第二章遥感的物理基础2

合集下载

第03讲 遥感物理基础之二_太阳辐射

第03讲 遥感物理基础之二_太阳辐射

19/22
20/22
地球大气对太阳辐射传输特性的遥感应用:
1.选择大气窗口。 2.认识大气传输对遥感图像判读的影响: ①大气散射使短波波段(如0.5-0.6μm)的地物 影像增加亮度,使景物反差减小; ②大气的吸收使长波波段(如0.8-1.1μ m)减低 亮度。 3.为图像恢复或辐射校正提供依据。
返 回
22/22
思考题
1、大气的散射现象有几种类型?根据不同散射类 型的特点分析可见光遥感与微波遥感的区别,说 明为什么微波具有穿云透雾能力而可见光不能? 2、综合论述太阳辐射传播到地球表面又返回到遥 感器这一整个过程中所发生的物理现象。
3、什么是大气窗口?大气窗口有哪些波段区间?
1/22
河北工程大学 资源学院
遥感地质学
Remote Sensing Geology 遥感物理基础(2) -地球大气对太阳辐射传输的影响
2/22
遥感地质学章节内容
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 绪论 遥感物理基础(电磁波谱与电磁辐射) 遥感成像原理与图像特征 遥感图像处理 遥感图像地质解译标志 遥感图像地貌解译 遥感图像的岩性解译 遥感图像构造解译 遥感应用
3)中红外波段3.0-5.0μm,3.5-4.2μm和4.6-5.0μm; •( 地球大气对太阳辐射的传输影响有吸收作用、散 1、选择大气窗口。 电磁波通过地球大气层时较少被反射、吸收或散射,透 2 、认识大气传输对遥感图像判读的影响:①大气散射使短 射作用、反射作用和折射作用。 ( 4 )远红外波段8.0-14.0μm; 过率较高的波段,称为大气窗口。
折射角度大。
返回
18/22
大气窗口
• 大气窗口 • 主要大气窗口和遥感波谱通道(波段):P13表2-4 电磁波通过地球大气层时较少被反射、吸收或散射,透过率 ( 1) 0.3-1.3μm:紫外波段、可见光波段、近红外波段 较高的波段,称为大气窗口。 微波波段:其常用的波段为0.8cm,3cm,5cm,10cm等等, (2) 1.5-2.5μm:近红外波段 包括部分紫外( 电磁波信息来自地面目标物的反射光谱;可以用摄影方式来获 0.3-0.38μm )、全部可见光( 0.38-0.76μm) 有时也可将该窗口扩展为 0.05cm 至300cm波段。 (3) 3.0-5.0μm:中红外波段 及近红外波段( 得和记录地物的电磁波信息 0.76-1.3μm ;电磁波的透射率在 ),是摄影成像的最佳波段,也 90%以上。 近红外窗口,在白天日照条件好的时候扫描成像常用这些波段, 电磁波信息仍来自地面目标物的反射光谱,但不能用胶片摄影, 其特点是:微波穿云透雾的能力强,这一区间可以全天候工作; 是许多卫星传感器扫描成像的常用波段,比如, Landsat 卫星 比如 TM 的 5 、 7 波段等用以探测植物含水量以及云、雪或用于 只能用扫描仪和光谱仪以及射线测试仪来测量和记录;由于水 ( 4 ) 814μm:远红外波段 中红外波段电磁波信息由地面物体反射太阳辐射和地面物体自 主要用于主动遥感,如侧视雷达。 中红外波段,物体的热辐射较强。如NOAA卫星的AVHRR传 的 TM 的1-4 波段,SPOT 卫星的 HRV 波段等。 地质制图等。 汽、二氧化碳等的作用, 1.8μm 附近有一个吸收带,因此使此 身的发射辐射混合而成,用扫描仪和光谱仪探测和记录;也分 ( 5 ) 0.8-100cm :微波波段 感器用 3.553.93μm 探测海面温度,获得昼夜云图。 远红外波段:主要来自物体热辐射的能量,适于夜间成像,测 远红外波段:探测或记录目标物的发射光谱,利用扫描仪和热 窗口又分为两个小窗口 1.5-透过率为 1.75μm和 2.1 -2.4μm 。 透过率 为两个小窗口: 3.5 - 4.2μm 95 %, 4.6 - 5μm 量探测目标的地物温度。 辐射计、光谱计;是地表物体在常温下辐射能量最强的波段; 约为 60- 70%。 在9.6μm 附近处,分为两个小窗口,透射率约在 60-80%。

遥感原理与应用_第2章_2遥感物理基础-辐射传输基础

遥感原理与应用_第2章_2遥感物理基础-辐射传输基础
a小于入射电磁波波长的十分 之一;(气体分子)
• 米氏散射:如果介质中不均匀
颗粒的直径a与入射波长同数 量级;(气溶胶)
• 非选择性散射(均匀散射):
当不均匀颗粒的直径a>>λ时
发生。(大粒子尘埃)
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
遥感影像判读
遥感平台特点
遥感
影像识别分类
遥感物理基础
遥感技术应用
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
遥 1 2感 3物 4 5理 6基 7 础
遥感电磁辐射基础 辐射传输基础
地物波谱特性与遥感光学基础
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
大 大气成分 气 不变成分:氮、氧、氩、二氧化碳、甲烷、氧化氮、氢; 对 这些气体在80km以上的相对比例保持不变,称为不变气体。 1 2 电 可变成分:臭氧、水蒸气、液态和固态水(雨、雾、雪、 3磁 4 冰等)、盐粒、尘烟;这些气体的含量随高度、温度、位置 5辐 6 射 而变,称为可变成分。 7 的 气溶胶:固体或液体分散在气体中的分散体系叫做气溶胶。 影 比如,烟、尘、雾、云等都是气溶胶 。气溶胶是气体和在重 响 力场中具有一定稳定性和较小沉降速度的物质颗粒组成的混
散射影响:使原传播方向的辐射强度减弱,而增加向其他各方向
的辐射。尽管强度不大,但太阳辐射在照到地面又反射到传感器的 过程中,二次通过大气,在照射地面时,由于增加了漫入射的成分, 使地物反射的成分有所改变。 对遥感图像来说,增加了信号中的噪声成分,降低了传感器接收 数据的质量,造成图像模糊不清。 不同于吸收作用,只改变传播方向,不能转变为内能。 大气的散射是太阳辐射衰减的主要原因。

遥感物理基础

遥感物理基础

X
10-6m 1nm 0.38m 0.76m 3m 6m 15m 1mm 1m
紫可近中远超微无
射射 外 见 红 红 红 远 波线
线线 线 光 外 外 外 红



1mm=1000 m;1m=1000nm
电磁波谱的划分
紫外波段 可见光波段
紫色光 蓝色光 青色光 绿色光 黄色光 橙 色光 红色光 近红外(摄影红外)波段 近红外(反射红外)波段 中红外波段(热红外)
❖ 灰体:0< α <1,α不随波长而变 化。
❖ 选择性辐射体: 0< α <1,α随 波长而变化。
概念——辐射度量
❖ 辐射能量(W):电磁辐射的能量,单位J。 ❖ 辐射通量(Φ):单位时间内通过某一面积的
辐射能量,Φ=dW/dt,单位W。辐射通量是波长 的函数,总辐射通量是各谱段辐射通量之和或 辐射通量的积分值。 ❖ 辐射通量密度(E):单位时间内通过单位面 积的辐射能量,E=dΦ/dS,单位W/M2,S为面 积。
普朗克公式表示出了黑体辐射通量密度与温 度的关系及按波长分布的情况。反映黑体 辐射的三个特性:
E0
6000K 3000K
❖ 辐射通量密度随波长连续变化,温度一定 时,辐射通量密度随波长变化的曲线只有 一个最大值
1000K 200K
❖ 温度越高,辐射通量密度也越大,不同温
度下的曲线不相交。
❖ 随着温度的升高,辐射最大值所对应的波 长向短波方向移动。
由上式可见(在遥感技术上的意义): ❖ 绝对黑体表面上,单位面积发出的总辐射能
与绝对温度的四次方成正比,对于一般物体, 可用上式概略推算出总辐射能与绝对温度的 关系。 ❖ 黑体总辐射通量密度与温度的四次方成正比, 因而随温度的增加迅速增大——红外测温的 理论依据。

2遥感物理基础

2遥感物理基础

遥感的基本出发点
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
2、地物的发射光谱特性 黑体 普朗克公式 斯蒂芬-玻尔兹曼定律(Stephen Boltzmann Law) 维恩位移定律(Wien’s Displacement Law) 基尔霍夫定律 地物的发射光谱
100-106cm >106cm
用于无线电通讯,分超短波、短波、中波、长波
冯新伟
常用的遥感波段有:紫外线、可见光、红外线、微波
紫外线:波长范围0.1---0.38μm,太阳辐射只有0.3--0.4μm到达地面,能量较少;可探测的高度在2000m以 下,目前多用于探测碳酸岩分布,油污染的监测,能提 供土壤水份和作物病类信息。 可见光:波长范围0.38---0.76μm,人眼对该波段具有 敏锐的分辨能力,是鉴别物质的主要波段。遥感技术中 主要用摄影和扫描方式接收和纪录地物对可见光的反射 特征,是现在遥感中最常用的波段。

河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
太阳
太阳是太阳系唯一的恒星,它集中了太阳系99.865%的质量。 太阳是一个炽热的气体星球,没有固体的星体或核心。太阳从 中心到边缘可分为核反应区、辐射区、对流区和大气层。其能 量的99%是由中心的核反应区的热核反应产生的。太阳中心的 密度和温度极高。太阳大气的主要成分是氢(质量约占71%) 与氦(质量约占27%)。

遥感物理基础电磁波与电磁波谱

遥感物理基础电磁波与电磁波谱

第二章遥感物理基础遥感技术是建立在物体电磁波辐射理论基础上的。

由于不同物体具有各自的电磁波反射或辐射特性,才可能应用遥感技术探测和研究远距离的物体。

理解并掌握地物的电磁波发射、反射、散射特性,电磁波的传输特性,大气层对电磁波传播的影响是正确解释遥感数据的基础。

本章重点是掌握可见光近红外、热红外和微波遥感机理,以及地物波谱特征。

图2-1第一节电磁波与电磁波谱2.1.1 电磁波与电磁波谱1. 电磁波一个简单的偶极振子的电路,电流在导线中往复震荡,两端出现正负交替的等量异种电荷,类似电视台的天线,不断向外辐射能量,同时在电路中不断的补充能量,以维持偶极振子的稳定振荡。

当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。

2. 电磁辐射电磁场在空间的直接传播称为电磁辐射。

1887 年德国物理学家赫兹由两个带电小球的火花放电实验,证实了电磁场在空间的直接传播,验证了电磁辐射的存在。

装载在遥感平台上的遥感器系统,接收来自地表、地球大气物质的电磁辐射,经过成像仪器,形成遥感影像。

3. 电磁波谱γ射线、X 射线、紫外线、可见光、红外线和无线电波(微波、短波、中波、长波和超长波等)在真空中按照波长或频率递增或递减顺序排列,构成了电磁波谱。

目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。

可见光区间辐射源于原子、分子中的外层电子跃迁。

红外辐射则产生于分子的振动和转动能级跃迁。

无线电波是由电容、电感组成的振荡回路产生电磁辐射,通过偶极子天线向空间发射。

微波由于振荡频率较高,用谐振腔及波导管激励与传输,通过微波天线向空间发射。

由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。

可见光、红外和微波遥感,就是利用不同电磁波的特性。

电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。

图2-2电磁辐射的性质4. 电磁辐射的性质电磁辐射在传播过程中具有波动性和量子性两重特性。

遥感原理与方法习题库

遥感原理与方法习题库

遥感原理与方法习题集第一章遥感概述1、阐述遥感的基本概念。

2、遥感探测系统包括哪几个部分?3、与传统对地观测手段比较,遥感有什么特点?举例说明。

4、遥感有哪几种分类?分类依据是什么?5、试述当前遥感发展的现状及趋势。

第二章遥感的物理基础1、大气对通过其中传播的电磁波的散射有哪几类?他们各有什么特点。

2、什么是大气窗口?常用于遥感的大气窗口有哪些?3、综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。

4、请绘出小麦、湿地、沙漠、雪的典型光谱曲线图,并分别对这些光谱反射率曲线的特征及其成因作出说明。

5、遥感某火电厂冷却水的热污染(温度梯度为90-50度),试问在哪个波段、选用何种传感器,在每天什么时刻及天气状况下,遥感最为有利,为什么(b=2.898×10-3m.K,计算精确到0.1um)。

6、熟悉颜色的三个属性。

明度、色调、饱和度,选取自然界的某些颜色例如:树叶、鲜花、土地等,比较它们三种属性区别。

7、光的合成怎样推算新颜色?用色度图说明。

8、加色法和减色法在原理上有什么不同?举例说明什么时候用加色法,什么时候用减色法?9、利用标准假彩色影像并结合地物光谱特征,说明为什么在影像中植被呈现红色,湖泊、水库呈蓝偏黑色,重盐碱地呈偏白色。

第三章遥感图象获取原理1、主要遥感平台有哪些,各有何特点?2、摄影成像的基本原理是什么?其图像有何特征?3、扫描成像的基本原理是什么?扫描图像与摄影图像有何区别?4、如何评价遥感图像的质量?第四章航空遥感与航空像片1、按摄影机主光轴与铅垂线的关系,航空摄影可公为哪几类?2、影响航空像片比例尺的因素有哪些?怎样测定像片的比例尺?3、比较航空摄影像片与地形图的投影性质有什么差别?4、什么是像点位移?引起像点位移的主要原因是什么?第五章航天遥感与卫星图像1、试从技术特性和应用两方面,对航天(卫星)遥感与航空遥感作一比较。

2、航天遥感平台主要有哪些?各有什么特点?3、地球资源卫星主要有哪些?常用的产品有哪几类?4、简述卫星图像的主要特征。

遥感的物理基础

遥感的物理基础


反射现象:电磁波在传播过程中,通过两种介 质的交界面时会出现反射现象,反射现象出要 出现在云顶(云造成噪声)。
遥感基础与应用
大气窗口

不同波段的电磁波受到大气的衰减作用轻重不 同。

电磁波通过大气层时较少被反射,吸收和 散射的,透射率较高的波段称为大气窗口。
遥感传感器选择的探测波段应包含在大气窗口 之内。
(2) 地物的发射光谱特性

同一地物,其表面粗糙或颜色较深的,发射率 往往较高,反之,发射率则较小。

比热大,热惯量大,以及具有保温作用的地物, 一般发射率大,反之发射率就小。
例如水体,在白天水面光滑明亮,表面反射强 而温度较低,发射率亦较低;而夜间,水的比 热大,热惯量也高,故而发射率较高。

遥感基础与应用
结果输出(图、表)
接收 预处理
用户处 理应用
遥感基础与应用
太阳辐射曲线
太阳辐射的能量主要集中 在可见光,其中0.38 ~ 0.76 µ m的可见光能量占太阳辐射 总能量的46%,最大辐射强 度位于波长0.47 µ m左右; 到达地面的太阳辐射主要 集中在0.3 ~ 3.0 µ m波段,
包括近紫外、可见光、近

土壤含水量增加,土壤的反射率就会下降,在 水的各个吸收带(1.4um、1.9um、2.7um处附近 区间),反射率的下降尤为明显。
遥感基础与应用
三种不同类型土壤在干燥环境下的光谱曲线
水的吸收带(1.4um、1.9um、2.7um) 干燥土壤的波谱特征主要 与土壤物质组成(成土矿 物和土壤有机质)有关。 土壤含水量增加,土壤的 反射率就会下降,
遥感基础与应用
不同地物的反射波谱特征
遥感基础与应用

遥感原理及应用总结

遥感原理及应用总结

绪论第一章遥感物理基础Chapter 1 Physical basis of remote sensing电磁波:在真空或物质中通过传播电磁场的振动而传输电磁能量的波。

(在真空或介质中传播的交变电磁场)电磁波是通过电场和磁场之间相互联系和转化传播的,是物质运动能量的一种特殊传递形式。

原子光谱、分子光谱和晶体光谱波粒二象性:1 波动性:表现出干涉、衍射、偏振等现象。

一般成像只记录了电磁波的振幅,只有全息成像时才同时记录振幅和相位,在遥感成像时,只有雷达成像是如此。

干涉的影响:利—利用能量增大的趋势使图像清晰,方向性强;弊—造成同一物质所表现的性质不同SAR成像时,斑点的产生就是由于电磁波的干涉引起的。

衍射的影响:(1)使电磁辐射通量的数量、质量和方向都发生变化,结果测量不准确,对目标物的解译也带来困难。

(2)缩小阴影区域。

(3)影响遥感仪器的分辨能力。

光的偏振现象说明光波是横波,在微波技术中称为“极化”。

多普勒效应:电磁辐射因辐射源或观察者相对于传播介质的移动,而使观察者接受到的频率发生变化的现象。

2 粒子性的基本特点是能量分布的量子化光电效应应用:扫描成像、电视摄像等,把光像变成电子像,把对人眼无作用的电磁辐射变成人们可以看见的影像。

3、波粒二象性的关系电磁波的波动性与粒子性是对立统一的,E(能量)、P(动量)是粒子的属性,υ(频率),λ(波长)是波动的属性,二者通过h联系起来。

光的波动性和粒子性是光在不同条件下的不同表现:从数量上看:少量光子的运动表现出粒子性;大量光子的运动表现出波动性。

从频率上看:频率高的光子粒子性强,频率低的光子波动性强。

当光和其它物质发生相互作用时表现为粒子性,当在传播时表现为波动性。

为什么说遥感的物理基础是电磁波理论?➢不同地物电磁波特性不同(表现为不同颜色,不同温度)➢传感器接收的是电磁波➢数据传输是电磁波➢数据处理的是地物电磁波信息➢应用的是地物电磁波特性电磁波谱:将电磁波在真空中按照波长或频率的依大小顺序划分成波段,排列成谱。

《遥感概论》word版

《遥感概论》word版

遥感概论第一章绪论一、遥感(狭义):在不直接接触目标物的情况下,使用特定的探测仪器来接受目标物体的电磁波信息,再经过对信息的传输、加工、处理、判读,从而识别目标物体的技术。

二、遥感平台:用来装载传感器的运载工具。

三、遥感的原理:1.物理依据:地球上的物体都在不停地辐射、反射和吸收电磁波,并且不同物体的电磁波特征是不同的。

2.原理:利用传感器接收地物反射或辐射出的电磁波,通过分析电磁波的特性区分不同的地物及其环境,主要基于两点:不同地物在不同波段反射率存在差异;同类地物的光谱是相似的,但随着该地物的内在差异而有所变化。

四、遥感技术系统:遥感技术系统是一个从地面到空中直至空间,从信息收集、存储、传输处理到分析判读、应用的完整技术系统,包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。

五、遥感技术特点:1. 大面积的同步观测;便于发现和研究宏观现象(平台越高,视角越广,同步探测范围越大)2. 时效性:可以在短时间内对同一地区进行重复探测,有利于发现地球表面事物的动态变化,对天气预报,火灾、水灾的灾害监测等非常重要。

3. 数据的综合性和可比性:综合性包括:自然和人文信息的综合、多层空间的综合、多波段的综合、多时相的综合;可比性指获得的数据具有同一性或相似性,并且不同传感器具有兼容性。

4. 经济性;与传统方法相比,遥感可大大节省人力、物力、财力和时间,同时具有很高的经济效益和社会效益。

5. 局限性:一方面,遥感技术所利用的电磁波段很有限;另一方面,已利用的电磁波段对许多地物的某些特征不能准确反映。

六、遥感分类:1.按照遥感的工作平台分为:航天遥感、航空遥感、地面遥感。

2.按照资料的记录方式分为:成像方式、非成像方式。

3.按照电磁波的工作波段分为:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感。

〓多波段遥感:探测波段在可见光与近红外波段范围内,再分为若干窄波段来探测目标。

定量遥感-第二章遥感物理基础精讲

定量遥感-第二章遥感物理基础精讲
• 上式中太阳常数是对太阳光谱的积分。太阳对地球 的张角很小(<9),因此太阳光可以认为是平行光束。 • 太阳总辐射量和表面辐出度分别是多少?
25
通量密度很多时候简称通量
•太阳常数与太阳辐射亮度
基本物理量
太阳光是平行光入射,即只在Ω0方向存在 亮度,注意到公式:
Lλ =³ Φ / A λ Ω
波长与穿透性的关系?
32
• 地物反射光谱特性
物体反射率随波长而改变的特性称为地物 反射光谱特性。
光谱曲线:
植物? 水体? 土壤? 云?雪?
水体+叶绿素? 水体+泥沙? 新雪、旧雪?
地物波谱(特性)
33
• 电磁波与介质的相互作用总结:
作用类型
散射
反射 透射
吸收(发射)
率:以比例形式表征的反射、透射和吸收强度 与入射辐射强度无关 ρ + τ + α = 1(无自身发射)
Ω0
Fλ =² Φ / A λ
因此,太阳的辐射亮度与Ω0方向上的辐射通量 (即太阳常数)之间的关系为:
L0=δ(Ω,Ω0)F0
26
• 各向同性辐射时亮度与通量的关系 基本物理量
假设地表为各向同性辐射,即辐射亮度L 在各方向分布均一,则其垂直地表向上的辐射
通量为:
F L cosd 2 θ
由于dΩ = dσ/r2 = sinθdθdφ 因此:
这三种反射形式分别在什么情 况下发生?
根据表面光滑或粗糙?
37
二、瑞利判据分析
L.Rayleigh提出表面为光滑或粗糙的标准为:
θi θr
镜面反射
当 h cos 为光滑表面
8
当 h cos 为粗糙表面

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。

二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。

三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。

1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。

3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。

遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。

由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。

由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。

可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。

微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。

②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。

微波越长,穿透能力越强。

4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。

黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。

遥感原理与应用_第2章_3遥感物理基础-地物波谱特性与遥感光学基础

遥感原理与应用_第2章_3遥感物理基础-地物波谱特性与遥感光学基础
植被指数已广泛用来定性和定量评价植被覆盖及其生长活力。由 于植被光谱受到植被本身、土壤亮度、环境条件、阴影、土壤颜色 和湿度、大气空间—时相变化等因素的影响,因此植被指数往往具 有明显的地域性和时效性,没有一个普遍的值,其研究经常表明不 同的结果。20多年来,已研究发展了几十种不同的植被指数。
在植被指数中,通常选用对绿色植物强吸收的可见光红波段和对 绿色植物强反射的近红外波段。这两个波段不仅是植物光谱、光合 作用中的最重要的波段,而且它们对同一生物物理现象的光谱响应 截然相反,形成的明显反差,这种反差随着叶冠结构、植被覆盖度 而变化。
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
典 型 地 1 2物 3反 4 5射 6 7波 谱 特 性
在短波红外波段
植物基本上吸收或反射电磁波能量,透射很少。 植物的光谱特性受叶片总含水量的控制,叶片的反 射率与叶内总含水量互相关。反射总量是叶内水分含 量以及叶片厚度的函数。
类能力。
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
典 型 地 1 2物 3反 4 5射 6 7波 谱 特 性
主要植被指数一览表
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
定性。
在进行遥感图象解译的时候,要充分认识到地物波谱特
性的复杂性,减少外界因素的影响。 为提高定量遥感的精度,需要通过大量的地面样本分析 建立先验知识,确定遥感模型的约束条件。

第二章遥感的物理基础

第二章遥感的物理基础

28
传感器探测波段的设计,是通过分析
比较地物光谱数据而确定的。
多光谱扫描仪(MSS)的波段设计:

MSS1(0.5-0.6 μm) MSS2(0.6-0.7 μm) MSS3(0.7-0.8 μm) MSS4(0.8-1.1 μm)

TM的波段: TM1 0.45~0.52μm TM2 0.52~0.60μm TM3 0.63~0.69μm TM4 0.76~0.90μm TM5 1.55~1.75μm TM6 10.4~12.5μm TM7 2.08~2.35μm

2 k 4 4 4 W0 T T 2 2 15c h
40
(3)维恩位移定律:Wien's displacement law
随着温度的升高,辐射最大值对应 的峰值波长向短波方向移动。
max T b
温度 波长 300 9.66 500 5.80 1000 2.90 2000 1.45 3000 0.97 4000 0.72 5000 0.58 6000 0.48 7000 0.41
W

W黑
W W黑

4
在给定的温度下,物体的发射率=吸收率(同一波 段);吸收率越大,发射率也越大。
第二章:遥感的物理基础
第一节:电磁波与电磁波谱 第二节:地物的光谱特性 第三节:大气对电磁辐射的影响 第四节:彩色合成原理
1
第一节:电磁波与电磁波谱
一、电磁波:电磁场在空间以一定的 速度由近及远的传播过程。从能量的 角度又称为电磁辐射。
二、电磁波谱
按电磁波波长的长短,依次排列制成 的图表叫电磁波谱。 依次为:
37
1.
2.
3、黑体辐射定律

《遥感导论》电子教案终稿新

《遥感导论》电子教案终稿新

《遥感导论》电子教案终稿新第一章:遥感基础1.1 遥感概述遥感的定义遥感的基本原理遥感的应用领域1.2 遥感技术系统遥感平台与传感器遥感数据类型与分辨率遥感数据获取与处理1.3 遥感数据产品与应用遥感数据的产品类型遥感数据的应用案例遥感数据的选择与评价第二章:遥感物理基础2.1 电磁波与光谱特性电磁波的基础知识光谱特性与波段选择光谱吸收与反射特性2.2 遥感传感器与光谱响应传感器的类型与工作原理光谱响应函数与数据模拟传感器参数与性能评价2.3 遥感图像的辐射校正与大气校正辐射校正的目的与方法大气校正的重要性与方法辐射校正与大气校正的实施步骤第三章:遥感图像处理与分析3.1 遥感图像预处理图像预处理的目的与方法图像配准与辐射校正图像增强与去噪声3.2 遥感图像分类与分割图像分类的原理与方法基于像素与基于对象的分类方法图像分割的目的与方法3.3 遥感图像的特征提取与信息提取特征提取的重要性与方法常用特征参数与指标信息提取的方法与技术第四章:遥感应用案例分析4.1 土地覆盖与植被监测土地覆盖分类与数据来源植被指数与监测方法土地覆盖变化分析与应用案例4.2 水资源监测与洪水预测水资源遥感监测方法洪水预测与监测技术水资源遥感应用案例分析4.3 城市规划与建设监测城市遥感监测技术城市规划与建设中的应用案例城市变化分析与评估第五章:遥感技术的发展趋势5.1 卫星遥感技术的发展新型遥感平台与传感器高分辨率遥感数据的应用卫星遥感数据的集成与共享5.2 激光雷达遥感技术激光雷达的原理与应用激光雷达遥感数据处理与分析激光雷达遥感技术的优势与挑战5.3 多源遥感数据融合与应用多源遥感数据的特点与融合方法多源遥感数据在地理信息系统中的应用多源遥感数据融合的未来发展趋势第六章:专题地图制图与遥感应用6.1 专题地图制图原理专题地图的概念与分类专题地图制图方法与流程遥感数据在专题地图制中的应用6.2 遥感影像地图编制遥感影像地图的类型与特点遥感影像地图编制方法与技术遥感影像地图的应用案例6.3 遥感技术与地理信息系统集成遥感与GIS集成的意义与优势遥感与GIS集成的方法与技术遥感与GIS集成应用案例分析第七章:环境监测与变化分析7.1 遥感在环境监测中的应用环境监测的基本概念与方法遥感技术在环境监测中的应用领域环境监测遥感数据的处理与分析7.2 土地利用变化分析土地利用变化的概念与监测方法遥感数据在土地利用变化分析中的应用土地利用变化趋势与驱动因素分析水资源遥感监测技术方法水资源变化分析与评估水资源遥感应用案例分析第八章:气候与气象遥感应用8.1 遥感在气候研究中的应用气候遥感监测的基本原理气候遥感数据类型与获取方法气候遥感数据的应用案例8.2 遥感气象观测与分析气象遥感监测的方法与技术气象遥感数据的处理与分析气象遥感应用案例分析8.3 气候模型与遥感数据集成气候模型的基本原理与类型遥感数据在气候模型中的应用气候模型与遥感数据集成的方法与技术第九章:生物地球化学与遥感应用9.1 生物地球化学与遥感关系生物地球化学的基本概念遥感技术在生物地球化学研究中的应用生物地球化学遥感应用案例分析植被遥感监测的基本原理与方法植被指数与植被参数遥感反演植被遥感应用案例分析9.3 土壤与水分遥感监测土壤遥感监测的基本原理与方法水分遥感监测技术与应用土壤与水分遥感应用案例分析第十章:遥感技术在科学研究中的应用10.1 遥感技术在地球科学中的应用遥感技术在地质调查与勘探中的应用遥感技术在地球物理场研究中的应用遥感技术在地球环境与气候变化研究中的应用10.2 遥感技术在生态学与应用遥感技术在生态系统监测与评估中的应用遥感技术在生物多样性保护中的应用遥感技术在生态灾害监测与预警中的应用10.3 遥感技术在农业领域的应用遥感技术在农业资源调查与监测中的应用遥感技术在农业灾害监测与预警中的应用遥感技术在农业产量估算与种植结构分析中的应用重点和难点解析重点环节:1. 遥感基本原理与技术系统2. 遥感数据产品与应用3. 电磁波与光谱特性4. 遥感图像的辐射校正与大气校正5. 遥感图像预处理6. 遥感图像分类与分割7. 遥感图像的特征提取与信息提取8. 土地覆盖与植被监测9. 水资源监测与洪水预测10. 城市规划与建设监测11. 遥感技术与地理信息系统集成12. 环境监测与变化分析13. 气候与气象遥感应用14. 生物地球化学与遥感应用15. 遥感技术在科学研究中的应用难点解析:1. 遥感基本原理与技术系统:理解遥感技术的工作原理以及不同传感器和平台的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 电磁波及遥感物理基础
1.电磁波谱与电磁辐射 2.太阳辐射及大气对辐射的影响 3.地球辐射与地物波谱 4.地物波谱测量
1
3、 地球辐射与地物波谱
(1)地球辐射源 (2)地球辐射的特性(分段特性) (3)地物波谱的特征(反射波谱特征) (4)常见几种地物的波地球的辐射源
❖ 中红外波段遥感图像上,既有地表反射太阳 辐射的信息,也有地球自身的热辐射的信息。
❖ 热红外波段遥感图像上的信息来自地球自身 的热辐射特性。
6
(3)地物波谱的特性
❖ 地物波谱:地物的电磁波响应特性随电磁波长改 变而变化的规律,称为地表物体波谱,简称地物 波谱。
❖ 地物波谱特性:地物波谱随波长变化而变化的特 性,是电磁辐射与地物相互作用的一种表现。
1)镜面反射:发生在光滑物体表面的一种反射。物 体的反射满足反射定律,反射波和入射波在同一平 面内,入射角等于反射角。
例子:水面是近似的镜面反射,在遥感图像上 水面有时很亮,有时很暗,就是这个原因造成的。
10
镜面反射
11
漫反射
2)漫反射:发生在非常粗糙的表面上的一种反射现象。 不论入射方向如何,其反射出来的能量在各个方向是 一致的。 即当入射辐照度I一定时,从任何角度观察反射面,其 反射辐照亮度是一个常数,这种反射面又叫朗伯面。
22
不同植被类型的光谱曲线比较
23
24
不同湿度下的植被的波谱特性曲线
25
26
水体的波谱特征
水体的反射主要在蓝绿光波段,其它波段吸收率很强, 特别在近红外、中红外波段有很强的吸收带,反射率几乎 为零。
27
水中其它物质对波谱特征的影响
❖水中含有泥沙,在可见光波段的反射率会增加, 峰值出现在黄红区。 ❖水中含有水生植物叶绿素时,近红外波段反射 率明显抬高。
对于地形起伏和地面结构复杂的地区, 为可以看成方向反射。
16
❖地物反射波谱:是研 究可见光至近红外波 段上地物反射率随波 长的变化规律。 ❖表示方法:一般采用 二维几何空间内的曲 线表示,横坐标表示 波长,纵坐标表示反 射率。
反射波谱曲线
17
(4)常见的几种地物类型波谱特征
❖植被 ❖土壤 ❖水体 ❖岩石
12
漫反射
13
方向反射
3)方向反射:介于镜面和朗伯面(漫反射)之间的一 种反射。自然界种绝大多数地物的反射都属于这种类 型的反射,又叫非朗伯面反射。 对太阳短波辐射的反射具有各向异性,即实际物体面 在有入射波时各个方向都有反射能量,但大小不同。
14
方向反射
15
实际物体反射
从空间对地面观察时,对于平面地区, 并且地面物体均匀分布,可以看成漫反射;
❖ 地物波谱的作用:不同类型的地物,其电磁波响 应的特性不同,因此地物波谱特征是遥感识别地 物的基础。
7
不同电磁波段中地物波谱特性
❖ 可见光和近红外波段:主要表现地物反射作用和地 物的吸收作用。
❖ 热红外波段:主要表现地物热辐射作用。(热红外 灵敏遥感器夜间成像河流为亮色条带,但热红外白 天成像河流为暗色条带)
❖ 在2.5~6.0um波段(主要在中红外波段),地表反 射太阳辐射和地球自身的热辐射均为被动遥感的辐 射源。
❖ 在6.0um以上的热红外波段,以地球自身的热辐射为 主,地表反射太阳辐射可以忽略。(热红外成像)
5
了解地球辐射的分段特性的意义
❖ 可见光和近红外波段遥感图像上的信息来自 地物反射特性。
❖ 微波波段:主动遥感利用地物后向散射;被动遥感 利用地物微波辐射。
8
(3)地物波谱的特性
反射率
❖反射率(ρ):地物的反射能量与入射总能量 的比,即ρ=(Pρ/ P 0)×100%表征物体对电磁波
谱的反射能力。
9
(3)地物波谱的特性
反射类型
地物的反射类型:根据地表目标物体表面性质的不 同,物体反射大体上可以分为三种类型,即镜面反 射、漫反射、实际物体的反射
20
植被的波谱特征
❖1.5~1.9um光谱区反射率增大; ❖以1.45um,1.95um,2.70um为中心是水的吸收带, 其附近区间受到绿色植物含水量的影响,反射率 下降,形成低谷。
21
影响植被波谱特征的主要因素
❖植物类型 ❖植物生长季节 ❖病虫害影响等 植被波谱特征大同小异,根据这些差异可 以区分植被类型、生长状态等。
18
物的光谱曲线
植被的波谱曲线
19
植被的波谱特征 在可见光波段
❖在0.45um附近(蓝色波段)有一个吸收谷; ❖在0.55um附近(绿色波段)有一个反射峰; ❖在0.67um附近(红色波段)有一个吸收谷。
在近红外波段
❖从 0.76um 处 反 射 率 迅 速 增 大 , 形 成 一 个 爬 升 的 “陡坡”,至1.1um附近有一个峰值,反射率最大 可达50%,形成植被的独有特征。
地球辐射
❖ 定义:地球表面和大气电磁辐射的总称。 ❖ 地球辐射是被动遥感中传递地物信息的载体。 ❖ 装载在航天航空平台上的遥感器,接受来自
地球辐射携带的地物信息,经过处理形成遥 感影像。
3
被动遥感的辐射源
❖ 太阳辐射近似6000K的黑体辐射,能量集中在 0.3~2.5um波段之间。(可见光和近红外)
28
叶绿素含量不同时水体的光谱特性曲线
29
受海藻、浮游生物等影响,叶绿素含量增加, 水体的反射率发生变化
30
浑浊度不同时水体的光谱特性曲线
但是当水中含有其他物质时,反射光谱曲线会发生 变化。上图不同浊度下的水体的波谱特性曲线
31
岩石矿物的光谱曲线
❖岩石的反射波谱主要由矿物成分、矿物含量、物质 结构等决定。 ❖影响岩石矿物波谱曲线的因素包括岩石风化程度、 岩石含水状况、矿物颗粒大小、岩石表面光滑程度、 岩石色泽等。
❖ 地球自身热辐射近似300K的黑体辐射,能量集 中在6.0um以上的波段。(热红外)
4
(2)地球辐射的特性
地球辐射的分段特性:
❖ 在0.3~2.5um波段(主要在可见光和近红外波段), 地表以反射太阳辐射为主,地球自身的辐射可以忽 略 。即在该波段范围内,对地观测遥感主要以太阳 的短波辐射对地表进行探测和成像。
32
岩石的光谱曲线
33
土壤的波谱特征
❖自然状态下土壤表面的反射曲线呈比较平滑的特 征,没有明显的反射峰和吸收谷。 ❖在干燥条件下,土壤的波谱特征主要与成土矿物 (原生矿物和此生矿物)和土壤有机质有关。 ❖土壤含水量增加,土壤的反射率就会下降,在水 的 各 个 吸 收 带 ( 1.4um 、 1.9um 、 2.7um 处 附 近 区 间),反射率的下降尤为明显。
相关文档
最新文档