第七章离散时间系统的时域分析剖析

合集下载

第七章离散时间信号与系统的Z域分析总结

第七章离散时间信号与系统的Z域分析总结
当 z > a 时,这是无穷递缩等比级数。
1 z X ( z) = 此时, = 1 − az −1 z − a
z > a 收敛域:
0
j Im[ z ]
a
*收敛域一定在模最大的极点 所在的圆外。
Re[ z ]
信号与系统
第7章 离散时间信号与系统的z域分析
13 /82
3.左边指数序列 x(n) = −b nu (−n − 1)
的形式 ,其中x2+Ax+B是实数范围内的不可约 多项式,而且k是正整数。这时称各分式为原 分式的“部分分式”。
信号与系统
第7章 离散时间信号与系统的z域分析
19 /82
M X ( z ) 通常, 可表成有理分式形式: b z −i ∑ i B( z ) = i =0N X ( z) = A( z ) 1 + ∑ ai z −i
z −n < ∞
n1 ≤ n ≤ n2 ;
信号与系统
第7章 离散时间信号与系统的z域分析
7 /82
因此,当时,只要,则 n= z − n 1/ z n , ≥0 同样,当时,只要,则 n <= 0 z z ,
n −n
z≠0 z≠∞ z
z −n < ∞
−n
<∞
所以收敛域至少包含,也就是除 0< z <∞ “有限平面” z= (0, ∞) z 。 ∞外的开域,即所谓
9 /82
(3)左边序列
x(n), n ≤ n2 x ( n) = n > n2 0,
X ( z)
n = −∞
= x ( n) z ∑ ∑ x ( n) z
−n n = −∞
n2

离散时间系统的时域分析

离散时间系统的时域分析

第六章离散时间系统的时域分析1.离散时间信号、连续时间信号、数字信号和模拟信号相互之间的联系和区别是什么?离散时间信号是指自变量(时间)离散、而函数值(幅度)连续变化的信号;连续时间信号是指自变量(时间)连续的信号;数字信号是指自变量(时间)离散、而函数值(幅度)也离散的信号;模拟信号是指自变量(时间)连续、而函数值(幅度)也连续变化的信号;对模拟信号或连续时间信号进行取样可以得到离散时间信号,而对离散时间信号进行量化则得到数字信号;对离散时间信号进行插值可以恢复连续时间信号。

2.周期离散时间信号的周期如何确定?若离散时间信号是周期的,即[][]x n x n rN=+,其中r是任意整数,N是正整数。

而对于连续时间信号而言,若其是周期的,则有()()x t x t rT=+,其中r是任意整数,T是正实数。

如正弦信号:()sin()x t tωϕ=+,其周期为2Tπω=;而正弦序列:[]sin()x n nϕ=Ω+,其周期有如下形式确定:如果2Nπ=Ω为整数,则其周期就是N;如果2qpπ=Ω,其中,p q是互质的两正整数,即2πΩ是有理数,则其周期为N q=;如果2πΩ是无理数,则正弦序列不是周期序列。

3.单位样值序列、单位阶跃序列之间的关系是什么,将单位阶跃序列推广到一般的序列后,它们之间的关系又怎样?单位样值序列定义为:1 0 []0 otherwisennδ=⎧=⎨⎩单位阶跃序列定义为:1 0 []0 otherwisenu n≥⎧=⎨⎩从而有:0[][] (1)[] (2)m nk u n n m k δδ∞==-∞=-=∑∑ 或 [][][1n u n u n δ=-- (3) 将式(1)推广到任意序列[]x n ,有[][][]m x n x m n m δ∞=-∞=-∑4.序列的移位运算有何特点?序列的差分运算是如何得到的?序列的移位有左移和右移,左移为: []x n m +,其中m 是正整数;右移为: []x n m -,其中m 是正整数;即对于序列来讲,其移位只能是整数大小的移位,不能出现其它任意小数形式的移位。

7 离散时间系统的时域分析4

7 离散时间系统的时域分析4

m m −1
+ … + b1s + b0
则有:D( s )[ y (k )] = N ( s )[e(k )]
§7.4 离散时间系统的零输入响应
2、零输入响应的解法 ① 一阶系统 y (k + 1) + a0 y (k ) = b0 e( k )
则:sy (k ) + a0 y (k ) = b0 e(k ) e( k ) = 0 根据 即: s + a0 ) y (k ) = 0 ( y (k + 1) = − a0 y (k )
例4:有一离散时间系统,用下列差分方程描写y(k+2)有一离散时间系统,用下列差分方程描写y(k+2)y(k+2) 3y(k+1)+2y(k)=e(k+1)-2e(k),系统的初始条件为 3y(k+1)+2y(k)=e(k+1)-2e(k),系统的初始条件为 (1)=1.求该系统的零输入响应 求该系统的零输入响应。 yzi(0)=0,yzi(1)=1.求该系统的零输入响应。
y ( k ) = cr k
(
r −1
+ ar −1k +
n j = r +1
r −2
+ ⋯ + c2 k + c1 vr
k j
)
k
∑c v
j
,k ≥ 0
式中c 为待定系数,可由初始条件y(0) y(0), 式中c1,c2,…,cn为待定系数,可由初始条件y(0), y(1), y(n-1)确定 确定。 y(1), …,y(n-1)确定。 注:共轭复根可配对(变幅正弦序列) 共轭复根可配对(变幅正弦序列)

自动控制理论课件第七章离散系统的时域分析

自动控制理论课件第七章离散系统的时域分析
y(n) y(n 1) 0
已知起始状态y(1) 2,试求零输入响应。
解:在无外加输入时系统的零输入响应通常
是指n 0以后的响应起始状态是值y(1),
y(2), 各值。
y(n) y(n 1)
故有 y(n) y(1) y(2)
y(n 1) y(0) y(1)
y(n)是公比为的等比级数,故零输入响应有如下形式
是一阶非齐次差分方程。
梯形电阻网络,设各点 对地电压为 u(n), n 0,1,2,...为各节点
序号,为常数,则求其差分方程。
根据KCL, 有
u(n 1) u(n) u(n) u(n) u(n 1)
R
R
R
整理可得
u(n 1) u(n 1) (2a 1)u(n) 0
是关于节点电压的齐次差分方程。
u(n) (2a 1)u(n 1) u(n 2) 0
差分方程的阶数为未知 序列(响应序列)的最大序号与
最小序号之差。上式为 二阶差分方程。
对于一个线性是不变离散系统,若响应信号为y(n),
输入信号为f (n),则描述系统输入- 输出关系的
N阶差分方程为
y(n) a1y(n 1) a2 y(n 2) aN-1y(n N 1) aN y(n N )
an n 1 a 0
1 1 O 1
23
4n
5.正弦序列
xn sinnω0
余弦序列:xn cosn0
sinnω0
1
sin 0 t
O
1
5
10 n
1
0 : 正弦序列的频率, 序列值依次周期性重复的速率。

=2π 0 10
,
则序列每10个重复一次正弦包络的数值。

信号与系统:第七章 离散信号与系统时域分析

信号与系统:第七章  离散信号与系统时域分析

k 0 k 0
推广: 1)
U (k
j)
0, k 1, k
j j
2) AU (k), AU (k j)
性质:
f
(k)U
(k)
f
(k) 0
k 0 k 0
可见,U(k)作用类似于U(t),
但二者有较大差别:
U(t) :奇异信号,数学抽象函数; U(k):非奇异信号,可实现信号。
(k)与U(k)关系: (k) U(k) U(k 1)
y(k+1)Ey(k)
y(k-N)E-N y(k) y(k+N)EN y(k)
E-1 : 单位延迟算子
17
(2)算子形式的差分方程
1) uk 2 2a 1uk 1 u(k) 0 (E2 2a 1 E 1)u(k) 0
a
a
2) y(k)-(1+a)y(k-1)=f(k)
[1-(1+a)E-1 ]y(k)=f(k)
周期:N 20 无周期
13
7-2 离散时间系统基本概念
一、定义: 二、分类:
激励、响应均为离散时间信号的系统。
线性系统 非线性系统
时不变系统 时变系统
因果系统 非因果系统
线性系统: f1(k) y1(k) f2 (k) y2 (k) af1(k) bf2(k) ay1(k) by2(k)
k
y(k) f (i) i
y(k)
k
f1(i)
i
0 k 0
1.5 2.5
k 0 k 1
2 k 2
5
5.差分: 序列与其移序序列的差而得到一个新序列。
y(k)=f(k)-f(k-1)
(后向差分)

离散时间系统的时域特性分析实验报告

离散时间系统的时域特性分析实验报告

信号、系统与信号处理实验报告实验一、离散时间系统的时域特性分析姓名:学号:班级:专业:一.实验目的线性时不变(LTI)离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应列可以刻画时域特性。

本次实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变性的理解。

二.基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。

离散时间系统中最重要、最常用的是“线性时不变系统”。

1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。

即那么当且仅当系统同时满足和时,系统是线性的。

在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例系数都可以是复数。

2.时不变系统系统的运算关系在整个运算过程中不随时间(也即序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。

若输入的输出为,则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应该保持不变,即则满足以上关系的系统称为时不变系统。

3.常系数线性差分方程线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:当输入为单位冲激序列时,输出即为系统的单位冲激响应。

当时,是有限长度的,称系统为有限长单位冲激响应(FIR)系统;反之,则称系统为无限长单位冲激响应(IIR)系统。

三.实验内容及实验结果1.实验内容考虑如下差分方程描述的两个离散时间系统:系统1:系统2:输入:(1)编程求上述两个系统的输出,并画出系统的输入与输出波形。

(2)编程求上述两个系统的冲激响应序列,并画出波形。

(3)若系统的初始状态为零,判断系统2是否为时不变的?是否为线性的?2.实验结果(1)编程求上述两个系统的输出和冲激响应序列,并画出系统的输入、输出与冲激响应波形。

clf;n=0:300;x=cos((20*pi*n)/256)+cos((200*pi*n)/256);num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=filter(num1,den1,x);y2=filter(num2,den2,x);subplot(3,1,1);stem(n,x);xlabel('时间信号');ylabel('信号幅度');title('输入信号');subplot(3,1,2);stem(y1);xlabel('时间信号n');ylabel('信号幅度');title('输出信号');subplot(3,1,3);stem(y2);xlabel('时间序号n ');ylabel('信号幅度');title('冲激响应序列');(2)N=40;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=impz(num1,den1,N);y2=impz(num2,den2,N);subplot(2,1,1);stem(y1);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');subplot(2,1,2);stem(y2);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');1.应用叠加原理验证系统2是否为线性系统:clear allclcn = 0 : 1 : 299;x1 = cos(20 * pi * n / 256);x2 = cos(200 * pi * n / 256);x = x1 + x2;num = [0.45 0.5 0.45];den = [1 -0.53 0.46];y1 = filter(num, den, x1);y2 = filter(num, den, x2);y= filter(num, den, x);yt = y1 + y2;figuresubplot(2, 1, 1);stem(n, y, 'g');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;subplot(2, 1, 2);stem(n, yt, 'r');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;2.应用时延差值来判断系统2是否为时不变系统。

离散时间系统的时域分析实验报告

离散时间系统的时域分析实验报告
3
3. clf; h=[-6 5 2 3 -2 0 1 0 5 -3 4 2 -1 -3 2]; %冲激 x=[2 4 -1 3 -5 2 0 -1 2 -1]; %输入序列 y=conv(h,x); n=0:23; subplot(2,1,1); stem(n,y);
4. clf; n=0:301; x=cos((0.5*pi/600)*n.*n+0*n); %计算输出序列 num1=[0.5 0.27 0.77]; y1=filter(num1,1,x);%系统#1 的输出 den2=[1 -0.35 0.46]; num2=[0.45 0.5 0.45]; y2=filter(num2,den2,x);%系统#2 的输出 %画出输入序列 subplot(3,1,1); plot(n,x); axis([0 300 -2 2]); ylabel('振幅'); title('系统的输入'); grid;

四、实验结果与分析
图一 图二
2
图三
图四
五、实验小结
通过这次实验,我熟悉 MATLAB 中产生信号和绘制信号的基本命令,学会 通过 MATLAB 仿真一些简单的离散时间系统,并研究了它们的时域特性。
经过了两次实验课,对于 MATLAB 的一些命令语句的格式熟悉多了。在完 成实验时比第一次更顺利了些。
subplot(3,1,3) d=d(2:42); stem(n,d);
2. clf; n=0:40; D=10; a=3.0; b=-2; x=a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; nd=0:length(xd)-1; y=(n.*x)+[0 x(1:40)]; yd=(nd.*xd)+[0 xd(1:length(xd)-1)]; d=y-yd(1+D:41+D);

离散时间系统的时域分析

离散时间系统的时域分析

第七章离散时间系统的时域分析§7-1 概述一、离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。

离散时间系统:处理离散时间信号的系统。

混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。

二、连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。

例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。

例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。

四、典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ 下图表示了)(n k −δ的波形。

这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。

例如:)()0()()(k f k k f δδ=,)()()()(000k k k f k k k f −=−δδ。

2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。

用它可以产生(或表示)单边信号(这里称为单边序列)。

3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。

(a) 0.9a = (d) 0.9a =−(b) 1a = (e) 1a =−(c) 1.1a = (f) 1.1a =−4、 单边正弦序列:)()cos(0k k A εφω+双边正弦序列:)cos(0φω+k A五、离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告报告⼆:⼀、设计题⽬1.绘制信号)()(1k k f δ=和)2()(2-=k k f δ的波形2.绘制直流信号)()(1k k f ε=和)2(2-=k f ε的波形3绘制信号)()(6k G k f =的波形⼆实验⽬的1.掌握⽤MATLAB 绘制离散时间信号(序列)波形图的基本原理。

2.掌握⽤MATLAB 绘制典型的离散时间信号(序列)。

3.通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

三、设计原理离散时间信号(也称为离放序列)是指在时间上的取值是离散的,只在⼀些离放的瞬间才有定义的,⽽在其他时间没有定义,简称离放信号(也称为离散序列) 序列的离散时间间隔是等间隔(均匀)的,取时间间隔为T.以f(kT)表⽰该离散序列,k 为整数(k=0,±1.±2,...)。

为了简便,取T=1.则f(kT)简记为f(k), k 表⽰各函数值在序列中出现的序号。

序列f(k)的数学表达式可以写成闭合形式,也可逐⼀列出f(k)的值。

通常,把对应某序号K0的序列值称为序列的第K0个样点的“样点值”。

四、设计的过程及仿真1clear all; close all; clc;k1=-4;k2=4;k=k1:k2;n1=0;n2=2;f1=[(k-n1)==0];f2=[(k-n2)==0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('δ(k)')axis([k1,k2,-0.1,1.1]);subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);ylabel('f_2(k)');title('δ(k-2)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:2c lear all; close all; clc;k1=-2;k2=8;k=k1:k2;n1=0;n2=2; %阶跃序列开始出现的位置f1=[(k-n1)>=0]; f2=[(k-n2)>=0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('ε(k)')axis([k1,k2+0.2,-0.1,1.1])subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);xlabel('k');ylabel('f_2(k)');title('ε(k-2)')axis([k1,k2+0.2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:3clear all; close all; clc;k1=-2;k2=7;k=k1:k2; %建⽴时间序列n1=0;n2=6; f1=[(k-n1)>=0];f2=[(k-n2)>=0];f=f1-f2;stem(k,f,'fill','-k','linewidth',2);xlabel('k');ylabel('f(k)');title('G_6(k)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:五、设计的结论及收获实现了⽤matlab绘制离散时间信号, 通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

离散时间系统的时域分析

离散时间系统的时域分析

§7.1 引言
离散时间信号通过将连续时间信号进行取样得到
f t 4.2
3.1
采样(sampling)过程就是对模拟信号的 时间取离散的量化值过程——得到离 散信号。
1.5 0.9 2T 3T
o
3
f q t
T
4
t
幅值量化——幅值只能分级变化。
2 1
o
T
2T
3T
t
§7.1 引言
• 经过量化的离散时间信号称 为数字信号(digital signal)
经典法:齐次解 特解 时域分析 零输入响应 零状态响应 变换域分析: 拉氏变换法
离散时间系统——差分方程描述 差分方程的解法与微分方程类似
经典法:齐次解 特解 时域分析 零输入响应 零状态响应 变换域分析: z变换法
§7.2 取样信号与取样定理
• 取样定理(抽样定理)
• 通常将这种方程形式称为前向预测差分方程 (forward difference equation)
§7.3 离散时间系统的描述和模拟
• 差分方程与微分方程相比 在取样间隔Ts足够小时
dy( t ) y[( k 1)Ts ] y( kTs ) 微分方程 dt Ts 也可写做 dy( t ) y( kTs ) y[( k 1)Ts ] dt Ts
x n
3 4 5
1 2
9 10 11 6 7 8
22
n
一个周期
§7.1 引言
信号xn sin0.4n是否为周期信号?
0 0.4

0
5π是无理数 所以为非周期的序列
§7.1 引言
• 离散信号 sin n0与连续信号 sin 0 t 的关系 2 对连续信号 f t sin2πf 0 t sinΩ0 t Ω0 T 离散点(时刻)nT’上的正弦值

离散时间系统的时域分析

离散时间系统的时域分析

离散时间系统的时域分析离散时间系统是指系统输入和输出信号都是在离散的时间点上进行采样的系统。

时域分析是分析系统在时域上的性质和特征。

在离散时间系统的时域分析中,常用的方法包括冲击响应法、单位样值法和差分方程法等。

冲击响应法是通过对系统施加单个冲击信号,观察系统在输出上的响应来分析系统的时域特征。

冲击响应法的基本思想是将系统的输出表示为输入信号与系统的冲击响应之间的卷积运算。

冲击响应法适用于线性时不变系统,在实际应用中可以使用软件工具进行计算。

单位样值法是通过将系统输入信号取为单位样值序列,观察系统在输出上的响应来分析系统的时域特征。

单位样值法的基本思想是将系统的输出表示为输入信号与系统的单位样值响应之间的卷积运算。

单位样值法适用于线性时不变系统,可以用来计算系统的单位样值响应和单位样值响应序列。

差分方程法是通过建立系统输入和输出之间的差分方程来分析系统的时域特征。

差分方程法的基本思想是根据系统的差分方程,利用系统的初始条件和输入序列,递推计算系统的输出序列。

差分方程法适用于线性时不变系统,可以用来计算系统的单位样值响应和任意输入信号下的输出序列。

以上所述的方法是离散时间系统时域分析中常用的方法,通过这些方法可以获得系统的冲击响应、单位样值响应和任意输入信号下的输出序列,进而分析系统的时域特征和性质。

在实际应用中,根据系统的具体情况和需求,选择合适的方法进行时域分析,能够更好地理解离散时间系统的动态行为和响应特性。

离散时间系统的时域分析是研究系统在离散时间上的动态行为和响应特性的关键方法。

通过分析系统的时域特征,可以深入了解系统的稳定性、响应速度、频率选择性和滤波特性等方面的性能。

冲击响应法是离散时间系统常用的时域分析方法之一。

它通过施加一个单个的冲击信号,即输入信号序列中只有一个非零元素,然后观察系统在输出上的响应。

这样可以得到系统的冲击响应序列,它描述了系统对单位幕函数输入信号的响应情况。

冲击响应法的核心思想是将系统的输出表示为输入信号序列与系统的冲击响应序列之间的卷积运算。

信号与系统chapter 7离散时间信号与系统的Z域分析

信号与系统chapter 7离散时间信号与系统的Z域分析

由此可见,位移特性Z域表达式中包含了系统的起始条 件,把时域差分方程转换为Z域代数方程,因此,可以方便 求出Z域的零输入响应和两状态响应。
式(7.3)又称为左移序性质,与拉普拉斯变换的时域 微分特性相当。式(7.4)又称右移序性质,与拉普拉斯变 换的时域积分特性相当。
进一步,对于因果序列 x ( n ) , x ( 1 ) 0 ,x ( 2 ) 0 , ,则
Z [nx(n)u(n)]zdd zn∞ 0znx(n)zdd zX(z)
求下列序列的Z变换。
(1) n 2 u ( n )
n(n 1)
(2)
u(n)
解:(1 )Z[n2 u(n)] zd d z 2zz 1 zd d z2 zd d z zz 1
dz
z2 z
z [
]
, z 1
zlnz1 1ln1 zzlnzz1,z1
(2)因为
Z1
u(n 1) , z 1 z 1
根据Z域积分特性,可得
∞1
X(z)
x 1dx∞
1
z dxln ,z1
2
z x1
z x(x1 )
z1
§ 6. 卷积和定理
若 x1(n)u(n) ZX 1(z),z Rx;x2(n)u(n) ZX2(z),z Rx,则 :
第七章 离散时间信号与系统的Z域分析
7.1引言 7.2 Z 变换 7.3 Z 变换的性质 7.4 反变换 7.5离散时间系统的 Z 域分析 7.6离散时间系统的系统函数与系统特性 7.7离散时间系统的模拟
7.1 引 言
按照与连续时间信号与系统相同的分析方法,本章将
讨论离散时间信号与系统的 z 域分析。
§ 4. Z域微分特性

离散时间系统的时域分析--一阶和二阶差分方程求解9页word文档

离散时间系统的时域分析--一阶和二阶差分方程求解9页word文档

课程设计任务书目录1 引言 (1)2 Matlab7.0入门 (1)3 利用Matlab 7.0实现一阶和二阶差分方程求解的设计 (2)3.1 设计原理分析 (2)3.1.1 差分方程定义 (2)3.1.2 差分方程的意义与应用 (2)3.1.3 用MATLAB仿真时用的相关函数说明 (3)3.2 一阶和二阶差分方程求解的编程设计及实现 (4)3.2.1 设计函数思路 (4)3.2.2 理论计算 (4)3.2.3 设计过程记录及运行结果 (4)4 结论 (5)5 参考文献 (6)1引言人们之间的交流是通过消息的传播来实现的,信号则是消息的表现形式,消息是信号的具体内容。

《信号与系统》课程是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用. 该课的基本方法和理论大量应用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域,应用更为广泛。

近年来,计算机多媒体教序手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。

通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB 强大的计算能力和图形表现能力,将《信号与系统》中的概念、方法和相应的结果,以图形的形式直观地展现给我们,大大的方便我们迅速掌握和理解老师上课教的有关信号与系统的知识。

2Matlab7.0入门MATLAB的名称源自Matrix Laboratory,它是一种科学计算软件,专门以矩阵的形式处理数据。

MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作,而且利用MATLAB产品的开放式结构,可以非常容易地对MATLAB的功能进行扩充,从而在不断深化对问题认识的同时,不断完善MATLAB产品以提高产品自身的竞争能力。

离散信号与系统的时域和频域分析

离散信号与系统的时域和频域分析
h(0) h(1) ... h(n 1) 0 h(n) 1
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明

与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算



④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。

离散时间系统的时域特性分析

离散时间系统的时域特性分析

离散时间系统的时域特性分析离散时间系统是指输入和输出均为离散时间信号的系统,如数字滤波器、数字控制系统等。

时域分析是研究系统在时间上的响应特性,包括系统的稳定性、响应速度、能否达到稳态等。

在时域分析中,我们通常关注系统的单位采样响应、阶跃响应和脉冲响应。

1. 单位采样响应单位采样响应是指当输入信号为单位脉冲序列时,系统的输出响应。

在时间域上,单位脉冲序列可以表示为:$$ u[n] = \begin{cases}1 & n=0\\ 0 & n \neq 0\end{cases} $$系统的单位采样响应可以表示为:$$ h[n] = T\{ \delta[n]\} $$其中,$T\{\}$表示系统的传输函数,$\delta[n]$表示单位脉冲序列。

通常情况下,我们可以通过借助系统的差分方程求得系统的单位采样响应。

对于一种具有一阶差分方程的系统,其单位采样响应可以表示为:2. 阶跃响应其中,$\alpha$为系统的传递常数。

3. 脉冲响应脉冲响应是指当输入信号为任意离散时间信号时,系统的输出响应。

其主要思路是通过将任意输入信号拆解成单位脉冲序列的线性组合,进而求得系统的输出响应。

设输入信号为$x[n]$,系统的脉冲响应为$h[n]$,则系统的输出信号$y[n]$可以表示为:$$ y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] $$在实际计算中,通常采用卷积算法实现脉冲响应的计算,即将输入信号和脉冲响应进行卷积运算。

总之,时域特性分析是对离散时间系统进行分析和设计时的基础。

对于实际工程应用中的系统,需要综合考虑其时域和频域特性,进而选择合适的滤波器结构、控制算法等来实现系统的优化设计。

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

离散时间信号的时域变换

离散时间信号的时域变换

第七章离散信号与系统时域分析7-1 离散信号及其时域特性一、离散时间信号如果信号仅在一些离散的瞬间具有确定的数值,则称之为离散时间信号。

若选取的离散瞬间是等间隔的,则一般常用f(kT)表示,其中k=0,±1,±2,…;T为离散间隔。

一般把这种按一定规则有秩序排列的一系列数值称为序列,简记为f(k)。

本书仅讨论这种等间隔的离散时间信号。

离散时间信号可用序列{f(k)}表示。

比如也可以用数据表格形式给出,如图7-1(a)所示,或以图形方式表示,如图7-1(b)所示。

可见,f(k)具有两重意义:既代表一个序列,又代表序列中第k个数值。

离散时间信号获取的方式常有两种:一种是连续时间信号离散化,即根据抽样定理对连续时间信号进行均匀时间间隔取样,使连续时间信号在不失去有用信息的条件下转变为离散时间信号,这是目前信号数字化处理中最常用的方法之一。

另一种是直接获取离散信号,比如计算机系统中记忆器件上储存的记录,地面对人造地球卫星或其他飞行体的轨道观测记录以及一切统计数据等,这都是一些各不相同的离散时间信号。

二、离散时间信号的时域运算离散时间信号常有以下几种运算。

1.相加观看动画两个离散信号f1(k)和f2(k)相加是指它们同序号的值逐项对应相加,其和为一新的离散信号f(k),即f(k)=f1(k)+f2(k) (7-1)例如,图7-2(a),(b)所示的离散时间信号和进行相加,其结果为用图形表示如图7-2(c)所示。

离散时间信号的相加可用加法器实现。

2.两个离散信号f1(k)和f2(k)相乘是指它们同序号的值逐项对应相乘,其积为一新的离散信号f(k),即 f(k)=f1(k)f2(k) (7-2)例如,图7-2(a),(b)中的f1(k)和f2(k)相乘,其结果为用图形表示如图7-2(d)所示。

离散时间信号的相乘可用乘法器实现。

3.数乘是指对离散信号f(k)每一个取样值均乘以一个实常数a, 而得到一个新的离散信号y(k),即通常可用数乘器或比例器来实现这种运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 x(n) x(n)
x(n) 2x(n 1) x(n 2)
序列样值与其后面相邻的样值相减
离散信号的运算
n
7)累加:z(n) x(k) k
累加至第n样点
原序列中所有样值 ======= 新序列
8序列中所有样值 ======= 能量
三、典型离散信号
n=0,其 值=1
3 21 0 1 2 3 4 5 n
u(n
i)
1 n 0 n
i i
u(n i) 3 21 0 1 i
u(n) (n k)
k 0
(n) u(n) u(n 1)
n
3)矩形序列:
典型离散信号
RN (n)
3 21 0 1 2 N 1N n
1 0 n N 1 RN (n) 0 n 0, n N
x(n)
6
3
x(2n)
6 4 2
0 1 23 n
n 3 21 0 1 2 3 45 6 n x( )
2
6
4
2 1 3 2 1 0 1 2 34 5 6 8 10 12 n
离散信号的运算
6)差分:前向差分 x(n) x(n 1) x(n)
序列样值与其前面相邻的样值相减
后向差分 x(n) x(n) x(n 1)
离散时间系统——数字信号处理; 数字化; 模拟与数字系统结合
离散时间信号——连续时间信号抽样; 计算机的输入、输出; 时间序列(时钟信号)
第二节 离散时间信号
——序列
一、 离散时间信号概念
序列:信号的时间函数只在某些离散瞬时nT 有定义值,即x(nT )
其中T为均匀的离散时刻之间隔; nT称函数的宗量, n 0, 1, 2, 样值:离散信号处理的非实时性 x(n)表示序列
第三章 离散时间系统 的时域分析
本章的内容
1.离散时间信号-序列 2.离散时间系统的数学模型 3.常系数线性差分方程的求解 4.离散时间系统的单位样值(冲激)响应 5.卷积 6.反卷积
第一节 前言
一、离散时间系统研究的发展史
离散时间系统研究的历史: 17世纪的经典数值分析技术—奠定它的数学基础。 20世纪40和50年代的研究抽样数据控制系统 60年代计算机科学的发展与应用是离散时间系统的理论 研究和实践进入一个新阶段。 1965年库利(J.W.Cooley)和图基(J.W.Tukey)—发明FFT 快速傅里叶变换。 同时,超大规模集成电路研制的进展使得体积小、重量 轻、成本低的离散时间系统得以实现。 用数字信号处理的观点来认识和分析各种问题。 20世纪未,数字信号处理技术迅速发展。如通信、雷达、 控制、航空与航天、遥感、声纳、生物医学、地震学、 核物理学、微电子学…。
典型离散信号
1)单位样值序列(单位冲激序列): Unit Sample /Unit Impulse
(n)
1 0 1 2 3 n
(n i)
(n)
1 n 0 n
0 0
(n
i)
1 n 0 n
i i
1 0 1 2 3 i n
典型离散信号
2)单位阶跃序列:
1 n 0
u(n)
u(n) 0 n 0
其中
x(m)
(n
1)相加:z(n) x(n) y(n)
逐项对应相加
两序列的样值 ======= 新序列
2)相乘:z(n) x(n) y(n)
逐项对应相乘
两序列的样值=======新序列
3)延时:z(n) x(n m)
逐项依次左移或右移m位
原序列 ============ 新序列
离散信号的运算
4)反褶:z(n) x(n)
相对纵轴反折波形
原序列 ========= 新序列
5)尺度变换:z(n) x(an)
n轴上压缩或扩展
原序列的波形 ========= 新序列
需按规律去除某些点 (压缩时a无法除尽的样点), 或补足相应的零值 (扩展时多出的样点)
举例6.1
x(n)波形如例图6.1所示, 分别画出x(2n)、x(n/2)的波形
典型离散信号
7)复指数序列: x(n) e j0n cos(0n) j sin(0n) 复序列可用极坐标表示:
x(n) x(n) e j arg[x(n)] x(n) 1
arg[x(n)] w0n
四、离散信号的分解
离散信号的分解
常用分解法: x(n) x(m) (n m) m
其中n表示各函数值在序列中出现的序号

某序号n的函数值x(n) 在第n个样点的“样值”
离散信号概念
指针表示法: x(n) x(1) x(0) x(1) x(2)
图解表示: n——横坐标并取整数;
x(n) 纵坐标; 各线段的长短——各序列值的大小。
--表示原点位置
二、离散信号的运算
离散信号的运算
RN (n) u(n) u(n N )
4)斜变序列:
典型离散信号
RN (n)
3 21 0 1 2 N 1 N n
x(n)
nu(n)
n n 0 n
0 0
典型离散信号
5)指数序列:
x(n)
a 1
x(n)
anu(n)
an n 0
0 n
0
3 21 0 1 2 3 4 5 n x(n)
三、离散、连续时间系统研究的 差异
研究二者差异主要方面: 1、数学模型的建立与求解 2、系统性能分析 3、系统实现原理 4、连续时间系统注重研究一维变量的研究,
离散时间系统更注重二维、三维或多维技术的研究。
离散时间系统的优点: 1、精度高,便于实现大规模集成 2、重量轻、体积小 3、灵活,通用性
四、离散时间系统研究
二、离散时间系统、连续时间系 统时域分析对比
对于连续时间系统
离散时间系统
数学模型:微分方程描述
差分方程描述
时域经典求解方法:相同。先求齐次解,再求特解。
时域卷积(和)求解方法:相同,重要。
变换域求解方法: 拉普拉斯变换与傅里叶变换法 z变换与序列傅里叶变换、
离散傅里叶变换
运用系统函数的概念:处理各种问题。
当 a 1时序列是发散的; 当 a 1时序列是收敛的。
a 1 3 2 10 1 2 3 4 5 n
典型离散信号
6)正弦信号:
x(n)
3 21 0 1 2 3 4 5 n
x(n) sin(0n)
其中0称正弦序列频率
当 2 为整数时 T 2 ;
0
0
当 2 为有理数时 T 2 ;
0
0
当 2 不为有理数时 非周期性。 0
相关文档
最新文档