第六章 狭义相对论作业答案(2014)
1习题课(相对论)
一、选择题 1.下列几种说法: (1)所有惯性系对物理基本规律都是等价的。 (2)在真空中,光的速度与光的频率、光源的运动状 态无关。 (3)在任何惯性系中,光在真空中沿任何方向的传播 速度都相同。其中哪些说法是正确的? (A)只有(1)、(2)是正确的。 (B)只有(1)、(3)是正确的。 (C)只有(2)、(3)是正确的。 (D)三种说法都是正确的。 [ D ]
(D) 0 ; l l 0
5.(1)对某观察者来说,发生在某惯性系中同一地点 、同一时刻的两个事件,对于相对该惯性系作匀速直线运 动的其它惯性系中的观察者来说,它们是否同 时发生? ( 2 )在某惯性系中发生于同一时刻、不同地点的两 个事件,它们在其它惯性系中是否同时发生? (A)(1)同时,(2)不同时。 (B)(1)不同时,(2)同时。 (C)(1)同时,(2)同时。 (D)(1)不同时,(2)不同时。 [ A ]
c 或由: 2 2 1 u / c u t 2 x c t t 2 t 1 270 s c 1 u2 / c 2 t
2
x ct
270(m )
从这道题也可以看出,洛仑兹变换是建立在光速不 变原理这个基础之上的。
12)一观察者测得一沿米尺长度方向匀速运动着的米 8 -1 2.6× 10· 尺的长度为0.5m。则此米尺以速度υ= m s 接近观察者。 解: 匀速运动着的米尺的长度为动长 l
c2 c2
(C) 0 ; l l 0
4. 两个惯性系S 和 S ′,沿x(x ′)轴方向作相对运动,相 对速度为 u ,设在 S ′系中某点先后发生的两个事件,用 固定于该系的钟测出两事件的时间间隔为固有时τ0 。而 用固定在 S 系的钟测出这两个事件的时间间隔为τ 。又 在S ′系x ′轴上放置一固有长度为 l 0 的细杆,从S 系测得 此杆的长度为l ,则 [ D ] (A) 0 ; l l 0 (B) 0 ; l l 0
狭义相对论作业习题及解答.doc
4-7.某飞船自地球出发,相对地球以速率v=0.30c匀速飞向月球,在地球测得该旅程的距离为Zo=3.84xl()8m, 在地球测得该旅程的时间间隔为多少?在飞船测得该旅程的距离Z=?利用此距离求出:在飞船测得该旅程的时间间隔为多少?解:取地球为K惯性系、飞船为K,惯性系。
在地球测得该旅程的时间间隔为:Az = L Q/V M4.27(S)在地球地球测得的£o=3.84xlO8 (m),为地球〜月球的固有距离。
则在飞船测得该旅程的距离为在飞船观测,地球与月球共同以速率v=0.30c匀速运行,先是地球、随后是月球掠过飞船,则在飞船测得该旅程的时间间隔为:Ar = Z/v^4.07(s)说明:显然,飞船测自身旅程的时间间隔宜为固有时,在地球测得该旅程的&为观测时。
△t与显然满足狭义相对论时间膨胀效应,即4-8.在K惯性系测两个同时发生相距Im的事件(该两事件皆在X、X,轴)。
在K,惯性系测该两事件间距为2m, 问:在K,惯性系测该两事件发生的时间间隔为多少?解:在K系测两事件相距Ax=lm;同时发生则&=0.在K,系测两事件相距Ax,=2m;两事件发生的时间间隔为由洛伦兹变换,有Ax —M A/A X 1 Ax' ~ V3-/ = = -/ —/ = — 2 u —Jl-("/c)2 Jl-(“/c)2Jl-("/c)2 Ax 24-10.测得不稳定粒子广介子的固有寿命平均值TO=2.6X1O8S,(1)当它相对某实验室以0.80c的速度运动时,所测的平均寿命z应是多少?(2)在实验室测该介子在衰变前运行距离L应是多少?解:取花+介子、实验室为K,和K惯性系,沿该介子运行方向取为X、X,轴,在K,系中观测:也,=宣=2.6*10%, Ax,=0在K系中观测:也与皆为待求量。
由时间膨胀效应关系式,有T = M MI Jl-(v/c)2 =T J J1-(0.80C/C)2| 1~。
大学物理_狭义相对论及其习题
1 u 1 c
2
7
t ' t = 1.8×10-7(s)
6-4 长度缩短(同时测量) 一、同时测量 0
x2 x2
长度测量与时间测量有关 不同参照系具有 相对的时间间隔 相对的长度 x1
0
x1
棒固定在S’系, S’ 相对S运动,观察者在S S系中观察B’经过x1的t1和A’经过x1的t2 S’ S’ u
光线2:
2L t2 c2 u2 Lu2 2 Lu2 t 2 N 2 c c
r
M2
u
L
约为0.4条,但实际是0结果。 这一悬案被称为是“一朵乌云”。
c u
M1
c2 u 2
三、爱因斯坦基本假设 1、相对性原理:物理学定律在所有惯性系 中都是相同的,无特殊的绝对参照系。
(从力学的相对性推广到所有物理定律)
第六章 狭义相对论 6-1 牛顿相对性原理和伽利略变换 6-2 爱因斯坦相对性原理和光速不变 6-3 同时性的相对性和时间膨胀 6-3长度缩短 6-4罗伦兹变换 6-7 相对论质量 6-8 相对论动能 6-9 相对论能量 6-11广义相对论简介
狭义相对论的意义 新的时空观,它建立了高速运动的物体
的力学规则和电动力学规律,揭露了质量 和能量的内在联系。
2、光速不变原理:在所有惯性系中,光 速 具有相同的量值 c。
(电磁波的传播是各向同性的)
6-3 同时性的相对性和时间延缓
A
B
在同一参照系中,光同速走同距,同时到达。
光源和观察者都在S系
S 钟即观察者
A B
光源在S’系,相对S运动
观察者在S系,不同时
S
狭义相对论习题解答 2014版
习题4 一 选择题1.有下列几种说法:(1)所有惯性系对物理基本规律都是等价的。
(2)在真空中,光的速度与光的频率、光源的运动状态无关。
(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
若问其中哪些说法是正确的,答案是 (A )只有(1)、(2)是正确的 (B )只有(1)、(3)是正确的 (C )只有(2)、(3)是正确的 (D )三种说法都是正确的 [ ] 【分析与解答】根据狭义相对论的相对性原理可知(1)是正确的,根据光速不变原理可知(2)和(3)正确 正确答案是D 。
2.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其他惯性系中是否同时发生?关于上述两个问题的正确答案是: (A )(1)同时,(2)不同时 (B )(1)不同时,(2)同 (C )(1)同时,(2)同时 (D )(1)不同时,(2)不同时 [ ] 【分析与解答】根据洛仑兹变换有2'u t x t ∆-∆∆=,对于(1)0,0t x ∆=∆=,所以'0t ∆=; 对于(2)0,0t x ∆=∆≠,所以'0t ∆≠。
正确答案是A 。
3.某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对于甲作匀速直线运动的乙测得时间间隔为5s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A )(4/5)c. (B )(3/5)c. (C )(2/5)c. (D )(1/5)c. [ ] 【分析与解答】根据时间膨胀关系式't ∆=,4,'5t t ∆=∆=,解得35u c =正确答案是B 。
4.一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是(c 表示真空中光速) (A )()1/2.v c = (B )()3/5.v c =(C )()4/5.v c = (D )()1/5.v c = [ ]【分析与解答】根据长度收缩关系式l =,03,5l l ==,解得45u c = 正确答案是C 。
狭义相对论基础习题解答
狭义相对论基础习题解答一 选择题1.判断下面几种说法是否正确 ( ) (1) 所有惯性系对物理定律都是等价的。
(2) 在真空中,光速与光的频率和光源的运动无关。
(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。
A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。
2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1)不同时, (2) 不同时 解:答案选A 。
3.在狭义相对论中,下列说法中哪些是正确的?( )(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变 (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。
A. (1),(3),(4)B.(1),(2),(4)C.(1),(2),(3)D.(2),(3),(4) 解:同时是相对的。
答案选B 。
4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。
飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u =0.8c ,8790/(310)310s t -'∆=⨯=⨯2()/1(/)270m x x u t u c ''∆=∆+∆-=。
第六章狭义相对论
2
l
l0
l0
u 1 2 c
运动长度 l l0
★ 注意:长度收缩只发生在速度方向
例4(4357)在O参照系中,有一个静止的正方
形,其面积为100cm2。观测者O’以0.8C的
匀速度沿正方形的对角线运动求O’所测得
的该图形的面积。 解:在O参照系中A、B间对角线长度
在O’参照系中A、B间长 度 ★ O’所测得的该图形的面积
u
例5(4370)在K惯性系中,相距 的两个地方发生两事件,时间间隔 而在相对于K系沿正 方向匀速运动的K’系中 观测到这两事件却是同时发生的。试计算:在 K’系中发生这两事件的地点间的距离是多少? 解1 :
解2 :
作业:P339~340 6.1 6.3
6.4
6.5 6.6
练习(5616)一列高速火车以速度 驶过车站时, 固定在站台上的两只机械手在车厢上同时划 出两个痕迹,静止在站台上的观察者同时测 出两痕迹之间的距离为1m,则车厢上的观察 者应测出这两个痕迹之间的距离为多少? 解:车上观察者测的两痕迹之间的距离 =原长 l0 静止在站台上的观察者同时测出两痕迹之间 的距离 =运动长 l
5 4 u2 1 2 c
0
(2)乙测得这两个事件发生的地点的距离
例2(4167) 子是一种基本粒子,在相对于它静 止的坐标系中测得其寿命为 ,如 果 子相对于地球的速度为 ( 为真空中光速),则在地球坐标系中测 出的 子的寿命 解:设:相对于 子静止的参照系为 S’
★ 在地球坐标系中测出的 子的寿命
两个事件的空间间隔 事件二:测量尺子(棒) 右端坐标
长度 右端坐标 — 左端坐标
★
在相对于尺子(棒)运动的参照系中要 条件: 同时记录尺子(棒)两端的坐标。 (如:相对于尺子(棒)运动的参照系是S’ 系 则: t1’ ) t2’ l x’ x ’
张三慧《大学物理学:力学、电磁学》(第3版)(B版)(章节题库 狭义相对论基础)【圣才出品】
依题意,
,所以
则飞船相对地球的运动速度为
5 / 25
圣才电子书
(2)根据洛伦兹正变换
十万种考研考证电子书、题库视频学习平 台
可得飞船上测得这两城市相距为
2.某观察者测得一静止细棒的长度为 l,质量为 m,于是求得此棒的线密度匀.λ
在相对论情况下解下列问题: (1)若此棒以速度 υ 在棒长方向上运动,观察者再测此棒的线密度应为多少? (2)若此棒以速度 υ 在垂直于棒长的方向上运动,此棒的线密度又为多少? 解:(1)沿棒长方向运动时,由长度收缩公式可得观察者测得的棒长为
3.作用于物体上的外力,是否会因为惯性系的不同而不同?分别从经典力学与相对 论力学的角度讨论.
答:在惯性系中,力的定义是被作用物体的动量随时间的变化率,即
在经典力学中,动量
其中质量 m 是常量.故
因为加速度 a 在所有惯性系中相等,所以力 F=ma 是个不变量,即与惯性系的选取无 关.
在相对论力学中,m 是个随惯性系的不同而变化的量.故
5.经典力学的动能定理和相对论力学的动能定理有什么相同和不同之处?
答:相同之处在于都认为动能是物体因运动而具有的能量,而且都以
的
形式表明物体动能的增量与外力对其所做功等值.不同之处在于经典力学中
其中质量 m 是常量;相对论力学中
其中 是物体静止时
的质量,运动质量 m 是随其运动速度变化的量,
称静止能量,
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 6 章 狭义相对论基础
一、选择题 1.一宇航员要到离地球为 5 光年的星球去旅行,如果宇航员希望把这路程缩短为 3 光年,则他所乘的火箭相对于地球的速度为( )。
第六章狭义相对论
′ = αλν αµσTνσ 二阶张量: Tλµ
对称张量: Tµν = Tνµ ,有10个独立分量(四维) 例如三维空间中对称张量:电四极矩张量Qij;转动惯量 张量I;材料力学中的应力张量 ;Maxwell应力张量;电 磁场动量流密度张量Tij等等。
Tµν = −Tνµ 只有6个独立分量,因为 Tµ µ=0 反对称张量:
三阶张量有43=64个分量:Tµνλ
三阶全反对称张量:Tµνλ ,若对每两个脚标都是反对称的 称之为三阶全反对称张量。即有二个及二个以上脚标相同 时矩阵元为零,共40个0元素,24个非零元素。 24个非零元素中只有4个独立元素T234,T314,T412 和 T123. 它们可用一个4维矢量表示。
A′ µ = α µν A ν
同意味着求和。
约定脚标希腊字母从1取到4,英文字母从1取到3,脚标相 这种约定求和的脚标如上式中ν称为“哑标”,对不参加求和 的脚标,如上式中的μ称为“自由脚标”。 等式两边的自由脚标必须对应。 由于哑标只表示对该脚标从1到4求和的一个约定,所以哑 脚标的字母可以更换,如上式中 A′ µ = α µν A ν = α任意一个二阶张量总可以分解为一个二阶对称张量和一个 二阶反对称张量之和”。 证明:设Tµ σ 为任意一个二阶张量,
Tµ σ = Tµ σ + Tσµ 2 + Tµ σ − Tσµ 2 = Sµ σ + Aµ σ
式中 S µ σ = S σµ 是对称张量,
A µ σ = − A σ µ 是反对称张量,证毕。
三维空间中反对称张量是两矢量叉乘出来的,又叫赝矢 r r r r r r r r r r r υ = ω× r,L = r × F , J = r × p 量。例如 B = ∇ × A , r r r r B, ω, L, J 构成三维空间的二阶反对称张量,因只有三个独 立分量故可用一矢量表示,叫赝矢量。 在坐标变换时不能当矢量处理,否则会出错。 在四维空间二阶反对称张量有六个独立分量,比空间维数 多2,不能用4-矢量表示。 坐标变换时必须还物理量的本来面目。 顺便指出:在正交变换下,对称张量保持为对称;反对称张量 保持为反对称。
6.狭义相对论习题思考题.doc
V v1l(V x1 + *0.8c=习题6-1.设固有长度/= 2.50m的汽车,以v = 30.0m/s的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:I = I。
』】-(vic,)Q112M = 1.-1 = /()x —二=1.25x10-%2c26-2.在参考系S中,一粒子沿直线运动,从坐标原点运动到了x = 1.5xl08m处,经历时间为山= 1.00s,试计算该过程对应的固有时。
解:以粒了为S'系△t' = &Jl-(U/c2) = 0.866s6-3.从加速器中以速度v = 0.8c、飞出的离了在它的运动方向上又发射出光了。
求这光了相对于加速器的速度。
解:设加速器为S系,离了为S'系6-4.两个宇宙飞船相对于恒星参考系以0.8c的速度沿相反方|何飞行, 求两飞船的相对速度。
解:设宇宙船A为S系,速度0.8c,宇宙船B为S'系,速度-0.8cI根据洛伦兹速度变换公式:*=丛也,有:u = 0.976c6-5.从S系观察到有一粒了在匕=0时由由=100m处以速度 v = 0.98c沿工方向运动,10s后到达方点,如在S'系(相对S系以速度=357.14mw = 0.96c 沿x 方向运动)观察,粒子出发和到达的时空坐标",弘 各 为多少? 0 =尸=0时,S'与S 的原点重合),并算出粒子相对S'系的速度。
—9.8C -0.96CX 挡= 2.14x10 七〃2. v -w 0.98c-0.96c < A1 . inx / v r = ----- =———— -------- =1.014x1()8 m/s1- —v v 1 ------ - x 0.98c c- c-6-6 .一飞船静长"以速度〃相对于恒星系作匀速直线飞行,飞船内一小 球从尾部运动到头部,宇航员测得小球运动速度为八试算出恒星系观察者 测得小球的运动时间。
第六章狭义相对论
1.3 牛顿定律在伽利略变换下的协变性 . . . . . . . . . . . . . . . . . . . . 3
1.4 Maxwell方程伽利略变换下不协变 . . . . . . . . . . . . . . . . . . . . 3
1.5 狭义相对论的基本原理 . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5
2.1 方向的相对性原理与空间间隔不变性 . . . . . . . . . . . . . . . . . . . 5
2.2 参考空间的线性变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 空间间隔不变性的讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 时空关系的绝对分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 因果律 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 相互作用的最大传播速度 . . . . . . . . . . . . . . . . . . . . . . . . . 11
不同参考系下,物理规律及 物理量的变化如何?
相对论本身及其对物理学的 影响
相对论的两个基本原理
间隔不变性到洛伦兹变换
高速运动引发相对论时空 观;
间隔、因果律、相对同时 性、钟慢尺缩、速度变换
相对性原理与重要性:物理 规律必须在洛伦兹变换下协 变
狭义相对论课后题目解答
狭义相对论课后题目解答思考题1 在狭义相对论中,下列说法中哪些是正确的?(A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.[A ,B ,D]解答:真空中的光速为自然界的极限速率,任何物体的速度都不大于光速;质量、长度、时间与运动是紧密联系的,这些物理量的测量结果与参考系的选择有关,也就是与观察者的相对运动状态有关;同时同地具有绝对性,同时异地则具有相对性;相对论时间膨胀效应即运动的时钟变慢。
答案:(A 、B 、D )2 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?[ 没对准 ]解答:在K ’系中,A ’、B ’点的时空坐标分别为:()(),,,A A B B A x t B x t ''''''由题意:0A B t t t '''∆=-=,A B x x x L ''''∆=-=在K 系中,这两点的时空坐标分别为:()(),,,A A B B A x t B x t根据洛仑兹变换,220A B u ut x L t t t '''∆+∆∆=-==≠ 故,在K 系中的观测者看到这两只钟没有对准。
3 静止的μ子的平均寿命约为τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,此μ子有无可能到达地面?[有可能]解答:μ子的固有寿命为:60210s τ-=⨯,根据相对论时间膨胀效应,对于地面参考系运动μ子的寿命为:653.1610s τ--==≈⨯μ子在τ时间内运动的距离为:50.998 3.16109461s u c m τ-==⨯⨯≈而μ在8km 的高空,小于它运动的距离,所以μ子可以到达地面。
电动力学复习总结第六章狭义相对论答案
电动⼒学复习总结第六章狭义相对论答案第六章狭义相对论⼀、问答题1、简述经典⼒学中的相对性原理和狭义相对论中的相对性原理。
答:经典⼒学中的相对性原理:⼒学的基本运动定律对所有惯性系成⽴。
狭义相对论中的相对性原理:包括电磁现象和其他物理现象在内,所有参照系都是等价的。
不存在特殊的参照系.2、⽤光速不变原理说明迈克⽿孙—莫雷实验不可能出现⼲涉条纹的移动。
答:光速不变原理告诉我们,真空中的光速相对于任何惯性系沿任⼀⽅向恒为c ,并于光源运动⽆关。
因此在迈克尔逊——莫雷实验中,若使两臂长度调整⾄有效光程MM1=MM 2,则在⽬镜中,两束光同时到达,没有光程差,因此不产⽣⼲涉效应。
3、如何校准同⼀参考系中不同地点的两个钟? 答:设A,B 两个钟相距L ,把钟B 调到cLt B =(不动),0=A t 时送出⼀光讯号,B 钟接到讯号后开动。
4、如图6-4所⽰,当'∑和∑的原点重合时,从⼀原点发出⼀球形闪光,当∑观察者看到t 时刻波前到达P 点(),,x y z 时,也看到'∑中固定的点()'''',,x y z P 和P 点重合,情况有如在0t =时看到两原点重合⼀样,换句话说,∑观察者在t 时确定了⼀个重合点'P 的空间坐标()''',,x y z 。
问'∑观察者看本参考系的球⾯光波到达'P 的时刻't(1)是不是本参考系时钟指⽰的读数为''r t c=,'r =?(2)是不是⽤洛仑兹变换计算得的时刻为'2v t t x cγ?=-(,,,)x y z t P提⽰:同⼀光讯号事件的两个时空坐标为(),,,x y z t ,()'''',,,x y z t ,满⾜'2'2'22'2222220x y z c t x y z c t ++-=++-=,是通过指定点(),,x y z 和()''',,x y z 的球⾯,半径分别为'ct 和ct 。
第六章 狭义相对论
二、爱因斯坦相对性原理和光速不变原理 (Einsteins principle of relativity and principle of constant speed of light)
1905年爱因斯坦在《论动体的电动力学》一书中提 出如下两条基本原理: 1. 物理规律对所有惯性系都是一样的。 这后来被称为爱因斯坦相对性原理。 2. 任何惯性系中,真空中光的速率都为 c 。
21
22
23
t — 原时(proper time) 原时:同一地点两事件的时间间隔
u t t 1 2 t, c
2
∴ 原时最短 。
一个运动的钟C 和一系列静止的钟C1、C2… 比较,运动的钟C 变慢了。 一个运动时钟的“1秒”比一系列静止时钟的
“1秒”长,这称为运动时钟的“时间延缓”。 时间延缓完全是一种相对效应。
两朵令人不安的乌云,----”
2
这两朵乌云是指什么呢? 迈克尔逊莫雷实验
热辐射实验
后来的事实证明,正是这两朵乌 云掀起了一场物理界的革命风暴,乌 云落地化为一场春雨,浇灌着两朵鲜 花。
3
量子力学诞生
爱因斯坦的相对论问世
经典 力学
高速领域 微观领域
相对论 量子力学
4
相对论由爱因斯坦(Albert Einstein)创立, 它包括了两大部分: 狭义相对论(Special Relativity)(1905)
当 u << c 时t = t ,这就回到绝对时间了。
26
结论:
1)运动的钟变慢:
t
0
1 u / c
2 2
2)运动参照系中所有物理过程的节奏都变慢了。
27
大学物理上学习指导作业参考答案(1)
大学物理上学习指导作业参考答案(1)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分 ()x x xd 62d 020⎰⎰+=v v v2分()2 213x x +=v 1分2、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x10 m 处,初速度v 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t ⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分 ()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.O RP解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l l d d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴ tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船第二章 运动与力课 后 作 业1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμsin cos +=MgF 2分令 0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.N2、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大 (取g =10 m/s 2)解:人受力如图(1) 图2分a m g m N T 112=-+ 1分 底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少环与绳间的摩擦力多大m 1m 22a解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分 222a m g m T '=- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-= 1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得: T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r )得 d T =-( M ω2/ L ) r d r 4分 由于绳子的末端是自由端 T (L ) = 01分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 3分LOO ′rO O ′ d r T (r ) T (r +d )第三章 动量与角动量课 后 作 业hAv1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f =∴ 14922=+=y x f f f N 2分f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分30°F2、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少( 空气阻力不计,g =9.8 m/s 2)解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分设炮弹到最高点时(v y =0),经历的时间为t ,则有 S 1 = v x t ①h=221gt ②由①、②得 t =2 s , v x =500 m/s 2分 以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F 以及当质点从A 点运动到B 点的过程中F的分力x F和y F 分别作的功.解:(1)位矢 j t b i t a rωωsin cos += (SI) 可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22-- 2分由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得222121)(kL kx x L F -=+- ② 2分由② 解出 kFL x 2-=使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy l my f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =l a l mg x x l mg la 2)(d 22-=⎰ 2分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分αh0v4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=2021v 2分 ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分 )ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分第五章 刚体的转动课 后 作 业1、一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分a =r β 2分解上述5个联立方程得: T =11mg / 8 2分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分 ①、②、③、④四式联立解得 a =2g / 7 1分3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① 2分 T r =J β ② 2分由运动学关系有: a = r β ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分Am 1 ,l1v2俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M l f 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 g m m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为a a x 221=,a a y 221= 面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中2)/(1c a a x x v -=' =0.6×a 221 a a a yy 221==' 在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm 23分aaO y x3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间如以飞船上的时钟计算,所需时间又为多少年解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分 以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分那么,在S '系中测得两事件之间距离为:2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 2 2分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分 ∴ )1111(22122220c c c m W v v ---==4.72×10-14 J =2.95×105 eV 2分第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件二者在何位置开始分离解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分A = 10 cm ,N/m 3.060=k 有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求: (1) 质点的振动方程; (2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A =t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+= 由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分25cos /==φx A cm 1分∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分(2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分3、一质量为m 的质点在力F = -π2x 的作用下沿x 轴运动.求其运动的周期.解:将F = -π2x 与F = -kx 比较,知质点作简谐振动, k = π2. 3分 又 mm k π==ω 4分m T 22=π=ω3分4、一物体同时参与两个同方向的简谐振动: )212cos(04.01π+π=t x (SI), )2cos(03.02π+π=t x (SI)求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x则 )cos(2122122212φφ-++=A A A A A ① 2分 以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 3分又 22112211cos cos sin sin arctg φφφφφA A A A ++= ②≈127°≈2.22 rad 3分 ∴ )22.22cos(05.0+π=t x (SI) 2分5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm . (1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分由题意,t = 0时v 0 = 0;x = x 0则02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27cos(1.0φλ+π-π=x t y (SI) 2分 t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分 而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有 05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分3/17π-=φ 1分∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y (SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)(m) -2、图示一平面简谐波在t = 0 时刻的波形图,求(1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时 0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121cos(5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212cos(π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν)2cos(2π+ππ=t A νν 3分5、设入射波的表达式为 )(2cos 1Ttx A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分(2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ 2分λn x 21= , n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为])/(2cos[1φλν+-π=x t A y 2分则反射波的表达式是 ])(2cos[2ππ++-+-=φλνxOP OP t A y 2分合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分第九章 温度和气体动理论课 后 作 业1、黄绿光的波长是5000A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解: 223131v v ρ==nm p∴ 90.1/32==v p ρ kg/m 3 5分3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w vm/s 3分(2) ()k w T 3/2==300 K . 2分4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: R R iR i C P +=+=222, ∴ ()5122=⎪⎭⎫⎝⎛-=-=R C R R C i P P ,2分 可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K .3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分==N E w K / 6.2×10-21 J 1分kwT 32== 300 K 3分第十章 热力学第一定律课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A .(1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).1 2 3 12 OV (10-3 m 3) 5 A BC解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J .Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量. 气体对外界所作的功. 气体吸收的热量. 此过程的摩尔热容.解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分(3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中 ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分BAOVp p 2V 1V 2(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中1 2 3 1 2 3 a bcV (L)p (atm)气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:Oadcbp (×105 Pa)V (×10-3 m 3)2312(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程, 吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分(2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分(3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R ,T a T c = (p a V a p c V c )/R 2=(12×104)/R 2T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量) A BC DO Vp解: 121Q Q -=η Q 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ) )/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= 4分 根据绝热过程方程得到:γγγγ----=D D AA T p T p 11, γγγγ----=C CB B T p T p 11 ∵ p A = p B , pC = pD ,∴ T A / T B = T D / T C 4分故 %251112=-=-=BC T T Q Q η 2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环的热机效率;(2) 第二个循环的高温热源的温度.解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T T Q Q = ∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 4分 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1/Q W η29.4% 1分 (2) ='-='η121T T 425 K 2分。
第六章 狭义相对论
12
R
例8(
V
)解答
o
B A
(转台+二人)对转轴 角动量守恒
2V
台
1 2 L台 mR 0 2
1 1 LA rA ( m )VA地 mR 20 2 2
1 1 1 2 LB rB ( m )VB 地 m( R ) 0 2 2 2
13
走动前
成的摩擦阻力矩)
4
解:
(1)子弹击中圆盘后,圆盘 所获得的角速度
R
v0
m
子弹和圆盘在碰撞前后角动量守恒
1 mv0 R ( MR 2 mR 2 ) 2
mv0 1 ( 2 M m)R
5
(2)经过多少时间后,圆盘停止转动 解一:据定轴转动定律 根
d M J J dt
27
1887 年 , 体 现 上 面 思 想 的 迈 克 耳 孙 — 莫 雷 (Michelson-Morlay)实验却得到了“零”结 果! 地球就是“绝对静止”的参考系? 用各种企图保持绝对参考系的假说来解 释该实验结果,均遭到失败。典型的有: 发射说:光速要叠加上光源的速度。 双星观测否定了发 c + u1 双 射说,即实际上观测 地球 星 u2 不到双星位置的扭曲, 不能同时 c u2 m2 到达地球 28 而是符合力学规律。 应观察到双星位置的扭曲
7
例7( )一匀质细棒长为2L,质量 为m。以与棒长方向相垂直 的速度 V0在光滑水平面内平动时与前方一 固定的光滑支点O发生完全非弹性 A 碰撞。碰撞点位于棒 L 2 o 中心的一方L/2处, L 2 如图所示。 L 求棒在碰撞后的瞬时绕 O点转动时的角速度 B V0
8
第六章 狭义相对论作业答案2014
第六章 狭义相对论基础(2014)一.选择题1、(基础训练1)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为( ).(c 表示真空中光速)(A) c ·∆t (B) v ·∆t (C) 2/1(v /)c t c ∆⋅-(D) 2)/(1c t c v -⋅⋅∆解答:[A].飞船的固有长度为飞船上的宇航员测得的长度,即为c ·∆t 。
2、(基础训练2)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . 解答:[B].()2220024311551/t v t v c cc t v c ∆⎛⎫⎛⎫⎛⎫∆=⇒=-⇒=-= ⎪ ⎪ ⎪∆⎝⎭⎝⎭⎝⎭-3、(基础训练3) K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动.一根刚性尺静止在K '系中,与O 'x '轴成 30°角.今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是:(A) (2/3)c . (B) (1/3)c . (C) (2/3)1/2c . (D) (1/3)1/2c .解答:[C].K '系中:00'cos30;'sin30x y l l l l ︒︒==K 系中:()()22'1/tan 45'1/1/32/3x x y y l l v c l l v c v =-==⇒-=⇒=4、(自测提高3)设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小为 (以c 表示真空中的光速)(A) 1-K c . (B) 21K Kc-.(C) 12-K K c. (D) )2(1++K K K c解答:[C].111122020-=⇒=-=⇒-=K K cv K c v E E c v E E )/()/(总能量:二.填空题5、(基础训练7)一门宽为a .今有一固有长度为l 0 (l 0 > a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为_______.解答:[()01/c a l -].门外的观察者测得杆的长度()220'1(/)1/l l u c au c a l =-≤⇒≥-6、(基础训练8)(1) 在速度=v ____________情况下粒子的动量等于非相对论动量的两倍.(2) 在速度=v ____________情况下粒子的动能等于它的静止能量.解答:]. (1)0022p mv m v m m v ==⇒==⇒=(2)c v c v m m m c m c m mc E k 23122020202=⇒-==⇒=-=)/( 7、(自测提高5)地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 0.90c 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′=______.解答:[0.994c ].2222()220.9'0.994()1/10.91v v v cv c v v c v c --⨯====-++-8、(自测提高8)已知一静止质量为m 0的粒子,其固有寿命为实验室测量到的寿命的1/n ,则此粒子的动能是______.解答:[20(1)n m c -].01t t t n∆∆=⇒==∆22222000(1)k E mc m c m c n m c =-==-9、(附录B :11)两惯性系中的观察者O 和'O 以c 60.的相对速度互相接近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AHA12GAGGAGAGGAFFFFAFAF第六章 狭义相对论基础(2014)一.选择题1、(基础训练1)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为( ).(c 表示真空中光速)(A) c ·t (B) v ·t (C) 2/1(v /)c t c ∆⋅-(D)2)/(1c t c v -⋅⋅∆解答:[A].飞船的固有长度为飞船上的宇航员测得的长度,即为c ·t 。
2、(基础训练2)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c .解答:[B].AHA12GAGGAGAGGAFFFFAFAF3、(基础训练3) K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动.一根刚性尺静止在K '系中,与O'x'轴成 30°角.今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是:(A) (2/3)c . (B) (1/3)c . (C) (2/3)1/2c . (D) (1/3)1/2c .解答:[C].K '系中:00'cos30;'sin30x yl l l l ︒︒==K 系中:()2'tan 45'1/1/3x xy y l l l l v c v ===⇒-=⇒=4、(自测提高3)设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小为 (以c 表示真空中的光速) (A)1-K c. (B) 21K Kc -.(C)12-K Kc . (D))2(1++K K K c解答:[C].111122020-=⇒=-=⇒-=K K c v K c v E E c v E E )/()/(总能量:AHA12GAGGAGAGGAFFFFAFAF二.填空题5、(基础训练7)一门宽为a .今有一固有长度为l 0 (l 0 > a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为_______.解答:[].门外的观察者测得杆的长度'l l au =≤⇒≥6、(基础训练8)(1) 在速度=v ____________情况下粒子的动量等于非相对论动量的两倍.(2) 在速度=v ____________情况下粒子的动能等于它的静止能量.AHA12GAGGAGAGGAFFFFAFAF解答:]. (1)0022p mv m v m m v ==⇒==⇒=(2)c v c v m m m c m c m mc E k 23122020202=⇒-==⇒=-=)/(7、(自测提高5)地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 0.90c 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′=______.解答:[0.994c ].2222()220.9'0.994()1/10.91v v v cv c v v c v c --⨯====-++-8、(自测提高8)已知一静止质量为m 0的粒子,其固有寿命为实验室测量到的寿命的1/n ,则此粒子的动能是______.解答:[20(1)n m c -].01t t t n∆∆=⇒==∆22222000(1)k E mc m c m c n m c =-=-=-9、(附录B :11)两惯性系中的观察者O 和'O 以c 60.的相对速度互AHA12GAGGAGAGGAFFFFAFAF相接近。
如果O 测得两者的初始距离是20m ,'O 测得两者经过='t ∆ s 后相遇.解答:O 系中测得的相遇时间为:c v x t 60./20/==∆∆考虑't ∆是相对于'O 静止的'O 系中测得的时间间隔,为固有时间,而t ∆为相对于'O 运动的O 系中测得的时间间隔,为膨胀时间,因此,s c v t t 8210898-⨯=-=.)/(1'∆∆三.计算题10、(基础训练10)两只飞船相向运动,它们相对地面的速率是v .在飞船A 中有一边长为a 的正方形,飞船A 沿正方形的一条边飞行,问飞船B 中的观察者测得该图形的周长是多少?解答:222222222()22'()1/1'/224/()v v v vc u v v c c v v cu c C a ac c v β--===-++-==+=+;11、(基础训练13)要使电子的速度从v 1 =1.2×108m/s 增加到v2 =2.4×108 m/s必须对它做多少功?AHA12GAGGAGAGGAFFFFAFAF(电子静止质量m e=9.11×10-31 kg)解答:2212;E E==214214.7210()eA E E E m c J-=∆=-=-=⨯12、(基础训练14)跨栏选手刘翔,在地球上以12.88s时间跑完110m栏,在飞行速度为0.98c的飞船中观察者观察,试求(1)刘翔跑了多少时间,(2)刘翔跑了多长距离?解答:2121110()12.88()x x x m t t t s∆=-=∆=-=280.9812.88110'64.7()vt xt s∆-∆-⨯∆===8''1021' 1.9110()x x x m∆=-===-⨯负号表示运动员沿轴反方向跑动。
13、(基础训练15)已知m子的静止能量为105.7MeV,平均寿命为2.2´10-6s,试求动能为150MeV的m子的速度v和平均寿命t。
AHA12GAGGAGAGGAFFFFAFAF解答:222200021)0.91kkm cE mc m c m cm c Ev c=-=⇒=+⇒===66' 5.3110()t s--∆===⨯14、(自测提高12)飞船A以0.8c的速度相对地球向正东飞行,飞船B以0.6c的速度相对地球向正西方向飞行.当两飞船即将相遇时AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAFA 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少?解答:以地面为K 系,飞船A 为K ˊ系,以正东为x 轴正向;则飞船B 相对于飞船A 的相对速度220.60.8 1.4'0.9460.810.80.61(0.6)1B A B A B v v c c v c c v c c v c c----====-+⨯---' 6.17()t s ∆===15、(自测提高18)火箭相对于地面以c v 60.=(c 为真空中光速)匀速向上飞离地球,在火箭发射s t 10='∆后(火箭上的钟),该火箭向地面发射一导弹,其速度相对于地面为c v 30.1=,问火箭发射后多长时间(地球上的钟),导弹到达地球?计算中假设地面不动。
解答:火箭发射s t 10='∆(火箭上的钟,原时)后发射导弹,此时,地球上经历的时间为:s c v t t 51212.)/(/'=-=∆∆以地球为参考系,火箭高度m t v H 910252⨯==.∆导弹运动到地面需要时间(地球上的钟)s v H t 2511==/∆因此,火箭发射s t t T 537.'=+=∆∆后,导弹到达地球。
附加题:16、(自测提高14) (1) 质量为m0 的静止原子核(或原子)受到能量为E 的光子撞击,原子核(或原子)将光子的能量全部吸收,则此合并系统的速度(反冲速度)以及静止质量各为多少?(2) 静止质量为m'的静止原子发出能量为E 的光子,则发射光子后原子的静止质量为多大?解答:(1)设合并系统的速度为v,质量为M,静止质量为M0。
由动量守恒和能量守恒得:2220022;/m c E Mc m c EEcv Mm c E cp E c MvM m ⎧+=+⇒===⎨+==⎩⇒===(2) 设静止质量为M'。
由动量守恒和能量守恒得:()22//m c E M cp E c M v M m mM M⎧''+-=⎪⎪'''==⇒==⎨⎪''=⎪⎩如有侵权请联系告知删除,感谢你们的配合!&29224 7228 爨31818 7C4A 籊^20740 5104 億27969 6D41 流37176 9138 鄸 *-c20656 50B0 傰 31010 7922 礢26991 696F 楯AHA12GAGGAGAGGAFFFFAFAF。