七年级数学上:绝对值练习及提高习题
初中七年级数学上册绝对值专项练习题
初中七年级数学上册绝对值专项练习题下面是一些初中七年级数学上册的绝对值专项练习题,共30道题目。
你可以针对每个题目进行解答,每题解答约100字,这样总字数将达到3000字以上。
1. 计算下列各式的值:a) |-5| b) |4| c) |-7| d) |-3 - 11|2. 如果x = -8,计算 |x - 5|。
3. 如果y = 10,计算 |y - 8|。
4. 计算下列各式的值:a) |2 - 4| b) |7 - 10| c) |-6 - 3| d) |3 - (-5)|5. 如果a = -6,计算 |a + 2|。
6. 如果b = -3,计算 |b + 7|。
7. 查找 |7 - 10| 的值。
8. 查找 |5 - (-12)| 的值。
9. 查找 |-7 + 19| 的值。
10. 查找 |12 - (-18)| 的值。
11. 解方程 |x - 3| = 7.12. 解方程 |2x - 5| = 11.13. 解方程 |3x + 5| = 10.14. 解方程 |4x - 8| = 20.15. 解方程 |2x - 3| = 14.16. 计算下列各式的值:a) |3x - 4| + 2 b) |4x + 5| - 317. 解不等式 |x - 5| ≥ 10.18. 解不等式 |3x - 1| < 7.19. 解不等式 |2x - 3| ≤ 5.20. 解不等式 |x + 4| > 9.21. 计算下列各式的值:a) |x - 3| + |x + 2| b) |2x - 5| - |3x + 1|22. 如果|x + 3| = 7,求x的值。
23. 如果|2x - 5| = 11,求x的值。
24. 如果|3x + 5| = 10,求x的值。
25. 如果|4x - 8| = 20,求x的值。
26. 如果|2x - 3| = 14,求x的值。
27. 解方程组:{ |x - 3| = 7{ x - 2y = 5.28. 解方程组:{ |2x - 5| = 11{ 3x + 2y = 0.29. 解方程组:{ |3x + 5| = 10{ 2x - y = 7.30. 解方程组:{ |4x - 8| = 20{ x + y = 10.以上是初中七年级数学上册的绝对值专项练习题,希望能够帮助到你。
部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案
专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。
题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。
人教版七年级上册 数学绝对值习题强化练习
七年级上册数学绝对值习题练习一、选择题1.有四盒小包装杨梅,每盒以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A. +2 B. -3C. +3 D. -12.若a与1互为相反数,则|a+1|等于()A. -1 B. 0C. 1 D. 23.如图,四个有理数在数轴上的对应点分别为M,P,N,Q,若原点在点N 与点P之间,则绝对值最大的数表示的点是()A.点M B.点PC.点Q D.点N4.下列说法正确的是().A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是15.下列各式的结论成立的是()A.若|m|=|n|,则m>nB.若m≥n,则|m|≥|n|C.若m<n<0,则|m|>|n|D.若|m|>|n|,则m>n6.在-25,0,2,2.5这四个数中,绝对值最大的数是()5A. -25 B. 0D. 2.5C.257.如果|x|=|-5|,那么x等于()A. 5 B. -5C. +5或-5 D.以上都不对8.下列说法中,错误的有()①绝对值等于它本身的数有两个,是0和1;②一个有理数的绝对值必为正数;③4的相反数的绝对值是4;④任何有理数的绝对值都不是负数.A. 1个B. 2个C. 3个D. 4个9.当式子2016+|a|的值最小时,则a的值为()A. -2016 B. 2016C. 0 D.1201610.有理数m,n,e,f在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.M B.N C.E D.f二、填空题11.某部分检测一种零件,零件的标准长度是6cm,超过的长度用正数表示,不足的长度用负数表示,抽查了5个零件,其结果如下:①-0.002,②+0.015,③+0.02,④-0.018 ⑤-0.008,这5个零件中最接近标准长度的是________(填序号).12.某工厂生产一批零件,根据零件质量要求“零件的长度可以有0.2厘米的误差”.现抽查5个零件,检查数据如下(超过规定长度的厘米数记作正数,不足规定长度的厘米数记为负数):从表中可以看出,符合质量要求的是__________,它们中质量最好的是___________.13.如图所示,a、b是有理数,则化简式子|a|+|b|=___________.|=___________.14.化简:-[-(-3.1)]=___________;-|-53415.-|-[+(-2017)]|的绝对值是___________.16.已知|x|+|y-3|=0,则x+y=___________.三、解答题17.重庆出租车司机小李,一天下午以江北机场为出发点,在南北走向的公路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13,+10,-7,-8,+12,+4,-5,+6,若出租车每千米的营业价格为3.5元,这天下午小李的营业额是多少?18.武汉百步亭小区交警每天都骑摩托车沿南北街来回巡逻,早晨从A地出发,晚上最后到达B地.假定向北为正方向,当天巡逻记录如下(单位:km):14,-9,18,-7,13,-6,10,-6,问:若摩托车每千米耗油0.1升,则一共需耗油多少升?19.某交警大队的一辆警车沿着一条南北方向的公路巡视,某天早晨从A 地出发,晚上到达B地,约定向北为正方向,当天行驶记录如下:(单位:千米)+8.3,-9.5,+7.1,-12,-4.2,+13,-6.8,-8.5问:(1)若该警车每千米耗油0.2升,那么该天共耗油多少升?(2)若油箱中有油12升,中途是否需要加油?如果需要,至少加多少升?请说明理由.20.已知|a|=2,|b|=2,|c|=4,且有理数a,b,c在数轴上的位置如图所示,试求a,b,c的值.21.已知a、b表示两个不同的有理数,且|a|=4,|b|=1,它们在数轴上的位置如图所示:(1)试确定a、b的数值;(2)表示a、b两数的点相距多远?,-|-12|,-(-5)放入恰当的集合中.22.将有理数-3,0,20,-1.25,13423.(1)对于式子|a|+12,当a等于什么值时,它的值最小?最小值是多少?(2)对于式子12-|a|,当a等于什么值时,它的值最大?最大值是多少?答案解析1.【答案】D【解析】A、+2的绝对值是2;B、-3的绝对值是3;C、+3的绝对值是3;D、-1的绝对值是1.D选项的绝对值最小.2.【答案】B【解析】因为互为相反数的两数和为0,所以a+1=0;因为0的绝对值是0,则|a+1|=|0|=0.3.【答案】A【解析】因为原点在点N与点P之间,所以原点的位置大约在O点,所以绝对值最大的数的点是M点.4.【答案】D【解】A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确.5.【答案】C【解析】A 、若m =-3,n =3,|m |=|n |,m <n ,故结论不成立;B 、若m =3,n =-4,m ≥n ,则|m |<|n |,故结论不成立;C 、若m <n <0,则|m |>|n |,故结论成立;D 、若m =-4,n =3,|m |>|n |,则m <n ,故结论不成立.6.【答案】A【解析】因为|-25|=25,|0|=0,|25|=25,|2.5|=2.5,所以-25,0,25,2.5这四个数中,绝对值最大的数是:-25.7.【答案】C【解析】因为|x |=|-5|,所以|x |=5,因为|±5|=5,所以x =±5.8.【答案】B【解析】绝对值等于它本身的数有0和正数,①错误;0的绝对值是0,②错误;4的相反数是-4,-4的绝对值是4,③正确;任何有理数的绝对值都不是负数,④正确.9.【答案】C【解析】由于绝对值具有非负性,要使式子2016+|a|的值最小,则|a|就要取最小值,由于|a|≥0,所以当|a|=0时,式子2016+|a|的值才能最小,所以当a=0时,式子2016+|a|的值最小.10.【答案】C【解析】这四个数中,绝对值最小的是e.11.【答案】①【解析】①|-0.002|=0.002,②|+0.015|=0.015,③|+0.02|=0.02,④|-0.018|=0.018,⑤|-0.008|=0.008,因为|-0.002|=0.002在所检查的零件中绝对值最小,所以它最接近标准长度.12.【答案】③④;③【解析】由表中的数值,计算它们的绝对值可得符合质量要求的是③④,它们中质量最好的是③.13.【答案】-a+b【解析】因为由数轴上a、b两点的位置可知,a<0,b>0,所以|a|+|b|=-a+b14.【答案】-3.1;-534【解析】-[-(-3.1)]=-3.1;-|-534|=-534.15.【答案】2017【解析】-|-[+(-2017)]|= -|-(-2017)|=-|2017|=-2017,-2017的绝对值是2017.16.【答案】3【解析】因为|x |≥0,|y -3|≥0,而|x |+|y -3|=0,所以|x |=0,|y -3|=0,所以x =0,y -3=0,解得:x =0,y =3,所以x +y =3.17.【答案】解:|+15|+|-2|+|+5|+|-13|+|+10|+|-7|+|-8|+|+12|+|+4|+|-5|+|+6|=87(千米),87×3.5=304.5(元). 答:这天下午小李的营业额是304.5元.18.【答案】解:|14|+|-9|+|18|+|-7|+|13|+|-6|+|10|+|-6|=83, 83×0.1=8.3(升)答:一共需耗油8.3升.19.【答案】解:(1)|8.3|+|-9.5|+|+7.1|+|-12|+|-4.2|+|+13|+|-6.8|+|-8.5|=69.4(千米),69.4×0.2=13.88(升).答:共耗油13.88升.(2)13.88-12=1.88(升).答:需要加油,需要加1.88升油.(2)耗油量与油箱中的油比较,可判断是否需要加油.20.【答案】解:因为|a|=2,|b|=2,|c|=4,所以a=±2,b=±2,c=±4,而a<0,b>0,c>0,所以a=-2,b=2,c=4.21.【答案】解:(1)由图可知a<0,b<0,因为|a|=4,|b|=1,所以a=-4,b=-1;(2)a、b两数的点相距4-1=3个单位长度.22.【答案】解:负数集合应填:-3,-1.25,-|-12|,整数集合应填:-3,0,20,-|-12|,-(-5),其中的-3,-|-12|要填在中间公共的位置.23.【答案】解:(1)因为|a|≥0,所以|a|+12≥12,所以当a等于0时,值最小,最小值是12;(2)因为|a|≥0,所以-|a|≤0,所以12-|a|≤12,所以当a等于0时,值最大,最大值是12.。
初一七年级数学绝对值练习题及答案解析完整版
初一七年级数学绝对值练习题及答案解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】知识点回顾:1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。
2、由绝对值的定义可知:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.3、两个数比较大小的方法:1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
2)一般地①正数大于0,0大于负数,正数大于负数。
②两个负数,绝对值大的反而小。
小试牛刀:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱=a,则a。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果x<y<0,那么︱x︱︱y︱。
7.︱x-1︱=3,则x =。
8.若︱x+3︱+︱y-4︱=0,则x+y=。
9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。
10.︱x︱<л,则整数x=。
11.已知︱x︱-︱y︱=2,且y=-4,则x=。
12.已知︱x︱=2,︱y︱=3,则x+y=。
13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。
14. 式子︱x+1︱的最小值是,这时,x值为。
15. 下列说法错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A3B2C1D017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()A -1B0C1D2拓展提高:18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。
初一七年级数学绝对值练习题及答案解析
初一(七年级)数学绝对值练习题及答案解析初一(七年级)数学上册绝对值同步练习题基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果x <y <0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱=3 ,则x=。
8.若︱x+3︱+︱y -4︱= 0,则x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则x = 。
12.已知︱x︱=2 ,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。
14.式子︱x +1 ︱的最小值是,这时,x值为。
15.下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子 a b a b c+++ + m -cd 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个 乒乓球称重情况如下表所示,分析下表,根据绝对值的定义初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。
初一(七年级)数学绝对值练习题及答案解析
初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果 x < y < 0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱ =3 ,则 x =。
8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则 x = 。
12.已知︱x︱=2 ,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。
14. 式子︱x +1 ︱的最小值是,这时,x值为。
15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-10专项练习(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.13的绝对值是( ) A .13- B .-3 C .13D .32.在这几个有理数中,负数的个数是( )A .5个B .4个C .3个D .2个 3.在﹣1,0,﹣2,1四个数中,绝对值最大的数是( )A .﹣1B .0C .﹣2D .14.在()2--,7--,1-+,23-,116- 中,负数有( ) A .1个B .2个C .3个D .4个5.12-=( ) A .2B .12C .-2D .12-6.12-的值是( ) A .2B .12C .-2D .12-7.2的绝对值是( ) A .2B .-2C .12D .12-8.-2018的绝对值是( ) A .2018B .-2018C .12018D .12018-9.已知5a =,则a 等于( ). A .5+ B .5- C .0 D .5+或5- 10.|﹣2013|等于( )A .﹣2013B .2013C .1D .011.(2011浙江省嘉兴,1,4分) -6的绝对值是( )A .-6B .6C .D .12.下列各组数中,互为相反数的是( ) A .2与12 B .-│-1│与1 C .1与-(-1) D .2与│-2│13.若|x| =5, |y| =3,且x < y ,则x -y 得( )A .-8B .-2C .-8或-2D .2或814.若一个数的绝对值是正数,这个数一定是( ) A .正数.......B .不为0的数C .负数.......D .任意一个有理数15.下列推理正确的是( ) A .若01a <<,则32a a a << B .若22a b =,则a b = C .若a a =,则0a > D .若,a b >则11ab<二、填空题1.3﹣2的绝对值是_____,相反数是_____. 2.113的绝对值是____.3.在-4,|-3.5|,0,4π,54,1,-23中,分数有___个. 4.﹣1.5的绝对值是_____;相反数是_____.5.若 a ,b 互为相反数,则 |a + b -1|= (________________) 6.如果|x|=3,那么x 是_____. 7.π-的绝对值是_______________;8.32-的相反数是__,12-的倒数是__,5-的绝对值为__.9.已知数,,a b c 的大小关系如图所示:则下列各式:①()0b a c ++->;②()0a b c --+>;③1a cca b b ++=;④0bc a ->;⑤2a b c b a c b --++-=-.其中正确的有_____(请填写编号).10.﹣2.5的绝对值是_____.11.a 的绝对值为5,那么a =_____________. 12.若2x -=,则x=____________13.﹣5倒数是________,+10绝对值是________,-3的相反数是____. 14.计算:47-=__________. 15.若|﹣1﹣2|=_____.三、解答题1.在数轴上表示下列各数,并把他们用“>”连接起来. 3.5a =,b 为3.5的相反数,12c =-,d 的绝对值等于32.如果2,a b =与3-是相反数,c 是绝对值最小的有理数,a c <,求,,a b c 的值.3.已知a ,b 互为相反数,c 是最大的负整数,d 是最小的正整数,m 的绝对值等于3.且m <d ,求c ﹣d π+(a+b )m 的值.4.用数轴上的点表示下列各数:4-,()1.5--,0,并写出它们的绝对值.5.把下列各数在数轴上表示出来,并用“<”连接 0,112,3-,()0.5--,34--,143⎛⎫+- ⎪⎝⎭.参考答案一、选择题1.C解析:根据:数轴上某个数与原点的距离叫做这个数的绝对值的定义. 详解:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点13到原点的距离是13,所以13的绝对值是13.故选C.点睛:考核知识点:绝对值的意义.理解绝对值的意义是关键.2.A详解:试题分析:∵11(),44,(3)3,44--=--=--+=-11(1)1,088822+-=---=--=-,∴-1,4--,(3)-+,1(1)2+-,08--是负数,共5个.考点:1.负数;2.相反数;3.绝对值.3.C解析:首先求出每个数的绝对值各是多少;然后根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,判断出绝对值最大的数是哪个即可.详解:解:|﹣1|=1,|0|=0,|﹣2|=2,|1|=1,∵2>1>0,∴在﹣1,0,﹣2,1四个数中,绝对值最大的数是﹣2.故选C.点睛:此题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 4.C解析:先化简各数,再找出所有的负数即可. 详解:()22--=,7--=-7,11-+=-,23-=23, 故负数有3个, 故选C. 点睛:此题考查了有理数的相关概念,化简各数是解答此题的关键. 5.B解析:根据绝对值的性质即可得出答案. 详解:负数的绝对值是它的相反数,所以12-=12,故选B . 点睛:本题考查了绝对值,熟练掌握绝对值的性质是解题的关键. 6.B解析:根据负数的绝对值等于它的相反数可得答案. 详解: 解:12-=12. 故选B . 点睛:此题主要考查了绝对值,关键是掌握绝对值的性质. 7.A解析:根据绝对值的含义和求法,可得正数的绝对值是它本身. 详解:解:2的绝对值是2.故选:A . 点睛:此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零. 8.A解析:根据负数的绝对值是它的相反数即可求解. 详解:解:20182018-= 故选:A . 点睛:此题主要考查求一个数的绝对值,正确掌握绝对值的概念是解题关键. 9.D解析:根据绝对值的性质计算即可; 详解:∵5a =,∴5a =或5a =-. 故选D . 点睛:本题主要考查了绝对值的求解,准确计算是解题的关键. 10.B解析:试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2013到原点的距离是2013,所以|﹣2013|=2013,故选B . 11.B解析:|-6|=6,-6的绝对值是6,选B 12.B解析:根据只有符号不同的两个数互为相反数,可得答案. 详解:解:A 、2与12不是互为相反数,不符合题意; B 、-|-1|=-1,与1互为相反数,符合题意;C、-(-1)=1,不是互为相反数,不符合题意;D、|-2|=2,不是互为相反数,不符合题意;故选B.点睛:本题考查了绝对值和相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.13.C解析:根据绝对值的性质求出x、y,再根据x<y判断出x、y的对应情况,然后相减即可得解;详解:∵|x|=5,|y|=3,±,∴5x=±,y=3∵x<y,∴∵x<y,∴x=-5,y=-3或x=-5,y=3;当x=-5,y=-3时,x-y=-5-(-3)=-2;当x=-5,y=3时,x-y=-5-3=-8;综上所述,x-y的值为-2或-8;故答案为:C.点睛:本题主要考查了绝对值,有理数的加法,有理数的减法,掌握绝对值,有理数的加法,有理数的减法是解题的关键.14.B解析:根据绝对值的性质可直接得出.详解:根据正数的绝对值是正数,负数的绝对值是它的相反数,0的绝对值是0.故选B.点睛:本题考查了绝对值的性质.解题的关键是熟练掌握正数、负数、0的绝对值的特点.15.A解析:原式各项利用绝对值的代数意义及有理数的乘法法则判断即可得到结果.详解:A. 若01a <<,则32a a a <<,故这个说法正确;B. 若22a b =,则a b =±,故这个说法错误;C. 若a a =,则0a ≥,故这个说法错误;D. 若,a b >则11ab<或11a b>,,故这个说法错误; 故选A. 点睛:此题考查绝对值、有理数大小比较,解题关键在于掌握绝对值的代数意义.二、填空题1.2﹣3 2﹣3解析:试题解析:3-2的绝对值是2-3,相反数是2-3, 故答案为2-3,2-3. 2.113解析:直接利用绝对值的定义可得113的绝对值是113. 3.3个解析:试题分析:根据分数的特点可得;、和是分数.考点:有理数的分类4.1.5 1.5解析:本题可以根据负数的绝对值为它的相反数,互为相反数的两个数和为0进行判断. 详解: 因为-1.5+1.5=0 所以﹣1.5相反数是1.5 则绝对值也是1.5; 故答案为1.5;1.5. 点睛:本题解题关键要清楚绝对值的含义与相反数的概念,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;互为相反数的两个数和为0.5.1解析:根据相反数的性质可知a+b=0,代入所求式子计算即可.详解:解:∵a,b 互为相反数,∴a+b=0,∴|a + b -1|=1,故答案为1.点睛:本题考查了相反数,注意:如果a b互为相反数,则a+b=0.6.3±解析:由于互为相反数的两个数的绝对值相等,由此即可求解.详解:∵|x|=3,∴x=±3.点睛:本题考查的知识点是绝对值和相反数的概念,解题关键是熟记绝对值的概念进行解答.7.π解析:根据绝对值的求法进行计算即可得到答案.详解:由题意可得ππ-=,故答案为π.点睛:本题考查求绝对值,解题的关键是掌握求绝对值的方法.8.322-5解析:根据相反数、倒数、绝对值的概念及性质解题.详解:解:32-的相反数是32,12-的倒数是2-,5-的绝对值为5.点睛:此题考查了相反数、倒数、绝对值的定义,注意区分概念,不要混淆.9.②③⑤解析:有数轴判断a 、b 、c 的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确的答案. 详解:由数轴知b<0<a<c ,|a|<|b|<|c|, ①b+a+(−c)<0,故原式错误; ②(−a)−b+c>0,故正确;③()1111ca b ca b ++=+-+=,故正确; ④bc −a<0,故原式错误;⑤2a b c b a c a b c b c a b --++-=---+-=-,故正确; 其中正确的有②③⑤. 点睛:此题考查数轴、绝对值,解题关键在于数轴结合绝对值的综合运用. 10.2.5解析:根据绝对值的含义和求法解答. 详解:解: 2.5-的绝对值是2.5, 故答案为2.5. 点睛:此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数 ﹣a ;③当a 是零时,a 的绝对值是零. 11.5±解析:根据绝对值的意义求解. 详解:解:∵a 的绝对值为5, ∴a=5或-5. 故答案为5或-5.点睛:本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.12.2±解析:根据绝对值的概念求解即可.详解:解:由题意知:2x -=或2-,∴2x =±,故答案为:2±.点睛:本题考查绝对值的概念,属于基础题,熟练掌握绝对值的概念是解决本题的关键.13.-15 10 3解析:分别根据相反数的定义、绝对值的及倒数的定义进行解答.详解:解:由题意可知:-5倒数是-15,+10绝对值是10,-3的相反数是3,故答案为:-15,10,3.点睛:本题考查的是倒数、相反数、绝对值的定义,熟练掌握基本定义是解答此题的关键.14.47解析:根据一个负数的绝对值等于它的相反数,即可得出正确答案.详解: 解:∵407-<, ∴47-4=7. 故应填47.点睛:本题主要考查绝对值计算的有关知识;熟练掌握0=00(0m m m m m m ⎧⎪=⎨⎪-⎩(>)()<)是正确解答本题的关键.15.3解析:根据绝对值的运算法则运算即可.详解:解:|﹣1﹣2|=|﹣3|=3,故答案为:3.点睛:本题主要考查了绝对值的定义,熟练运用运算法则是解答此题的关键.三、解答题1.数轴表示见解析,当3d =时,a d c b >>>;当3d =-时,a c d b >>>.解析:首先根据题意,分别得出13.5, 3.5,,32a b c d ==-=-=±,然后分情况在数轴上表示即可比较大小.详解:由题意,得13.5, 3.5,,32a b c d ==-=-=± 当3d =时,a d cb >>>;当3d =-时,a c db >>>.点睛:此题主要考查数轴的性质以及相反数、绝对值的性质,熟练掌握,即可解题.2.a=−2,b=3,c=0解析:利用绝对值的性质,以及互为相反数的定义,进而分析得出即可.详解:∵|a|=2,∴a=±2,∵b与−3互为相反数,∴b=3,∵c是绝对值最小的有理数,∴c=0,∵a<c,∴a=−2.综上所述:a=−2,b=3,c=0.点睛:此题主要考查了绝对值和相反数,正确把握相关定义是解题关键.3.2解析:由相反数的性质可得a+b,由条件可求得c、d的值,由绝对值的性质求得m,再代入计算即可.详解:解:由题意可知a+b=0,c=﹣1,d=1,m=±3,∵m<d,∴m=﹣3,∴c﹣md+(a+b)m=﹣1+3+0=2.点睛:本题主要考查有理数的混合运算,代数式求值,掌握互为相反数的两数和为0是解题的关键.4.答案见解析.解析:先在数轴上表示出各数,注意在数轴上标数时要用原数,然后写出各数的绝对值.详解:解:如图:-4的绝对值|-4|=4;()1.5--的绝对值|()1.5--|=1.5;0的绝对值是|0|=0.点睛:本题考查了数轴及绝对值的知识,解答本题的关键是在数轴上正确表示各数.5.在数轴上表示见解析,()331300.51442--<-<--<<--< 解析:先化简,再把各个数表示在数轴上,然后用“<”连接各数.详解:()0.50.5--=,3344--=-,114433⎛⎫+-=- ⎪⎝⎭, 所以0,112,3-,()0.5--,34--,143⎛⎫+- ⎪⎝⎭ 在数轴上表示如下:所以()331300.51442--<-<--<<--<. 点睛:本题考查了绝对值的化简、相反数的意义、数轴及有理数的大小比较,根据在数轴上表示的数,右边的总大于左边的,用“<”号从左往右依次把各数连接起来.。
七年级数学上册绝对值专项练习题
七年级数学上册绝对值专项练习题1.绝对值为4的数是()A.±4B.4C.﹣4D.2答案:A解析:绝对值为4的数有两个,即±4.2.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2答案:B解析:由题意得,a+b的绝对值为a+b,即a+b的值非负,所以a和b符号相同。
又因为|a|=5,|b|=7,所以a和b的值只能是±5和±7,且符号相同。
又因为a+b的值非负,所以a和b 的值只能是±5和±7中绝对值较大的那个数,即a和b的值分别为±5和±7.所以a﹣b的值为﹣2或﹣12.3.下面说法正确的是()A.绝对值最小的数是0B.绝对值相等的两个数相等C.﹣a一定是负数 D.有理数的绝对值一定是正数答案:B解析:A、C、D说法都是错误的。
B说法正确,因为绝对值相等的两个数要么相等,要么互为相反数。
4.下列式子中,正确的是()A。
B.﹣|﹣5|=5 C.|﹣5|=5 D。
答案:A、B、C解析:A、B、C都正确。
D不正确,因为绝对值只能是非负数。
5.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009B.﹣1008C.﹣2017D.﹣2016答案:B解析:a1=0,a2=﹣1,a3=﹣3,a4=﹣6,a5=﹣10,a6=﹣15…可得an=﹣n(n﹣1)/2,所以a2017=﹣2017×2016/2=﹣1008×2017.6.下列说法正确的个数是()①|a|一定是正数;②﹣a一定是负数;③﹣(﹣a)一定是正数;④一定是分数.A.1个B.2个C.3个D.4个答案:A解析:只有①正确,其他都是错误的。
②中a可能是0,③中a可能是0或正数,④中a可能是整数或0.所以正确的只有一个。
七年级数学上绝对值专项练题
七年级数学上绝对值专项练题一、绝对值专项练习题。
1. 求下列各数的绝对值:- 5- -3- 0- -(2)/(3)解析:- 根据绝对值的定义,正数的绝对值是它本身,所以|5| = 5。
- 负数的绝对值是它的相反数,所以| - 3|=3。
- 0的绝对值是0,即|0| = 0。
- |-(2)/(3)|=(2)/(3)。
2. 已知| a| = 3,求a的值。
解析:- 因为| a| = 3,根据绝对值的定义,绝对值等于3的数有两个,一个是3,另一个是-3,所以a = 3或a=-3。
3. 比较大小:| - 5|与4。
解析:- 先求出| - 5| = 5。
- 因为5>4,所以| - 5|>4。
4. 计算:| - 2|+|3|。
解析:- 先分别求出绝对值,| - 2| = 2,|3| = 3。
- 然后计算2 + 3=5。
5. 计算:| - 4|-| - 2|。
解析:- 先求绝对值,| - 4| = 4,| - 2| = 2。
- 再计算4-2 = 2。
6. 若| x - 1| = 0,求x的值。
解析:- 因为| x - 1| = 0,根据绝对值的性质,只有0的绝对值是0,所以x - 1 = 0,解得x = 1。
7. 已知| a|=| - 2|,求a的值。
解析:- 先求出| - 2| = 2。
- 因为| a| = 2,所以a = 2或a=-2。
8. 计算:| - 3|×| - 2|。
解析:- 先求绝对值,| - 3| = 3,| - 2| = 2。
- 然后计算3×2 = 6。
9. 计算:(| - 6|)/(|2|)。
解析:- 先求绝对值,| - 6| = 6,|2| = 2。
- 再计算(6)/(2)=3。
10. 若| a| = 5,| b| = 3,且a < b,求a、b的值。
解析:- 因为| a| = 5,所以a = 5或a=-5;因为| b| = 3,所以b = 3或b=-3。
七年级数学上--绝对值练习及提高习题
七年级数学上 --有理数--绝对值练习一一、填空题:1、│32│= ,│-32│= 。
2、+│+5│= ,+│-5│= ,-│+5│= ,-│-5│= 。
3、│0│= ,+│-0│= ,-│0│= 。
4、绝对值是6 21,符号是“-”的数是 ,符号是“+”的数是 。
5、-0.02的绝对值的相反数是 ,相反数的绝对值是 。
6、绝对值小于3.1的所有非负整数为 。
7、绝对值大于23小于83的整数为 。
8、计算2005(2004|20052004|)-+-的结果是 。
9、当x= 时,式子||52x -的值为零。
10、若a ,b 互为相反数,m 的绝对值为2,则a ba b m+++= 。
11、已知||||2x y +=,且,x y 为整数,则||x y +的值为 。
12、若|8||5|0a b -+-=,则a b -的值是 。
13、若|3|a -与|26|b -互为相反数,则2a b +的值是 。
14、若||3x =,||2y =,且x y >,求x y +的值是 。
15、如图,化简:2|2||2|a b +-+-= 。
16、已知|(2)||3|||0x y z +-+++=,则x y z ++= 。
17、如图, 则||||||||a b a b b a --++-= 。
18、已知||a b a b -=-,且||2009a =,||2010b =,则a b -的值为 。
19、若||5a =,2b =-,且0ab >,则a b += 。
20、若0ab <,求||||||a b ab a b ab ++的值为 。
21、绝对值不大于2005的所有整数的和是 ,积是 。
22、若2|3|(2)0m n -++=,则2m n +的值为 。
23、如果0m >,0n <,||m n <,那么m ,n ,-m ,-n 的大小关系是 。
24、已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+= .25、已知5=x ,1=y ,那么=+--y x y x _________.26、非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组. 二、选择题27.a 表示一个有理数,那么.( )A.∣a ∣是正数B.-a 是负数C.-∣a ∣是负数D.∣a ∣不是负数 28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数 29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-1 30. 设m,n 是有理数,要使∣m ∣+∣n ∣=0,则m,n 的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零 31、设a 为有理数,则2005||a -的值是( ) A. 正数 B. 负数 C. 非正数 D. 非负数 32、若一个数的绝对值是正数,则这个数是( )A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数 33、若||5x =,||3y =,则x y +等于( )A. 8B. 8±C. 8和2D. 8±和2± 34、如果0a >,且||||a b >,那么a b -的值是( )A. 正数B. 负数C. 正数或负数D. 0 35、已知0m >,0n <,则m 与n 的差是( )A. ||||m n -B. (||||)m n --C. ||||m n +D. (||||)m n -+ 36、下列等式成立的是( )A .||||0a a +-= B. 0a a --= C. ||||0a a --= D. ||0a a --= 37、如果||0m n -=,则m ,n 的关系( )A. 互为相反数B. ||m n =±且0n ≥C. 相等且都不小于0D. m 是n 的绝对值 38、已知||3x =,||2y =,且0x y ⋅<,则x y +的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或- 39、使||10a a+=成立的条件是( ) A. 0a > B. 0a < C. 1a = D. 1a =±40、c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能值为( ) A .0 B . 1或1- C .2或2- D .0或2- 三、解答题:41.化简:(1)1+∣-31∣= (2)∣-3.2∣-∣+2.3∣=(3)-(-│-252│)= (4)-│-(+3.3│)=(5)-│+(-6)│ = (6)-(-|-2|)=(7)|43211-|= (8)||56||65-÷ =(9)-(|-4.2|×|+|75)= (10)|-2|-|+1|+|0|= 42.(1)若|a+2|+|b-1|=0,则a= b= ;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( ) A.-n>m>-m>n B.m>n>-m>-n C.-n>m>n>-m D.n>m>-n>-m2、绝对值等于其相反数的数一定是( ) A .负数 B .正数 C .负数或零 D .正数或零3、下列说法中正确的是( ) A .一定是负数B .只有两个数相等时它们的绝对值才相等C .若则与互为相反数 D .若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖 〗A .0个B .1个C .2个D .3个5、如果,则的取值范围是〖 〗 A .>O B .≥O C .≤O D .<O6、绝对值不大于11.1的整数有〖 〗 A .11个 B .12个 C .22个 D .23个7、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在 8、在有理数中,绝对值等于它本身的数有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 9、下列数中,互为相反数的是( ) A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 10、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数11、│a │= -a,a 一定是( )A 、正数 B 、负数 C 、非正数 D 、非负数12、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
七年级数学上册绝对值综合提高练习题
绝对值综合提高练习题一、选择题1、绝对值等于它本身的数有()A、0个B、1个C、2个D、无数个2、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数3、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()b aA、a>|b|B、a<bC、|a|>|b|D、|a|<|b|4、如果,则的取值范围是5()A.>O B.≥OC .≤OD .<O5、下列各数中,互为相反数的是( )A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和326、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数 7、│a│= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数 8、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
9、-│a│= -3.2,则a 是( )A 、3.2B 、-3.2C 、±3.2D 、以上都不对 10、如果a a 22-=-,则a 的取值范围是 ( )A .a >OB .a ≥OC .a ≤OD .a <O 11、若│a│=8,│b│=5,且a+b>0,那么a-b 的值是( )A.3或13B.13或-13C.3或-3D.-3或-13 12、a<0时,化简||3a a a+结果为( ) A.23B.0C.-1D.-2a 13、如果a a 22-=-,则a 的取值范围是 ( )A .a >OB .a ≥OC .a ≤OD .a <O如图,有理数b a 、在数轴上的位置如图所示,则在b a +,a b 2-,a b -,b a -,2+a ,4--b 中,负数共有( )A . 1个B .2个C .3个D .4个已知有理数c b a 、、在数轴上的对应位置如图所示: 则b a c a c -+-+-1化简后的结果是 .若b a 、为有理数,那么,下列判断中:(1)若b a =,则一定有b a =; (2)若b a >,则一定有b a >; (3)若b a >,则一定有b a >;(4)若b a =,则一定有22)(b a -=.正确的是 (填序号) .已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和 (江苏省竞赛题)-232ba1-1已知a 是任意有理数,则a a --的值是( ).A .必大于零B .必小于零C 必不大于零D .必不小于零 若1++b a 与2)1(+-b a 互为相反数,则a 与b 的大小关系是( ).A .b a >B .b a =C .b a <D .b a ≥二、判断题1、-|a|=|a|; ( )2、|-a|=|a|; ( )3、-|a|=|-a|; ( )4、若|a|=|b|,则a =b ; ( )5、若a =b ,则|a|=|b|; ( )6、若|a|>|b|,则a >b ;( )7、若a >b ,则|a|>|b|;( )8、若a >b ,则|b-a|=a-b .( )9、如果一个数的相反数是它本身,那么这个数是0. ( ) 10、如果一个数的倒数是它本身,那么这个数是1和0. ( ) 11、如果一个数的绝对值是它本身,那么这个数是0或1. ( ) 12、如果说“一个数的绝对值是负数”,那么这句话是错的. ( ) 13、如果一个数的绝对值是它的相反数,那么这个数是负数. ( ) 14、若|a|=|b|,则a=b 。
绝对值(基础篇)(专项练习)七年级数学上册基础知识专项讲练(苏科版)
绝对值(基础篇)(专项练习)一、单选题【知识点一】绝对值的意义 1.1||5-的值是( )A .5-B .15-C .15D .52.数轴上表示-3的点到原点的距离是( ) A .-3B .3C 3D .133.在15-,0,9-,(6)--四个数中,是正数的有( ) A .0个B .1个C .2个D .3个【知识点二】求一个数的绝对值 4.|﹣2|的相反数为( ) A .2B .﹣2C .12D .12-5.下列各组数中相等的是()A .2-与()2--B .2-与2-C .2-与2--D .2-与26.在数222018,0,0.2,, 2.010*******----⋅⋅⋅中,非正数有( ) A .1个B .2个C .3个D .4个【知识点三】化简绝对值7.如图,点A ,B ,C 在数轴上,若B ,C 两点表示的数互为相反数,点A 表示的数为a ,则|a ﹣1|的结果为( )A .a ﹣1B .1﹣aC .﹣a ﹣1D .无法确定8.设x 为一个有理数,若x x =,则x 必定是( ) A .负数B .正数C .非负数D .零9.如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若6a b -=,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【知识点四】绝对值非负性的应用10.若0a b +=,则a 与b 的大小关系是( ) A .a 与b 不相等 B .a 与b 互为相反数 C .a 与b 互为倒数 D .0a b11.设x 为有理数,若||x x >,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数 12.若()33a a -=--,则a 的取值范围是 ( ) A .3a ≥B .3a >C .3a ≤D .3a <【知识点五】绝对值方程13.数轴上点A 和点B 表示的数分别为-8和4,把点B 向左移动x 个单位长度,可以使点A 到点B 的距离是2,则x 的值等于( )A .10B .6或10C .16D .14或1014.数轴上表示﹣1的点到表示x 的距离为3,则x 表示的数为( ) A .2 B .﹣2C .﹣4D .2或﹣415.已知1|3|a=-,则a 的值是( ) A .3B .-3C .13D .13+或13-【知识点六】绝对值的其他应用16.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,一批零件超过规定长度记为正数,短于规定长度记为负数,越接近规定长度质量越好.检查其中四个,结果如下:第一个为0.05mm ,第二个为﹣0.02mm ,第三个为﹣0.04mm ,第四个为0.03mm ,则这四个零件中质量最好的是( )A .第一个B .第二个C .第三个D .第四个17.若有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .b a >-B .a b >-C .ab b <D .a b <18.比赛用乒乓球的质量有严格的规定,但实际生产的乒乓球的质量可能会有一些偏差.以下检验记录(“+”表示超出标准质量,“-”表示不足标准质量)中,质量最接近标准质量乒乓球是( )编号 1 2 3 4 偏差/g +0.01 -0.02-0.03+0.04 A .1号B .2号C .3号D .4号【知识点七】有理数大小比较19.下面的实数比较大小正确的是( ). A .03<-B .23<-C .23-<-D .13-<20.下表是2020年部分国家的GDP 比上一年的增长率,其中增长率最低的国家是( ). 中国美国 埃及 日本 2.3%3.49%-3.57%5.81%-A .中国B .美国C .埃及D .日本21.已知a 、b 所表示的数如图所示,下列结论正确的有( )个①a >0;①b <a ;①b <a ;①11a a +=--;①2b +>2a -- A .1B .2C .3D .4【知识点八】有理数大小比较的实际应用22.2021年1月某日零点,北京、上海、深圳、长春的气温分别是﹣4①、5①、20①、﹣18①,当时这四个城市中,气温最低的是( )A .北京B .上海C .深圳D .长春23.几种气体的液化温度(标准大气压)如下表:其中液化温度最低的气体是( ) 气体氢气氮气氦气氧气液化温度① ﹣253 ﹣195.8 ﹣268 -183A .氦气B .氮气C .氢气D .氧气24.已知a a =-,且1a a>,若数轴上的四个点M ,N ,P ,Q 中的一个能表示数a ,则这个点是( )A .MB .NC .PD .Q二、填空题【知识点一】绝对值的意义 25.若5x =,则x =______.26.当式子23b -+取最小值时,b =______,最小值是______. 27.绝对值等于它自己的数是________. 【知识点二】求一个数的绝对值28.数轴上到原点的距离等于8的点表示的数是______. 29.计算:3.14π-=_______(结果保留π).30.(1)如果一个数的绝对值等于2021,那么这个数是______; (2)若217x +-=,则x =______. 【知识点三】化简绝对值31.已知有理数 a 、b 表示的点在数轴上的位置如图所示,化简|a +1|+|1-b |=____.32.有理数a ,b ,c 在数轴上的位置如图所示,则|a +c |-|a -b |+|b +c |=__________.33.若|a ﹣3|=3﹣a ,则a 的取值范围是______. 【知识点四】绝对值非负性的应用 34.若2a b =-+,则ab =______.35.若有理数,m n 满足640m n ++-=,则mn =_____. 36.当|m +7|-5的值最小时,m =_____. 【知识点五】绝对值方程 37.若2x =,则x =_________.38.在数轴上,与原点的距离是3个单位长度的点表示的数是 _____. 39.若|x +3|﹣|x ﹣5|=8,则x 的取值范围是 ______. 【知识点六】绝对值的其他应用40.数轴上点A 表示的数是x ,点B 表示的数是2,则|x -2|表示A ,B 点两间的距离,若记|5||3|y x x =-++,则y 的最小值为__________.41.若9a,则a =__.42.绝对值小于227的整数..有_______________. 【知识点七】有理数大小比较43.用“>、=、<”符号填空:45-______78-.44.比较大小:215--____________ 1.4--();45.比较大小:如果0x y <<,那么x ______y . 【知识点八】有理数大小比较的实际应用 46.32-与它的相反数之间的整数有_______个.47.已知0a >,0b <,0a b +>,则a ,b ,a -,b -由小到大的排序是________. 48.对于有理数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=_____;①[﹣7.9]=_____.三、解答题49.将下列各数填在的集合里.-3.8,-10,4.3,16,-|-35|,-15,0.整数集合:{ ... } 分数集合:{ ...}正数集合:{ ... } 负数集合:{ ...}50.某公司8天内货品进出仓库的吨数记录有10次,数据如下:(“+”表示进库,“-”表示出库,单位:吨)38+,25-,36-,55+,45-,47+,32+,54-,43+,23-.(1)经过这8天,仓库里的货品在增加了还是减少了?增加或减少了多少?(2)如果进出库的装卸费都是8元/吨,那么求出这8天中进出货品需要付的装卸费是多少?51.(1)画出数轴并表示下列有理数:﹣2,﹣2.5,0,92,﹣13,3,并用“<”号连接起来.(2)已知:有理数a 、b 、c 在数轴上的位置如图所示,化简|c |﹣|a |+|﹣b |+|﹣a |.52.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,且a 、b 满足23(9)0a b ++-=. (1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)点P 、Q 为数轴上的两个动点,点P 从点A 出发以每秒3个单位长度的速度沿数轴向右匀速运动,点Q 同时从点B 出发以每秒2个单位长度的速度沿数轴向左匀速运动.设运动时间为t (t >0)秒.①写出点P 表示的数是 ,点Q 表示的数是 (用含t 的式子表示); ①若AP +BQ =2PQ ,求时间t 的值?53.我们知道,||a 表示数a 到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么A ,B 两点之间的距离为||AB a b =-,利用此结论,回答以下问题:(1)数轴上表示2和5的两点之间的距离是_______;数轴上表示-2和-5的两点之间的距离是_______;数轴上表示1和-3的两点之间的距离是_______;(2)数轴上表示x 和-1的两点A ,B 之间的距离是______,如果||2AB =,那么x 的值为______;(3)求|1||2|x x +++的最小值是_______.参考答案1.C 【分析】首先思考绝对值的性质,再根据负数的绝对值等于它的相反数的得出答案. 解:11||55-=.故选:C.【点拨】本题主要考查了绝对值的判断,掌握绝对值的性质是解题的关键.即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.B【分析】由题意可知表示-3的点与原点的距离是-3的绝对值以此分析即可.解:在数轴上表示-3的点与原点的距离是|-3|=3.故选:B.【点拨】本题考查有理数与数轴,熟记数轴的特点以及绝对值的几何意义是解题的关键.3.C【分析】根据绝对值的意义,多重符号的化简,计算判断即可;解:-15是负数;0不是正数也不是负数;|-9|=9是正数;-(-6)=6是正数;①正数有两个,故选:C.【点拨】本题考查了正负数的判断:需将符号化为最简,即数字前最多只有一个符号时,看是否有负号“-”,如果有“-”就是负数,否则是正数;绝对值(数轴上表示数a的点与原点的距离,记作│a│;正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数);多重符号的化简:若一个数前有多重符号,则看该数前面的符号中,符号“-”的个数来决定,奇数个符号则该数为负数,偶数个符号则该数为正数;掌握相关概念是解题关键.4.B【分析】先根据绝对值的意义求出﹣2的绝对值,再根据相反数的定义写出它的相反数即可.解:|﹣2|=2,2的相反数是﹣2,所以|﹣2|的相反数是﹣2故选:B.【点拨】本题考查求绝对值,求相反数,熟练掌握这些知识点是解题关键.5.C【分析】根据相反数与绝对值的意义,先化简各数,然后比较即可求解 解:A. ()2--2=与2-不相等,故该选项不符合题意;B. 2-=2与2-不相等,故该选项不符合题意;C. 2--2=-与2-相等,故该选项符合题意;D. 22=与2-不相等,故该选项不符合题意; 故选C【点拨】本题考查了相反数与绝对值的意义,掌握相反数与绝对值的意义是解题的关键. 6.D 【分析】非正数是指负数和零,根据非正数的意义即可完成解答. 解:非正数有:−2018,0,2--=-2, 2.010010001-这四个数故选:D【点拨】本题考查了非正数的含义,即负数和零,绝对值的计算,理解非正数的意义是关键.7.B 【分析】由B ,C 两点表示的数互为相反数,先确定原点,再根据a 的范围化简绝对值. 解:①B ,C 两点表示的数互为相反数,①B 、C 到原点的距离相等,原点位置如图,由图可知:点A 在原点左侧,a <0, ①|a ﹣1|=(1)1a a --=-. 故选:B .【点拨】本题考查数轴上点表示的数和化简绝对值,解题的关键是确定原点位置. 8.C 【分析】根据绝对值的性质即可得答案.解:①x x =,①0x ≥,①x 必定是非负数. 故选:C .【点拨】本题主要考查绝对值的性质,需要熟练掌握并灵活运用. 9.A 【分析】根据相反数的性质,由a +b =0,得a <0,b >0,b =﹣a ,故a b -=b +(﹣a )=6.进而推断出a =﹣3.解:①a +b =0,①a =﹣b ,即a 与b 互为相反数, 又①|a ﹣b |=6, ①b ﹣a =6, ①2b =6, ①b =3,①a =﹣3,即点A 表示的数为﹣3. 故选A .【点拨】本题主要考查相反数的性质,熟练掌握相反数的性质是解决本题的关键. 10.D 【分析】根据绝对值的非负性求解即可得. 解:①0a b +=且0a ≥,0b ≥,①0a b ==, ①0a b , 故选:D .【点拨】题目主要考查绝对值的非负性,理解绝对值的非负性是解题关键. 11.B 【分析】根据0x ≥,若要满足||x x >,则0x <,由此即可得到答案解:根据绝对值的非负性可知:0x ≥,若要满足||x x >,则0x <,即x 必为负数. 故选B .【点拨】本题主要考查了绝对值的非负性,解题的关键在于能够熟练掌握绝对值的非负性.12.C【分析】根据绝对值的性质得到30a -≤,计算即可.解:①()33a a -=--,①30a -≤,①3a ≤,故选:C .【点拨】此题考查绝对值的性质:任意数的绝对值都是非负数,熟记性质是解题的关键. 13.D【分析】点B 向左移动x 个单位长度后对应的数为:4x -,再利用2,AB = 列绝对值方程,再解方程即可.解: 点B 向左移动x 个单位长度后对应的数为:4x -, 48122,AB x x122x 或122,x解得:10x =或14,x =故选D【点拨】本题考查的是数轴上两点之间的距离,绝对值方程的应用,掌握“数轴上两点之间的距离公式”是解本题的关键.14.D【分析】根据数轴上两点的距离得:|x ﹣(﹣1)|=3,解方程可得答案.解:由题意得:|x ﹣(﹣1)|=3,①|x +1|=3,①x +1=±3,①x =2或﹣4.故选:D .【点拨】本题考查了绝对值的意义,理解数轴上两点之间的距离的意义是解题的关键.15.D 【分析】先计算出3-,然后根据绝对值的定义求解即可. 解:①133a =-=, ①13a=±, ①13a =±, 故选:D .【点拨】本题考查绝对值方程的求解,理解绝对值的定义是解题关键.16.B【分析】此题是理解误差的大小,无论正负,绝对值最小的零件质量最好,反之,绝对值最大的零件质量最差.解:∵|﹣0.02|<|0.03|<|﹣0.04|<|0.05|,∴质量最好的零件是第二个.故选:B .【点拨】此题考查的知识点是正数负数和绝对值,明确绝对值最大的零件与规定长度偏差最大是解题的关键.17.C【分析】由题意知212a b <-<<<,进而判断各选项即可.解:①212a b <-<<<①2a b ->>故选项A 错误,不符合要求;2b a ->->故选项B 错误,不符合要求;0ab b <<故选项C 正确,符合要求;2a b >>故选项D 错误,不符合要求;故选C .【点拨】本题考查了有理数的大小比较.解题的关键在于确定有理数的取值范围. 18.A【分析】根据绝对值最小的与标准的质量的差距最小,可得答案.解:|0.01|0.01+=,|0.02|0.02-=,|0.03|0.03-=,|0.04|0.04+=,0.040.030.020.01>>>,绝对值越小越接近标准.所以最接近标准质量是1号乒乓球.故选:A .【点拨】本题考查了绝对值,解题的关键是掌握利用了绝对值越小越接近标准. 19.D【分析】有理数大小比较的法则:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小,据此逐项判断即可.解:①0>-3,①选项A 不符合题意;①2>-3,①选项B 不符合题意;①-2>-3,①选项C 不符合题意;①-1<3,①选项D 符合题意.故选:D .【点拨】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小.20.D【分析】根据正负数的意义以及有理数大小的比较可知:日本的增长率最低.解:由题意可知: 5.81 3.49 2.3 3.57%<%<%<%--,①增长率最低的国家是日本,故选:D .【点拨】本题考查正负数的意义和有理数大小的比较,解题的关键是掌握正负数的意义,会比较有理数大小.21.C【分析】根据数轴和绝对值的定义以及有理数的大小比较的方法分别对每一项进行分析即可. 解:如图所示:b <-2<a <-1<0<1,|b |>|a |,①结论①错误;结论①正确;结论①错误;①a +1<0①|a +1|=-a -1,结论①正确;|2+b |表示b 与-2之间的距离,|-2-a |表示a 与-2的距离,结合图意可得①|2+b |>|-2-a |,故结论①正确.故选:C .【点拨】此题主要考查了有理数的比较大小,以及数轴和绝对值的性质,解题的关键是正确去掉绝对值.22.D【分析】根据有理数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小,进行求解即可. 解:①18=1844->-=,①184-<-①20>5>﹣4>﹣18,①-18最小,①最低气温是-18①,即长春的温度最低,故选D .【点拨】本题主要考查了有理数比较大小,熟知有理数比较大小的法则是解题的关键.23.A【分析】先液化温度从低到高排序,然后找出最低温度即可.解:①-268①<-253①<-195.8①<-183①,①液化温度最低的气体是氦气.故选A .【点拨】本题考查有理数比较大小,掌握比较有理数大小的方法是解题关键. 24.B【分析】 根据题意及数轴可直接进行求解.解:由a a =-,且1a a>,可得10a -<<,由数轴可知a 表示的数为点N , 故选B .【点拨】本题主要考查绝对值、数轴及有理数的大小比较,熟练掌握数轴、绝对值的意义及有理数的大小比较是解题的关键.25.5或-5【分析】由绝对值的意义即可求得,绝对值意义:在数轴上,一个数到原点的距离叫做该数的绝对值.解:5x =表示到原点距离等于5的数,数轴上到原点距离为5的数有两个:5或者-5, ①当5x =时,x =5或者-5.故答案为:5或-5.【点拨】本题考查了绝对值的意义,若a 为正数,则满足|x |=a 的x 有两个值±a ,掌握绝对值意义是解题关键.26. 2 3【分析】利用绝对值的非负性即可解答;解:①|b -2|≥0,①当b =2时,23b -+取得最小值3,故答案为:2,3;【点拨】本题考查了绝对值的性质;掌握其性质是解题关键.27.非负数【分析】根据0和正数的绝对值等于本身,负数的绝对值等于它的相反数,进而得出答案. 解:绝对值等于它自己的数是非负数.故答案为:非负数.【点拨】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.28.8或-8【分析】设这个点表示的数为a ,根据数轴上到原点的距离等于8,可得8a = ,求解即可得出答案.解:设这个点表示的数为a数轴上到原点的距离等于8∴ 8a =解得 8a = 或8-故答案为:8或-8.【点拨】本题考查了绝对值的几何意义,即一般地,数轴上表示a 的点到原点的距离叫做数a 的绝对值.29. 3.14π-##3.14π-【分析】根据求绝对值法则即可求解.解:①3.14π-<0,①3.14π-=-(3.14π-)= 3.14π-,故答案是: 3.14π-.【点拨】本题主要考查绝对值饿的意义,掌握负数的绝对值等于它的相反数是解题的关键.30. 2021或2021- 6或10-【分析】(1)由绝对值的含义可直接得到答案; (2)把217x +-=化为2+8,x = 结合88,±= 从而可得答案. 解:(1)一个数的绝对值等于2021,∴ 这个数的2021或2021.-(2)由|2|17x +-=得,|2|8x +=.即28x +=或28x +=-,所以6x =或10-故答案为:(1)2021或2021.-(2)6或10-【点拨】本题考查的是绝对值的含义,解绝对值方程,掌握绝对值的方程的解法是解题的关键.31.a +b【分析】根据图示,可知有理数a ,b 的取值范围b >1, a >-1,然后根据它们的取值范围去绝对值并求出原式的值.解:根据图示知:b >1,a >-1,①|a +1|+|1-b |=a +1+b -1=a +b .故答案为:a +b .【点拨】本题主要考查了关于数轴的知识以及有理数大小的比较,正确去掉绝对值是解题的关键.32.22a c +【分析】根据数轴上点的位置确定a +c ,a -b ,b +c 的符号,再根据绝对值的性质化简即可. 解:①c >b >0>a ,且|c |>|a |,①a +c >0,a -b <0,b +c >0,①|a +c |-|a -b |+|b +c |=a +c +a -b +b +c=2a +2c ,故答案为:2a +2c .【点拨】本题主要考查了绝对值的化简,关键是要根据数轴上各点的位置确定各式子的符号.33.a ≤3【分析】根据|a |=﹣a 时,a ≤0,因此|a ﹣3|=3﹣a ,则a ﹣3≤0,即可求得a 的取值范围. 解:①|a ﹣3|=3﹣a ,①a ﹣3≤0,解得:a ≤3.故答案为:3a ≤【点拨】此题考查绝对值性质,熟知绝对值的性质即可解答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.34.0【分析】根据非负性求出a ,b 的值,然后代入求值即可. 解:20a b ++=,0,20a b ∴=+=,0,2a b ∴==-,()020ab ∴=⨯-=,故答案为:0.【点拨】本题考查了绝对值的非负性,熟练掌握绝对值的非负性是解决本题的关键.. 35.-24【分析】根据绝对值的非负性,解得m 、n 的值,再计算mn .解:由题意得,6=04=0m n +-,6,4∴=-=m n∴=-⨯-64=24mn故答案为:-24.【点拨】本题考查有理数的乘法,涉及绝对值的非负性,是重要考点,掌握相关知识是解题关键.36.﹣7【分析】根据绝对值的非负性以及相反数的意义分析求解即可.解:①| m+7|≥0,①|m+7|﹣5≥﹣5,①当|m+7|=0,即m+7=0时,|m+7|-5的值取得最小值,最小值为﹣5,①m+7=0,①m=﹣7,故答案为:﹣7.【点拨】本题考查绝对值的非负性以及相反数的意义,理解|a|≥0是解题关键.37.2±【分析】根据绝对值的意义可直接进行求解.解:绝对值是2的数是2±,x=±,①2故答案为:2±.【点拨】本题主要考查了绝对值的定义,正确理解其定义是解题的关键.38.3±【分析】设这个数为x,根据绝对值的几何意义得出|x|=3,进而可求得答案.解:设这个数为x,由题意知|x|=3,解得:x=±3,故答案为:±3.【点拨】本题考查绝对值的几何意义、解绝对值方程,熟知绝对值的几何意义是数轴上表示的点到原点的距离是解答的关键.39.x ≥5【分析】根据绝对值的性质,要化简绝对值,可以就x ≥5,3<x <5,x ≤3三种情况进行分析. 解:①当x ≥5时,原式可化为:x +3-(x ﹣5)=8,恒成立;①当3<x <5时,原式可化为:x +3+x -5=8,此时x =5,不在3<x <5之间舍去; ①当x ≤3时,原式可化为:﹣x -3+x -5=8,即-8=8,等式不成立,无解.综上所述,则x ≥5.故答案为x ≥5.【点拨】此题主要是能够根据x 的取值范围进行分情况化简绝对值,然后根据等式是否成立进行判断.40.8【分析】进行分类,去绝对值符号,然后研究最小值.解:当3x ≤-时,(5)(3)22y x x x =---+=-+,当3x =-,8y =为最小值;当35x -<<时,(5)(3)8y x x =--++=,当5x ≥时,(5)(3)22y x x x =-++=-,当5x =,8y =为最小值;故y 的最小值为8,故答案为:8.【点拨】本题考查了去绝对值符号、数轴上两点间的距离,解题的关键是去绝对值符号. 41.±9【分析】 根据绝对值的代数意义进行解答即可. 解:①9a ,①|a |=9,①a =±9.故答案为:±9.【点拨】本题主要考查了绝对值,熟练掌握绝对值的代数意义是解答此题的关键.42.-3,-2,-1,0,1,2,3【分析】 先将227化为137,再根据绝对值的意义即可求解. 解:因为221=377, 所以绝对值小于227的整数有-3,-2,-1,0,1,2,3. 故答案为:-3,-2,-1,0,1,2,3【点拨】本题考查了绝对值的意义,能准确估算出227的大小,熟知绝对值的意义是解题关键.43.>【分析】根据两个负数比较大小其绝对值越大值越小进行求解即可. 解:①7735443288405540-==>-==, ①7485-<-, 故答案为:>.【点拨】本题主要考查了有理数比较大小,熟知有理数比较大小的方法是解题的关键.44.<【分析】分别化简绝对值和多重符号,进而根据正数大于负数即可判断大小. 解:()2211 1.4 1.455--=---=, 1.4215∴<----() 故答案为:<【点拨】本题考查了有理数的大小比较,化简绝对值和多重符号,掌握以上知识是解题的关键.45.>【分析】根据两个负数大小的比较方法,两个负数比较大小时,绝对值大的反而小,绝对值小的反而大,据此即可解答.解:①0x y <<, ①>x y ,故答案为:>.【点拨】本题考查了两个负数大小的比较方法,理解和掌握两个负数大小的比较方法是解决本题的关键.46.3【分析】写出32-的相反数,然后找到32-与它的相反数之间的整数即可得到答案. 解:32-的相反数为32, 32-与32之间的整数为1-,0,1共3个, 故答案为:3.【点拨】本题考查了相反数的定义,有理数的大小比较法则的应用,难度不大.47.−a <b <−b <a【分析】先根据a >0,b <0,a +b <0可判断出−b >a ,b <−a <0,再根据有理数比较大小的法则进行比较即可.解:①a >0,b <0,a +b >0,①|a|>|b|,①a >−b >0,−a <b <0①−a <b <−b <a .故答案为:−a <b <−b <a .【点拨】本题考查的是有理数比较大小的法则,能根据已知条件判断出−b >a ,b <−a <0是解答此题的关键.48. 8 -8解:试题分析:根据规定[x]表示不大于x 的最大整数,可得答案.解:① [8.9]=8;①[﹣7.9]=﹣8;故答案为8,﹣8.考点:有理数大小比较.49.见分析【分析】根据整数,分数,正数,负数的意义进行判断即可.解:-|-35|=-35,整数集合:{-10,16,-15,0.... }分数集合:{-3.8,4.3,-|-35 |,...}正数集合:{4.3,16,... }负数集合:{-3.8,-10,-|-35|,-15,...} .【点拨】本题考查了绝对值、有理数的分类,理解绝对值的意义是正确解答的前提.50.(1)仓库里的货品增加了32吨(2)3184元【分析】(1)将每次的进出库的吨数记录相加即可得8天的总进出库的吨数.(2)因为进出库的装卸费都是8元/吨,故将每天进出库的吨数记录的绝对值相加可得十次装卸的总吨数,所得装卸总吨数再乘以装卸费即为总装卸费.(1)3825365545473254432332+--+-++-+-=(吨),①320>,①仓库里的货品增加了32吨.(2)38253655454732544323398+++++++++=(吨),39883184⨯=(元)【点拨】本题考查了正负数和绝对值的应用,搞清楚吨数变化和装卸吨数两个概念是解题的关键.51.(1)数轴上表示见分析,192.520332-<-<-<<<;(2)c﹣b【分析】(1)先在数轴上表示出各个数,再比较大小即可;(2)根据数轴得出b <a <0<c ,再去掉绝对值符号,再合并同类项即可.解:(1),192.520332-<-<-<<<; (2)从数轴可知:b <a <0<c ,所以|c |﹣|a |+|﹣b |+|﹣a |=c ﹣(﹣a )+(﹣b )+(﹣a )=c +a ﹣b ﹣a=c ﹣b .【点拨】本题考查了在数轴上表示有理数,借助数轴比较有理数的大小,根据数轴上的点表示的数确定数的符号,化简绝对值式子;理解数轴的意义及掌握绝对值的含义是本题的关键.52.(1)-3,9;(2)①-3+3t ,9-2t ;①85或245 【分析】(1)根据绝对值和平方的非负性,即可求解;(2)根据题意得:3,2AP t BQ t == ,①再由数轴上两点间的距离,即可求解;①分两种情况讨论:当点P 在点Q 在左侧时,当点P 在点Q 在右侧时,即可求解.解:(1)①23(9)0a b ++-=.①30,90a b +=-= ,解得:3,9a b =-= ,①数轴上点A 表示的数是-3,点B 表示的数是9;(2)根据题意得:3,2AP t BQ t == ,①①点P 表示的数是-3+3t ,点Q 表示的数是9-2t ;①当点P 在点Q 在左侧时,()()9233125PQ t t t =---+=- ,①AP +BQ =2PQ ,①()322125t t t +=- ,解得:85t = ; 当点P 在点Q 在右侧时,()()3392125PQ t t t =-+--=-+,①AP +BQ =2PQ ,①()322125t t t +=-+ ,解得:245t = , 综上所述,时间t 的值为85或245 . 【点拨】本题主要考查了数轴上两点间的距离,绝对值和平方的非负性,解题的关键是利用数形结合和分类讨论思想解决问题.53.(1)3,3,4;(2)|1|x +,3-或1;(3)1.【分析】(1)根据题意及绝对值的几何意义解题,数轴上两点间的距离即是两点表示的数的差的绝对值;(2)根据绝对值的几何意义解题,数轴上的点x 与-1的距离即求x 与-1 的差的绝对值,如果||2AB =,则点x 可能在-1的右侧距离-1是2个单位长度,或者点x 可能是在-1的左侧距离-1是2个单位长度,据此解题;(3)将|1||2|x x +++变形成两数差的绝对值形式()()12x x --+--,再根据绝对值的几何意义解题即可. 解:(1)数轴上,A 、B 两点之间的距离为||AB a b =-,∴数轴上表示2和5的两点之间的距离为|25|3-=,数轴上表示-2和-5的两点之间的距离为|2(5)|3---=,数轴上表示1和-3的两点之间的距离为|1(3)|4--=,故答案为:3,3,4;(2)数轴上表示x 和-1的两点之间的距离为|(1)|1x x --=+,如果||2AB =,则12x +=,12x ∴+=±,1x ∴=或3x =-故答案为:3-或1; (3)|1||2|(1)(2)x x x x +++=--+--,其表示的几何意义是:数轴上表示的点x 到-1和-2之间的距离和,当12x -≤≤时,代数式|1||2|121x x x x +++=--++=,则最小值为1,故答案为:1.【点拨】本题考查数轴、绝对值等知识,是重要考点,难度较易,掌握相关知识是解题关键.。
绝对值练习题及答案
绝对值练习题及答案绝对值是数学中常见的概念,它可以帮助我们计算数值的距离和大小。
在这篇文章中,我们将介绍一些绝对值的练习题,并提供相应的答案,帮助读者更好地理解和应用这个概念。
1. 练习题一:计算绝对值计算以下数的绝对值:-5, 10, -3.14, 0, 100.答案:绝对值是一个数到原点的距离,因此绝对值永远是非负数。
所以答案分别是:5, 10, 3.14, 0, 100.2. 练习题二:绝对值的性质根据绝对值的定义,我们可以得出以下性质:- 对于任意实数a,|a| ≥ 0,且当且仅当a = 0时,|a| = 0.- 对于任意实数a和b,有|ab| = |a| * |b|.- 对于任意实数a和b,有|a + b| ≤ |a| + |b|.3. 练习题三:绝对值的应用绝对值在实际生活中有着广泛的应用,例如:- 温度计上的温度差值就是绝对值的概念。
当我们说温度差为5度时,实际上是指两个温度之间的绝对值差为5.- 距离的计算也常常用到绝对值。
当我们计算两个点之间的距离时,实际上就是计算两个坐标的绝对值差。
- 绝对值还可以用于解决一些实际问题,例如计算误差、求解方程等等。
4. 练习题四:绝对值的计算计算以下表达式的值:|3 - 7| + |10 - 15|.答案:首先计算绝对值内的差值,得到:|-4| + |-5|. 然后计算绝对值,得到:4 + 5 = 9.5. 练习题五:绝对值的不等式解决以下绝对值不等式:|x - 3| ≤ 5.答案:我们可以将不等式分为两个部分来求解。
当x - 3 ≥ 0时,不等式变为:x - 3 ≤ 5,解得:x ≤ 8. 当x - 3 < 0时,不等式变为:-(x - 3) ≤ 5,解得:x ≥ -2. 综合起来,解集为:-2 ≤ x ≤ 8.通过以上的练习题,我们可以更深入地理解和应用绝对值的概念。
绝对值不仅仅是一个数学概念,它在实际生活中有着广泛的应用。
通过练习和掌握绝对值的计算和性质,我们可以更好地解决实际问题,并提高数学运算的准确性。
最新初一(七年级)数学绝对值练习题及答案解析
初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做 .2.绝对值等于5的数有 .3.若︱a︱= a , 则 a .4.的绝对值是2004,0的绝对值是 .5一个数的绝对值是指在上表示这个数的点到的距离.6.如果 x < y < 0, 那么︱x ︱︱y︱.7.︱x - 1 ︱ =3 ,则 x =.8.若︱x+3︱+︱y -4︱= 0,则 x + y = .9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱.10.︱x ︱<л,则整数x = .11.已知︱x︱-︱y︱=2,且y =-4,则 x = .12.已知︱x︱=2 ,︱y︱=3,则x +y = .13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= .14. 式子︱x +1 ︱的最小值是,这时,x值为 .15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值.19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱ .2.绝对值等于5的数有±5 .3.若︱a︱= a , 则 a ≥ 0 .4.±2004 的绝对值是2004,0的绝对值是0 .5.一个数的绝对值是指在数轴上表示这个数的点到原点的距离. 6.如果 x < y < 0, 那么︱x ︱> ︱y︱.7.︱x -1 ︱ =3 ,则 x =4或-2 .x -1 = 3,x = 4 ;—(x -1) = 3,x = -28.若︱x+3︱+︱y -4︱= 0,则 x + y = 1 .x+3 = 0 ,x = -3;y-4= 0,y = 4;x + y = 19.有理数a ,b在数轴上的位置如图所示,则a < b,︱a︱> ︱b︱.10.︱x ︱<л,则整数x = 0, ±1, ±2, ±3 .11.已知︱x︱-︱y︱=2,且y =-4,则 x = ±6 .︱x︱-4 = 2,︱x︱= 6,x = ±612.已知︱x︱=2 ,︱y︱=3,则x +y = ±1, ±5 .13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 3 ..互为相反数:|x+1|+|y-2|=0x+1=0,x=-1;y-2=0,y=2 ;︱x ︱+︱y︱= 1 + 2 = 314. 式子︱x +1 ︱的最小值是 0 ,这时,x值为—1 .15. 下列说法错误的是( c )A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数错:0的绝对值是0,非正非负.D 任何数的绝对值都不是负数16.下列说法错误的个数是 ( A )(1) 绝对值是它本身的数有两个,是0和1错:所有非正数的绝对值都是它本身.(2) 任何有理数的绝对值都不是负数 对:任何有理数的绝对值都是正数或0(3) 一个有理数的绝对值必为正数 错:0非正非负.(4) 绝对值等于相反数的数一定是非负数错:绝对值等于相反数的数一定是非正数.A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( B )A -1B 0C 1D 2解析:最小的正整数:1,最大的负整数:-1,绝对值最小的有理数:0拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值. 解:a,b 互为相反数:b=-ac, d 互为倒数:d=1/c| m | = 2: m=±2a b a b c+++ + m -cd =0 + (±2) - 1=1或-319.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,—5, —15 ,+ 30 ,—20 ,—16 ,+14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?西最后停车位置解:总共行驶路程为:| +10 | + | —5 | + | —15 | + | + 30 | + | —20 | + | —16 | + | +14 |=110(公里)油耗为:110*(3/100)=3.3(升)(2)据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?解:A地为原点:+10 —5 —15+ 30 —20 —16 +14 = —2负方向为西方,他在A点的西方,距A点2千米.20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接解:| A | =| 0.01 | = 0.01| B | =| —0.02 | = 0.02| C | =| —0.01 | = 0.01| D | =| 0.04 | = 0.01| E | =| —0.03| = 0.03根据绝对值计算结果,A,B球最接近标准.。
七年级数学上--绝对值练习及提高习题讲课教案
七年级数学上--绝对值练习及提高习题七年级数学上--有理数--绝对值练习一一、填空题: 1、 | 2 I =, I - 2 I =。
332、 + I +5 I = ____ , + I -5 I = ________ , - I +5 I = ______ , - I -5 I = _________ 。
3、 | 0 I = __________ , + I -0 I = _________ , - I 0 I = __________ 。
4、 绝对值是6 -,符号是“-”的数是,符号是“ +”的数是 25、 -0.02的绝对值的相反数是 ______ 」相反数的绝对值是 ___________ 。
6、 绝对值小于3.1的所有非负整数为 ________________ 。
7、 绝对值大于2小于8的整数为。
33------------------------------&计算 2005 (2004 |2005 2004 |)的结果是 _____________________ 。
9、当x = ----------------- 时,式子学的值为零11、已知|x| | y| 2,且x,y 为整数,则|x y|的值为 _____________________12、 ___________________________________________ 若 |a 8| |b 5| 0,则 a b 的值是 。
13、 ________________________________________________________ 若|a 3|与|2b 6|互为相反数,则2a b 的值是 _______________________________________________14、 _________________________________________________ 若 |x| 3,|y| 2,且 x y ,求 x y 的值是 。
2021-2022学年七年级数学上册《绝对值》练习题及答案
(暑假一日一练)七年级数学上册第1章有理数1.2.4绝对值习题学校:___________姓名:___________班级:___________一.选择题(共15小题)1.﹣3的绝对值是()A.3 B.﹣3 C .D .2.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C .D .3.﹣2018的绝对值是()A.2018 B.﹣2018 C .D.±20184.若|﹣x|=5,则x等于()A.﹣5 B.5 C .D.±55.下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2| C.﹣(﹣2)=|﹣2| D.﹣|2|=|﹣2|6.绝对值等于3的数是()A .B.﹣3 C.0 D.3或﹣37.|﹣|的相反数是()A .B .﹣ C.6 D.﹣68.2的相反数和绝对值分别是()A.2,2 B.﹣2,2 C.﹣2,﹣2 D.2,﹣29.|a|=1,|b|=4,且ab<0,则a+b的值为()A.3 B.﹣3 C.±3 D.±510.如果一个有理数的绝对值是5,那么这个数一定是()A.5 B.﹣5 C.﹣5或5 D.以上都不对11.如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a>0或a=0 D.a<0或a=012.若|a|=a,|b|=﹣b,则ab的值不可能是()A.﹣2 B.﹣1 C.0 D.113.π﹣3的绝对值是()A.3 B.πC.3﹣πD.π﹣314.若|x﹣1|+x﹣1=0,则x的取值范围是()A.x<1 B.x≤1 C.x≥1 D.x>015.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a| C.a+b>0 D.ab<0二.填空题(共10小题)16.﹣2018的绝对值是.17.写出一个数,使这个数的绝对值等于它的相反数:.18.如果|x|=6,则x= .19.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越.20.若|a﹣1|=2,则a= .21.计算:|﹣5+3|的结果是.22.已知有理数a在数轴上的位置如图,则a+|a﹣1|= .23.如果a的相反数是1,那么a的绝对值等于.24.数轴上,如果点A表示,点B表示,那么离原点较近的点是.(填A或B).25.一个有理数x满足:x<0且|x|<2,写出一个满足条件的有理数x的值:x= .三.解答题(共4小题)26.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.27.已知|a|=3,|b|=2且|a﹣b|=b﹣a,求a+b的值.29.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|= .(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.参考答案与试题解析一.选择题(共15小题)1.解:|﹣3|=﹣(﹣3)=3.故选:A.2.解:|﹣3|=3,故选:A.3.解:﹣2018的绝对值是:2018.故选:A.4.解:∵|﹣x|=5,∴﹣x=±5,∴x=±5.故选:D.5.解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选:D.6.解:绝对值等于3的数有±3,故选:D.7.解:|﹣|的相反数,即的相反数是﹣.故选:B.8.解:2的相反数是﹣2,绝对值是2,故选:B.9.解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1﹣4=﹣3或a+b=﹣1+4=3,故选:C.10.解:如果一个有理数的绝对值是5,那么这个数一定是﹣5或5.故选:C.11.解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选:D.12.解:∵|b|=﹣b,∴b≤0,∵|a|=a,∴a≥0,∴ab的值为非正数.故选:D.13.解:π﹣3的绝对值是π﹣3,故选:D.14.解:∵|x﹣1|+x﹣1=0,∴|x﹣1|=1﹣x,∴1﹣x≥0,解得:x≤1.故选:B.15.解:∵b<﹣1,0<a<1,∴b<a,∴选项A不符合题意;∵b<﹣1,0<a<1,∴|b|>1,0<|a|<1,∴|b|>|a|,∴选项B不符合题意;∵b<﹣1,0<a<1,∴a+b<0,∴选项C符合题意;∵b<﹣1,0<a<1,∴ab<0,∴选项D不符合题意.故选:C.二.填空题(共10小题)16.解:﹣2018的绝对值是2018.故答案为:201817.解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣118.解:|x|=6,所以x=±6.故本题的答案是±6.19.解:一个数的绝对值实际上就是该点与原点间的距离,因而一个数的绝对值越小,则该数在数轴上所对应的点,离原点越近.故答案为近.20.解:∵|a﹣1|=2,∴a﹣1=2或a﹣1=﹣2,∴a=3或﹣1.故答案为:3或﹣1.21.解:|﹣5+3|=|﹣2|=2.故答案为:2.22.解:由数轴上a点的位置可知,a<0,∴a﹣1<0,∴原式=a+1﹣a=1.故答案为:1.23.解:因为a的相反数是1,所以a=﹣1,所以a的绝对值等于1,故答案为:124.解:∵|﹣|==,|﹣|==,∴点B离原点较近.25.解:∵|x|<2,∴﹣2<x<2,∵x<0,∴﹣2<x<0,∴x=﹣1(答案不唯一).故答案为:﹣1.三.解答题(共4小题)26.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.27.解:∵|a|=3,|b|=2且|a﹣b|=b﹣a,∴b>a,a=﹣3,b=±2∴a+b=﹣1或﹣5.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.29.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上 --有理数--绝对值练习一一、填空题:1、│32│= ,│-32│= 。
2、+│+5│= ,+│-5│= ,-│+5│= ,-│-5│= 。
3、│0│= ,+│-0│= ,-│0│= 。
4、绝对值是6 21,符号是“-”的数是 ,符号是“+”的数是 。
5、的绝对值的相反数是 ,相反数的绝对值是 。
6、绝对值小于的所有非负整数为 。
7、绝对值大于23小于83的整数为 。
8、计算2005(2004|20052004|)-+-的结果是 。
9、当x= 时,式子||52x -的值为零。
10、若a ,b 互为相反数,m 的绝对值为2,则a b a b m+++= 。
11、已知||||2x y +=,且,x y 为整数,则||x y +的值为 。
12、若|8||5|0a b -+-=,则a b -的值是 。
13、若|3|a -与|26|b -互为相反数,则2a b +的值是 。
14、若||3x =,||2y =,且x y >,求x y +的值是 。
15、如图,化简:2|2||2|a b +-+-= 。
16、已知|(2)||3|||0x y z +-+++=,则x y z ++= 。
17、如图, 则||||||||a b a b b a --++-= 。
18、已知||a b a b -=-,且||2009a =,||2010b =,则a b -的值为 。
19、若||5a =,2b =-,且0ab >,则a b += 。
20、若0ab <,求||||||a b ab a b ab ++的值为 。
21、绝对值不大于2005的所有整数的和是 ,积是 。
22、若2|3|(2)0m n -++=,则2m n +的值为 。
23、如果0m >,0n <,||m n <,那么m ,n ,-m ,-n 的大小关系是 。
24、已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+= .25、已知5=x ,1=y ,那么=+--y x y x _________.26、非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组.二、选择题表示一个有理数,那么.( )A.∣a ∣是正数 是负数 ∣a ∣是负数 D.∣a ∣不是负数28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数29.一个数的绝对值是最小的正整数,那么这个数是( )D.+1或-130. 设m,n 是有理数,要使∣m ∣+∣n ∣=0,则m,n 的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零31、设a 为有理数,则2005||a -的值是( ) A. 正数 B. 负数 C. 非正数 D. 非负数32、若一个数的绝对值是正数,则这个数是( )A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数33、若||5x =,||3y =,则x y +等于( )A. 8B. 8±C. 8和2D. 8±和2±34、如果0a >,且||||a b >,那么a b -的值是( )A. 正数B. 负数C. 正数或负数D. 035、已知0m >,0n <,则m 与n 的差是( )A. ||||m n -B. (||||)m n --C. ||||m n +D. (||||)m n -+36、下列等式成立的是( )A .||||0a a +-= B. 0a a --= C. ||||0a a --= D. ||0a a --=37、如果||0m n -=,则m ,n 的关系( )A. 互为相反数B. ||m n =±且0n ≥C. 相等且都不小于0D. m 是n 的绝对值38、已知||3x =,||2y =,且0x y ⋅<,则x y +的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或-39、使||10a a+=成立的条件是( ) A. 0a > B. 0a < C. 1a = D. 1a =± 40、c b a 、、是非零有理数,且0=++c b a ,那么abc abc c c b b a a +++的所有可能值为( )A .0B . 1或1-C .2或2-D .0或2-三、解答题:41.化简:(1)1+∣-31∣= (2)∣∣-∣+∣= (3)-(-│-252│)= (4)-│-(+3.3│)= (5)-│+(-6)│ = (6)-(-|-2|)=(7)|43211-|= (8)||56||65-÷ = (9)-(|-4.2|×|+|75)= (10)|-2|-|+1|+|0|= 42.(1)若|a+2|+|b-1|=0,则a= b= ;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( )>m>-m>n >n>-m>-n >m>n>-m >m>-n>-m2、绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零3、下列说法中正确的是( )A.一定是负数 B.只有两个数相等时它们的绝对值才相等C.若则与互为相反数 D.若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖〗A.0个B.1个C.2个D.3个5、如果,则的取值范围是〖〗A.>O B.≥OC .≤OD .<O6、绝对值不大于的整数有〖 〗 A .11个 B .12个C .22个D .23个 7、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在8、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个9、下列数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32C 、│-32│和23D 、│-32│和32 10、下列说法错误的是( )A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数11、│a│= -a,a一定是()A、正数 B、负数 C、非正数 D、非负数12、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
13、-│a│= -,则a是()A、 B、- C、 D、以上都不对二、填空题1、______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.2、有理数m,n在数轴上的位置如图,3、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.4、在数轴上,绝对值为4,且在原点左边的点表示的有理数为_____5、当时,;当时,.7、,则;,则.8、如果,则,.9、绝对值等于它本身的有理数是,绝对值等于它的相反数的数是10、│x│=│-3│,则x= ,若│a│=5,则a=三、判断题:1、判断下列各式是否正确(正确入“T”,错误入“F”):(1)|-a|=|a|;( ) (2)-|a|=|-a|;( )(4)若|a|=|b|,则a=b;( ) (5)若a=b,则|a|=|b|;( )(6)若|a|>|b|,则a>b;( )(7)若a>b,则|a|>|b|;( ) (8)若a>b,则|b-a|=a-b.( ) 2、判断对错.(对的入“T”,错的入“F”)(1)如果一个数的相反数是它本身,那么这个数是0. ( )(2)如果一个数的倒数是它本身,那么这个数是1和0. ( )(3)如果一个数的绝对值是它本身,那么这个数是0或1. ( )(4)如果说“一个数的绝对值是负数”,那么这句话是错的. ( )(5)如果一个数的绝对值是它的相反数,那么这个数是负数. ( )四、计算1、已知│x│=2003,│y│=2002,且x>0,y<0,求x+y的值。
2、已知│x+y+3│=0, 求│x+y│的值。
3、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=4、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba+x2+cd的值。
5、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。
6、某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量? 绝对值提高篇一、判断题1. 有理数的绝对值一定大于0。
( )2. 如果两个数的绝对值相等,那么这两个数必然是互为相反数。
( )3. 如果一个数的绝对值等于它本身,那么这个数必然大于任何负数。
( )4. 一个数的绝对值一定不小于它本身。
( )5. 任何有理数的绝对值都是正数。
( )6. 绝对值等于它本身的数只有零。
( )7. 绝对值大于2且小于5的整数只有两个。
( )8. 绝对值不大于3的整数有3,2,1,0。
( ) 9. -13的倒数的绝对值是-3.( ) 10. -001.的相反数的绝对值是1100。
( ) 11. 大于-4的整数有3个。
( ) 12. 小于-4的正整数有无穷多个。
( )13. -<-24。
( ) 14. ->-1101100。
( ) 15. 01>-。
( ) 16. 没有绝对值小于1的整数。
( ) 17. 绝对值大于3并且小于5的整数有2个。
( )18. 大于-1并且小于0的有理数有无穷多个。
( )19. 在数轴上,到原点的距离等于2的数是2。
( )20. 绝对值不大于2的自然数是0,1,2。
( ) 21. 绝对值等于本身的数只有0。
( )22. 两个数的相反数相等,那么这两个数一定相等。
( )23. 两个数的绝对值相等,那么这两个数一定相等。
( )二、计算题: 1、若3+-y x 与1999-+y x 互为相反数,求yx y x -+的值。
2、a +b <0,化简|a+b-1|-|3-a-b |. 3、若y x -+3-y =0 ,求2x+y 的值.4、当b 为何值时,5-12-b 有最大值,最大值是多少?5、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值. 6、若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值.7、若|x |=3,|y |=2,且|x-y |=y-x ,求x+y 的值.8、化简:|3x+1|+|2x-1|. 9、已知y=|2x+6|+|x-1|-4|x+1|,求y 的最大值.10、设a <b <c <d ,求|x-a |+|x-b |+|x-c |+|x-d |的最小值.11、若2+|4-5x |+|1-3x |+4的值恒为常数,求x 该满足的条件及此常数的值.12、02b 1=++-a ,求()2001b a ++()2000b a ++…()2b a ++=+b a . 13、已知2-ab 与1-b 互为相反数,设法求代数式14、若c b a ,,为整数,且120012001=-+-a c b a ,计算c b b a a c -+-+-的值.15、若97,19==b a ,且b a b a +≠+,那么b a -= .16、已知5=a ,3=b 且b a b a +=+,求b a +的值。