黑洞的研究过程以及意义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑洞的研究过程以及意义

1:引言

长期以来,黑洞以它的神秘和怪异一直吸引和困扰着人们,黑洞究竟是什么呢?它是一个洞吗?它黑吗?它冷吗?它内部到底有什么?

观测到的大量间接征兆证实,黑洞在宇宙中普遍存在,但是我们无论如何也不能直接看到它。天文学家推测它可能来自于大恒星塌缩后质量、密度变得很大而引力极强的核心;还有一些观测证据表明,在许多星系的中心更是存在着超级大黑洞。

人类虽然已拥有了先进的天文观测设备,如具有灵敏感光器的大口径光学望远镜,检测细微电磁波信号的大型射电天文望远镜,在外层空间漫游的哈勃太空望远镜等,但是人们却不能看到黑洞。

2:黑洞的研究过程以及意义

2.1黑洞的发现

黑洞刚开始是英国一个地质学家提出,由爱因斯坦预言,再由霍金用理论进行研究。

1965年,人们在天鹅座探测到一个特别强的X射线源,将它命名为天鹅X-1。据推测,它大约距离我们1万光年。1970年,世界第一颗X射线观测卫星“乌呼鲁”(斯瓦希里语“自由”的意思)升空,它发现天鹅X-1与其它X射线源不同,它忽隐忽现,频率快达每秒1000次,而且射线强度变化没有规律。这种不规律的变化,正是物理学家预料物质从吸积盘进入黑洞时将发生的状况。

人们立即对天鹅X-1进行了仔细的搜寻,在它邻近的地方发现了一颗质量约为太阳30倍的炽热蓝色超巨星。经证实,这颗蓝星与天鹅X-1互相绕着对方旋转。从种种迹象来看,天鹅X-1体积非常小,密度远远超过中子星,似乎就是我们预想中的黑洞。天文学界并没有普遍接受这一假设,但大多数人相信,天鹅X-1将是第一个被证认的黑洞。此后,天蝎V861、仙后A等星体也被猜想是黑洞,但是并没有得到确认。1999年美国宇航局发射“钱德拉”X射线望远镜,探测到一颗超新星周围物质喷出的大量X射线,科学家据此认为,这颗超新星中央存在黑洞。该望远撞拍摄的另一张照片,显示了一个遥远类星体喷射出的X 射线流达20万光年之远,其喷射出的能量可能相当于10万亿个太阳释放能量的总和。科学家认为,这样巨大的能量是从类星体中央的一个超大规模黑洞附近发出的。黑洞似乎最可能在恒星最密集和大块物质可能聚集在一起的地方形成。由于球状星团、星系核的中心区域具有这种特点,天文学家越来越相信,这种星团或星系的中心存在黑洞。有科学家认定,我们的银河系中心就有一个巨大的黑洞,其质量相当于1亿颗恒星,占银河系总质量的1/1000,直径为太阳的500倍。如果恒星接近它的速度足够快,也许会被它一口整个吞掉。

2.2黑洞的形成

那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。

我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据

科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

根据科学家计算,一个物体要有每秒中七点九公里的速度,就可以不被地球的引力拉回到地面,而在空中饶着地球转圈子了.这个速度,叫第一宇宙速度.如果要想完全摆脱地球引力的束缚,到别的行星上去,至少要有11.2km/s的速度,这个速度,叫第二宇宙速度.也可以叫逃脱速度.这个结果是按照地球的质量和半径的大小算出来的.就是说,一个物体要从地面上逃脱出去,起码要有这么大的速度。可是对于别的天体来说,从它们的表面上逃脱出去所需要的速度就不一定也是这么大了。一个天体的质量越是大,半径越是小,要摆脱它的引力就越困难,从它上面逃脱所需要的速度也就越大.

按照这个道理,我们就可以这样来想:可能有这么一种天体,它的质量很大,而半径又很小,使得从它上面逃脱的速度达到了光的速度那么大。也就是说,这个天体的引力强极了,连每秒钟三十万公里的光都被它的引力拉住,跑不出来了。既然这个天体的光跑不出来,我们然谈就看不见它,所以它就是黑的了。光是宇宙中跑得最快的,任何物质运动的速度都不可能超过光速.既然光不能从这种天体上跑出来,当然任何别的物质也就休想跑出来.一切东西只要被吸了进去,就不能再出来,就象掉进了无底洞,这样一种天体,人们就把它叫做黑洞。

2.3科学家对黑洞的认识

从大爆炸以来,宇宙中大约有1/4的射线是物质掉进超大质量黑洞时产生的。

几十年以来,科学家们一直试图弄清楚黑洞——宇宙中最黑暗的物质与如此数量众多的射线之间有何关系。

新的Chandra数据清楚地揭示了推动这一过程的原因:磁场。

Chandra观测到银河系中存在一个被称为GRO J1655-40的系统,这里有一个黑洞正在从一颗伴星体那里吸收物质。

“应该说J1655正好最我们的后院里,所以我们把它作为一个研究黑洞运行的模型,”密西根大学的Jon M. Miller说。Miller关于这一现象的文章已刊登在6月22日出版的一期《自然》上了。

如果仅仅只有引力的话,是不足以使黑洞周围的吸积盘气体失去能量并以我们观测到的速度向黑洞坠落的。所以,这些气体在坠入之前应该已经失去了轨道角动量;否则,物质仍然可以环绕黑洞飞行好长一段时间。

长期以来,科学家们认为磁场星云会在气体形成的吸积盘里产生一种摩擦力,从而形成一种将角动量推向外侧的风,使得这些气体向黑洞坠落。

利用Chandra,Miller发现了磁力在黑洞吸收物质的过程中所起的作用。X射线光谱——不同能量级的X射线光谱,显示J1655的吸积盘中风的速度和密度与电脑模拟出来的磁力作用产生的风一致。

“1973年,理论家提出,气体坠入黑洞时产生的磁场会生成大量的光线。”此文另一位作者、麻省哈佛大学-史密森天体物理中心的John Raymond说,“30年之后的今天,我们最终找到了确定证据。”

进一步了解黑洞聚集物质的过程,还有助于人们认识黑洞其他方面的性质。

“正如一个医生想要了解某种疾病产生的原因、而不仅仅是它的症状一样,天文学家们也希望能够知道是什么原因促成了他们所看到的现象。”

“通过了解为什么物质向黑洞坠落时会释放能量,我们也可能推出物质飞向其他星体时的情景。”

除了对黑洞周围的吸积盘产生作用外,磁场还可能对幼年的恒星和被称为中子星的高密度恒星周围的吸积盘具有重要影响。

相关文档
最新文档