第二矩阵及其运算-

合集下载

线性代数知识点总结第二章

线性代数知识点总结第二章

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵概念 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==排成的m 行n 列的数表111212122212n n m m mna a a a a a a a a 称为m 行n列矩阵。

简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m n A A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。

说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。

扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。

记作:A n 。

行(列)矩阵:只有一行(列)的矩阵。

也称行(列)向量。

同型矩阵:两矩阵的行数相等,列数也相等。

相等矩阵:AB 同型,且对应元素相等。

记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。

单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引发混淆时,也可表示为E )(讲义P29—P31)注意矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式通过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数能够不同。

第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B+,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。

(讲义P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪ ⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。

第二章 矩阵及其运算

第二章 矩阵及其运算
a11 x1 + a12 x2 + L + a1n xn = 0, a x + a x + L + a x = 0, 21 1 22 2 2n n LLLLLLLLLLLL am 1 x1 + am 2 x2 + L + amn xn = 0
或 Ax = 0
否则, 称方程组为非齐次线性方程组. 非齐次线性方程组 否则, 称方程组为非齐次线性方程组. non-homogeneous
转置运算的性质: 转置运算的性质: (1) (AT )T = A;
(3) (λ A)T = λ AT ;
6 May 2012
(2) (A + B T = AT + B T ; )
(4) (AB T = B T AT . )
河北科大理学院
第二章 矩阵及其运算
17
定义7 则称A为对称阵. 定义 若 AT = A, 则称 为对称阵. symmetric matrix 则称A为反对称矩阵. 若 AT = − A, 则称 为反对称矩阵. skew symmetric matrix
第二章 矩阵及其运算 本章内容
矩阵的概念 矩阵的线性运算、乘法、 矩阵的线性运算、乘法、转置及幂运算 逆矩阵, 逆矩阵,矩阵可逆的条件及逆矩阵的求法 矩阵分块法
第二章 矩阵及其运算
2
第4讲 矩阵的概念 讲
一 概念的引入 线性方程组与矩阵
a11 x1 + a12 x2 + L + a1n xn = b1 , a21 x1 + a22 x2 + L + a2 n xn = b2 , LLLLLLLLLLLL a x + a x + L +a x = b mn n m m1 1 m 2 2

《线性代数》第二章矩阵及其运算精选习题及解答

《线性代数》第二章矩阵及其运算精选习题及解答

An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠

故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠

根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E

解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算

第二章 矩阵及其运算

第二章 矩阵及其运算

a11 b11 a12 b12 a1n b1n a 22 b22 a 2 n b2 n a b 21 21 a b a s 2 bs 2 a sn bsn s1 s1
称为 A 和 B 的和,记为
C A B.
批注
表示出来。
§2 矩阵的运算
矩阵的意义不仅在于把一些数据根据一定的顺序排列成 阵列形式, 而且还在于对它定义了一些有理论意义和实际意义 的运算,使它真正成为有用的工具。 一、矩阵的加法 1、定义 定义 设
A aij sn

a11 a 21 a s1 b11 b21 bs1
定义:设 A a ij

m s
是 m s 矩阵, B bij

s n
是 s n 矩阵,则定
义一个新的 m n 矩阵 C :
C cij mn
s
其中
cij ai1b1 j ai 2 b2 j aik bkj ail blj aik bkj
批注
(2) 结合律 (A) (A) ( ) A (3) 分配律 ( A B) A B
A A
(4) 若 A 为 n 阶矩阵,则有 A n A 此外,还容易得到:
0 A 0,
A (1) A
矩阵相加与数乘矩阵合起来统称为矩阵的线性运算。 例
矩阵的乘法;方阵的行列式;伴随矩阵; 逆矩阵的概念;求逆方法; 分块求逆方法。
矩阵乘法不满足交律以及由此的问题;矩阵可逆性的讨论;分块求逆 方法
讲授 习题课 答疑
教 学 内 容
第二章 矩阵及其运算
矩阵是将一组有序的数据视为 “整体量” 进行表述和运算, 使得问题简洁和易于了解本质。 矩阵不仅是解线性方程组的有 力工具, 而且是线性空间内线性变换的表现形式, 因此有关矩 阵的理论构成了线性代数的基本内容。 本章介绍矩阵的概念;矩阵的线性运算、矩阵乘法;逆矩 阵及矩阵的初等变换;分块矩阵及其运算等内容。 §1 矩阵 1、矩阵的概念

大学高等数学第六章2矩阵及其运算

大学高等数学第六章2矩阵及其运算

1 2 1 4
D
142
2 3 1 5
3 1 2 11
编辑ppt
5111
2 2 1 4
D1 2
3
1
142 5
0 1 2 11
11 5 1
1 2 2 4
D3 2
3
2
426 5
3 1 0 11
15 1 1
1 2 1 4
D2 2
2
1
284 5
3 0 2 11
11 1 5
1 2 1 2
D4 2
要的“矩形数表”,在数学学科中,则可用矩阵
来表示。
编辑ppt
● 矩阵的概念
矩阵的定义(见书P233定义1) 矩阵的一般形式如下:
a11 a12 ......a1n
a
21
a 22 ......a 2n
......
a m 1 a m 2 . . . . . .a m n
a 其中:i j 称作矩阵的元素。
Am nO m nAm n
(2)结合律 (A+B)+C = A+(B+C) 编辑ppt
●矩阵的减法
a11

A
a m1
a1n
a mn
Am nAm nO m n
,则称矩阵
a11 a m1
a1n
为A
的负矩阵,记作
A

a mn
若A、B为同型矩阵,则规定 ABA(B),
即 ABaijbij m n编辑ppt
作AB 。
注意:同型是相等的必要条件。 如:
2 0 0
0
0
2 0
0
2
2 0

线性代数第二章矩阵及其运算2-3PPT课件

线性代数第二章矩阵及其运算2-3PPT课件
例如,设实数k=2,矩阵A=[1 2; 3 4],则kA=[2 4; 6 8]。
CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。

《线性代数》课件-第二章 矩阵及其运算

《线性代数》课件-第二章 矩阵及其运算

a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:

§2矩阵的运算

§2矩阵的运算

分配

l ( A B) l A l B
备注
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
© §2 2009, Henan Polytechnic University 矩阵的运算
1111
第二章 矩阵及其运算
注意:与行列式性质相区别
a11 a12 a13 l a11 l a12 l a13 a11 a12 l a13 l a21 a22 a23 a21 a22 a23 a21 a22 l a23 a31 a32 a33 a31 a32 a33 a31 a32 l a33
a11 cc cc cc cc a11 1111 aa12 1212 aa13 1313 aa14 1414 12 13 14 a21 c21 c22 c23 cc a21 c21 aa22 c22 aa23 c23 aa24 2424 22 23 24 a c aa c aa c aa c a 3131 c3131 3232 c3232 3333 c3333 3434 c3434
© §2 2009, Henan Polytechnic University 矩阵的运算
3 3
第二章 矩阵及其运算
一、矩阵的加法
1、定义
设有两个 m n矩阵 A a ij , B bij , 那末矩阵 A 与 B 的和记作 A B,规定为
a11 b11 a 21 b21 A B a b m1 m1
1212
第二章 矩阵及其运算
1 2 4 3 例1 A 0 3 , B 5 3 , 求A+2B. 解:
1 2 4 3 A 2B 0 3 2 5 3

线性代数课后习题答案第二章矩阵及其运算

线性代数课后习题答案第二章矩阵及其运算

第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k. 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫.用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i ns i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθc o s s i ns i n c o s .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E ,B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21,1 ,21(d i a g 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。

第二章矩阵及其运算

第二章矩阵及其运算

数乘矩阵与数乘行 列式的区别所在!!
23
第二章 矩阵及其运算
3 1 2 0 A= 1 5 7 9
2 4 6 8
7 5 2 4 B= 5 1 9 7
3 2 1 6
求满足关系式 A+2X=B 的矩阵 X (3A—2B) 三、矩阵的乘法
定义 3:设 A=( aij ) ms B =( bij ) sn 则乘积 AB=C=( cij ) mn
线性代数教案
课题
教学内容 教学目标 教学重点
第二章 矩阵及其运算 §2.1 矩阵 §2.2 矩阵的运算
矩阵的概念; 矩阵的运算;
明确矩阵概念的形成; 掌握矩阵的加法、数与矩阵的乘法、矩阵与矩阵的乘法; 会求矩阵的转置、方阵的行列式、共轭矩阵;
掌握矩阵定义及运算法则
教学难点 矩阵乘法
教学内容、 安排
矩阵:matrix 矩阵运算:matrix operations 矩阵的加法:matrix addition 数与矩阵相乘:scalar muctiplication 转置矩阵:transposd matrix
A
的乘积。即
kA=
k
aij
=

ka21
kam1
ka12 ka22
kam2
ka1n
ka2n


kamn

用数乘以 矩阵中 的每一个元素
由定义可知 –A=(-1) A
A – B = A+(-B) 数乘矩阵满足以下的运算律 1、结合律:(kl)A=k(lA)=l(kA) 2、交换律:kA=Ak 3、分配律:k(A+ B)=kA+kB 例1、 设
教学手段、
措施

线性代数第二章 矩阵代数 S2矩阵的代数运算

线性代数第二章 矩阵代数 S2矩阵的代数运算

(1) h( A) f ( A) g( A), s( A) f ( A)g( A).
(2) f ( A)g( A) g( A) f ( A).
24
4、n阶矩阵乘积的行列式
方阵对应着行列式,于是有如下定理:
定理:若 A,B是n阶方阵,则 |AB| = |A| |B|.
(此定理可以推广到有限个同阶矩阵的情况)
或 Al .
la11
lA
Al
la21
la12
la22
la1n
la2n
.
lam1 lam1 lamn
特别的,lE 称为数量矩阵.
6
2、线性运算的运算性质
矩阵的加(减)法和数乘统称为矩阵的线性 运算,这些运算都归结为数(元)的加法与乘法.
运算性质
设A, B为同型矩阵,l, m为数,则 ➢ l(A + B) = l A + l B ➢ (l + m)A = l A+ m A ➢ l (m A) = (lm) A
0 bn2
bnn
29
a11 a12 a21 a22
A 0 an1 an2 E B 1 0
0 1
a1n c11 c12
c1n
a2n
c21
Cc22
c2n
ann cn1 cn2
cnn
0 00
0
0 00
0
00
1 0 0
0
AC
E 0
再利用拉普拉斯定 理按后n行展开
E (1)[(n1)(n2) 2n](12 n) C
(2) 由AB=O不能得出A、B至少有一个零矩阵.
如前面的A, B矩阵
A 1 1 ≠O, B 1 1 ≠ O,

线性代数习题册(第二章矩阵及其运算参考答案)

线性代数习题册(第二章矩阵及其运算参考答案)

⇔ αTα = 1
单元 6 逆矩阵、分块矩阵
一、判断题(正确的打√,错误的打×)
1. 可逆矩阵一定是方阵.
(√)
2. 若 A 、 B 为同阶可逆方阵,则 AB 可逆.
(√)
3. 设 A, B 均为可逆矩阵,则 AB 也可逆且 ( AB)−1 = A−1B−1 .
(X)
4. 若 A 可逆,则 AT 也可逆.
分析: |
r1 A|

r2
− | B |,所以
A
+
B
= 0 。
20.

A
=
a11 a21
a12 a22
a13 a23

B
=
a21 a11
a22 a12
a23 a13
0 1 0

P1
=
1
0
0
a31 a32 a33
a31 + a11 a32 + a12 a33 + a13
0 0 1
( A) kA∗
(B) k n−1 A∗
(C ) k n A∗
( D) k −1 A∗
分析:题中对可逆矩阵也要成立,所以不妨设 A 可逆时进行分析。
( ) = (kA)∗ | kA | (= kA)−1 k n | A | ⋅ 1 A−1 = k n−1 | A | A−1 = k n−1 A* k
a31 + a11 a32 + a12 a33 + a13
r1

r2
a21 a11
a31 + a11
a22 a12 a32 + a12
a23
a13

线性代数第二章,矩阵及其运算

线性代数第二章,矩阵及其运算

a1n b1
a2n
b2
L L
amn bm
§2 矩阵的运算
一、加法
设 A (ai j )mn , B (bi j )mn 都是m n 矩阵,则加法定义为
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
显然,
AB B A
a22
L
L L L
am1 am2 L
a1n
a11 a21 L
a2n
,记
AT
a12
a22
L
L
L L L
amn
a1n an2 L
则称
AT
A

的转置矩阵。
am1
am 2
L
amn
显然,
① ( AT )T A ,② ( A B)T AT BT ,③( A)T AT ,④( AB)T BT AT
2. 即使 Amn , Bnm ,则Amn Bnm 是m 阶方阵,而Bnm Amn 是n 阶方阵;
3. 如 果 A , B
都 是n






2
A
1
4
2

B
2
3
4
6
,则
16
AB
8
32 16
,而BA
0 0
0
0

AB BA
综上所述,一般
(即矩阵乘法不满足交换率)。
但是下列性质显然成立:
三、乘法
乘法运算比较复杂,首先看一个例子
设变量t1, t2 到变量 x1, x2 , x3 的线性变换为

线性代数第二章矩阵及其运算

线性代数第二章矩阵及其运算

ann 0
0
5. 形如 下面两个矩阵 的方阵称为下三角矩阵(lower triangular matrix).
a11 0 a21 a22
an1
an2
0 0
0
0
ann
an1
0 a1n
a2n1
a2n
ann1 ann
6. 若方阵 A (aij )n 中 aij a ji , 则称为对称矩阵 (symmetric matrix). 即
一、线性方程组
定义1 设有 n 个未知数 m 个方程的线性方
程组
a11 x1 a12 x2 L a1n xn b1 ,
a21 x1 a22 x2 L LLL
a2n xn L
b2 ,
am1 x1 am2 x2 L amn xn bm .
(1)
其中aij 表示第i个方程第j个未知数的系数(coefficient), bi 是第i个方程的常数项(constant),i=1,2,…,m, j =1,2,…, n.
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
L
L
L
L
称为单位阵(unit
matrix),
记作 En . 0 0 L 1
4. 形如 下面两个矩阵 的方阵称为上三角矩阵(upper triangular matrix).
a11a12 0 a22
0 0
a1n
a2n
ann
a11 a1n1 a1n
a21
a2n1
0
a11 a12 L a1n

第二章 矩阵及其运算 《工程数学线性代数》课件PPT

第二章  矩阵及其运算  《工程数学线性代数》课件PPT

0
x
§2 矩阵的运算
例 某工厂生产四种货物,它在上半年和下半年向三家商店 发送货物的数量可用数表表示:
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34
其中aij 表示上半年工厂向第 i 家 商店发送第 j 种货物的数量.
c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34
行数不等于列数 共有m×n个元素 本质上就是一个数表
det(aij )
(aij )mn
三、特殊的矩阵
1. 行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 An.
2. 只有一行的矩阵 A (a1, a2 ,L , an ) 称为行矩阵(或行向量) .
a1
只有一列的矩阵
B
a2
M
称为列矩阵(或列向量)
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
知识点比较
a11 a12 a13 a11 b12 a13 a11 a12 b12 a13 a21 a22 a23 a21 b22 a23 a21 a22 b22 a23 a31 a32 a33 a31 b32 a33 a31 a32 b32 a33
( )A A A (A B) A B
备 注
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
知识点比较
a11 a12 a13 a11 a12 a13 a11 a12 a13 a21 a22 a23 a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33 a31 a32 a33
a12 a22
a13 a23
a14 a24

第二章矩阵与其运算

第二章矩阵与其运算

数,所以矩阵A与B可以相乘,其乘积AB=C是一个2 3 矩
阵。按公式(6)有
4 1 0
1 C AB 2
0 1
3 0
21
1 2 1
1 0 3
3
1 4
1 4 0 (1) 11 0 1
10 03
3 2 (1) 1 2 4 1 (1)
02 21
3 0 (1) 3 2 1 11
而BT的第i行为 (b1i
b2i
bsi ) , AT 的第j列为 a j1
aj2
aT js
因此
s
s
d ij bki a jk a jk bki
k 1
k 1
所以
dij c ji (i 1,2, , n;j 1,2, , m)
即 D=CT,亦即 ABT BT AT
例7 已知
A
2 1
下, AB BA 。
例5 还表明,矩阵 A O,B O,但却有 BA=O 这就提醒我 们要特别注意:若有两个矩阵A、B满足 AB=O,不能得出 A=O 或 B=O的结论;若A O 而AX Y O ,也不能得出 X=Y 的结论。
§2 矩阵的运算
矩阵的乘法虽不满足交换律,但仍满足下列结合律和分 配律(假设运算都是可行的)
(ⅲ) AB A B .
§3 逆矩阵
定义7 对于n阶矩阵A,如果有一个n阶矩阵B,使 AB=BA=E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵。
如果矩阵A是可逆的,那么A的逆矩阵是唯一的,这是因 为:设B、C都是A的逆矩阵,则有
B=BE=B(AC)=B(AC)=(BA)C=EC=C 所以A的逆矩阵是唯一的。
§2 矩阵的运算
设A为n阶方阵,如果满足AT=A, 即

第二章 矩阵及其运算总结

第二章 矩阵及其运算总结

§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。

第二章 矩阵及其运算

第二章 矩阵及其运算

第二章 矩阵及其运算说明与要求:此矩阵在线性代数中是一个重要而且应用广泛的概念,它是研究线性代数的基本工具,在数学的其它分支以及相关专业的理论与实际中都有重要的应用.矩阵是一个表格,作为数表的运算与数的运算既有联系又有区别.要熟练掌握矩阵的加法、乘法与数量乘法的运算规则,并熟练掌握矩阵行列式的有关性质.正确理解逆矩阵的概念,掌握逆矩阵的性质及矩阵可逆的充要条件.会用伴随矩阵求矩阵的逆.熟练掌握用初等变换求逆矩阵的方法.了解矩阵的分块原则,掌握分块矩阵的运算规则.注意分块矩阵在矩阵乘法及求逆、齐次线性方程组的解、向量的线性表出、线性相关及矩阵秩等方面的应用.对于几种特殊矩阵,应掌握其定义和它们的性质.。

本章重点:矩阵的运算及性质;初等矩阵;矩阵可逆的判定及求法;分块矩阵. 。

本章难点:初等矩阵的性质;求矩阵的逆;分块矩阵.§1 矩阵的概念在上一章§2.1中已给出了矩阵的定义,即由数域P 中的m ×n 个数a ij (i =1,2,…,m ;j =1,2,…,n )排成一个m 行,n 列的表⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211 称为数域P 上的一个m ×n 矩阵.a ij 称为第i 行,第j 列的元素.矩阵是从许多实际问题中抽象出来的一个数学概念.除了我们所熟知的线性方程组的系数及常数项可用矩阵来表示外,在一些经济活动中,也常常用到矩阵.例1 某种物资有三个产地、四个销地,调配方案如下表:调运量表(单位:千吨)则表中的数据可构成一个三行四列的矩阵⎪⎪⎪⎭⎫ ⎝⎛215402134321 矩阵中每一个数据(元素)都表示从某个产地运往某个销地的物资的吨数.以后我们用字母A 、B 、C 等表示矩阵,有时为了表明A 的行数和列数,可记为 A m ×n 或( a ij ) m ×n ,为了表明A 中的元素,可简记为A =( a ij ).当m =n 时,矩阵A =(a ij )n ×n =⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅nn n n n n a a a a a a a a a 212222111211称为n 阶矩阵或n 阶方阵. 当m =1时,矩阵A =(a ij )1×n =(a 11 a 11 … a 1n )称为行矩阵.当n =1时,矩阵A =(a ij )m ×1=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛12111m a a a M 称为列矩阵. 当矩阵中 所有元素都是零时,称该矩阵为零矩阵,记作O 或O m ×n .即O =nm ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛000000000ΛΛΛΛΛΛΛ 当n 阶矩阵的主对角线上的元素都是1,而其它元素都是零时,则称此n 阶矩阵为单位矩阵,记为E 或E n .即E =⎪⎪⎪⎪⎪⎭⎫⎝⎛100010001ΛΛΛΛΛΛΛ 对于矩阵A =(a ij ) m ×n ,称(–a ij ) m ×n 为A 的负矩阵,记为 –A ,即:–A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅---⋅⋅⋅--mn m m n n a a a a a a a a a212222111211 注意:矩阵和行列式虽然在形式上有些类似,但他们是两个完全不同的概念,一方面行列式的值是一个数,而矩阵只是一个数表.另一方面行列式的行数与列数必须相等,而矩阵的行数与列数可以不等.定义1 A =( a ij ),B =( b ij )都是m ×n 矩阵,若它们的对应元素相等,即 a ij =b ij ,(i =1,2, …,m ,j =1,2…,n )则称矩阵A 与B 相等,记为A =B .如,由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-603540134z y x 立即可得x =5, y =6, z = –1.思考题:1.n 阶矩阵与n 阶行列式有什么区别?2.试确定a 、b 、c 的值,使得⎪⎪⎪⎭⎫ ⎝⎛+-a b a 0153012=⎪⎪⎪⎭⎫ ⎝⎛--60153201c§2 矩阵的运算矩阵的运算可以认为是矩阵之间最基本的关系.下面介绍矩阵的加法、乘法、矩阵与数的乘法和矩阵的转置.一. 矩阵的加法定义 设A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211, B =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n b b b b b b b b b 212222111211 是两个m ×n 矩阵,则矩阵C =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n c c c c c c c c c 212222111211=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⋅⋅⋅++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅++mn mn m m m m n n nn b a b a b a b a b a b a b a b a b a 221122222221211112121111 称为A 与B 的和,记为 C =A +B .注意:相加的两个矩阵必须具有相同的行数和列数.例1 某种物资(单位:千吨)从两个产地运往三个销地,两次调运方案分别用矩阵A 和矩阵B 表示:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=304133 ,330412B A则从各产地运往各销地两次的物资调运总量为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+634545330340143132304133330412B A由于矩阵的加法归结为对应元素相加,也就是数的加法,因此容易验证,矩阵的加法具有以下性质:设 A ,B ,C 均为m ×n 矩阵,则有 (1) A +B =B +A . (2) (A +B )+C =A +(B +C ); (3) A +0=A ; (4) A +(–A )=0;由矩阵的加法和负矩阵的定义,可以定义矩阵的减法:A –B =A +(–B ) 二. 矩阵的数量乘法 定义2 设有矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==⨯mn m m n n nm ij a a a a a a a a a a A )(212222111211,k 是数域P 中任一个数, 矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⨯mn m m n n nm ij ka ka ka ka ka ka ka ka ka ka)(212222111211 称为数k 与矩阵A =(a ij ) m ×n 的数量乘积.记为k A .注意:用数乘一个矩阵,就是把矩阵的每个元素都乘上k ,而不是用k 乘矩阵的某一行(列).不难验证,矩阵的数量乘法具有以下性质:设A ,B 都是m ×n 矩阵,k 、l 为数域P 中的任意数.则有 (1)k (A +B )= kA +kB ;(2) (k +l )A = kA +lB ; (3) (kl )A = k (lA )= l (kA ); (4) 1A =A ; 0A =0.例3 求矩阵X 使2A +3X =2B ,其中⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=120131,016502B A 解:由2A +3X =2B 得 3X =2B –2A =2(B –A ) 于是X =)(32A B - 即 X =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--01650212013132⎪⎪⎪⎪⎭⎫ ⎝⎛---=32244232 三. 矩阵的乘法矩阵乘法的定义最初是在研究线性变换时提出来的,为了更好地理解这个定义,我们先看一个例子.例3 设y 1, y 2和x 1, x 2, x 3是两组变量,它们之间的关系是⎩⎨⎧++=++=32322212123132121111x a x a x a y x a x a x a y (1)又t 1,t 2是第三组变量,它们与x 1, x 2, x 3的关系是⎪⎩⎪⎨⎧+=+=+=232131322212122121111tb t b x t b t b x t b t b x (2)我们想用t 1, t 2线性地表示出y 1, y 2,即:⎩⎨⎧+=+=22212122121111t c t c y t c t c y (3)则要求出这组系数c 11, c 12, c 21, c 22.事实上:将(2) 代入 (1)式,有y 1= a 11 ( b 11t 1 +b 12t 2 )+ a 12 ( b 21t 1 +b 22t 2 )+ a 13 ( b 31t 1 +b 32t 2 ) =( a 11b 11 +a 12b 21+ a 13b 31)t 1+ ( a 11b 12 +a 12b 22+ a 13b 32)t 2 y 2= a 21 ( b 11t 1 +b 12t 2 )+ a 22 ( b 21t 1 +b 22t 2 )+ a 23 ( b 31t 1 +b 32t 2 ) =( a 21b 11 +a 22b 21+ a 23b 31)t 1+ ( a 21b 12 +a 22b 22+ a 23b 32)t 2 与(3) 对照,得:c 11= a 11b 11 +a 12b 21+ a 13b 31 c 12= a 11b 12 +a 12b 22+ a 13b 32 c 21= a 21b 11 +a 22b 21+ a 23b 31 c 22= a 21b 12 +a 22b 22+ a 23b 32如果用矩阵 A ,B ,C 分别表示关系式 (1),(2),(3) 的系数矩阵,即,,323122211211232221131211⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=b b b b b b B a a a a a a A ⎪⎭⎫ ⎝⎛++++++++⎪⎭⎫ ⎝⎛=32232222122131232122112132132212121131132112111122211211b a b a b a b a b a b a b a b a b a b a b a b a c c c cC = 我们称C 是A 与B 的乘积,即A 2×3B 3×2 =C 2×2=(c ij ) 2×2,其中元素c ij 等于A 中的第i 行的元素与B 中第j 列的对应元素乘积之和.例4 某地区有四个工厂Ⅰ、Ⅱ、Ⅲ、Ⅳ,生产甲、乙、丙三种产品,矩阵A 表示一年内各工厂生产各种产品的数量,矩阵B 表示各种产品的单位价格(元)及单位利润(元),矩阵C 表示各工厂的总收入及总利润:, , , 4241323122211211323122211211424241333231232221131211ⅣⅢⅡⅠ总利润总收入丙乙甲利润价格单位单位ⅣⅢⅡⅠ丙乙甲⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=c c c c c c c c C b b b b b b B a a a a a a a a a a a a A 其中 a ik (i =1,2,3,4; k =1,2,3) 是第 i 个工厂生产第k 种产品的数量,b k 1, b k 2分别表示第k 种产品的单位价格及单位利润,c i 1及c i 2 (i =1,2,3,4) 分别是第i 工厂生产三种产品的总收入及总利润.如果称矩阵C 是A ,B 的乘积,从经济意义上讲是极为自然的,并且有关系:2332312221121134434241333231232221131211⨯⨯⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛b b b b b b a a a a a a a a a a a a ,24424132312221121124324322121241314321421141323322321231313321321131322322221221312321221121321322121211311321121111⨯⨯⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛++++++++++++++++=c c c c c c c c b a b a b a ba b a b a b a b a b a b a b a b a b a b a b a ba b a b a b a b a b a b a b a b a 其中矩阵C 的元素c ij 等于A 的第i 行的元素与B 的第j 列的元素的乘积之和.于是引进矩阵乘积的定义.定义3 设矩阵A = (a ik )m ×s ,B = (b kj )s ×n ,则由元素c ij =a i 1b 1j +a i 2b 2j +…+a is b sj (i =1,2,…,m ; j =1,2,…,n )构成的m ×n 矩阵C =(c ij )m ×n 称为矩阵A 与B 的乘积,记为C =AB . 从这个定义,我们可看出,应注意矩阵乘法有以下三个特点:(1)左矩阵A 的列数必须等于右矩阵B 的行数,矩阵A 与B 才可以相乘,即AB 才有意义;否则AB 没有意义.(2)矩阵A 与B 的乘积C 的第i 行、第j 列的元素等于左矩阵A 的第i 行与右矩阵B 的第j 列的对应元素的乘积之和(i =1,2,…,m ; j =1,2,…,n ).(3)在上述条件下,矩阵A m ×s 与B s ×m 相乘所得的矩阵C 的行数等于左矩阵A 的行数m ,列数等于右矩阵B 的列数n ,即 A m ×S B S ×n = C m ×n .例5 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛=113121032,312021B A ,求AB .解: 因为A 的列数与B 的行数均为 3 ,所以AB 有意义,且AB 为2×3 矩阵.⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=113121032312021A ⎪⎭⎫⎝⎛⨯+-⨯+⨯⨯+-⨯+⨯⨯+⨯+⨯⨯+-⨯+⨯⨯+-⨯+⨯⨯+⨯+⨯=13)1(10213)2(132********)1(20110)2(231301221 ⎪⎭⎫ ⎝⎛--=2714214 如果将矩阵B 作为左矩阵, A 作为右矩阵相乘,则没有意义,即BA 没意义,因为B 的列数为3 ,而 A 的行数为2 .此例说明: AB 有意义,但 BA 不一定有意义. 例6 设A =n n n n b b bB a a a ⨯⨯=⎪⎪⎪⎪⎭⎫⎝⎛121121),,(,ΛM ,求AB 和BA .解:nn n n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a AB ⨯⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫⎝⎛=ΛΛΛΛΛΛΛΛM 2122212121112121),,( n n n n n n a b a b a b a b a b a b a a a b b b BA +++=+++=⎪⎪⎪⎪⎭⎫⎝⎛=ΛΛM Λ221122112121)(),,(注:在运算结果中,我们可以将一级矩阵看成一个数.此例说明,即使AB 和BA 都有意义,AB 和BA 的行数及列数也不一定相同.例7 设A =⎪⎪⎭⎫ ⎝⎛--1111, B =⎪⎪⎭⎫ ⎝⎛--1111,求AB 和BA .解:AB =⎪⎪⎭⎫ ⎝⎛--1111⎪⎪⎭⎫ ⎝⎛--1111=⎪⎪⎭⎫⎝⎛0000,BA =⎪⎪⎭⎫ ⎝⎛--1111⎪⎪⎭⎫ ⎝⎛--1111=⎪⎪⎭⎫ ⎝⎛--2222此例说明,即使AB 和BA 都有意义且它们的行列数相同,AB 与BA 也不相等.另外此例还说明两个非零矩阵的乘积可以是零矩阵.例8 设 A =⎪⎭⎫ ⎝⎛6413, B =⎪⎭⎫ ⎝⎛6412, C =⎪⎭⎫ ⎝⎛1100 ,求AC 和BC 解:AC =⎪⎭⎫ ⎝⎛6413⎪⎭⎫ ⎝⎛1100=⎪⎭⎫ ⎝⎛6611;BC =⎪⎭⎫ ⎝⎛6412⎪⎭⎫ ⎝⎛1100=⎪⎪⎭⎫⎝⎛6611 此例说明,由AC =BC ,C ≠0,一般不能推出A =B .以上几个例子说明了数的乘法的运算律不一定都适合矩阵的乘法.对矩阵乘法请注意下述问题:(1) 矩阵乘法不满足交换律,一般来讲 AB ≠BA(2) 矩阵乘法不满足消去律.一般来说,当AB =AC 或BA =CA 且A ≠0时,不一定有B =C . (3) 两个非零矩阵的乘积,可能是零矩阵.因此,一般不能由AB =0推出 A =0 或B =0. 若矩阵A 与B 满足AB =BA ,则称A 与B 可交换.根据矩阵乘法定义,还可以直接验证下列性质(假定这些矩阵可以进行有关运算): (1) 结合律:(AB )C =A (BC );(2) 分配律:A (B +C )=AB +BC , (A +B )C =AC +BC ; (3) 对任意数k ,有k (AB )= (k A )B =A (k B ); (4) E m 、E n 为单位矩阵,对任意矩阵A m ×n 有E m A m ×n =A m ×n ,A m ×n E n =A m ×n特别地,若A 是n 阶矩阵,则有EA =AE =A , 即单位矩阵E 在矩阵乘法中起的作用类似于数1在数的乘法中的作用.利用矩阵的乘法运算,可以使许多问题表达简明. 例9 若记线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛ22112222212********* 的系数矩阵为 A =⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211并记未知量和常数项矩阵分别为⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X M 21,B =⎪⎪⎪⎪⎭⎫ ⎝⎛m b b b M 21 则有AX =⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x M 21=⎪⎪⎪⎭⎫⎝⎛+⋅⋅⋅++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅++n mn m m n n n n x a x a x a x a x a x a x a x a x a 221122221211212111 所以上面的方程组可以简记为矩阵形式AX =B .有了矩阵的乘法,可以定义n 阶方阵的幂.定义4 设A 是n 阶方阵,规定A 0 =E , A k+1=A k A (k 为非负整数). 因为矩阵的乘法满足结合律,所以方阵的幂满足A k A l =A k +l , (A k )l =A kl其中k 、l 为非负整数,又因为矩阵的乘法一般不满足交换律,所以对于两个n 阶方阵A 与B 一般来说,(AB )k ≠A k B k .此外,若A k =0,也不一定有A =0.例如A =⎪⎭⎫⎝⎛--1111≠0,但A 2=⎪⎭⎫⎝⎛--1111⎪⎭⎫ ⎝⎛--1111=⎪⎭⎫ ⎝⎛0000例10 设A ,B 均为n 阶方阵,计算(A +B )2.解:(A +B )2 =(A +B )(A +B )= (A +B )A +(A +B )B =A 2+BA +AB +B 2四. 矩阵的转置 定义 5 设 m ×n 矩阵A =⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211将A 的行变成列所得的n ×m 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn nn m m a a a a a a a a a 212221212111 称为矩阵A 的转置矩阵,记为A T .例如 A =⎪⎪⎭⎫ ⎝⎛--21530421,则 A T =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--20145231矩阵的转置满足以下规律:(1) (A T )T =A (2) (A +B )T =A T +B T(3) (kA )T =kA T (k 为常数) (4) (AB )T =B T A T 我们只证明(4) 设A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ms m m s s a a a a a a a a a 212222111211,B =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛sn s s n n b b bb b b b b b ΛΛΛΛΛΛΛ212222111211 首先容易看出, (AB )T 和B T A T 都是n ×m 矩阵.其次,位于(AB )T 的第 i 行第 j 列的元素就是位于AB 的第 j 行第 i 列的元素,且等于a j 1b 1i + a j 2b 2i +…+a js b si =∑=sk ki jk b a 1而位于B T A T 的第i 行第j 列的元素位于B T 的第i 行与A T 的第j 列对应元素的乘积之和,因而等于 B 的第i 列的元素与 A 的第 j 行对应元素的乘积之和:b 1i a j 1+ b 2i a j 2+…+ b si a js = ∑=sk jk ki a b 1上面两个式子显然相等,所以(AB )T =B T A T例11 设A =⎪⎪⎭⎫⎝⎛-110211, B =⎪⎪⎪⎭⎫ ⎝⎛-123101, 求(AB )T 和A T B T解:因为 A T =⎪⎪⎪⎭⎫⎝⎛-121101, B T =⎪⎪⎭⎫⎝⎛-130211所以 (AB )T =B T A T=⎪⎪⎭⎫ ⎝⎛-130211⎪⎪⎪⎭⎫⎝⎛-121101=⎪⎪⎭⎫⎝⎛-4132A TB T =⎪⎪⎪⎭⎫ ⎝⎛-121101⎪⎪⎭⎫⎝⎛-130211=⎪⎪⎪⎭⎫⎝⎛---552121211 注意:一般情况下 (AB )T ≠A T B T显然,(2)和(4)可以推广到n 个矩阵的情形.即:(A 1+A 2+…+A n )T =A T 1+ A T 2+…+ A T n (A 1A 2…A n –1A n )T = A T n A T n –1… A T 2 A T 1五. 方阵的行列式定义6 由n 阶方阵A =(a ij ) 的元素按原来位置所构成的行列式,称为n 阶方阵A 的行列式,记为|A |.设 A ,B 是n 阶方阵,k 是常数,则n 阶方阵的行列式具有如下性质: (1) |A T |=|A |; (2) |kA| =k n |A |; (3) |AB |=|A |.|B |.性质(1),(2)可由行列式的性质直接得到,性质(3)的证明较冗长,此处略去. 把性质(3)推广到m 个n 阶方阵相乘的情形,有 |A 1A 2…A m |=|A 1||A 2||…||A m | 例12 设A =⎪⎪⎭⎫⎝⎛-2101,B =⎪⎪⎭⎫⎝⎛0113 验证 |A ||B |=|AB |=|BA |.证:显然有|A ||B |= –2,因为 AB =⎪⎪⎭⎫⎝⎛-2101⎪⎪⎭⎫ ⎝⎛0113=⎪⎪⎭⎫⎝⎛--1113 |AB |=1113--= –2而BA =⎪⎪⎭⎫⎝⎛0113⎪⎪⎭⎫ ⎝⎛-2101=⎪⎪⎭⎫⎝⎛0122,|BA |=0122= –2 因此|A ||B |=|AB |=|BA |.定义7 设 A 是n 阶方阵,当|A |≠0时,称A 为非奇异的(或非退化的);当|A |=0时,称A 为奇异的(或退化的)由性质(3)可以得到定理:设A , B 为n 阶方阵,则 AB 为非奇异的充分必要条件是A 与B 都是非奇异的. 例13 已知A 为 n 阶方阵,且 AA T 是非奇异的,证明A 是非奇异的. 证:因为AA T 非奇异的,所以|AA T |≠0,即|AA T |=|A | |A T |=|A |2≠0从而|A |≠0,即A 是非奇异的.思考题:1.已知A =⎪⎪⎪⎭⎫ ⎝⎛100120301,B =⎪⎪⎪⎭⎫ ⎝⎛103120001求:(1) (A +B )(A -B )(2) A 2-B 2比较(1)与(2)的结果,可得出什么结论?2.证明题(1) 若矩阵A 1,A 2都可与B 交换,则kA 1+lA 2,A 1A 2也都与B 可交换; (2) 若矩阵A 与B 可交换,则A 的任一多项式f (A )也与B 可交换; (3) 若A 2=B 2=E ,则(AB )2=E 的充分必要条件是A 与B 可交换.以下介绍几种特殊且常用的矩阵及这些特殊矩阵的运算性质及方阵乘积的行列式. 一、对角矩阵定义1 如果n 阶方阵A =(a ij )中的元素满足a ij =0,i ≠j (i ,j =1,2,… n ),则称A 为对角矩阵.即:A =⎪⎪⎪⎪⎪⎭⎫⎝⎛nn a a a ΛΛΛΛΛΛΛ0000002211,可简记为⎪⎪⎪⎪⎪⎭⎫⎝⎛nn a a a O 2211对角矩阵的运算有下列性质:(1)同阶对角矩阵的和以及数与对角矩阵的乘积仍是对角矩阵. (2)对角矩阵A 的转置A T 仍是对角矩阵,且A T =A .(3)任意两个同阶对角矩阵的乘积仍是对角矩阵,且它们是可交换的.即若A =⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a O21, B =⎪⎪⎪⎪⎪⎭⎫⎝⎛n b b b O 21,则 AB =⎪⎪⎪⎪⎪⎭⎫⎝⎛n n b a b a b a O2211,并且有AB =BA . (4)对角矩阵可逆的充分必要条件是它的主对角线元素都不等于零.且A =⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a O21可逆时, 有A –1 =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11211n a a a O 性质(1)(2)(3)可直接验证,下面只证性质(4)因矩阵A 可逆 ⇔ |A |≠0.对于对角矩阵而言, |A |≠0⇔ a 1a 2 … a n ≠0⇔ a 1≠0,a 2≠0,…, a n ≠0, 即主对角元都不为零.当主对角元都不为零时,有⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a O21⎪⎪⎪⎪⎪⎭⎫⎝⎛---121211a a a O =⎪⎪⎪⎪⎪⎭⎫⎝⎛111O 于是 A –1=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121211a a a O 特别地,当a 1=a 2= … =a n =k 时,对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛k k kO称为n 阶数量矩阵,记作kE数量矩阵具有性质:用数量矩阵左乘或右乘(如果可乘)一个矩阵B ,其乘积等于用数k 乘矩阵B .即若aE 是一个n 阶数量矩阵,B 是一n ×s 矩阵,则(kE )B =B (kE )=kB .二、三角形矩阵定义3 形如⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a ΛΛΛΛΛΛΛ00022211211的n 阶方阵,即主对角线下方的元素全为零的方阵称为上三角形矩阵.形如⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a ΛΛΛΛΛΛΛ21222111000的n 阶方阵,即主对角线上方的元素全为零的方阵称为下三角形矩阵.上(下)三角形矩阵具有下述性质:(1)若A 、B 是两个同阶的上(下)三角形矩阵,则A +B 、kA 、AB 仍为上(下)三角形矩阵;如 A =⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a ΛΛΛΛΛΛΛ00022211211,B =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n b b b b b b ΛΛΛΛΛΛΛ0022211211则,AB =⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a ΛΛΛΛΛΛΛ00022211211⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n b b b b b b ΛΛΛΛΛΛΛ00022211211=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn nn b a b a b a 0*22221111O 其中*表示主对角线上方的元素;0表示主对角线下方的元素全为零.上(下)三角形矩阵可逆的充分必要条件是它的主对角元都不为零.当上(下)三 角形矩阵可逆时,其逆矩阵仍为上(下)三角形矩阵.如 A =⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a O a a a a a OΛΛ22211211,则 A –1=⎪⎪⎪⎪⎪⎭⎫⎝⎛---1122111*nn a O a a O. 三、对称矩阵与反对称矩阵定义4 如果n 阶矩阵A 满足A T =A ,则称A 为对称矩阵.由定义知,对称矩阵A =(a ij )中的元素a ij =a ji (i ,j =1,2,… n ),因此,对称矩阵的形式为⎪⎪⎪⎪⎪⎭⎫⎝⎛nn nnn n a a a a a a a a a ΛΛΛΛΛΛΛ212221211211,如⎪⎪⎪⎭⎫⎝⎛--501032121、⎪⎪⎭⎫ ⎝⎛--0221均为对称矩阵. 对称矩阵有以下性质:(1)如果A 、B 是同阶对称矩阵,则A +B ,kA 也是对称矩阵.证:因为A T =A ,B T =B ,所以(A +B )T =A T +B T =A +B ,即A +B 是对称矩阵. (2)可逆对称矩阵A 的逆矩阵A–1仍是对称矩阵.证:因为A T =A ,所以(A –1)T =(A T )–1=A –1,因此A –1为对称矩阵.但要注意:两个对称矩阵乘积不一定是对称矩阵.例如 A =⎪⎪⎭⎫⎝⎛--0111,B =⎪⎪⎭⎫ ⎝⎛0110均为对称矩阵,但 AB =⎪⎪⎭⎫ ⎝⎛--0111⎪⎪⎭⎫ ⎝⎛0110=⎪⎪⎭⎫ ⎝⎛--1011,不是对称矩阵.定义5 如果n 阶方阵A 满足A T =–A ,则称A 为反对称矩阵.由定义知,反对称矩阵A =(a ij )中的元素满足a ij =–a ji (i ,j =1,2,… n ).因此,反对称矩阵主对角线上的元素一定为零.即反对称的形式为A =⎪⎪⎪⎪⎪⎭⎫⎝⎛---00021212112ΛΛΛΛΛΛΛnnn n a a a a a a . 例如⎪⎪⎪⎭⎫⎝⎛---021203130、⎪⎪⎭⎫⎝⎛-0220均为反对称矩阵.根据反对称矩阵的定义,容易证明以下性质:(1)若A 、B 是同阶反对称矩阵,则A +B ,kA ,A T 仍是反对称矩阵. (2)可逆的反对称矩阵的逆矩阵仍是反对称矩阵.(3)奇数阶反对称矩阵不可逆.因为奇数阶的反对称矩阵的行列式等于0. 注意:两个反对称矩阵的乘积不一定是反对称矩阵.例2 对任意m ×n 矩阵,证明AA T 和A T A 都是对称矩阵. 证:因为AA T 是m ×m 方阵,且(AA T )T =(A T )T A T =AA T 所以由定义知 AA T是对称矩阵.同理,A T A 是n 阶方阵,且(A T A )T =A T (A T )T =A T A 所以 A TA 也是对称矩阵.例3 已知A 是n 阶对称矩阵,B 是n 阶反对称矩阵,证明AB +BA 是反对称矩阵. 证:AB +BA 显然是n 阶方阵,且由对称矩阵和反对称矩阵的定义,有A T =A , B T =–B ,于是(AB +BA )T =(AB )T +(BA )T = B T A T +A T B T =(–B )A +A (–B )= –(AB +BA ) 由反对称矩阵的定义知,AB +BA 是反对称矩阵.思考题:1.试证:对任意一个方阵A ,都有A +A T 是对称矩阵,A –A T 是反对称矩阵. 2.设A 、B 是两个反对称矩阵,试证:(1) A 2是对称矩阵;(2)AB –BA 是反对称矩阵.§3 分块矩阵一、分块矩阵的概念在理论研究及一些实际问题中, 经常遇到行数和列数较高或结构特殊的矩阵, 为了简化运算, 经常采用分块法, 使大矩阵的运算化成若干小矩阵间的运算, 同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条横线和竖线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.例1 设⎪⎪⎪⎭⎫⎝⎛---=311320520131A . 则A 就是一个分块矩阵.若记11131250A -⎛⎫=⎪⎝⎭, 1202A ⎛⎫= ⎪-⎝⎭, 21(3,1,1)A =-, 22(3)A =,则矩阵A 可表示为.22211211⎪⎪⎭⎫ ⎝⎛=A A A A A 这是一个分成了4块的分块矩阵. 例2 设⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1000001100001000001100011A , 则矩阵A 是一个分成了9块的矩阵,且A 的分块有一个特点, 若记⎪⎪⎭⎫ ⎝⎛-=11111A , ⎪⎪⎭⎫⎝⎛=11012A , )1(3=A , 则 ⎪⎪⎪⎭⎫ ⎝⎛=32100000A A A A , 即矩阵A 作为分块矩阵来看, 除了主对角线上的块外, 其余各块都是零矩阵, 以后我们会发现这种分块成对角形状的矩阵在运算上是比较简便的. 矩阵的分块有多种方式, 可根据具体需要而定.二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意, 运算的两矩阵按块能运算, 并且参与运算的子块也能运算. 1. 加法设同型矩阵A 与B 采用相同的分块法, 即1111t s st A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭L LL L , 1111t s st B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭L LL L , 其中ij A 与ij B 也是同型矩阵, 1,2,i s =L , 1,2,j t =L .则11111111t t s s st st A B A B A B A B A B ++⎛⎫⎪+= ⎪ ⎪++⎝⎭LLL L. 2. 数乘分块矩阵用数k 乘一个分块矩阵时, 等于用k 去乘矩阵的每一个块, 即11111111t t s st s st A A kA kA kA k A A kA kA ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭L L LL LL L L . 例 3 设矩阵1013012400100001A ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭, 1200200063100201B ⎛⎫⎪ ⎪=⎪⎪-⎝⎭, 用分块矩阵计算kA , A B +.解 将矩阵计算B A ,分块如下:10130124001000001EC A E ⎛⎫ ⎪⎛⎫ ⎪== ⎪ ⎪--⎝⎭⎪-⎝⎭, 120020*********01DB F E ⎛⎫⎪⎛⎫ ⎪== ⎪ ⎪⎝⎭⎪-⎝⎭, 则 kA =0E C k E ⎛⎫ ⎪-⎝⎭=0kE kC kE ⎛⎫ ⎪-⎝⎭=030240000k k k k k k kk ⎛⎫⎪ ⎪⎪- ⎪-⎝⎭A B +=0E C E ⎛⎫⎪-⎝⎭+0D F E ⎛⎫ ⎪⎝⎭=0E D C F +⎛⎫⎪⎝⎭=2213212463000200⎛⎫⎪⎪⎪⎪-⎝⎭. 3. 分块矩阵的乘法设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成1111t s st A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭L LL L , 1111r t tr B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭L LL L , 其中pt p p A A A ,,,21Λ的列数分别等于tq q q B B B ,,,21Λ的行数, 则1111r s sr C C AB C C ⎛⎫ ⎪= ⎪ ⎪⎝⎭LMM L , 其中1(1,2,,;1,2,,)tpq pkkqk C AB p s q r ====∑L L .例4 设1000010012101101A ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭,1010120110411120B ⎛⎫⎪- ⎪= ⎪⎪--⎝⎭, 用分块矩阵计算AB . 解 把B A ,分块成1E O A A E ⎛⎫= ⎪⎝⎭, 112122B E B B B ⎛⎫=⎪⎝⎭, 则 111112122111211220EB E B E AB A E B B A B B A B ⎛⎫⎛⎫⎛⎫==⎪⎪⎪++⎝⎭⎝⎭⎝⎭.又 11121121010341024111211021111A B B ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+=⎪⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 122124133112031A B -⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,11111211221010120124331131B E AB A B B A B ⎛⎫⎪-⎛⎫⎪==⎪ ⎪++-⎝⎭ ⎪-⎝⎭.4. 分块矩阵的转置 设矩阵A 可写成分块矩阵1111t s st A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭L LL L , 则矩阵A 的转置矩阵T A 为1111T T s T T T t st A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭L LL L . 5. 分块对角矩阵设A 为n 阶方阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即1200s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,其中),,2,1(s i A i Λ=都是方阵, 则称A 为分块对角矩阵. 分块对角矩阵具有以下性质:(1) 若 ||0(1,2,,)i A i s ≠=L , 则0||≠A , 且12||||||||s A A A A =L ;(2) 若1200s A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭O, 1200s B B B B ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭O, 其中i A , i B 是同阶的子方块(1,2,,)i s =L , 则1122s s A B A B A B A B +⎛⎫⎪+⎪+= ⎪ ⎪+⎝⎭O , 112200s s A B A B AB A B ⎛⎫⎪⎪= ⎪ ⎪⎝⎭O, 1200k kkk s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O(k 为正整数). 形如⎪⎪⎪⎪⎪⎭⎫⎝⎛ss s s A A A A A A ΛM M M ΛΛ00022211211的分块矩阵, 称为分块上三角形矩阵. 形如⎪⎪⎪⎪⎪⎭⎫⎝⎛ss s s A A AA A A ΛM M M ΛΛ21222111000的分块矩阵, 称为分块下三角形矩阵. 如果分块上(下)三角形矩阵的主对角线上的子块ii A (s i ,,2,1Λ=)均为方阵, 那么有如下结论111211122221221122120000||||||00s s ss sss s ssA A A A A A A A A A A A A A A ==L L L LL M M M M M M LL.三、矩阵的按行分块和按列分块矩阵按行(列)分块是最常见的一种分块方法. 一般地,m n ⨯矩阵A 有m 行, 称为矩阵A 的m 个行向量, 若记第i 行为),,,,(21in i i T i a a a Λ=α则矩阵A 就可表示为12T T T m A ααα⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M m n ⨯矩阵A 有n 列, 称为矩阵A 的n 个列向量, 若第j 列记作12j j j mj a a a α⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M 则矩阵A 就可表示为12(,,,)n A ααα=L .§4 矩阵的初等变换和初等矩阵一、矩阵的初等变换定义4.1 下列变换称为矩阵的初等行变换: (1) 对调第i 行与第j 行 (记为i j r r ↔);(2) 以非零常数k 乘矩阵第i 行每一元素 (记为i r k ⨯);(3) 把第j 行每一元素的k 倍加到第i 行对应的元素上 (记为i j r kr +).把上述定义中的“行”变成“列”, 即得到矩阵初等列变换的定义(所用记号是把“r ”换成“c ”).矩阵的初等行变换与初等列变换, 统称为矩阵的初等变换.上述三种变换分别称为矩阵的第一类、第二类和第三类初等变换, 变换前后的矩阵之间用“→”连接, 所做变换写在“→”的上方或下方. 由于矩阵的初等变换改变了矩阵的元素, 因此初等变换前后的矩阵是不相等的, 不可用“=”连接. 矩阵的初等变换可以链锁式地反复进行, 以便达到简化矩阵的目的.例如, 对下列矩阵作初等行变换: 将第一、二行互换, 再将第二行乘以-3加到第三行, 即12323123231231231123123312312057r r r r ↔-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−−→−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭. 定义 4.2 如果矩阵A 经过有限次初等变换变成矩阵B , 就称矩阵A 与矩阵B 等价, 记作A B :.不难验证, 矩阵之间的等价具有下列性质: (1) 自反性 A A :;(2) 对称性 若A B :, 则B A :; (3) 传递性 若A B :, B C :, 则A C :.利用等价关系可以对矩阵分类, 将具有等价关系的矩阵作为一类. 我们可以利用矩阵的初等变换达到简化矩阵的目的. 例如,1231212111211214112142111246224231123697936979r r r A A ↔⨯---⎛⎫⎛⎫⎪ ⎪---⎪⎪=−−−→= ⎪⎪---- ⎪ ⎪-⎝⎭⎝⎭23314122311214022200553603343r r r r r r A ----⎛⎫ ⎪- ⎪−−−→= ⎪--- ⎪--⎝⎭ 2324225331121401110000260013r r r r r A ÷+--⎛⎫ ⎪- ⎪−−−→= ⎪- ⎪-⎝⎭34434211214011100001300000r r r r A ↔--⎛⎫ ⎪- ⎪−−−→= ⎪- ⎪⎝⎭ 1223510104011030001300000r r r r A ---⎛⎫ ⎪- ⎪−−−→= ⎪- ⎪⎝⎭34412512343310014100000101301000001030010000000000c c c c c c c c c F ↔++--+-⎛⎫⎛⎫⎪⎪- ⎪ ⎪−−−→−−−−−→= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭形如4A 和5A 的矩阵都称为行阶梯形矩阵, 其满足下列条件:(1) 若有零行(元全为0的行), 则零行位于非零行(元不全为0的行)的下方; (2) 每个非零行的首非零元(即第一个不为0的元素)所在的列号自上而下单调递增(即首非零元下的元素全为0).形如5A 的行阶梯形矩阵还称为行最简形矩阵, 其特点是:非零行的首非零元均为1, 且非零行的首非零元所在的列的其它元都为零.形如F 的矩阵称为矩阵A 的标准形, 其特点是:F 的左上角元1ii a =, 其余元均为0,1,2,,i r =L . 用分块矩阵可将矩阵A 的标准形F 写成000rm nE F ⨯⎛⎫= ⎪⎝⎭, 其中r 表示行阶梯形矩阵中非零行的行数.定理4.1 任意非零矩阵A 一定可以经过初等行变换化为行阶梯形矩阵;进而化为行最简形矩阵.证 设非零矩阵()ij m n A a ⨯=, 分三种情形来讨论: (1) 若110a ≠, 则做初等变换1212111111,,m m a a r r r r a a --L , 把第1列的其它元素化为0, 变成形式111*0a A ⎛⎫⎪⎝⎭, 1A 为(1)(1)m n -⨯-矩阵;(2) 若110a =,但在第1列存在某元10i a ≠, 则作初等变换1i r r ↔, 可变为(1)的情形;(3) 若矩阵A 的前k 列元素全为0, 由于A 为非零矩阵, 一定存在1,0k j a +≠, 作变换11k r r +↔, 再按(1)和(2)进行变换为1,100*000k ja A +⎛⎫⎪⎝⎭L L , 1A 为(1)(1)m k n --⨯-矩阵. 对于矩阵1A 继续按上面方法进行处理, 最后即得行阶梯形矩阵. 推论1 任意非零矩阵A 经过初等行变换化成的行最简形矩阵是唯一的. 推论2 任意非零矩阵A 一定能经过初等变换化为标准形.例1 用初等变换化矩阵0241453170510230-⎛⎫ ⎪-- ⎪⎪ ⎪- ⎪ ⎪⎝⎭为标准形. 解 1202414514502431731705100510230230r r ↔---⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪⎪ ⎪−−−→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭313221513132425145100100024024020011220112201100510051005005100510050r r c c c c r r c c +--++---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−→−−−→−−−→--- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭54112322542212100100020010000000000000000000r r r r r r r +⨯+-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−→−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.二、初等矩阵上面我们学习了矩阵初等变换的定义, 并且掌握了“任何一个矩阵都可用初等行变换化为阶梯性矩阵和行最简形矩阵”的结论和方法, 本节通过引入初等矩阵的概念, 建立矩阵的初等变换与矩阵乘法之间的联系.定义4.3 由n 阶单位矩阵n E 经过一次初等变换得到的矩阵称为n 阶初等矩阵. 三种初等变换对应着三种初等矩阵.1. 对调单位阵E 的第j i ,两行(或两列), 得到的初等矩阵记为(,)n E i j ,也可简记为(,)E i j , 即11011(,)11011n i E i j j ⎛⎫⎪ ⎪ ⎪ ⎪← ⎪ ⎪⎪=⎪ ⎪ ⎪← ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭O L L LM M M OM M M LLL O(2) 用非零数k 乘以单位阵E 的第i 行(或第i 列)的元素得到的初等矩阵记为(())n E i k ;即1(())11n ki E i k ⎛⎫ ⎪⎪ ⎪←= ⎪⎪⎪ ⎪ ⎪⎝⎭O O (3) 用数k 乘单位阵E 的第j 行加到第i 行上(或用数k 乘单位阵E 的第i 列加到第j列上)得到的初等矩阵, 记为(,())n E i j k , 即11(,())11n k i E i j k j ⎛⎫ ⎪ ⎪ ⎪←⎪=⎪ ⎪← ⎪ ⎪ ⎪⎝⎭OL OM O例如下面三个矩阵10100100000100001A ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭, 21000030000100001A ⎛⎫⎪ ⎪=⎪⎪⎝⎭, 31000010020100001A ⎛⎫⎪⎪=⎪⎪⎝⎭都是初等矩阵. 与它们相对应的初等行变换分别是“互换第1、第2行”、“以3乘第2行”、“第1行乘2加到第3行”;相对应的初等列变换分别是“互换第1、第2列”、“以3乘第2列”、“第3列乘2加到第1列”. 易知初等矩阵的转置矩阵仍为初等矩阵,且(,)(,),(())(()),(,())(,())T T T n n n n n n E i j E i j E i k E i k E i j k E j i k ===.定理4.2 (初等变换和初等矩阵的关系) 设A 是m n ⨯矩阵, 则对A 施行一次初等行变换, 相当于用一个m 阶的同类型初等矩阵(单位阵经相同初等变换而得到的初等矩阵)左乘矩阵A ;对A 施行一次初等列变换, 相当于用一个n 阶的同类型初等矩阵右乘矩阵A . 即()()()()()()()()()(),,,,i ji j i i i j j i r rm n m m nc cm n m n n r k m n m m nc km n m n n r krm n m m nc kcm n m n n A E i j A A A E i j A E k i A A A E k i A E i j k A A A E i j k ↔⨯⨯↔⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯−−−→−−−→−−−→−−−→−−−→−−−→证 读者可利用(分块)矩阵乘法验证, 详细过程从略.例如, 令111213212223a a a A a a a ⎛⎫=⎪⎝⎭, 111213212223221222311121301(1,2)10a a a a a a E A aa a a a a ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.1112131211133212223222123010(1,2)100001a a a a a a AE a a a a a a ⎛⎫⎛⎫⎛⎫⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭. 111213111213221222321222310(2())0a a a a a a E k A a a a ka ka ka k ⎛⎫⎛⎫⎛⎫==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 1112131112133212223212223100(2())00001a a a a ka a AE k k a a a a ka a ⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭. 11121322122231(1,2())01a a a k E k A a a a ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭112112221323212223a ka a ka a ka a a a +++⎛⎫=⎪⎝⎭. 111213321222310(1,2())010001k a a a AE k a a a ⎛⎫⎛⎫ ⎪=⎪ ⎪⎝⎭ ⎪⎝⎭1112111321222123a a ka a a a ka a +⎛⎫= ⎪+⎝⎭. 通过本节定理4.1及其推论2知, 对于任一m n ⨯矩阵A , 总可以经过初等行变换把它化为行阶梯形矩阵(或行最简形矩阵), 进而通过初等变换(行变换和列变换)把它化成标准形000rm nE F ⨯⎛⎫= ⎪⎝⎭, 其中r 表示行阶梯形矩阵中非零行的行数.由初等矩阵的性质, 利用定理4.2可以将本节的定理4.1及其推论2写成下述形式: 定理 4.1' 对任一m n ⨯非零矩阵A , 一定存在有限个m 阶初等矩阵1P ,2P ,L ,s P , 使得1s P P A L 为行阶梯形矩阵(或行最简形矩阵).推论2' 对任一m n ⨯非零矩阵A , 一定存在有限个m 阶初等矩阵1P ,2P ,L ,s P 和有限个n 阶初等矩阵1Q ,2Q ,L ,t Q , 使得11000rs t m nE P P AQ Q ⨯⎛⎫=⎪⎝⎭L L . 其中r 表示行阶梯形矩阵中非零行的行数. 下面我们来证明本章定理2.1.例2 设,A B 为n 阶方阵,则AB A B =.证 先看一个特殊情形,即A 是一个对角矩阵的情形. 设1200000n d d A d ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L L L L L L L. 令()ij B b =,容易算出111112112212222212n n n n n n n nn d b d b d b d b d b d b AB d b d b d b ⎛⎫⎪ ⎪= ⎪⎪⎝⎭L L L L L L L因此由行列式的性质得12||||||||n AB d d d B A B ==⋅L .现在看一般情形. 由定理4.1与推论2知,可以通过第三种初等变换把A 化成一个对角矩阵1A ,并且1||||A A =. 矩阵A 也可以反过来通过对1A 施行第三种初等变换而得出. 这就是说,存在(,())n E i j k 型矩阵1P ,2P ,…,s P ,使得111t t s A P P A P P +=L L于是111()()t t s AB P P A P P B +=L L . 然而由行列式的性质知道,任意一个n 阶矩阵的行列式不因对它施行第三种行或列初等变换而有所改变. 换句话说,用一些(,())n E i j k 型的初等矩阵乘一个n 阶矩阵不改变这个矩阵的行列式. 因此,注意到1A 是一个对角矩阵,我们有11111111||||||||||||||||||t t s t s t s AB P P A P P B A P P B A P P B A B A B +++====⋅=⋅=⋅L L L L .§5 逆矩阵数的乘法存在逆运算——除法, 当数0≠a 时,逆11-=a a满足11=-a a , 这使得一元线性方程b ax =的求解可简单得到:方程两边左乘1-a , 即11x x a b -⋅==. 那么, 在解矩阵方程b AX =(此处b 为列矩阵)时是否也存在类似的逆1A -使得b A X 1-=呢?这就是要研究的可逆矩阵问题.一、逆矩阵的定义定义5.1 对于n 阶方阵A , 若存在一个n 阶方阵B , 使E BA AB ==那么称矩阵A 可逆, 并称矩阵B 为矩阵A 的逆矩阵. 若矩阵A 可逆, 则A 的逆矩阵是唯一的.假设1B , 2B 均为可逆矩阵A 的逆矩阵, 由定义5.1有E A B AB ==11, E A B AB ==22,则 ()()22212111B EB B A B AB B E B B =====. 所以一个矩阵如果可逆, 那么它的逆矩阵是唯一的.将A 的逆矩阵记为1-A ,即若E BA AB ==,则1B A -=.注意, 在定义 5.1中A ,B 的地位是平等的, 因此B 也可逆, 且A B =-1(就是11()A A --=), 即A 与B 互为逆矩阵.例1 设12diag(,,,)n A λλλ=L , 且120n λλλ≠L , 求1A -. 解 因为1212111diag(,,,)diag ,,,n n λλλλλλ⎛⎫⋅ ⎪⎝⎭L L1212111=diag ,,,diag(,,,)n n E λλλλλλ⎛⎫⋅= ⎪⎝⎭L L ,所以111212111=[diag(,,,)]diag ,,,n n A λλλλλλ--⎛⎫= ⎪⎝⎭L L .二、逆矩阵的计算什么样的矩阵才是可逆的呢?如果一个矩阵可逆, 又如何由它求到它的逆矩阵呢?下面将详细解答这一问题. 1. 利用伴随矩阵求逆矩阵 首先, 我们引入伴随矩阵的定义. 定义5.2 n 阶行列式A 中各元素ij a 的代数余子式ij A 所构成的如下的矩阵112111222212n n nn nn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭L L L L L L L称为矩阵A 的伴随矩阵,记作*A .定理5.1 矩阵A 的伴随矩阵*A 具有如下性质:(1) **||AA A A A E ==, (2) 当0A ≠时, 1*(1)n A An -=>.证 (1) 设*()ij AA b =, 则由行列式按一行(列)展开的公式, 有10,,,nij ik jk k i j b a A A i j =≠⎧=∑=⎨=⎩(,1,2,)i j n =L则 *||||||||A A AA A E A ⎛⎫⎪⎪== ⎪ ⎪⎝⎭O . 类似地,*1||||||||n ki kj k A A A A A a A E A =⎛⎫ ⎪⎪=∑== ⎪ ⎪⎝⎭O. 因此, E A A A AA ==**.(2) 由性质(1)和方阵乘积的行列式性质, 可知**||||||||||n A A A A A ==,由于0A ≠, 故1*n A A-=.注意上述定理(2)中,当0A =时,*0A =.下面给出求逆矩阵的第一种方法——伴随矩阵法.定理5.2 n 阶方阵A 可逆的充分必要条件为||0A ≠, 且当A 可逆时,*11A AA =-. 证 必要性. 因A 可逆, 故存在1A -, 使得1AA E -=, 从而1||||A A -=1||AA -||1E ==, 所以||0A ≠.充分性. 由定理5.1 (1)知, E A A A AA ==**, 因为||0A ≠, 有**11()()A A A A E A A==, 根据逆矩阵的定义, 即有,*11A AA =-. 推论1 若n 阶方阵A ,B 满足E AB =(或BA E =), 则A 与B 互逆,即1B A -=,1A B -=.证 因1===E B A AB , 于是0≠A 且0≠B , 所以A 与B 均可逆, 且1111()()B EB A A B A AB A E A ----=====.类似可得1A B -=.利用以上推论去判断一个矩阵是否可逆, 比用定义判断减少一半的工作量.定义 5.3 如果n 阶方阵A 的行列式0≠A , 则称A 是非奇异矩阵(或非退化矩阵), 否则称A 是奇异矩阵(或退化矩阵).定理 5.2指出, 可逆矩阵就是非奇异矩阵. 同时, 它也提供了一种求逆矩阵的方法——伴随矩阵求逆法.例2 求方阵⎪⎪⎪⎭⎫ ⎝⎛-----=3104252373A 的逆矩阵.解 因为13104252373=-----=A , 所以A 可逆, 且。

线性代数教案 第二章 矩阵及其运算

线性代数教案 第二章 矩阵及其运算

12m m mna a a 矩阵。

为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。

记做12m m mn a a a ⎥⎦12m m mn a a a a ⎛⎪⎭。

切记不允许使用111212122212n n m m mna a a a a a a a a =A 。

矩阵的横向称行,纵向称列。

矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。

本课中的矩阵除特殊说明外,都指12n n nn a a a ⎥⎦不是方阵没有主对角线。

在方阵中,00nn a ⎥⎦11212212000n n nn a a a a a a ⎤⎥⎥⎥⎥⎦(主对角线以上均为零)1122000000nn a aa ⎡⎤⎢⎥⎢⎥⎥⎥⎦(既}nn a .对角元素为1的对角矩阵,记作E 或001⎡⎢⎥⎦()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。

a x +)1(+⨯n 矩阵:12m m mnm a b a a a b ⎥⎦任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方122m m m mn mn b a b a b ⎥+++⎦⎥⎦⎤⎢⎣⎡-=4012B ,计算 B A +。

122m m m mn mn b a b a b ⎥---⎦与矩阵n m ij a A ⨯=}{的乘积(称之为数乘),12m m mn a a a λλ⎥⎦以上运算称为矩阵的线性运算,它满足下列运算法则:n b ⎪⎭上述几个例子显示,当有意义时,不一定有意义(例6),即便有相同的阶数,也不一定相等(例A = O 或Ba x +12m m mn a a a ⎥⎦为系数矩阵; m b ⎥⎦,称b 为常数项矩阵;12n x x x ⎡⎢⎢=⎥⎦X = b 。

四、矩阵的转置 5 (转置矩阵12m m mn a a a ⎥⎦12nnmn a a a ⎢⎥⎣⎦矩阵,称它为A 的转置矩阵,记作TA 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. mn矩阵
a11 a12 … a1n a21 a22 … a2n …………
am1 am2 … amn
行(row)
元素(element/entry) aij (1 i m, 1 j n) 元素都是实数——实矩阵(real ~)
元素都是复数——复矩阵(complex ~)
注: 今后除非特别说明, 我们所考虑的矩阵都 是实矩阵.
25
3 4 3 5
1 6
2
6
3 6
4 5 6
8
10
1
2
1 2 1 5 1 8
1
BA4 5 62415263
3
32
显然 AB BA.
例2
A
1 3
2 3
0
1
4 0 1
B
2 1
1 2
1 2
求 A B ,并问 B A 是否有意义?

4 0 1
AB 13
2 0
1321
1 2
数量(箱) ABC
甲 20
16 200 180 190
乙 50
20 100 120 100
丙 30
16 150 160 140
丁 25
16 180 150 150
甲乙丙丁 单价 20 50 30 25 重量 16 20 16 16
200 180 190 100 120 100 150 160 140 180 150 150
1 2
5 8 9
11
2
5
显然B A 无意义
例3
2 4
A
1
2
求 AB , BA
2 4
B
3
6
解 A B 1 2 4 2 2 3 4 6 8 16 1 3 6 2
2 42 4 0 0 BA3 61 20 0
显然 AB BA.
总之,一般说来,ABBA
即矩阵的乘法不满足交换律.
ቤተ መጻሕፍቲ ባይዱ
一、矩阵运算 只有当两个矩阵是同型矩阵时,
1. 矩阵的加法 这两个矩阵才能进行加法运算
定义1 设有两个mn 矩阵A aij 和
B bij ,那么矩阵 A 与矩阵 B 的和记作
A B 规定为
a11b11
AB
a21
b21
am1
bm1
a12 b12 a22 b22
am2 bm2
a1n b1n
不过,在有些情况下,也可能有 ABBA
例如:
1 1
A
0
1
B
x1 0
x2
x1
不难验证:ABBAx01
x1 x2
x1
一般地,如果矩阵 A ,B 的乘积与次序无关
即 ABBA,称矩阵A ,B 可交换
结合律和分配律:
(1) ABCABC.
(2) A B A B A B ( 为 数 ) .
(3) ABCABAC,
BCABACA.
例4 设变量 y1, y2, , ym 均可表示成变量
x1,x2, ,xn 的线性函数,即
y1 a11x1 a12x2
规定为
a11
A
A
a21
am1
a12 a22
am2
a1n
a2n
amn
运算规律(设 A ,B 都是 mn 矩阵, , 是数)
(1) AA. (2)AAA. (3)ABAB.
(4)1 A A .
(5)A 0 当且仅当 0 或 A 0 .
3. 矩阵的乘法
定义3

A
aij
, B
4. 同型(same-sized): 行数相等, 列数也相等
20 50 30 与 a b c 同型
16 20 16 1 2 3
20 16
50 20
30 16

20 50 30
16 20 16
不同型
5. 两个矩阵相等(equal)
大前提: 同型
A = [aij]mn与B = [bij]mn相等:
对1 i m, 1 j n, aij = bij都成立 记为A = B.
例2. 四个城市间的单向航线如图所示.
1
4
2
3
若用aij表示从i市到j市航线的条数, 则上图信息可表示为
a11 a12 a13 a14
01 1 1
a21 a22 a23 a24 a31 a32 a33 a34

10 01
0 0
0 0
a41 a42 a43 a44
10 1 0
三. 定义
列(column)
2. 方阵(square matrix)
n阶方阵: nn矩阵
见例2. 3. 向量(vector)
一个11的矩阵 就是一个数
行向量(column vector) [a1, a2, …, an]
a1
列向量(row vector)
a2 …
n–维
(n–dimensional)
an
第i分量 (ith component) ai (i = 1, …, n)
第二章 矩阵及其运算
矩阵概念 矩阵运算 特殊矩阵 逆矩阵 分块矩阵 初等矩阵 矩阵的秩
矩阵的基本概念
一. 历史
“矩阵 (matrix)” 这个 词首先是英国数学家 西尔维斯特使用的.
他为了将数字的矩形 阵列区别于 行 列 式 (determinant)而发明 了这个述语.
James Joseph Sylvester (1814.9.3~1897.3.15)
注意:只有当第一个矩阵(左矩阵)A 的列
数等于第二个矩阵(右矩阵)B 的行数时,
乘积 A B 才是有意义的;并且A B 的行数等 于第一个矩阵A 的行数,A B 的列数等于第
二个矩阵 B 的列数.
例1
1
A
2
3
求 AB , BA .

1
AB
2
4
5
3
B4 5 6
1 4 15
6
2
4
英国数学家凯莱 被公认为是矩阵 论的创立者.
他首先把矩阵作为 一个独立的数学概 念, 并发表了一系 列关于这个题目的 文章.
Arthur Cayley (1821.8.16~1895.1.26)
二. 实例 例1. 某厂家向A, B, C三个商场发送四款产品.
产品
单价 (元/箱)
重量 (Kg/箱)
a2n
b2n
amn
bmn
运算规律 (设 A ,B ,C 都是 mn矩阵)
(1) ABBA. (2)(A B ) C A (B C ). (3) A(A)0.
其中 A aij , A 称为矩阵 A 的负矩阵.
由此可规定矩阵的减法为
ABAB.
2. 数与矩阵相乘
定义2 数 与矩阵A 的乘积记作 A 或 A
ms
bij
sn
规定:矩阵 A 与矩阵 B 的乘积是一个mn矩阵
C cij mn
其中
c ij a i1 b 1 j a i2 b 2j a isb sj
s
aikbkj(i1,2, ,m ;j1,2, ,n) k 1
并把此乘积记作 C AB .
矩阵的第i 行第j 列的元 c i j 就是A 的第 i 行与 B 的第j 列的乘积
相关文档
最新文档