22x ≤AD BC =,QOP ∠=OA AD ∴=AB OB ∴=矩形ABCD 为正方形,AB ∴即cos θ−,2sin θ∴2sin cos θ+,2sin θ∴+04πθ<<∴正方形ABCD (2)设矩形sin cos θ=15.(1)75;(2)72 cos410πα⎛⎫+=⎪⎝⎭,【详解】2ππ126=,所以终边经过π1112,Z 6i i i α的始边与x 轴的非负半轴重合,若的终边经过点5A ,则2π3α=, 2πcos 3α=ππsin sin cos sin 33ααα⎛=+⋅ ⎝,即1sin sin 2αα=⋅+4π3α=即ππ1112,Z 336i i i i 或4ππ1112,Z 936i i i i 经过点39,A A故答案为:12−;39,A A。

题型4:向量与三角形三心问题

题型4:向量与三角形三心问题

题型4:向量与三角形三心问题一.选择题(共10小题)1.(2013•临淄区校级模拟)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,三角形的重心为G.aGA →+bGB →+cGC →=0→,则∠A=( ) A .30° B .60° C .90° D .120°2.(2015•安徽四模)已知点G 是△ABC 的重心,AG →=λAB +μAC →( λ,μ∈R ),若∠A=120°,AB ⋅AC →=−2,则|AG →|的最小值是( )A .√33B .√22 C .23D .343.(2013春•南关区校级期末)O 是△ABC 的内切圆的圆心,|AB →|=5,|BC →|=4,|CA →|=3,则下列结论正确的是( )A .|OC →|<|OA →|<|OB →| B .|OC →|=|OA →|=|OB →| C .|OC →|=|OA →|<|OB →| D .|OC →|<|OA →|=|OB →|4.(2017•香坊区校级二模)已知Rt △ABC ,AB=3,BC=4,CA=5,P 为△ABC 外接圆上的一动点,且AP →=xAB →+yAC →,则x +y 的最大值是( )A .54B .43C .√176 D .535.(2017•雁峰区校级模拟)在平面内,定点A ,B ,C ,O 满足|OA →|=|OB →|=|OC →|=2,OA →⋅(AC |AC →|−AB|AB →|)=OB →⋅(BC |BC →|−BA|BA →|)=0,动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是( )A .434B .494C .374D .3726.(2017春•巫溪县校级期中)若点M 是△ABC 的重心,则下列向量中与AB →共线的是( )A .AB →+BC →+AC →B .AM →+MB →+BC →C .AM →+BM →+CM →D .3AM →+AC →7.(2017•阳东县校级模拟)已知a ,b ,c 分别是△ABC 的内角A ,B .C 所对的边,点M 为△ABC 的重心.若a MA →+b MB →+√33c MC →=0,则C=( )A .π4B .π2C .5π6D .2π38.(2017•上饶二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,O 是△ABC 外接圆的圆心,若√2αcosB =√2c −b ,且cosB sinCAB →+cosC sinBAC →=mAO →,则m 的值是( )A .√24B .√22C .√2D .2√29.(2014秋•哈尔滨校级月考)已知O 是锐角△ABC 的外接圆圆心,tanA =√22,若cosB sinC AB →+cosC sinBAC →=2mAO →,则m 的值为( ) A .1 B .√33 C .√36 D .√31210.(2016•太原校级模拟)设O 是△ABC 的外接圆圆心,且OA →+√3OB →+2OC →=0→,则∠AOC=( )A .π3B .2π3 C .π2D .5π6题型4:向量与三角形三心问题参考答案与试题解析一.选择题(共10小题)1.(2013•临淄区校级模拟)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,三角形的重心为G.aGA →+bGB →+cGC →=0→,则∠A=( ) A .30° B .60° C .90° D .120°【解答】解:由三角形的重心性质可得GA →+GB →+GC →=0→∵.aGA →+bGB →+cGC →=0→∴aGA →+bGB →−c(GA →+GB →)=0→∴(a −c)GA →+(b −c)GB →=0→∵GA →与GB →不共线∴a ﹣c=0,b ﹣c=0即a=b=c ∴三角形为等边三角形,∠A=60° 故选:B .2.(2015•安徽四模)已知点G 是△ABC 的重心,AG →=λAB +μAC →( λ,μ∈R ),若∠A=120°,AB ⋅AC →=−2,则|AG →|的最小值是( )A .√33B .√22 C .23D .34【解答】解:由向量加法的三角形法则及三角形重心的性质可得,AG →=23AD →=13(AB →+AC →) ∵∠A=120°,AB ⋅AC →=−2,则根据向量的数量积的定义可得,AB →⋅AC →=|AB →||AC →|cos120°=−2 设|AB →|=x ,|AC →|=y∴|AB →||AC →|=4 即xy=4|AG →|=13|AB →+AC →|=13√(AB →+AC →)2=13√AB →2+AC →2+2AB →⋅AC →=13√x 2+y 2−4 x 2+y 2≥2xy=8(当且仅当x=y 取等号)∴|AG →|≥23即|AG →|的最小值为23故选:C .3.(2013春•南关区校级期末)O 是△ABC 的内切圆的圆心,|AB →|=5,|BC →|=4,|CA →|=3,则下列结论正确的是( )A .|OC →|<|OA →|<|OB →| B .|OC →|=|OA →|=|OB →| C .|OC →|=|OA →|<|OB →| D .|OC →|<|OA →|=|OB →|【解答】解:∵|AB →|=5,|BC →|=4,|CA →|=3, ∴△ABC 的内切圆半径为4+3−52=1 在Rt △OCE 中,OE=CE=1, ∴|OC →|=√12+12=√2在Rt △OBD 中,OD=1,BD=4﹣1=3 ∴|OB →|=√12+(4−1)2=√10 在Rt △OAE 中,OE=1,AE=3﹣1=2∴|OA →|=√12+(3−1)2=√5 故|OC →|<|OA →|<|OB →| 故选:A .4.(2017•香坊区校级二模)已知Rt △ABC ,AB=3,BC=4,CA=5,P 为△ABC 外接圆上的一动点,且AP →=xAB →+yAC →,则x +y 的最大值是( )A .54B .43C .√176D .53【解答】解:以AC 的中点为原点,以ACx 轴,建立如图所示的平面直角坐标系,则△ABC 外接圆的方程为x 2+y 2=2.52,设P 的坐标为(52cosθ,52sinθ),过点B 作BD 垂直x 轴,∵sinA=45,AB=3∴BD=ABsinA=125,AD=AB•cosA=35×3=95,∴OD=AO ﹣AD=2.5﹣95=710,∴B (﹣710,125),∵A (﹣52,0),C (52,0)∴AB →=(95,125),AC →=(5,0),AP →=(52cosθ+52,52sinθ)∵AP →=x AB →+y AC →∴(52cosθ+52,52sinθ)=x (95,125)+y (5,0)=(95x +5y ,125x )∴52cosθ+52=95x +5y ,52sinθ=125x ,∴y=12cosθ﹣38sinθ+12,x=2524sinθ,∴x +y=12cosθ+23sinθ+12=56sin (θ+φ)+12,其中sinφ=35,cosφ=45,当sin (θ+φ)=1时,x +y 有最大值,最大值为56+12=43,故选:B .5.(2017•雁峰区校级模拟)在平面内,定点A ,B ,C ,O 满足|OA →|=|OB →|=|OC →|=2,OA →⋅(AC |AC →|−AB|AB →|)=OB →⋅(BC |BC →|−BA|BA →|)=0,动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是( )A .434B .494C .374D .372【解答】解:由|OA →|=|OB →|=|OC →|=2知,O 是△ABC 的外心; OA →⋅(AC |AC →|−AB|AB →|)=OB →⋅(BC |BC →|−BA|BA →|)=0, ∴OA →⋅AC →|AC →|﹣OA →⋅AB →|AB →|=OB →⋅BC →|BC →|﹣OB →⋅BA→|BA →|=0,当OA →⋅AC →|AC →|﹣OA →⋅AB →|AB →|=0时,OA →⋅AC →|AC →|=OA →⋅AB →|AB →|,即|OA →|×|AC →|×cos∠DAC |AC →|=|OA →|×|AB →|×cos∠DAB |AB →|,∴cos ∠DAC=cos ∠DAB ∴∠DAC=∠DAB ,∴O 点在三角形的角A 平分线上;同理,O 点在三角形的角B ,角C 平分线上; ∴点定O 的一定是△ABC 的内心,如图1所示; ∴△ABC 是正三角形,且边长为√32=2√3;如图2所示,建立平面直角坐标系;则B (0,0),C (2√3,0),A (√3,3);∵M 满足|AP →|=1,∴点P 的轨迹方程为:(x −√3)2+(y ﹣3)2=1; 令x=√3+cosθ,y=3+sinθ,θ∈[0,2π),由PM →=MC →,得M (3√32+12cosθ,32+12sinθ),∴|BM →|2=(3√32+12cosθ)2+(32+12sinθ)2=374+3sin (θ+π3)≤494;∴|BM →|2的最大值是494.故选:B .6.(2017春•巫溪县校级期中)若点M 是△ABC 的重心,则下列向量中与AB →共线的是( )A .AB →+BC →+AC →B .AM →+MB →+BC →C .AM →+BM →+CM →D .3AM →+AC →【解答】解:∵点M 是△ABC 的重心, 设D ,E ,F 分别是边BC ,AC ,AB 的中点,∴AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),同理BM →=13(BA →+BC →), CM →=13(CB →+CA →),∴AM →+BM →+CM →=13(AB →+AC →+BA →+BC →+CB →+CA →)=0→,∵零向量与任意的向量共线, 故选:C .7.(2017•阳东县校级模拟)已知a ,b ,c 分别是△ABC 的内角A ,B .C 所对的边,点M 为△ABC 的重心.若a MA →+b MB →+√33c MC →=0,则C=( )A .π4B .π2C .5π6D .2π3【解答】解:∵点M 为△ABC 的重心,则MA →+MB →+MC →=0→, ∴MA →=−MB →−MC →,∵a MA →+b MB →+√33c MC →=0→,∴a(−MB →−MC →)+bMB →+√33cMC →=0→, 即(b −a)MB →+(√33c −a)MC →=0→.∵MB →与MC →不共线,∴b ﹣a=0,√33c −a =0.得a :b :√33c=1:1:1.令a=1,b=1,c=√3,利用余弦定理可得cosC=a 2+b 2−c 22ab=1+1−32×1×1=−12.∴C=2π3.故选:D .8.(2017•上饶二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,O 是△ABC 外接圆的圆心,若√2αcosB =√2c −b ,且cosB sinCAB →+cosC sinBAC →=mAO →,则m 的值是( )A .√24B .√22C .√2D .2√2【解答】解:∵√2αcosB =√2c −b ,∴√2sinAcosB =√2sin(A +B)−sinB⇒√2sinAcosB =√2sinAcosB +√2cosAsinB −sinB⇒√2cosAsinB −sinB =0,∴cosA=√22,得A=π4.∵O 是△ABC 外接圆的圆心,∴AO →⋅AB →=12AB →2=12c 2由cosB sinC AB →+cosC sinB AC →=mAO →,得cosB snC AB →2+cosC sinB AC →⋅AB →=mAO →⋅AB →, ⇒cosB sinC c 2+cosC sinB bccosA =m ×12c 2⇒cosB sinC c +cosC sinB bcosA =12mc ⇒cosB +cosAcosC =12msinC∴m=2×cosB+cosAcosC sinC =2×−cos(A+C)+cosAcosCsinC=2×sinAsinC sinC=2sinA =√2.故选:C .9.(2014秋•哈尔滨校级月考)已知O 是锐角△ABC 的外接圆圆心,tanA =√22,若cosB sinC AB →+cosC sinBAC →=2mAO →,则m 的值为( ) A .1 B .√33 C .√36 D .√312【解答】解:如图所示,取AB 的中点D ,连接OA ,OD ,由三角形外接圆的性质可得OD ⊥AB ,∴DO →•AB →=0. ∵AO →=AD →+DO →入已知若cosB sinCAB →+cosC sinBAC →=2mAO →=2m (AD →+DO →),两边与作数量积得到cosBsinCAB →2+cosCsinB•AC →⋅AB →=2m AD →•AB →+2m DO →•AB →, ∴cosB sinC sin 2c +cosC sinB •bccosA=2m•12c 2=mc 2. 由正弦定理可得cosB sinC sin 2c +cosCsinB •sinBsinCcosA=msin 2C .化为cosB +cosCcosA=msinC ,∵cosB=﹣cos (A +C )=﹣cosAcosC +sinAsinC , ∴sinAsinC=msinC , ∴m=sinA .∵tanA=√22,∴sinA ═√3=√33.故选:B .10.(2016•太原校级模拟)设O 是△ABC 的外接圆圆心,且OA →+√3OB →+2OC →=0→,则∠AOC=( )A .π3B .2π3C .π2D .5π6【解答】解:设圆O 的半径为r ,则:由OA →+√3OB →+2OC →=0→得,OA →+2OC →=−√3OB →; ∴(OA →+2OC →)2=(−√3OB →)2; ∴OA →2+4OC →2+4OA →⋅OC →=3OB →2; 即r 2+4r 2+4r 2cos ∠AOC=3r 2;∴cos∠AOC =−12; ∴∠AOC =2π3.故选:B .第11页(共11页)。

平面向量与三角形的“四心”问题

平面向量与三角形的“四心”问题

平面向量与三角形的“四心”综合问题【例题精讲】例题1 已知O ,N ,P 在△ABC 所在平面内,且|OA ―→|=|OB ―→|=|OC ―→|,NA ―→+NB ―→+NC ―→=0,且P A ―→·PB ―→=PB ―→·PC ―→=PC ―→·P A ―→,则点O ,N ,P 依次是△ABC 的( )A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心【解析】由|OA ―→|=|OB ―→|=|OC ―→|知,O 为△ABC 的外心; 由NA ―→+NB ―→+NC ―→=0知,N 为△ABC 的重心;因为P A ―→·PB ―→=PB ―→·PC ―→,所以(P A ―→-PC ―→)·PB ―→=0, 所以CA ―→·PB ―→=0,所以CA ―→△PB ―→,即CA △PB ,同理AP △BC ,CP △AB ,所以P 为△ABC 的垂心,故选C.例题2 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y △[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463C .4 3D .62【解析】根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部, 其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463,故选B.【知识小结】三角形“四心”的向量表示(1)在△ABC 中,若|OA ―→|=|OB ―→|=|OC ―→|或OA ―→2=OB ―→2=OC ―→2,则点O 是△ABC 的外心.(2)在△ABC 中,若GA ―→+GB ―→+GC ―→=0,则点G 是△ABC 的重心.(3)对于△ABC ,O ,P 为平面内的任意两点,若OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎫AB ―→+12BC ―→,λ△(0,+∞),则直线AP 过△ABC 的重心. (4)OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→或者|OA ―→|2+|OB ―→|2=|OB ―→|2+|OC ―→|2=|OC ―→|2+|OA ―→|2,则点O 为三角形的垂心.(5)|BC ―→|·OA ―→+|AC ―→|·OB ―→+|AB ―→|·OC ―→=0,则点O 为三角形的内心.(6)对于△ABC ,O ,P 为平面内的任意两点,若OP ―→=OA ―→+λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|+AC ―→|AC ―→|(λ>0),则直线AP 过△ABC 的内心.【变式练习】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ△(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【解析】选C 由原等式,得OP ―→-OA ―→=λ(AB ―→+AC ―→),即AP ―→=λ(AB ―→+AC ―→),根据平行四边形法则,知AB ―→+AC ―→=2AD ―→(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.2.在△ABC 中,|AB ―→|=3,|AC ―→|=2,AD ―→=12AB ―→+34AC ―→,则直线AD 通过△ABC 的( )A .重心B .外心C .垂心D .内心解析:选D △|AB ―→|=3,|AC ―→|=2,△12|AB ―→|=34|AC ―→|=32.设AE ―→=12AB ―→,AF ―→=34AC ―→,则|AE ―→|=|AF ―→|.△AD ―→=12AB ―→+34AC ―→=AE ―→+AF ―→,△AD 平分△EAF ,△AD 平分△BAC ,△直线AD 通过△ABC 的内心。

三角函数和向量综合题

三角函数和向量综合题

三角函数和向量综合题1、设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值;(2)求|b +c|的最大值;(3)若tan αtan β=16,求证:a∥b.2、已知向量()cos ,sin m θθ=和()2sin ,cos n θθ=-,[],2θππ∈ (1)求m n +的最大值; (2)当825m n +=时,求cos 28θπ⎛⎫+ ⎪⎝⎭的值。

3、已知向量()1,1m =,向量n 与向量m 的夹角为34π,且1m n =-, (1)求向量n ;(2)若向量n 与向量(1,0)q =的夹角为2π,向量2cos ,2cos 2C p A ⎛⎫= ⎪⎝⎭,其中,,A B C 为ABC ∆的内角,且2B=A+C ,求n p +的取值范围。

4、已知向量)21,sin (--=→θa m ,)cos ,21(θ=→n . (1)当22=a ,且→→⊥n m 时,求θ2sin 的值; (2)当0=a ,且→m ∥→n 时,求θtan 的值.5、已知→a =(cos x +sin x ,sin x ),→b =(cos x -sin x ,2cos x ).(1)求证:向量→a 与向量→b 不可能平行;(2)若f (x )=→a ·→b ,且x ∈[-π4,π4]时,求函数f (x )的最大值及最小值. 6、()f x a b =⋅,其中向量(,cos 2)a m x =,(1sin 2,1)b x =+,x R ∈,且函数()y f x =的图象经过点(,2)4π.(Ⅰ)求实数m 的值;(Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

7、设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+.(Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3()2f x ≥成立的x 的取值集合。

最新【成才之路】高中数学-第二、三章--平面向量-三角恒等变换综合测试题-新人教B版必修4资料

最新【成才之路】高中数学-第二、三章--平面向量-三角恒等变换综合测试题-新人教B版必修4资料

【成才之路】2014-2015学年高中数学 第二、三章 平面向量 三角恒等变换综合测试题 新人教B 版必修4本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.有下列四个命题:①存在x ∈R ,sin 2x 2+cos 2x 2=12;②存在x 、y ∈R ,sin(x -y )=sin x -sin y ; ③x ∈[0,π],1-cos2x2=sin x ; ④若sin x =cos y ,则x +y =π2. 其中不正确的是( ) A .①④ B .②④ C .①③ D .②③[答案] A[解析] ∵对任意x ∈R ,均有sin 2x2+cos 2x2=1,故①不正确,排除B 、D ;又x ∈[0,π],1-cos2x 2=sin 2x =sin x ,故③正确,排除C ,故选A.2.(2014·山东潍坊重点中学高一期末测试)若向量a =(2cos α,-1),b =(2,tan α),且a ∥b ,则sin α=( )A .22 B .-22C .±22D .-12[答案] B[解析] ∵a ∥b ,∴2cos α·tan α=-2,即sin α=-22. 3.(2014·陕西咸阳市三原县北城中学高一月考)函数y =2cos 2x -1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数[答案] C[解析] y =2cos 2x -1=cos2x ,故函数y =2cos2x 是最小正周期为π的偶函数. 4.在△ABC 中,若4sin A +2cos B =1,2sin B +4cos A =33,则sin C 的大小是( ) A .-12B .32C .12或32D .12[答案] D[解析] 由条件,得(4sin A +2cos B )2=1,(2sin B +4cos A )2=27, ∴20+16sin A cos B +16sin B cos A =28. ∴sin A cos B +cos A sin B =12.即sin(A +B )=12.∴sin C =sin[π-(A +B )]=sin(A +B )=12.5.函数y =(sin x +cos x )2+1的最小正周期是( ) A .π2B .πC .3π2D .2π[答案] B[解析] y =(sin x +cos x )2+1 =1+2sin x cos x +1=2+sin2x . ∴最小正周期T =π.6.设5π<θ<6π,cos θ2=a ,则sin θ4的值等于( )A .-1+a2 B .-1-a2 C .-1+a2D .-1-a2[答案] D[解析] ∵5π<θ<6π,∴5π4<θ4<3π2, ∴sin θ4<0,∴sin θ4=-1-cosθ22=-1-a2.7.(2014·山东济宁梁山一中高一月考)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A . 5B .10C .2 5D .10[答案] B[解析] ∵a ⊥c ,∴a ·c =2x -4=0,∴x =2. 又∵b ∥c ,∴-4=2y ,∴y =-2. ∴a =(2,1),b =(1,-2), ∴|a +b |=32+-2=10.8.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( ) A . 3 B .2 3 C .4 D .12[答案] B[解析] ∵a =(2,0),∴|a |=2,|a +2b |=a +2b2=a 2+4a·b +4b 2,∵a·b =|a|·|b |cos60°=1, ∴|a +2b |=4+4+4=2 3.9.cos 275°+cos 215°+cos75°cos15°的值为( ) A .62B .32C .54D .1+34[答案] C[解析] 原式=sin 215°+cos 215°+sin15°cos15° =1+12sin30°=54.10.设△ABC 的三个内角为A 、B 、C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C =( )A .π6B .π3C .2π3D .5π6[答案] C[解析] ∵m·n =3sin A cos B +3cos A sin B =3sin(A +B )=1+cos(A +B ),∴3sin(A +B )-cos(A +B )=1,∴3sin C +cos C =1,即2sin ⎝⎛⎭⎪⎫C +π6=1,∴sin ⎝⎛⎭⎪⎫C +π6=12,∴C +π6=5π6,∴C =2π3.11.在△ABC 中,已知sin 2A +sin 2B +sin 2C =2,则△ABC 为( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形[答案] C[解析] 由已知,得1-cos2A 2+1-cos2B 2+sin 2C =2,∴1-12(cos2A +cos2B )+sin 2C =2,∴cos2A +cos2B +2cos 2C =0, ∴cos(A +B )·cos(A -B )+cos 2C =0, ∴cos C [-cos(A -B )-cos(A +B )]=0, ∴cos A ·cos B ·cos C =0, ∴cos A =0或cos B =0或cos C =0. ∴△ABC 为直角三角形.12.若f (sin x )=3-cos2x ,则f (cos x )=( ) A .3-cos2x B .3-sin2x C .3+cos2x D .3+sin2x[答案] C[解析] f (sin x )=3-cos2x =3-(1-2sin 2x )=2+2sin 2x , ∴f (x )=2+2x 2 ∴f (cos x )=2+2cos 2x =2+1+cos2x =3+cos2x .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.2tan150°1-tan 2150°的值为________. [答案] - 3[解析] 原式=2×⎝⎛⎭⎪⎫-331-⎝⎛⎭⎪⎫-332=-233·32=- 3.14.已知向量a 、b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. [答案] 3 2[解析] ∵|a |=1,〈a ,b 〉=45°,|2a -b |=10,∴4|a |2-4a ·b +|b |2=10,∴4-4×1×|b |cos45°+|b |2=10,∴|b |2-22|b |-6=0,∴|b |=3 2.15.若1+tan α1-tan α=2 014,则1cos2α+tan2α=________.[答案] 2 014[解析] 1cos2α+tan2α=1cos2α+sin2αcos2α=1+sin2αcos2α=α+sin α2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 014.16.在△ABC 中,cos ⎝ ⎛⎭⎪⎫π4+A =513,则cos2A 的值为________.[答案]120169[解析] 在△ABC 中,cos ⎝ ⎛⎭⎪⎫π4+A =513>0,∴sin ⎝ ⎛⎭⎪⎫π4+A =1-cos 2⎝ ⎛⎭⎪⎫π4+A =1213.∴cos2A =sin ⎝ ⎛⎭⎪⎫π2+2A =sin2⎝ ⎛⎭⎪⎫π4+A=2sin ⎝⎛⎭⎪⎫π4+A cos ⎝ ⎛⎭⎪⎫π4+A =2×1213×513=120169.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求值(tan5°-cot5°)·cos70°1+sin70°.[解析] 解法一:原式=⎝ ⎛⎭⎪⎫tan5°-1tan5°·cos70°1+sin70° =tan 25°-1tan5°·sin20°1+cos20°=-2·1-tan 25°2tan5°·sin20°1+cos20°=-2cot10°·tan10°=-2. 解法二:原式=⎝⎛⎭⎪⎫sin5°cos5°-cos5°sin5°·sin20°1+cos20°=sin 25°-cos 25°sin5°·cos5°·sin20°1+cos20° =-cos10°12sin10°·2sin10°·cos10°2cos 210°=-2. 解法三:原式=⎝ ⎛⎭⎪⎪⎫1-cos10°sin10°-1sin10°1+cos10°·sin20°1+cos20°=⎝ ⎛⎭⎪⎫1-cos10°sin10°-1+cos10°sin10°·sin20°1+cos20°=-2cos10°sin10°·2sin10°·cos10°2cos 210°=-2. 18.(本小题满分12分)(2014·山东烟台高一期末测试)已知向量a 、b 满足|a |=2,|b |=1,且a 与b 的夹角为2π3,求:(1)a 在b 方向上的投影; (2)(a -2b )·b .[解析] (1)a 在b 方向上的投影为|a |cos 〈a ,b 〉=2×cos 2π3=2×(-12)=-1.(2)(a -2b )·b =a ·b -2b 2=2×1×cos 2π3-2×1=-1-2=-3.19.(本小题满分12分)(2014·山东济宁梁山一中高一月考)已知α为锐角,且tan(π4+α)=2.(1)求tan α的值;(2)求2α+π4α-sin αcos2α的值.[解析] (1)tan(π4+α)=1+tan α1-tan α=2,∴tan α=13.(2)∵α为锐角,tan α=13,∴sin α=1010,cos α=31010. ∴sin2α=2sin αcos α=2×1010×31010=35, cos2α=1-2sin 2α=1-2×110=45.∴2α+π4α-sin αcos2α=n2α+cos2αα-sin αcos2α=35+4531010-101045=2105. 20.(本小题满分12分)已知cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,且π2<α<π,0<β<π2,求tan α+β2的值.[解析] ∵π2<α<π,0<β<π2,∴π4<α-β2<π.∵cos ⎝ ⎛⎭⎪⎫α-β2=-19,∴sin ⎝ ⎛⎭⎪⎫α-β2=459. 又∵π4<α2<π2,∴-π4<α2-β<π2.∵sin ⎝ ⎛⎭⎪⎫α2-β=23,∴cos ⎝ ⎛⎭⎪⎫α2-β=53.故sin α+β2=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =sin ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β-cos ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=459×53-⎝ ⎛⎭⎪⎫-19×23=2227, cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴tan α+β2=sinα+β2cosα+β2=22277527=22535.21.(本小题满分12分)设平面内两向量a⊥b ,且|a |=2,|b |=1,k 、t 是两个不同时为零的实数.(1)若x =a +(t -3)b 与y =-ka +tb 垂直,求k 关于t 的函数关系式k =f (t ); (2)求函数k =f (x )的最小值. [解析] (1)∵x⊥y ,∴x·y =0, 即[a +(t -3)b ]·(-ka +tb )=0,∴-ka 2+t (t -3)b 2-k (t -3)a·b +ta·b =0.由|a |=2,|b |=1,a·b =0,可得-4k +t (t -3)=0.∵k 、t 不同时为0,则t ≠0,∴k =t t -4,即f (t )=t t -4(t ≠0).(2)f (t )=t 2-3t 4=14⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫t -322-94.故当t =32时,f (t )min =-916.22.(本小题满分14分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.[解析] (1)∵a ∥b ,∴2sin θ=cos θ-2sin θ, ∴4sin θ=cos θ,∴tan θ=14.(2)由|a |=|b |,得sin 2θ+(cos θ-2sin θ)2=5,∴1-2sin2θ+4sin 2θ=5. ∴-2sin2θ+2(1-cos2θ)=4, 即sin2θ+cos2θ=-1,∴sin ⎝ ⎛⎭⎪⎫2θ+π4=-22.又∵0<θ<π,∴π4<2θ+π4<9π4,∴2θ+π4=5π4或7π4.∴θ=π2或θ=3π4.。

6 向量与三角的综合应用

6 向量与三角的综合应用

6向量与三角函数的综合应用1.若ΔABC 的三个内角C B A 、、所对边的长分别为c b a 、、,向量()a b c a m -+=,,),(b c a n -=,若n m ⊥,则∠C 等于 .2.在ABC ∆中,已知,,a b c 分别,,A B C ∠∠∠所对的边,S 为ABC ∆的面积,若向量222(4,)p a b c =+- ,(1,)q S = 满足//p q ,则C ∠= .3.已知向量2(3sin ,1),(cos ,cos )444x x x m n == .(1)若1m n ⋅= ,求2cos()3x π-的值;(2)记()f x m n =⋅,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足C b B c a cos cos )2(=-,求函数f (A )的取值范围.4. 在ABC ∆中,B ∠,C ∠的对边分别为c b ,。

已知向量),(a b c a m -+=,),(b c a n -=,且n m ⊥。

(1)求C ∠的大小;(2)若26sin sin =+B A ,求角A 的值。

5. 设已知(2c o s s i n )22a αβαβ+-= ,,(cos 3sin )22b αβαβ+-= ,,其中(0,)αβπ∈、. (1)若32πβα=+,且2a b = ,求βα、的值;(2)若52a b ⋅= ,求βαtan tan 的值.6. 设ABC ∆的三个内角C B A 、、所对的边分别为c b a 、、,且满足0)()2(=⋅+⋅+CB CA c BA BC c a。

(Ⅰ)求角B 的大小; (Ⅱ)若32=b ,试求CB AB ⋅的最小值.7. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若().CA AB CB BA k k R ⋅=⋅=∈(1)判断△ABC 的形状;(2)若k c 求,2=的值.8. 已知点A (3,0),B (0,3),C (cos α,sin α),α∈322ππ⎛⎫⎪⎝⎭,.(1)若AC =BC ,求角α的值;(2)若AC BC ⋅ =-1,求22sin sin 21tan ααα++的值.9. 已知ABC ∆三个内角,,A B C 的对边分别为,,a b c ,6AC AB =⋅,向量)sin ,(cos A A s =与向量)3,4(-=t 相互垂直。

高中数学(向量与三角形 四心 )同步练习 试题

高中数学(向量与三角形 四心 )同步练习 试题

浙江省诸暨市牌头中学高中数学《向量与三角形“四心”》同步练习一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心.(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O OC c OB b OA a ⇔=++0为ABC ∆的内心.(4)OC OB OA ==⇔O 为ABC ∆的外心。

例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的 轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心例2:(03全国理4)O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足(ACABOA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 例3:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足cos cos (CAC AC BAB AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 练习题:1、已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为 ( )A .2B .23C .3D .6 2、若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 3、O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+, 则O 是ABC ∆的 A .外心 B .内心 C .重心 D .垂心 ( ) 4、已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为 ( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形5、已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( ) A .等腰三角形 B .等腰直角三角形 C .直角三角形 D .既非等腰又非直角三角形 6、已知A 、B 、C 是平面上不共线的三点,O 是三角形ABC 的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为三角形ABC 的 ( )A 、AB 边中线的中点 B 、AB 边中线的三等分点(非重心)C 、重心D 、AB 边的中点7、已知△ABC ,P 为三角形所在平面上的一点,且点P 满足:0=++PC c PB b PA a ,则P 点为三角形的 A 外心 B 内心 C 重心 D 垂心 ( ) 8、在△ABC 中,动点P 满足:CP AB CB CA •-=222,则P 点轨迹一定通过△ABC 的( )A 外心 B 内心 C 重心 D 垂心9、ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 10、点O 是ABC ∆所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的( ) A 、三个内角的角平分线的交点B 、三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点 11、已知点O 在△ABC 内部,且有042=++OC OB OA ,则△OAB 与△OBC 的面积之比为12、若 △ABC 内接于以O 为圆心,1为半径的圆,且 3450OA OB OC ++=,则 OC AB ⋅的值为( )(A) 15- (B)15 (C) 65- (D)6513、设G 为ABC ∆|2||23||0BC GA CA GB AB GC ++=,则AB BCBC AC⋅⋅的值= .14、0为△ABC 的外心,BAC ,AC ,AB ∠==24为钝角,M 是边BC 的中点,则AO AM •的值15、已知O 为△ABC 的外心,16||=AB ,210||=AC ,若AC y AB x AO +=,且32x +25y =25,则||AO =16、已知O 是△ABC 的外心,AB=2,AC=3,x+2y=1(0≠xy ),若,AC y AB x AO +=则=∠BAC cosBCDBD向量与三角形的“四心” 一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心)二、四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O OC c OB b OA a ⇔=++0为ABC∆的内心.(4)==⇔O 为ABC ∆的外心。

高中数学三角函数与向量试题及详细答案

高中数学三角函数与向量试题及详细答案

高中数学三角函数与向量试题及详细答案一.解答题(共30小题)1.设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.2.设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.3.已知函数,(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)设,若,求α的大小.4.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.5.已知函数f(x)=(1+cotx)sin2x+msin(x+)sin(x﹣).(1)当m=0时,求f(x)在区间上的取值范围;(2)当tana=2时,,求m的值.6.已知tanα=a,(a>1),求的值.7.已知函数f(x)=cosx(sinx+cosx),x∈R.(1)请指出函数f(x)的奇偶性,并给予证明;(2)当时,求f(x)的取值范围.8.已知函数f(x)=sin2x+acos2x,a,a为常数,a∈R,且.(I)求函数f(x)的最小正周期.(Ⅱ)当时,求函数f(x)的最大值和最小值.9.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点.(Ⅰ)求sin2α﹣tanα的值;(Ⅱ)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数的最大值及对应的x的值.10.已知函数.(1)设ω>0为常数,若上是增函数,求ω的取值范围;(2)设集合,若A⊂B恒成立,求实数m的取值范围.11.已知函数f(x)=(Ⅰ)把f(x)解析式化为f(x)=Asin(ωx+ϕ)+b的形式,并用五点法作出函数f(x)在一个周期上的简图;(Ⅱ)计算f(1)+f(2)+…+f(2012)的值.12.已知α为锐角,且,函数,数列{a n}的首项.(1)求函数f(x)的表达式;(2)求证:a n+1>a n;(3)求证:.13.已知tan2θ=﹣,且3π<2θ<4π.求:(1)tanθ;(2).14.在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值.15.已知,①若向量.且∥,求f(x)的值;②在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.16.已知O是线段AB外一点,若,.(1)设点A1、A2是线段AB的三等分点,△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,试用向量、表示;(2)如果在线段AB上有若干个等分点,你能得到什么结论?请证明你的结论.17.已知向量=(1,2),=(cosα,sinα),设=+t(t为实数).(1)若,求当||取最小值时实数t的值;(2)若⊥,问:是否存在实数t,使得向量﹣和向量的夹角为,若存在,请求出t;若不存在,请说明理由.18.经过A(2,0),以(2cosθ﹣2,sinθ)为方向向量的直线与经过B(﹣2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ.(I)求点M(x,y)的轨迹方程;(II)设(I)中轨迹为曲线C,,若曲线C内存在动点P,使得|PF1|、|OP|、|PF2|成等比数列(O为坐标原点),求的取值范围.19.已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.20.已知向量=(mcosα,msinα)(m≠0),=(﹣sinβ,cosβ.其中O为坐标原点.(I)若且m>0,求向量与的夹角;(II)当实数α,β变化时,求实数的最大值.21.已知中心在原点,长轴在x轴上的椭圆的一个顶点是点(0,),离心率为,左、右焦点分别为F1和F2.(1)求椭圆方程;(2)点M在椭圆上,求△MF1F2面积的最大值;(3)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由.22.已知△OFQ的面积为,且.(1)当时,求向量与的夹角θ的取值范围;(2)设,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当取得最小值时,求此双曲线的方程.23.在平行四边形ABCD中,设边AB、BC、CD的中点分别为E、F、G,设DF与AG、EG的交点分别为H、K,设=,=,试用、表示、.24.正方形ABCD的边长为1,记=(1)求作,(2)求|,|25.如图,平面内有三个向量,,,其中与的夹角为120°,与的夹角为30°.且||=1,||=1,||=2,若+,求λ+μ的值.26.例3.已知27.设动点M的坐标为(x,y)(x、y∈R),向量=(x﹣2,y),=(x+2,y),且|a|+|b|=8,(I)求动点M(x,y)的轨迹C的方程;(Ⅱ)过点N(0,2)作直线l与曲线C交于A、B两点,若(O为坐标原点),是否存在直线l,使得四边形OAPB为矩形,若存在,求出直线l的方程,若不存在,请说明理由.28.在福建省第14届运动会(2010•莆田)开幕式上,主会场中央有一块边长为a米的正方形地面全彩LED显示屏如图所示,点E、F分虽为BC、CD边上异于点C的动点,现在顶点A处有视角∠EAF设置为45°的摄像机,正录制形如△ECF的移动区域内表演的某个文艺节目,设DF=x米,BE=y米.(Ⅰ)试将y表示为x的函数;(Ⅱ)求证:△ECF周长p为定值;(Ⅲ)求△ECF面积S的最大值.29.如图所示,ABCD是一块边长为7米的正方形铁皮,其中A TN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮PQCR,其中P是上一点.设∠TAP=θ,长方形PQCR的面积为S平方米.(1)求S关于θ的函数解析式;(2)设sinθ+cosθ=t,求S关于t的表达式以及S的最大值.30.如图,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数y=Asinωx(A>0,ω>0,x∈[0,8]的图象,且图象的最高点为S(6,4).赛道的后一段为折线段MNP,为保证参赛队员的安全,限定∠MNP=120°.(1)求实数A和ω的值以及M、P两点之间的距离;(2)连接MP,设∠NPM=θ,y=MN+NP,试求出用θ表示y的解析式;(3)(理科)应如何设计,才能使折线段MNP最长?(文科)求函数y的最大值.参考答案与试题解析一.解答题(共30小题)1.设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.考点:三角函数的周期性及其求法;函数y=Asin(ωx+φ)的图象变换;三角函数的最值.专题:计算题;综合题.分析:(I)先利用诱导公式,二倍角公式与和角公式将函数解析式化简整理,然后利用周期公式可求得函数的最小正周期.(II)由(I)得函数y=f(x),利用函数图象的变换可得函数y=g(x)的解析式,通过探讨角的范围,即可的函数g(x)的最大值.解答:解:(I)∵f(x)=sinxcosx﹣cos(x+π)cosx=sinxcosx+cosxcosx=sin2x+cos2x+=sin(2x+)+∴f(x)的最小正周期T==π(II)∵函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,∴g(x)=sin(2x+﹣)++=sin(2x﹣)+∵0<x≤∴<2x﹣≤,∴y=g(x)在(0,]上的最大值为:.点评:本题考查了三角函数的周期及其求法,函数图象的变换及三角函数的最值,各公式的熟练应用是解决问题的根本,体现了整体意识,是个中档题.2.设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.专题:计算题.分析:利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x ﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.解答:解:f(x)=cosx(asinx﹣cosx)+cos2(﹣x)=asinxcosx﹣cos2x+sin2x=由得解得a=2所以f(x)=2sin(2x﹣),所以x∈[]时2x﹣,f(x)是增函数,所以x∈[]时2x﹣,f(x)是减函数,函数f(x)在上的最大值是:f()=2;又f()=,f()=;所以函数f(x)在上的最小值为:f()=;点评:本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.3.已知函数,(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)设,若,求α的大小.考点:正切函数的周期性;同角三角函数基本关系的运用;二倍角的余弦;正切函数的定义域.专题:计算题.分析:(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.解答:解:(Ⅰ)由2x+≠+kπ,k∈Z.所以x≠,k∈Z.所以f(x)的定义域为:f (x)的最小正周期为:.(Ⅱ)由得tan()=2cos2α,整理得因为α∈(0,),所以sinα+cosα≠0 因此(cosα﹣sinα)2=即sin2α=因为α∈(0,),所以α=点评:本题考查两角和的正弦函数、余弦函数、正切函数公式,同角三角函数的基本关系式,二倍角公式等基本知识,考查基本运算能力.4.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.考点:任意角的三角函数的定义;二元一次不等式(组)与平面区域;三角函数的最值.专题:综合题;压轴题;转化思想.分析:(I)由已知中函数f(θ)=,我们将点P的坐标代入函数解析式,即可求出结果.(II)画出满足约束条件的平面区域,数形结合易判断出θ角的取值范围,结合正弦型函数的性质我们即可求出函数f(θ)的最小值和最大值.解答:解(I)由点P的坐标和三角函数的定义可得:于是f(θ)===2(II)作出平面区域Ω(即感触区域ABC)如图所示其中A(1,0),B(1,1),C(0,1)于是0≤θ≤∴f(θ)==且故当,即时,f(θ)取得最大值2当,即θ=0时,f(θ)取得最小值1点评:本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.5.已知函数f(x)=(1+cotx)sin2x+msin(x+)sin(x﹣).(1)当m=0时,求f(x)在区间上的取值范围;(2)当tana=2时,,求m的值.考点:弦切互化;同角三角函数间的基本关系.专题:综合题.分析:(1)把m=0代入到f(x)中,然后分别利用同角三角函数间的基本关系、二倍角的正弦、余弦函数公式以及特殊角的三角函数值把f(x)化为一个角的正弦函数,利用x的范围求出此正弦函数角的范围,根据角的范围,利用正弦函数的图象即可得到f(x)的值域;(2)把f(x)的解析式利用二倍角的正弦、余弦函数公式及积化和差公式化简得到关于sin2x和cos2x的式子,把x换成α,根据tanα的值,利用同角三角函数间的基本关系以及二倍角的正弦函数公式化简求出sin2α和cos2α的值,把sin2α和cos2α的值代入到f(α)=中得到关于m的方程,求出m的值即可.解答:解:(1)当m=0时,=,由已知,得sin(2x﹣)∈[﹣,1],从而得:f(x)的值域为.(2)因为=sin2x+sinxcosx+=+﹣=所以=①当tanα=2,得:,,代入①式,解得m=﹣2.点评:考查三角函数的化简、三角函数的图象和性质、已知三角函数值求值问题.依托三角函数化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中档题.6.已知tanα=a,(a>1),求的值.考点:两角和与差的正弦函数;弦切互化;二倍角的正切.专题:计算题.分析:利用两角和与差的正弦函数,以及二倍角的正切,化简,代入tanα=a,求出结果即可.解答:解:原式===.即:=.点评:本题是基础题,考查弦切互化,二倍角的正切,考查计算能力,常考题型.7.已知函数f(x)=cosx(sinx+cosx),x∈R.(1)请指出函数f(x)的奇偶性,并给予证明;(2)当时,求f(x)的取值范围.考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)先化简函数得出的表达式,通过f(﹣)≠±f(﹣),直接证明即可.(2)先得出,然后根据正弦函数的单调性求出取值范围.解答:解:(3分)(1)∵,∴f(x)是非奇非偶函数.(3分)注:本题可分别证明非奇或非偶函数,如∵f(0)=1≠0,∴f(x)不是奇函数.(2)由,得,.(4分)所以.即.(2分)点评:本题考查三角函数中的恒等变换应用,正弦函数的奇偶性的判断,考查计算能力.8.已知函数f(x)=sin2x+acos2x,a,a为常数,a∈R,且.(I)求函数f(x)的最小正周期.(Ⅱ)当时,求函数f(x)的最大值和最小值.考点:二倍角的余弦;两角和与差的正弦函数;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:(I)由,代入f(x)中即可求出a的值,然后把求出a的值代入然后把求出a的值代入f(x)中,然后利用二倍角的余弦函数公式及两角差的正弦函数公式和特殊角的三角函数值化为一个角的正弦函数,根据公式求出结果.(II)根据x的范围求出2x﹣的范围,根据正弦函数的图象求出sin(2x﹣)的值域即可得到f(x)的最值.解答:解:(Ⅰ)由已知得即,所以a=﹣2所以f(x)=sin2x﹣2cos2x=sin2x﹣cos2x﹣1=所以函数f(x)的最小正周期为π(Ⅱ)由,得则所以所以函数y=f(x)的最大值为;最小值为点评:本题三角函数周期的求法,又考查学生会求正弦函数的在某一范围内的最值以及会求正弦函数的值域.是一道综合题.9.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点.(Ⅰ)求sin2α﹣tanα的值;(Ⅱ)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数的最大值及对应的x的值.考点:两角和与差的正弦函数;任意角的三角函数的定义;同角三角函数间的基本关系.专题:三角函数的图像与性质.分析:(I)利用三角函数的定义求出sinα、cosα和tanα的值,利用两角和与差正弦公式化简sin2α﹣tanα并求出其值.(II)首先化简函数f(x),然后利用诱导公式以及两角和与差公式得出y=2sin(2x﹣)﹣1,进而求正弦函数的特点求出结果.解答:解:(Ⅰ)因为角α终边经过点,所以,,…(3分)(Ⅱ)∵f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα=cosx,x∈R…(7分)∴y max=2﹣1=1,…(12分)此时,即…(13分)点评:此题考查了二倍角的正弦、三角函数定义、同角三角函数间的基本关系、诱导公式,以及两角和与差的正弦函数公式,熟练掌握公式是解本题的关键.10.已知函数.(1)设ω>0为常数,若上是增函数,求ω的取值范围;(2)设集合,若A⊂B恒成立,求实数m的取值范围.考点:二倍角的余弦;集合关系中的参数取值问题;二次函数的性质;正弦函数的单调性.专题:计算题.分析:(1)利用三角函数的降幂公式将化为f(x)=2sinx,从而f (ωx)=2sinωx,利用f(ωx)在[,]是增函数,可得到,从而可求ω的取值范围;(2)由于f(x)=2sinx,将化为sin2x﹣2msinx+m2+m﹣1>0,令sinx=t,则t2﹣2mt+m2+m﹣1>0,t∈[,1],记f(t)=t2﹣2mt+m2+m﹣1,问题转化为上式在t∈[,1]上恒成立问题,根据区间[,1]在对称轴t=m的左侧,右侧,对称轴穿过区间[,1]三种情况结合二次函数的单调性即可解决.解答:(本小题满分14分)解:(1)=2sinx(1+sinx)﹣2sin2x=2sinx.∵是增函数,∴,∴(2)=sin2x﹣2msinx+m2+m﹣1>0因为,设sinx=t,则t∈[,1]上式化为t2﹣2mt+m2+m﹣1>0由题意,上式在t∈[,1]上恒成立.记f(t)=t2﹣2mt+m2+m﹣1,这是一条开口向上抛物线,则或或解得:.点评:本题考查二倍角的余弦,二次函数的性质,难点在于转化与构造函数,利用f(t)=t2﹣2mt+m2+m﹣1>0恒成立,t∈[,1]来解决,属于难题.11.已知函数f(x)=(Ⅰ)把f(x)解析式化为f(x)=Asin(ωx+ϕ)+b的形式,并用五点法作出函数f(x)在一个周期上的简图;(Ⅱ)计算f(1)+f(2)+…+f(2012)的值.考点:二倍角的余弦;五点法作函数y=Asin(ωx+φ)的图象.专题:综合题.分析:(Ⅰ)利用倍角公式和诱导公式对函数解析式进行化简,再利用正弦函数的五个关键点进行列表、描点、连线;(Ⅱ)根据函数解析式先求出周期,再求出一个周期内的函数值的和,进而判断出2012与周期的关系,再求出式子和的值.解答:解:(Ⅰ)由题意知,列表:x 0 1 2 3 40 π2π1 2 1 0 1描点画图,如图所示:(Ⅱ)∵f(1)+f(2)+f(3)+f(4)=2+1+0+1=4,而y=f(x)的周期为4,且2012=4×503,∴f(1)+f(2)+…+f(2012)=4×503=2012.点评:本题是关于三角函数的综合题,涉及了倍角公式、诱导公式的应用,“五点作图法”的步骤,函数周期性的应用求式子的值,考查了分析、解决问题能力和作图能力.12.已知α为锐角,且,函数,数列{a n}的首项.(1)求函数f(x)的表达式;(2)求证:a n+1>a n;(3)求证:.考点:二倍角的正切;不等式比较大小;不等式的证明.专题:综合题.分析:(1)根据二倍角的正切函数公式,由tanα的值求出tan2α的值,根据特殊角的三角函数值以及α的范围即可求出2α的值,即可求出sin(2α+)的值,把求出的tan2α和sin2α的值代入f(x)中即可确定出f(x);(2)a n+1=f(a n),把a n代入(1)中求出的f(x)的解析式,移项后,根据a n2大于0,即可得证;(3)把a n代入(1)中求出的f(x)的解析式中化简后,求出,然后把等号右边的式子利用拆项相减的方法,得到,移项后得到,然后从n=1列举到n,抵消后得到所要证明的式子等于2﹣,根据题意分别求出a2和a3的值,根据(2)所证明的结论即可得证.解答:解:(1),又∵α为锐角,所以2α=,∴,则f(x)=x2+x;(2)∵a n+1=f(a n)=a n2+a n,∴a n+1﹣a n=a n2>0,∴a n+1>a n;(3)∵,且a1=,∴,则=,∵,,又n≥2时,∴a n+1>a n,∴a n+1≥a3>1,∴,∴.点评:此题考查学生灵活运用二倍角的正切函数公式化简求值,会利用不等式比较大小以及会进行不等式的证明,是一道综合题.13.已知tan2θ=﹣,且3π<2θ<4π.求:(1)tanθ;(2).考点:二倍角的正切.专题:计算题.分析:(1)由题意,可先判断角θ的取值范围,得出其是第四象限角从而确定出角的正切值的符号,再由正切的二倍角公式得到角的正切的方程,解此方程求出正切值;(2)由题意,先化简,再将tanθ=代入计算出答案.解答:解:(1)由题意3π<2θ<4π,得<θ<2π是第四象限角又tan2θ=﹣,∴=﹣,解得tanθ=(2)由题,将tanθ=代入得=点评:本题考查二倍角的正切,二倍角的余弦,同角三角函数的基本关系等,解题的关键是利用公式灵活变形,计算求值,本题中有一易错点,即没有判断角所在的象限,导致解出的正切值有两个答案,切记!三角函数化简求值题,公式较多,要注意选择公式使得解题的过程简捷.本题考查了利用公式变形计算的能力.14.在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值.考点:向量在几何中的应用;直线与圆锥曲线的综合问题.专题:计算题;综合题;函数思想;整体思想.分析:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,,=•,即可求得M 点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.解答:解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.点评:此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.15.已知,①若向量.且∥,求f(x)的值;②在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.考点:平面向量的综合题.专题:计算题.分析:①利用向量共线的充要条件,可求x的值,从而可求f(x)的值;②利用余弦定理求出B的值,确定出<A+<π,然后求出函数f(A)的取值范围.解答:解:①由∥,得,∴或,∴x=2kπ+π或,∴②∵(2a﹣c)cosB=bcosC,由正弦定理得(2sinA﹣sinC)cosB=sinBcosC.∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴cosB=,B=,∴0<A<.∴<A+<π,0<sin(A+)≤1.又∵,∴故函数f(A)的取值范围是(0,2].点评:本题是中档题,考查三角函数的化简求值,考查向量共线的充要条件.16.已知O是线段AB外一点,若,.(1)设点A1、A2是线段AB的三等分点,△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,试用向量、表示;(2)如果在线段AB上有若干个等分点,你能得到什么结论?请证明你的结论.考点:向量在几何中的应用.专题:计算题.分析:(1)由题意画出图形由于点A1、A2是线段AB的三等分点,又由于△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,利用重心的性质及向量的三角形法则求得用向量、表示;(2)由题意若在线段AB上有若干个等分点,有(1)的证明过程及结论可以逐渐得到结论,并且利用向量的加法及减法得到证明过程.解答:解:(1)如图:点A1、A2是线段AB的三等分点,,同理可得:,,则==(2)层次1:设A1是AB的二等分点,则;;设A1、A2、A3是AB的四等分点,则;或设A1,A2,,A n﹣1是AB的n等分点,则,层次2:设A1,A2,,A n﹣1是AB的n等分点,,层次3:设A1,A2,,A n﹣1是AB的n等分点,则;证:===点评:此题考查了三角形重心的定义,向量的加法和减法,还考查了学生对于新问题逐渐分析并合理联想的能力.17.已知向量=(1,2),=(cosα,sinα),设=+t(t为实数).(1)若,求当||取最小值时实数t的值;(2)若⊥,问:是否存在实数t,使得向量﹣和向量的夹角为,若存在,请求出t;若不存在,请说明理由.考点:数量积表示两个向量的夹角;向量的模.专题:计算题.分析:(1)先把a=代入求出向量的坐标,再把转化为=,把所求结论以及已知条件代入得到关于实数t的二次函数,利用配方法求出的最小值以及实数t的值;(2)先利用向量垂直求出以及和()(),代入cos45°=,可得关于实数t的方程,解方程即可求出实数t.解答:解:(1)因为a=,所以=(),,则====所以当时,取到最小值,最小值为.(7分)(2)由条件得cos45°=,又因为==,==,()()=5﹣t,则有=,且t<5,整理得t2+5t﹣5=0,所以存在t=满足条件.(14分)点评:本题主要考查数量积表示两个向量的夹角以及向量的模.本题的易错点在于()()=5﹣t中的t<5,因为两个向量的夹角为锐角,所以向量的数量积为正得t<5.18.经过A(2,0),以(2cosθ﹣2,sinθ)为方向向量的直线与经过B(﹣2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ.(I)求点M(x,y)的轨迹方程;(II)设(I)中轨迹为曲线C,,若曲线C内存在动点P,使得|PF1|、|OP|、|PF2|成等比数列(O为坐标原点),求的取值范围.考点:向量在几何中的应用;数列与解析几何的综合.专题:计算题.分析:(I)根据题意知,∥(2cosθ﹣2,sinθ),根据共线向量定理可得⇒(x﹣2)sinθ=y (2cosθ﹣2),同理(x+2)sinθ=y(2cosθ+2),两式相乘,即可得到点M(x,y)的轨迹方程;(II)设p(x0,y0)在曲线C内,得,再由|PF1|、|OP|、|PF2|成等比数列可得并代入求得,即可求得结果.解答:解:(I),(2﹣x)sinθ+y(2cosθ﹣2)=0⇒(x﹣2)sinθ=y(2cosθ﹣2)①同理(﹣2﹣x)sinθ+y(2cosθ+2)=0⇒(x+2)sinθ=y(2cosθ+2)②①×②得x2﹣4=﹣4y2即;(II)设p(x0,y0),则③化简得:④④代入③得点评:此题是个中档题.考查向量在几何中的应用,以及数列与解析几何的综合.同时考查学生灵活应用知识分析解决问题的能力.19.已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.考点:数量积表示两个向量的夹角;数量积的坐标表达式;平面向量数量积的运算.专题:计算题;综合题.分析:(1)当时,求出向量、,利用数量积的坐标运算求出向量•,从而求出向量、的夹角θ;(2)向量,,代入函数,利用三角函数的诱导公式进行化简,转化为三角函数在定区间上的最值,即可求得结果.解答:解:(1)当时,,所以,因而;(2),,因为,所以,当λ>0时,,即,当λ<0时,,即,所以.点评:此题是个中档题.考查向量的数量积的坐标运算以及向量的夹角,和三角函数的诱导公式和三角函数在定区间上的最值等基础知识,同时也考查了学生灵活应用知识分析解决问题的能力.20.已知向量=(mcosα,msinα)(m≠0),=(﹣sinβ,cosβ.其中O为坐标原点.(I)若且m>0,求向量与的夹角;(II)当实数α,β变化时,求实数的最大值.考点:数量积表示两个向量的夹角;向量的模.专题:计算题;综合题.分析:(Ⅰ)设它们的夹角为θ,利用向量的数量积公式表示出cosθ,将已知条件代入,利用特殊角的三角函数值求出两个向量的夹角.(II)先将利用向量模的计算公式表示成,再利用三角函数的值域求出它的最大值即可.解答:解:(I)设它们的夹角为θ,则:=,故…(6分)(II)=…(10分)所以当m>0时,原式的最大值是m﹣1;当m<0时,原式的最大值是﹣m﹣1…(12分)点评:求向量的夹角问题,一般利用向量的数量积公式来解决;解决向量的模的最值问题,一般转化为函数的最值来解决.21.已知中心在原点,长轴在x轴上的椭圆的一个顶点是点(0,),离心率为,左、右焦点分别为F1和F2.(1)求椭圆方程;(2)点M在椭圆上,求△MF1F2面积的最大值;(3)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由.考点:向量在几何中的应用;椭圆的标准方程;椭圆的简单性质.专题:综合题;存在型;反证法.分析:(1)由题意设出椭圆标准方程,根据顶点的坐标和离心率得,根据a2=b2+c2求出a的值,即求出椭圆标准方程;(2)根据(1)求出的椭圆标准方程,求出点M纵坐标的范围,即求出三角形面积的最大值;(3)先假设存在点P满足条件,根据向量的数量积得,根据椭圆的焦距和椭圆的定义列出两个方程,求出的值,结合(2)中三角形面积的最大值,判断出是否存在点P.解答:解:(1)由题意设椭圆标准方程为.由已知得,.(2分)则,∴.解得a2=6(4分)∴所求椭圆方程为(5分)(2)令M(x1,y1),则(7分)∵点M在椭圆上,∴,故|y 1|的最大值为(8分)∴当时,的最大值为.(9分)(3)假设存在一点P,使,∵,∴,(10分)∴△PF1F2为直角三角形,∴|PF1|2+|PF2|2=|F1F2|2=4 ①(11分)又∵②(12分)∴②2﹣①,得2|PF1|•|PF2|=20,∴,(13分)即=5,由(1)得最大值为,故矛盾,∴不存在一点P,使.(14分)点评:本题考查了椭圆方程的求法以及椭圆的性质、向量数量积的几何意义,利用a、b、c、e几何意义和a2=b2+c2求出a和b的值,根据椭圆上点的坐标范围求出相应三角形的面积最值,即根据此范围判断点P是否存在,此题综合性强,涉及的知识多,考查了分析问题和解决问题的能力.22.已知△OFQ的面积为,且.(1)当时,求向量与的夹角θ的取值范围;(2)设,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当取得最小值时,求此双曲线的方程.考点:数量积表示两个向量的夹角;双曲线的标准方程.专题:计算题.分析:(1)利用两个向量的数量积的定义和三角形面积公式,推出tanθ的解析式,再根据m的范围,求得tanθ的范围,进而求得θ的取值范围.(2)设出双曲线的标准方程和点Q的坐标,有三角形的面积公式求出点Q的横坐标和纵坐标(用半焦距表示),用基本不等式求出||最小时点Q的坐标,从而得到双曲线方程中的待定系数.解答:解:(1)由已知得,∴tanθ=,∵<m<4,∴1<tanθ<4,∴<θ<arctan4.(2)设双曲线方程为﹣=1,(a>0,b>0),不妨设点Q的坐标为(m,n),n>0,则=(m﹣c,n),∵△OFQ的面积为||•n=2,∴n=.又由•=(c,0)•(m﹣c,n)=c(m﹣c)=(﹣1)c2,∴m=,||==≥,当且仅当c=4时,||有最小值,此时,点Q的坐标为(,),由此可得,解得,故所求的方程为:=1.点评:本题考查两个向量的数量积的定义,三角形的面积公式以及基本不等式的应用,用待定系数法求双曲线的方程.。

平面向量与三角形的综合练习题

平面向量与三角形的综合练习题

平面向量与三角形的综合练习题本文将围绕平面向量与三角形的综合练习题展开讨论,通过解答一系列问题来加深对这两个概念的理解。

我们将从简单到复杂,逐步深入探讨不同层次的题目,帮助读者巩固相关知识和技巧。

问题一:设向量a = (2, 3),向量b = (4, -1),求向量a + b和向量a - b的结果。

解答:向量a + b = (2, 3) + (4, -1) = (6, 2)。

向量a - b = (2, 3) - (4, -1) = (-2, 4)。

问题二:已知向量a = (3, -2),向量b = (5, 1),求它们的数量积a·b。

解答:向量a·b = 3 × 5 + (-2) × 1 = 15 - 2 = 13。

问题三:已知向量a = (-1, 2),向量b = (3, 4),求它们的向量积a × b。

解答:向量a × b = |-1 2| = -10。

| 3 4|问题四:在平面直角坐标系中,点A(1, 3)、B(4, 5)、C(2, 7)分别是△ABC的三个顶点,求△ABC的面积。

解答:首先计算向量AB和向量AC:向量AB = (4, 5) - (1, 3) = (3, 2)。

向量AC = (2, 7) - (1, 3) = (1, 4)。

然后计算向量AB与向量AC的向量积的模长,即△ABC的面积的两倍:面积的两倍 = |3 2| = 11。

|1 4|因此,△ABC的面积为11/2。

问题五:设三角形ABC的顶点分别为A(-1, 2),B(3, 4),C(2, 7),求△ABC 的周长。

解答:首先计算线段AB、BC、CA的长度:AB = √[(3-(-1))^2 + (4-2)^2] = √[16 + 4] = √20 = 2√5。

BC = √[(2-3)^2 + (7-4)^2] = √[1 + 9] = √10。

CA = √[(-1-2)^2 + (2-7)^2] = √[9 + 25] = √34。

2024全国高考真题数学汇编:向量的数量积与三角恒等变换章节综合

2024全国高考真题数学汇编:向量的数量积与三角恒等变换章节综合

2024全国高考真题数学汇编向量的数量积与三角恒等变换章节综合一、单选题1.(2024全国高考真题)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A .3m-B .3m-C .3m D .3m2.(2024全国高考真题)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B .2C D .13.(2024全国高考真题)已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A .1B .1CD .14.(2024全国高考真题)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A .2-B .1-C .1D .25.(2024上海高考真题)下列函数的最小正周期是2π的是()A .sin cos x x +B .sin cos x xC .22sin cos x x+D .22sin cos x x-6.(2024全国高考真题)设向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥ ”的必要条件B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-”是“//a b ”的充分条件7.(2024北京高考真题)设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题8.(2024全国高考真题)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.9.(2024全国高考真题)函数()sin f x x x =-在[]0,π上的最大值是.10.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=;F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为.参考答案1.A【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.2.B【分析】由()2b a b -⊥ 得22b a b =⋅ ,结合1,22a a b =+= ,得22144164a b b b +⋅+=+= ,由此即可得解.【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅ ,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而2=b .故选:B.3.B 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-所以11tan =-αtan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭,故选:B.4.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.5.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A ,πsin cos 4x x x ⎛⎫++ ⎪⎝⎭,周期2πT =,故A 正确;对B ,1sin cos sin22x x x =,周期2ππ2T ==,故B 错误;对于选项C ,22sin cos 1x x +=,是常值函数,不存在最小正周期,故C 错误;对于选项D ,22sin cos cos2x x x -=-,周期2ππ2T ==,故D 错误,故选:A .6.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =,即必要性不成立,故B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.7.B【分析】根据向量数量积分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件分析判断.【详解】因为()()220a b a b a +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b =,若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.8.【分析】法一:根据两角和与差的正切公式得()tan αβ+=-,再缩小αβ+的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得()tan tan tan 21tan tan αβαβαβ++==--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α,cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+24cos cos 3αβ==-故答案为:3-.9.2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==- ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:210.43518-【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE,即可得λμ+,设BF BE k =uu u r uur ,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ⋅ 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得λμ+,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ⋅ 的最小值.【详解】解法一:因为12CE DE =,即13CE BA = ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈ ,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=-- ⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+-⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.。

讲完向量和解三角形讲这篇题向量与解三角形结合问题

讲完向量和解三角形讲这篇题向量与解三角形结合问题

向量与三角结合练习1.已知A 、B 、C 三点不共线,O 是△ABC 内的一点,若0OA OB OC ++=,则O 是△ABC2.若不重合的四点C B A P ,,,,满足0PA PB PC ++=,AB AC mAP +=,则实数m 的 值为 A. 2 B. 3 C. 4 D. 53.在ABC ∆中,90C ∠=,4AB =,若G 为ABC ∆的三条中线的交点,则()GC GA GB ⋅+=__________.169-4.设G 为ABC ∆的重心,a 、b 、c 分别为角A 、B 、C 的对边,若 352115aGA bGB cGC ++=0,则sin C =___________.5.已知点G 是ABC ∆的重心,点P 是GBC ∆内一点,若,AP AB AC λμλμ=++则的 取值范围是A .1(,1)2 B .2(,1)3 C .3(1,)2 D .(1,2)6.O 是平面上的一个定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ()ABACOP OA AB AC λ=++,[)0,λ∈+∞,则P 点所在的直线是△ABC 的A .边B .中线C .高 D.角平分线7.已知点O 为ABC ∆所在平面内的一定点,其中点A 、B 、C 不共线,动点P 满足cos ||cos ||(C AC ACB AB ABOA OP ++=λ,其中),0(+∞∈λ.则点P 一定经过ABC ∆________(填空内心、 外心、垂心、重心之一)8.已知O是△ABC 所在平面内一点,a,b,c 为角A ,B ,C 的对边,且有:22c b c c a c OA OB OA OC OA OB OC OB b b a a--⋅=⋅+=⋅+,则O 为△ABC 的 A.内心 B.外心 C.重心 D.垂心 9.已知点,,O N P 在ABC ∆所在平面内,且OA OB OC ==,0NA NB NC ++=, PA PB PB PC PC PA ⋅=⋅=⋅,则点,,O N P 依次是ABC ∆的A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心10.△ABC 中有一点O ,使222222OA BC OB CA OC AB +=+=+则O是△ABC 的A.内心B.外心C.重心D.垂心11.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++,则实数m =________________.12.已知O,G ,H 分别是△ABC 的外心,重心,垂心,则下列结论中准确的个数为(1)GA GB CG +=;(2)3HA HB HC HG ++=;(3)3OH OG =;(4)cos cos 2sin sin sin sin B C AB AC AO A C A B+= A.1 B. 2 C.3 D.413. 已知圆O 的半径为3,圆周上两点,A B 与原点O 恰构成正三角形,则向量OA 与OB 的数量积是A. 12B. 32C.32D.332 14. 在△ABC 中,已知4AB =,1AC =,3ABC S ∆=,则AB AC ⋅的值为A .-2B .2C .±4D .±215. 如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是(A )1213PP PP ⋅ (B )1214PP PP ⋅(C )1215PP PP ⋅ (D )1216PP PP ⋅16. 设O 是ABC ∆内部的一点,且022=++OC OB OA ,则BOC ∆和ABC ∆的面积之比为 .17. 点O 在ABC ∆内部且满足220OA OB OC ++=,则ABC ∆的面积与凹四边形ABOC 的面积之比为________.18.点P 是ABC ∆所在平面上任意一点,若存有非零实数m 1、m 2、m 3使m 1PA +m 2PB +m 3PC =O ,则ΔPAB 、ΔPBC 、ΔPAC 的面积比为19.在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是(A )2AC AC AB =⋅ (B )2BC BA BC =⋅ (C )2AB AC CD =⋅ (D )22()()AC AB BA BC CD AB ⋅⨯⋅=20.如图,在四边形ABCD 中,4AB BD DC ++=,4AB BD BD DC ⋅+⋅=,0AB BD BD DC ⋅=⋅=,则()AB DC AC +⋅的值为A.2 B. 22 C.4 D.4221.已知ABC ∆,60C ∠=,2AC =,1BC =,点M 是ABC ∆内部或边界上一动点,N 是边BC 的中点,则AN AM ⋅的最大值为_____________.22. 在OAB ∆中,OA a =,OB b =,OD 是AB 边上的高,若AD AB λ=,则实数λ等 于A .2()a b a a b ⋅-- B .2()a ab a b ⋅-- C .()a b a a b ⋅-- D .()a ab a b ⋅--23.已知1G ,2G 分别是111A B C ∆和222A B C ∆的重心,且121A A e =,122B B e =,122C C e =,12GG 等于A.1231()2e e e ++B. 1231()3e e e ++C. 1232()3e e e ++D. 1231()2e e e -++ 24.已知C 为线段AB 上一点,P 为直线AB 外一点2PA PB -=,25PA PB -=PA PC PB PC PA PB ⋅⋅=,I 为PC 上一点,且 ()(0)ACAPBI BA AC AP λλ=++>,则BI BABA ⋅为A.252-B.52-C.51-D. 525.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=,若OP AB PA PB ⋅≥⋅,则实数λ的取值范围是(A)112λ≤≤ (B)112λ-≤≤ (C) 1122λ≤≤+ (D)1122λ-≤≤+ 26.已知A ,B ,C 为半径为2的圆O 上三点,120AOB ︒∠=,且OC xOA yOB =+,则2x y -的范围是__________27.已知2a =,1b =且a 与b 夹角为45°,若m a b λ=+,n a b λ=+且m 与n 夹角θ为锐角,则θ的范围是。

2020考前必刷题6解三角形与平面向量综合测试(理)

2020考前必刷题6解三角形与平面向量综合测试(理)

满足sin A:sin B:sin C=2:3:7,则用以上给出的公式求得△ABC的面积为________.16.[2019·山东德州模拟]在△ABC中,D为BC边上一点,AD=2,∠DAC=60°.若AC =4-CD且△ABC的面积为43,则sin∠ABC=________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)[2017·全国卷Ⅱ,17]△ABC的内角,A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2B 2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.18.(本小题满分12分)[2019·衡水模拟]如图,在△ABC中,内角A,B,C所对的边分别为a,b,c,且2a cos A=b cos C+c cos B.(1)求角A的大小;(2)若点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.19.(本小题满分12分)[2019·河南南阳一中考试]在△ABC中,内角A,B,C所对的边分别为a,b,c,且sin B(a cos B+b cos A)=3c cos B.(1)求B;(2)若b=23,△ABC的面积为23,求△ABC的周长.20.(本小题满分12分)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB→=b .试用a 和b 表示向量OM →.21.(本小题满分12分)[2019·湖南师大附中月考]已知锐角三角形ABC 的三个内角A ,B ,C 满足sin B sin C =(sin 2B +sin 2C -sin 2A )tan A .(1)求角A 的大小;(2)若△ABC 的外接圆的圆心是O ,半径是1,求OA →·(AB →+AC →)的取值范围.22.(本小题满分12分)=32,∴AB =32=4 2. 故选A. 7.答案:B解析:∵sin B +cos B =2sin ⎝⎛⎭⎫B +π4=2, ∴B +π4=π2,B =π4.由正弦定理a sin A =bsin B 得,sin A =2sinπ42=12.∵a <b ,∴A =π6.8.答案:B解析:解法一 由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372,故选B. 解法二 由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372,故选B.9.答案:B 解析:在△ABC 中,G ,O 分别为△ABC 的重心和外心,取BC 的中点D ,连接AD ,OD ,OG ,如图所示,则OD ⊥BC ,GD =13AD ,因为OG →=OD →+DG →,AD →=12(AB →+AC →),OG →·BC →=5,所以(OD →+DG → )·BC →=DG → ·BC →=-16 (AB →+AC → )·BC →=5,即-16 (AB →+AC → )·(AC →-AB → )=5,所以AC →2-AB →2=-30.又BC =5,则|AB →|2=|AC →|2+65|BC →|2>|AC →|2+|BC →|2,由余弦定理得cos C <0,所以π2<C <π,所以△ABC 是钝角三角形.10.答案:A解析:由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →.又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2)=(3-k )e 1-(2k+1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2,所以⎩⎪⎨⎪⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.11.答案:D解析:设OP 3→=(x ,y ),则由OP 3→∥a 知x +y =0,于是OP 3→=(x ,-x ).若OP 3→=λOP 1→+(1-λ)OP 2→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.12.答案:D 解析:如图,由AB =1,BC =2,可得AC =3,以AB 所在直线为x 轴,以AC 所在直线为y 轴,建立平面直角坐标系,则B (1,0),C (0,3),直线BC 方程为x +y3=1,则直线AM 方程为y =33x ,联立解得M ⎝⎛⎭⎫34,34.由图可知,当P 在线段BC 上时,AM →·BP →有最大值为0,当P 在线段AC 上时,AM →·BP →有最小值,设P (0,y )(0≤y ≤3),∴AM →·BP →=⎝⎛⎭⎫34,34·(-1,y )=-34+34y ≥-34,∴AM →·BP →的取值范围是⎣⎡⎦⎤-34,0.故选D. 13.答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧12λ+μ=1,λ+12μ=1,解得⎩⎨⎧λ=23,μ=23,所以λ+μ=43.14.答案:3π4解析:根据题意,由a ∥b ,得3x =2×(-4),解得x =-83,由a ⊥c ,得3×2+(-4)×y=0,解得y =32,则b =⎝⎛⎭⎫2,-83,c =⎝⎛⎭⎫2,32.设a -3b 与a +2c 的夹角为θ,∵a -3b =(-3,4),a +2c =(7,-1),∴cos θ=(a -3b )·(a +2c )|a -3b |·|a +2c |=-3×7+4×(-1)5×52=-22.又∵0<θ<π,∴θ=3π4,即a -3b 与a +2c 的夹角为3π4. 15.答案:63解析:由正弦定理及sin A :sin B :sin C =2:3:7可知,a :b :c =2:3:7,由a +b +c =10+27,得a =4,b =6,c =27,代入公式S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222可得△ABC 的面积为6 3. 16.答案:3926解析:在△ACD 中,由余弦定理得CD 2=4+(4-CD )2-4(4-CD )·cos60°, 解得CD =2,故CD =AC =AD ,所以△ACD 为正三角形,∠C =60°. 所以S △ABC =12BC ·AC ·sin C =12×BC ×2×32=43,故BC =8.在△ABC 中,由余弦定理得 AB =64+4-2×8×2×12=213,由三角形的面积公式,得12×213×8sin ∠ABC =43,所以sin ∠ABC =43813=3926.17.解析:本题考查了三角公式的运用和余弦定理的应用. (1)由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.。

例说平面向量与三角函数的综合性问题

例说平面向量与三角函数的综合性问题

说 :题 以线 量 载 , 、 , . 明本 是 共 向 为体利 / 求 t 0 丁
谊, o

. . +

莲 髻 鬟





中 角
, ,


, 上∞ ,


I 嘉 豫 掰 求的 g ; 三
1:( 譬 一 小解 : 1) 1,) , , 2 ‘ m 4 (
u 手。 ~
‘ .

・ c, z 手 唔, ・ 手 一
时 L o 6 nZ u— o i



取范 手 孑 詈 J2 值 一, , 亍 时 【 ̄ 2s i 3 :
哨 的向量运算。 蓄 赛 署
年 囊 高磊 盂
竺嘉 耄荦
篙量 垒
] 。 i AA C 角 对 .  ̄ . B A , , 的 对 B C
o]=A 曰 + ss … 或 s: i A一 8i n =2 n 2 ,B 手  ̄


线
3 I. ). . (+ t n ,+ 。 x 2 a0y 1)
x 2 a0 + t n 一1
c.c , , 一 等 3 手
三 磊 角嚣袤妻
; 巍麓 鋈
2抓 表 现 手 法 中 的 以 动 写 静 、 小 见 . 以 大、 虚实 结 合 等 3抓 修 辞 手 法 中 的 比 喻 、 人 、 张 、 . 拟 夸 抒 发 了作 者 怎 样 的 思 想 感 情 或 间 接 流 露 出 作 者 怎 样 的 情 感 。 其 主 要 方 法 就 是 运 用 上 面 所 说 的 联 系 法和 诗 词 的 艺 术 手 法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量与三角综合题选1.将函数y=f (x )·cos x 的图象按向量a =(4π,1)平移,得到函数y=2sin 2x 的图象那么函数f (x )可以是( D ) A .cos xB .2cos xC .sin xD .2sin x2.已知=a )sin (cos αα,,=b )sin (cos ββ,(πβα<<<0),且|λa μ+b|=|μa λ-b|(0≠λμ),则=-αβ 2π.3.已知向量求且],2,0[),2sin,2(cos),23sin,23(cos π∈-==x x x b x x a①||b a b a +⋅及;②若3()2||,2f x a b a b λλ=⋅-+- 的最小值是求的值.解:(1)x x x x x b a 2cos 2sin23sin2cos23cos=⋅-⋅=⋅x x x x x b a 222c o s 22c o s 22)2s i n 23(s i n )23c o s 23(c o s ||=+=-++=+x b a x x c o s 2||,0c o s ],2,0[=+∴>∴∈π(2)2221)(cos 2)(,cos 42cos )(λλλ---=-=x x f x x x f 即.1cos 0],2,0[≤≤∴∈x x π①当0<λ时,当县仅当0cos =x 时,)(x f 取得最小值-1,这与已知矛盾; ②当λλ=≤≤x cos ,10当且仅当时时,)(x f 取得最小值221λ--,由已知得21,23212=-=--λλ解得;③当1cos ,1=>x 当且仅当时λ时,)(x f 取得最小值λ41-,由已知得3142λ-=-解得85=λ,这与1>λ相矛盾,综上所述,21=λ为所求。

4.平面直角坐标系内有点P ].4,4[),1,(cos ),cos ,1(ππ-∈x x Q x(Ⅰ)求向量OQ OP 和的夹角θ的余弦用x 表示的函数)(x f ; (Ⅱ)求)(x f 的最小值.解:(Ⅰ))(cos1cos 2cos ,cos1||||,cos 222x f xx x OQ OP x OQ OP =+==∴+==⋅θ(Ⅱ).cos 1cos 2cos1cos 2)(cos 2xx xx x f +=+==θ ]1,22[cos ],4,4[∈∴-∈x x ππ.322)(,1)(322,223c o s 1c o s 2m i n =≤≤≤+≤x f x f xx .5.设)sin ,cos 1(αα+=a ,)sin ,cos 1(ββ-=b ,),0()0,1(πα∈=c)2,(ππβ∈,a 与c 的夹角为1θ,b 与c 的夹角为2θ,且621πθθ=-,求4sinβα-的值.(本题12分).解:)22c o s (2s i n 2s i n22s i n 2c o s 22c o s 2c o s22c o s 2c o s 2s i n 2||2c o s2||),2(2),2,0(2)2,(),,0()2cos,2(sin 2sin2)2cos2sin2,2sin2()2sin ,2(cos 2cos 2)2cos 2sin 2,2cos 2(2212122πββββθαθαααθβαππβπαππβπαββββββαααααα-=====∴==⋅===∈∈∴∈∈====c a b a b a 故21)6s i n (4s i n3262226222220212-=-=-∴-=-∴=+-⇒=--=∴<-<πβαπβαππβαπθθπβθππβ又6.已知函数a b x b x x a x f (sin2cos sin 2)(2+⋅-⋅⋅=、b 为常数,且0<a )的图象过点(3,0),且函数)(x f 的最大值为2.(1)求函数)(x f y =的解析式,并写出其单调递增区间;(2)若函数)(x f y =的图象按向量)0,(m p =作移动距离最小的平移后,使所得的图象关于y 轴对称,求出向量p 的坐标及平移后的图象对应的函数解析式解:(1),2cos 2sin )(x b x a x f ⋅+=12,33)0(22-==+==a ba b f 解得又有得所以函数)(x f y =的解析式是)32sin(22cos 32sin )(π--=+-=x x x x f)(x f 的单调递增区间是)](1211,125[Z k k k ∈++ππππ(2)∵平移后的图象对应的函数解析式是]3)(2sin[2π---=m x y图象关于y 轴对称,即)322sin(2π---=m x y 为偶函数, )322sin(2)322sin(2ππ---=----∴m x m xR x m x m x ∈--=---对即)322sin()322sin(ππ恒成立)(,2)322()322(Z k k m x m x ∈+=--+---∴πππππππππ1252,2324-⋅-=+=--∴k m k m ,,1212521min πππ=-=-=∴m k 时当故p )0,12(π=,图象对应的函数解析式为x x y 2cos )22sin(2=--=π7.已知二次函数)(x f 对任意R ∈x ,都有)1()1(x f x f +=-成立,设向量=a (sin x ,2),=b (2sin x ,21),=c (cos2x ,1),=d (1,2),当∈x [0,π]时,求不等式f (b a ⋅)>f (d c ⋅)的解集.解析:设f (x )的二次项系数为m ,其图象上两点为(1-x ,1y )、B (1+x ,2y )因为12)1()1(=++-x x ,)1()1(x f x f +=-,所以21y y =,由x 的任意性得f (x )的图象关于直线x =1对称,若m >0,则x ≥1时,f (x )是增函数,若m <0,则x ≥1时,f (x )是减函数.∵ x (sin =⋅b a ,x sin 2()2⋅,11sin2)212≥+=x ,x 2(cos =⋅d c ,1()1⋅,)2122cos ≥+=x ,∴ 当0>m 时,)12(cos )1sin 2()()(2+>+⇔>⋅⋅x f x f f f d c b a 1sin 22+⇔x02cos 222cos 12cos 122cos <⇔+>+-⇔+>x x x x 02cos <⇔x 2ππ2+⇔k23ππ22+<<k x ,Z ∈k .∵ π0≤≤x , ∴ 4π34π<<x .当0<m 时,同理可得4π0<≤x 或π4π3≤<x .综上:)()(d c b a ⋅⋅>f f 的解集是当0>m 时,为}4π34π|{<<x x ;当0<m 时,为4π0|{<≤x x ,或}π4π3≤<x .8.平面直角坐标系有点]4,4[),1,(cos ),cos ,1(ππ-∈x x Q x P(1)求向量OQ OP 和的夹角θ的余弦用x 表示的函数f (x ); (2)求θ的最值.解:(1)θcos ||||OQ OP OQ OP ⋅=⋅]4,4[c o s 1c o s 2)(,c o s 1c o s 21c o s c o s 11c o s c o s 1|c o s 2222ππθ-∈+=∴+=++⋅+⋅==∴x xx x f xx x xx x(2))(12)(],1,22[,cos 2t g tt x f t t x =+=∈=则则0,0,322a r c c o s ,40,322a r c c o s ],,0[,1cos 322322)22()(,1)1()(]1,22[)(,122)(,0)(,)1,22()1()1)(1(2)(min max min max min max 22===±=∴==∈≤≤∴====∴∴==>'∈+-+-'θθπθθπθθ时当时当故又上是增函数在处连续及在又时显然又x x g t g g t g t g t t t g t g t t t t t g9.如图:已知△OFQ 的面积为62,且m FQ OF =⋅,(1)若646<<m 时,求向量OF 与FQ 的夹角θ的取值范围;(2)设c OF =||,2)146(c m -=时,若以O 为中心,F 为焦点的双曲线经过点Q ,当||OQ 取得最小值时,求此双曲线的方程.(1) 由已知,得⎪⎩⎪⎨⎧==-⋅⋅,,m FQ OF FQ OF θθcos ||||62)πsin(||||21所以m 64t a n =θ,因为646<<m ,所以4tan 1<<θ,则4arctan 4π<<θ. (2)以O 为原点,OF 所在直线为x 轴建立直角坐标系,设所求的双曲线方程为12222=-by ax ,(a >0,b >0),Q 点的坐标为(1x ,1y ),则FQ =(c x -1,1y ),因为△OFQ 的面积62||211=⋅y OF ,所以cy 641=,又由=⋅FQOF(c ,0)(c x -1,1y )21)146()(c c c x -=-=,所以c x 461=,128396||222121≥+=+=c cyx OQ ,当且仅当c =4时,||OQ 最小,此时Q 的坐标为(6,6),由此可得⎪⎩⎪⎨⎧=+=-,,161662222b a b a 解之得⎪⎩⎪⎨⎧==,,12422b a 故所求的方程为112422=-y x 10. 已知向量33cos ,sin )22x x a =(,cos ,sin )22x x b =- (,且[,]2x ππ∈ (1) 求a b ⋅ 及||a b + ;(2) 求函数()f x =a b ⋅ +||a b +的最大值,并求使 函数 取得最大值的x 的值。

解(1)3coscos 22x x a b ⋅= -3sin sin 22x x =cos 2x||a b +==2|cos x |∵[,]2x ππ∈∴ ||a b +=-2cos x(2)()f x =a b ⋅ +||a b +=cos 2x -2cos x=22cos 2cos 1x x -- =2132(cos )22--∵[,]2x ππ∈∴-1≤cos x ≤0 ∴-1≤()f x ≤3∴当cos x =-1时 m ax ()f x =3,此时x π= (∵[,]2x ππ∈ )。

相关文档
最新文档