【2014】希望杯竞赛数学试题详解(51-60题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题51 Let point M move along the ellipse 18
92
2=+y x ,and point F be its right focus, then for fixed
point P(6,2) ,then maximum of 3|MF|-|MP| is ,where the coordinate of M is .
(ellipse 椭圆;focus 焦点;coordinate 坐标)
(第十四届高二第二试第18题)
译文:点M 是椭圆18
92
2=+y x 上一点,点F 是椭圆的右焦点,点P (6,2),那么3|MF|-|MP|的最
大值是 ,此时点M 的坐标是 .
解 在椭圆18
92
2=+y x 中,
8,92
2
==b a ,则1,12
==c c ,
所以椭圆的右焦点F 的坐标 为(1,0),离心率3
1
==
a c e ,
右准线9:2
==c
a x l ,显然点P
(6,2)在椭圆18
92
2=+y x 的外部.过点P 、M 分别作PG ⊥l 于G ,MD ⊥l 于D ,过点P 作PQ ⊥MD 于Q ,
由椭圆的定义知,3|MF|-|MP|=|MD|-|MP|≤|MD|-|MQ|=|QD|=|PG|=9-6=3,当且仅当点P 位于线段MD 上,即
点P 与Q 点重合时取等号.由点P 位于线段MD 上,MD ⊥l 及点P (6,2),知点M 的纵坐标为2,设M
的横坐标为0x ,即M (0x ,2),则有18
4920=+x ,解得2230±=x ,因此3|MF|-|MP|的最大值是3,此
时点M 的坐标是(2
2
3±
,2). 评析 若设点M 的坐标为(x,y),则可将3|MF |-|MP|表示成x 、y 的二元无理函数,然后再求其最大值,可想而知,这是一件相当麻烦的事,运用椭圆的定义,将3|MF|-|MP|转化为||MD|-|MP|,就把无理运算转化为有理运算,从而大大简化了解题过程.
拓展 将此题引伸拓广,可得
定理 M 是椭圆E :)0(122
22>>=+b a b
y a x 上的动点,F 是椭圆E 的一个焦点,c 为椭圆E 的半焦距,
P (m,n )为定点.
1、 若点P 在椭圆E 内,则当F 是右焦点时,e 1
|MF|+|MP|的最小值是m c a -2;当F 是左焦 点时,e
1
|MF|+|MP|的最小值是m c a +2. -3 O 1 3 6 9 x
M M Q D
y
P G
l
F
2、 若点P 在椭圆E 外,则
F 是右焦点,且0≤m ≤c a 2,|n|≤b 时,e 1
|MF|-|MP|的最大值是m c a -2.
F 是右焦点,且m>c a 2,|n|≤b 时,|MP|-e
1
|MF|的最小值是c a m 2-.
F 是左焦点,且c a 2-≤m ≤0,|n|≤b 时,e 1
|MF|-|MP|的最大值是m c a +2.
F 是左焦点,且m ≤c a 2-,|n|≤b 时,|MP|-e
1
|MF|的最小值是c a m 2--.
简证 1、如图1,作MN ⊥右准线l 于N ,PQ ⊥l 于Q ,由椭圆定义,|MN|=
e
1
|MF|. ∴e 1
|MF|+|MP|=|MN|+|MP|≥|PQ|=m c a -2,当且仅当P 、M 、Q 三点共线,且M 在P 、Q 之间时取等号.如图2,同理可证e
1
|MF|+|MP||=|MN|+|MP|≥|PQ|=m c a +2,当且仅当P 、M 、Q 三点共线,且M 在P 、Q 之
间时取等号.
2、 如图
3,
e
1
|MF|-|MP|=|MN|-|MP|≤|MN|-|MR|=|RN|=|PQ|=m c
a -2
,当且仅当P 位于线段MN 上,即P 与R 重合时取等号.
如图4,|MP|-
e
1
|MF|=|MP|-|MN|≥|MQ|-|MN|=|NQ|=c
a m 2
-,当且仅当P 位于
直线MN 上,即点P 与Q 重合时取等号.
m O m F x
M N y
P M Q l
图1
F m O x
N M y
Q M P
l
图2
O F m x
M M N Q
y
P
l
图4
如图5,
e
1|MF|-|MP|=|MN|-|MP|≤
|MN|-|MR|=|RN|=|PQ|=m c
a +2
,当且仅当P 位于线段
MN 上,即P 与R 重合时取等号.
如图6,|MP|-
e
1|MF|=|MP|-|MN|≥
|MQ|-|MN|=|N
Q|=
c
a m 2
--,当且仅当P 位于直线MN 上,即点P 与Q 重合时取等号.
题52 已知双曲线k y x =-2
2
关于直线x-y=1对称的曲线与直线x+2y=1
相切,则
k
的值等于
( )
A 、32
B 、34
C 、4
5
D
5
4 (第十五届高二培训题第19题)
解 设点P (x 0,y 0)是双曲线k y x =-2
2
上任意一点,
点P 关于直线x-y=1的对称点为
P ’(x,y ),则12
20
0=+-+y y x x ①,又
100-=--x x y y ②,解①、②联立方程组得
0011
x y y x =+⎧⎨
=-⎩③.∵P 点在双曲线k y x =-2
2上,∴k y x =-2020 ④.③代入④,得k x y =--+22)1()1( ⑤,
此即对称曲线的方程,由x+2y=1,得x=1-2y`,代入⑤并整理,得01232
=-+-k y y .由题意,△=4-12(k-1)=0,解得k=
3
4
,故选B. 评析 解决此题的关键是求出对称曲线的方程.由于对称曲线与直线相切,故由△=0便可求得k 的值. 拓展 关于直线的对称,我们应熟知下面的
结论 1、点(x 0,y 0)关于x 轴的对称点是(x 0,-y 0). 2、点(x 0,y 0)关于y 轴的对称点是(-x 0, y 0). 3、点(x 0,y 0)关于y=x 的对称点是(y 0,x 0). 4、点(x 0,y 0)关于y=-x 的对称点是(-y 0,-x 0).
5、点(x 0,y 0)关于y=x+m 的对称点是(y 0-m,x 0+m ).
m
O F m x
M M R N
y
P Q
l
图3
m F O x
Q P
y
N R M M l 图5
m F O
x
P
y
Q N M M l
图6