频率分布与直方图试题

合集下载

频率分布直方图 小练 (含答案)

频率分布直方图 小练 (含答案)

频率分布直方图小练1.为增强市民的环保意识,某市面向全市增招环保知识义务宣传志愿者.从符合条件的志愿者中随机选取名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第组,第组,第组,第组,第组.得到的频率分布直方图(局部)如图所示.(1)求第组的频率,并在图中补画直方图;(2)从名志愿者中再选出年龄低于岁的志愿者名担任主要宣讲人,求这名主要宣讲人的年龄在同一组的概率.解析(1)0.3,图见:(1)第4组的频率为.....1分, ............................2分,则补画第4组的直方图如图所示:.............................................4分(2)设“从20名志愿者中再选出年龄低于30岁的志愿者3名担任主要宣讲人, 其年龄均在同一组”为事件A...............................................5分第一组的人数为人第二组的人数为人......................6分设第一组的志愿者为m,第二组的4名志愿者分别为a,b,c,d.......................7分从m, a,b,c,d中选出3名志愿者共有10种选取方法。

.........10分其中都在第二组的共有4种选取方法..........11分所以,所求事件的概率为........................12分2.某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取份,试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数;(Ⅱ)用分层抽样的方法在成绩为和这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在恰有1人的概率.考点6.统计图表解析解:(Ⅰ)由频率分布直方图可知:样本的众数为75.…………3分(Ⅱ)由频率分布直方图可得:第三组的频率:,所以,…………………………………………4分第四组的频数:;第五组的频数:;用分层抽样的方法抽取5份得:第四组抽取:;第五组抽取:.……7分记抽到第四组的三位同学为,抽到第五组的两位同学为则从5个同学中任取2人的基本事件有:,,共10种.其中分数在恰有1人有:,共6种.所求概率:.……………………………12分3.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(Ⅰ)求直方图中的值;(Ⅱ)求续驶里程在的车辆数;(Ⅲ)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为的概率.考点6.统计图表解析解:(Ⅰ)由直方图可得:∴.------------------3分(Ⅱ)由题意可知,续驶里程在的车辆数为:------------------5分(Ⅲ)由(Ⅱ)及题意可知,续驶里程在的车辆数为,分别记为,续驶里程在的车辆数为,分别记为,设事件“其中恰有一辆汽车的续驶里程为”----------------------7分从该辆汽车中随机抽取辆,所有的可能如下:共种情况,----------------10分事件包含的可能有共种情况,则.------------------12分4.某中学高三(1)班共有50名学生,他们每天自主学习的时间在180到330分钟之间,将全班学生的自主学习时间作分组统计,得其频率分布如下表所示:组序分组频数频率第一组[180,210)50.1第二组[210,240)100.2第三组[240,270)120.24第四组[270,300)a b第五组[300,330)6c(1)求表中a、b、c的值;(2)某课题小组为了研究自主学习时间与成绩的相关性,需用分层抽样的方法从这50名学生中随机抽取20名作统计分析,则在第二组学生中应抽取多少人?(3)已知第一组学生中有3名男生和2名女生,从这5名学生中随机抽取2人,求恰好抽到1名男生和1名女生的概率.某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。

高二数学频率分布直方图练习题

高二数学频率分布直方图练习题

高二数学频率分布直方图练习题在高二数学学习中,频率分布直方图是一个重要的概念和工具。

它能够帮助我们直观地了解数据的分布情况,并能够进行一些有关数据分析的操作。

下面是一些高二数学频率分布直方图练习题,希望能对同学们的学习有所帮助。

1. 一家超市通过调查了解到顾客每天购买的饮料数量,数据如下:2, 3, 2, 4, 1, 2, 4, 2, 3, 2, 1, 3, 2, 1, 2, 4, 2, 3, 2, 1根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

2. 某班级同学们的体重数据如下:52, 55, 53, 57, 54, 56, 55, 51, 58, 60, 59, 62, 63, 64, 61, 56, 55, 54, 57, 59根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

3. 某城市某月份的降水量数据如下:20, 15, 18, 22, 17, 19, 23, 16, 21, 20, 15, 20, 19, 23, 20, 18, 16, 22, 19, 17根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

4. 下面是一组学生在一次月考中的数学成绩数据:90, 85, 78, 92, 88, 79, 81, 85, 86, 90, 84, 88, 92, 89, 77, 82, 84, 87, 91, 83根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

5. 某工厂生产了一批产品,产品的重量数据如下:2.5, 2.7, 2.8, 2.6, 2.9, 2.7, 2.6, 2.8, 2.7, 2.6, 2.8, 2.7, 2.5, 2.8, 2.6, 2.9根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。

以上是几道关于频率分布直方图的练习题。

通过解决这些题目,我们可以巩固对频率分布直方图的理解和应用,提高数据分析的能力。

在实际问题中,频率分布直方图也可以用来对比不同数据集的分布情况,帮助我们做出更好的决策。

概率频率分布直方图练习题

概率频率分布直方图练习题

1.(本题满分12分)某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值; (2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.2、(本题满分12分)为调查民营企业的经营状况,某统计机构用分层抽样的方法从A 、B 、C 三个城市中,抽取若干个民营企业组成样本进行深入研究,有关数据见下表:(单位:个)(1)求x 、y 的值;(2)若从城市A 与B 抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市A 的概率.3、某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,产品的等级系数越大表明产品的质量越好.现从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品,3ξ<为不合格品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率. 4、某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级: 1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x ,价格满意度为y ).(1)求高二年级共抽取学生人数;(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;(3)为提高食堂服务质量,现从3x <且24y ≤<的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.5、(本小题满分12分)为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示: (1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.6、(本小题满分12分)某学校甲、乙两个班参加体育达标测试,统计 测试成绩达标人数情况得到如图所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为110. (1)请完成上面的列联表;(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.7、(本小题满分12分)对某校高一年级学生参加社区服务次数统计,随机抽去了M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下: (1)求出表中,,,M r m n 的值;(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少一人参加社区服务次数在区间[)25,30内的概率.8、(本小题满分12分)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

高一频率分布直方图知识点和例题

高一频率分布直方图知识点和例题

高一频率分布直方图知识点和例题例1、关于频率分布直方图的下列说法中,正确的是()。

(A)、直方图的高表示某数的频率(B)、直方图的高表示该组上的个体在样本中出现的频率(C)、直方图的高表示该组上的个体与组距的比值( D)、直方图的高表示该组上的个体在样本中解析:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在祥本中出现的频率与组距的比值,所以选( D)。

二、识图计算类例2、为了了解某地区高三学生的身体发有情况,抽查了该地区100名年龄为17.5岁至18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5 ) 的学生人数是()。

(A)20(B)30(C)40(D)50解:本题主要考查频率分布直方图和总体分布的估计等知识,同时考查图形的识别能力。

由频率直方图可知组距为2,故学生中体重在[56.5,64.5 ) 的频率为:(0.03+0.05+0.05+0.07 ) x 2= 0.4 ,所以100名学生中体重[56.5,64.5]的学生人数有:0. 4X100= 40人。

故选择C。

例3:某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110 ^ 120间的同学大约有( )。

A、10B、11C、13D、16解析:通过直方图可知:成绩在110^120的频率是:10.05_ 0.10.15_0.320.2.所以成绩在110/~120之间的同学大约有:64X 0.2=12.813人。

故选择c。

例4一个社会调查机构就某地居民的月收入调在了100井根据所符数繁面了样本的频率分布直方图(如下图)大为了分析居民的收入与年龄、学历、职业等方面的关系,要从这1000人中再用分层抽样方法抽出100人。

作进一步调查。

则在230.3600 (元)股入段应抽出。

频率分布直方图-高中数学知识点讲解(含答案)

频率分布直方图-高中数学知识点讲解(含答案)

频率分布直方图(北京习题集)(教师版)一.选择题(共5小题)1.(2020•朝阳区模拟)为了宣传今年9月即将举办的“第十八届中国西部博览会”(简称“西博会”),组委会举办了“西博会”知识有奖问答活动.在活动中,组委会对会议举办地参与活动的15~65岁市民进行随机抽样,各年龄段人数情况如表:组号分组各组人数各组人数频率分布直方图第1组[15,25)10第2组[25,35)a第3组[35,45)b第4组[45,55)c第5组[55,65]d根据以上图表中的数据可知图表中a和x的值分别为()A.20,0.15B.15,0.015C.20,0.015D.15,0.152.(2019春•通州区期末)已知有若干辆汽车通过某一段公路,从中抽取100辆汽车进行测速分析,其时速的频率分布直方图如图所示,那么时速在区间[60,70)内的汽车辆数大约为()A.30B.35C.40D.453.(2019•北京学业考试)生态环境部环境规划院研究表明,京津冀区域 2.5PM主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间[300,350)的户数为()A.5B.15C.20D.254.(2018•西城区模拟)某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:)min.下面是这次抽样的频率分布表和频率分布直方图,则旅客购票用时的平均数可能落在哪一个小组()分组频数频率t<00一组05t<10二组510t<100.10三组1015t<四组1520t<300.30五组2025合计100 1.00A.第二组B.第三组C.第四组D.第五组5.(2016春•西城区期末)如图是100名学生某次数学测试成绩(单位:分)的频率分布直方图,则测试成绩在区间[50,70)中的学生人数是()A.30B.25C.22D.20二.填空题(共7小题)6.(2019秋•房山区期末)为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.阅读量人数学生类别[0,10)[10,20)[20,30)[30,40)[40,)性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是.7.(2019春•通州区期末)已知某地区中小学学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为,从中抽取的高中生近视人数为.小学初中高中人数9000700040008.(2019春•西城区期末)从某校3000名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在[70,80)的学生人数为.9.(2018秋•昌平区期末)为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为.10.(2018秋•丰台区期末)某校为了解学生对本校食堂的满意度,随机抽取部分学生进行调查.根据学生的满意度评分,得到如图所示的频率分布直方图,其中a=,若这次满意度评分的中位数为b,根据频率分布直方图,估计b65(填“>”,“<”或“=”)11.(2017秋•海淀区校级期末)如图,从参加环保知识竞赛的学生中抽出80名,将其成绩(均为整数)整理后画出的频率分布直方图如图:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频率是.(2)估计这次环保知识竞赛的及格率(60分以上为及格)为.12.(2018春•西城区校级期中)为了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁18岁的男生体重()kg,得到频率分布直方图如图,根据如图可得这100名学生中体重在(56.5,64.5)的学生人数是.三.解答题(共3小题)13.(2019秋•房山区期末)中学生研学旅行是通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动,是学校教育和校外教育衔接的创新形式,是综合实践育人的有效途径,每年暑期都会有大量中学生参加研学旅行活动.为了解某地区中学生暑期研学旅行支出情况,在该地区各个中学随机抽取了部分中学生进行问卷调查,从中统计得到中学生暑期研学旅行支出(单位:百元)频率分布直方图如图所示.(Ⅰ)利用分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从这三组中各抽取几人?(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,求这2人不在同一组的概率;(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值.14.(2019•大兴区一模)随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a的值;(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).15.(2019•山东模拟)某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图.(Ⅰ)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(Ⅱ)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;(Ⅲ)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)频率分布直方图(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2020•朝阳区模拟)为了宣传今年9月即将举办的“第十八届中国西部博览会”(简称“西博会”),组委会举办了“西博会”知识有奖问答活动.在活动中,组委会对会议举办地参与活动的15~65岁市民进行随机抽样,各年龄段人数情况如表:组号分组各组人数各组人数频率分布直方图第1组[15,25)10第2组[25,35)a第3组[35,45)b第4组[45,55)c第5组[55,65]d根据以上图表中的数据可知图表中a和x的值分别为()A.20,0.15B.15,0.015C.20,0.015D.15,0.15【分析】由频率分布直方图可知第一组的频率,再根据第一组的人数求出总人数,从而由第二组的频率求出a的值,由频率分布直方图中各小长方体的面积之和为1,即可求出x的值.【解答】解:由频率分布直方图可知,第一组的频率为:0.010100.1⨯=,又第一组的人数为10,∴总人数为:10100 0,1=,第二组的频率为:0.020100.2⨯=,∴第二组的人数0.210020a=⨯=,由频率分布直方图可知,1[1(0.010.020.030.025)10]0.015 10x=⨯-+++⨯=,故选:C.【点评】本题主要考查了频率分布直方图的应用,是基础题.2.(2019春•通州区期末)已知有若干辆汽车通过某一段公路,从中抽取100辆汽车进行测速分析,其时速的频率分布直方图如图所示,那么时速在区间[60,70)内的汽车辆数大约为()A.30B.35C.40D.45【分析】由频率分布直方图求出时速在区间[60,70)内的频率,由此能求出时速在区间[60,70)内的汽车辆数.【解答】解:由频率分布直方图得:时速在区间[60,70)内的频率为:0.04100.4⨯=,∴时速在区间[60,70)内的汽车辆数大约为:⨯=.0.410040故选:C.【点评】本题考查时速在区间[60,70)内的汽车辆数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.3.(2019•北京学业考试)生态环境部环境规划院研究表明,京津冀区域 2.5PM主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间[300,350)的户数为()A.5B.15C.20D.25【分析】根据频率分布直方图求出用气量在区间[300,350)的频率,用样本容量与频率相乘即可得到用气量在区间[300,350)的户数.【解答】解:依题意,由频率分布直方图可知,用气量在[300,350)的频率为:0.005500.25⨯=,所以100户居民中用气量在区间[300,350)的户数为:1000.2525⨯=.故选:D.【点评】本题考查了频率分布直方图的应用,考查了考查数据分析处理、运算求解能力,属于基础题.4.(2018•西城区模拟)某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:)min.下面是这次抽样的频率分布表和频率分布直方图,则旅客购票用时的平均数可能落在哪一个小组()分组频数频率t<00一组05t<10二组510t<100.10三组1015t<四组1520t<300.30五组2025合计100 1.00A.第二组B.第三组C.第四组D.第五组【分析】由频率分布表和频率分布直方图得第四组的频率为0.5,从而求得旅客购票用时的平均数,由此得到旅客购票用时的平均数落第四小组.【解答】解:由频率分布表和频率分布直方图得第四组的频率为:---=,10.10.10.30.5由频率分布表和频率分布直方图得旅客购票用时的平均数为:7.50.1012.50.1017.50.5022.50.317.5⨯+⨯+⨯+⨯=,∴旅客购票用时的平均数落第四小组.故选:C.【点评】本题考查平均数、频率的求法及应用,考查频率分布表和频率分布直方图等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(2016春•西城区期末)如图是100名学生某次数学测试成绩(单位:分)的频率分布直方图,则测试成绩在区间[50,70)中的学生人数是()A .30B .25C .22D .20【分析】根据频率分布直方图中频率和为1,求出a 的值,计算模块测试成绩落在[50,70)中的频率以及频数即可. 【解答】解:根据频率分布直方图中频率和为1,得: 10(23762)1a a a a a ++++=,解得1200a =; ∴模块测试成绩落在[50,70)中的频率是1110(23)50502004a a a +==⨯=, ∴对应的学生人数是1100254⨯=. 故选:B .【点评】本题考查了频率分布直方图的应用问题,也考查了频率的计算问题,是基础题目. 二.填空题(共7小题)6.(2019秋•房山区期末)为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.阅读量 人数 学生类别 [0,10) [10,20) [20,30) [30,40) [40,)+∞性别男 7 31 25 30 4 女8 29 26 32 8 学段初中 25 36 44 11 高中下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是①②③.【分析】利用频率分布直方图、平均数、75%分位数、中位数、25%分位数直接求解.【解答】解:在①中,这200名学生阅读量的平均数为:1x>⨯+⨯+⨯+⨯+⨯=.(5151560255235624512)24.93200∴这200名学生阅读量的平均数可能是26本,故①正确;在②中,20075%150⨯=,阅读量在[0,30)中有:156052117++=名学生,阅读量在[30,40)中有62名学生,∴这200名学生阅读量的75%分位数在区间[30,40)内,故②正确;在③中,阅读量在[0,20)中有:156065+=名学生,阅读量在[20,30)中有51名学生,∴这200名学生中的初中生阅读量的中位数一定在区间[20,30)内,故③正确;在④中,20025%50⨯=,阅读量在[0,10)中有15名学生,阅读量在[10,20)中有60名学生,∴这200名学生中的初中生阅读量的25%分位数可能在区间[10,20)内.故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查频率分布直方图、平均数、75%分位数、中位数、25%分位数等基础知识,考查运算求解能力,是基础题.7.(2019春•通州区期末)已知某地区中小学学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为4000,从中抽取的高中生近视人数为.小学初中高中人数900070004000【分析】用分层抽样的方法抽取20%的近视学生进行调查,利用分层抽样、频数分布表、条形图的性质求出样本容量和从中抽取的高中生近视人数.【解答】解:由题意得:用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为:(900070004000)20%4000++⨯=.从中抽取的高中生近视人数为:⨯⨯=.400020%50%400故答案为:4000,400.【点评】本题考查样本容量、频率的求法,考查分层抽样、频数分布表、条形图的性质等基础知识,考查运算求解能力,是基础题.8.(2019春•西城区期末)从某校3000名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在[70,80)的学生人数为900.【分析】求出a的值,根据[70,80)的概率求出在此区间的人数即可.【解答】解:由10.050.350.20.10.3----=,故0.03a=,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.33000900⨯=,故答案为:900.【点评】本题考查了直方图问题,考查概率问题,是一道常规题.9.(2018秋•昌平区期末)为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为900.【分析】求出a的值,根据[70,80)的概率求出在此区间的人数即可.【解答】解:由10.050.350.20.10.3----=,故0.03a=,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.33000900⨯=,故答案为:900.【点评】本题考查了直方图问题,考查概率问题,是一道常规题.10.(2018秋•丰台区期末)某校为了解学生对本校食堂的满意度,随机抽取部分学生进行调查.根据学生的满意度评分,得到如图所示的频率分布直方图,其中a=0.005,若这次满意度评分的中位数为b,根据频率分布直方图,估计b65(填“>”,“<”或“=”)【分析】由频率分布直方图列方程能求出a;评分在[50,70)的频率为0.45,评分为[70,80)的频率为0.3,由此能求出中位数.【解答】解:由频率分布直方图得:a a++++⨯=,(0.040.030.02)101解得0.005a=.评分在[50,70)的频率为:(0.0050.04)100.45+⨯=,评分为[70,80)的频率为:0.03100.3⨯=,∴中位数0.50.452157010650.33b-=+⨯=>.故答案为:0.005,>.【点评】本题考查频率的求法、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.11.(2017秋•海淀区校级期末)如图,从参加环保知识竞赛的学生中抽出80名,将其成绩(均为整数)整理后画出的频率分布直方图如图:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频率是0.25.(2)估计这次环保知识竞赛的及格率(60分以上为及格)为.【分析】(1)由频率分布直方图能求出[79.5,89.5)这一组的频率.(2)由频率分布直方图能估计这次环保知识竞赛的及格率(60分以上为及格).【解答】解:(1)由频率分布直方图得[79.5,89.5)这一组的频率是0.025100.25⨯=.故答案为:0.25.(2)由频率分布直方图估计这次环保知识竞赛的及格率(60分以上为及格)为:(0.0150.030.0250.005)10100%75%+++⨯⨯=.故答案为:75%.【点评】本题考查频率、及格率的求法,考查频率分布直方图的性质等基础知识,考查运算求出能力,考查函数与方程思想,是基础题.12.(2018春•西城区校级期中)为了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁18-岁的男生体重()kg,得到频率分布直方图如图,根据如图可得这100名学生中体重在(56.5,64.5)的学生人数是40.【分析】由频率分布直方图求出体重在(56.5,64.5)的频率为0.4,由此能求出这100名学生中体重在(56.5,64.5)的学生人数.【解答】解:由频率分布直方图得:体重在(56.5,64.5)的频率为:(0.030.050.050.07)20.4+++⨯=,∴这100名学生中体重在(56.5,64.5)的学生人数是:0.410040⨯=.故答案为:40.【点评】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.三.解答题(共3小题)13.(2019秋•房山区期末)中学生研学旅行是通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动,是学校教育和校外教育衔接的创新形式,是综合实践育人的有效途径,每年暑期都会有大量中学生参加研学旅行活动.为了解某地区中学生暑期研学旅行支出情况,在该地区各个中学随机抽取了部分中学生进行问卷调查,从中统计得到中学生暑期研学旅行支出(单位:百元)频率分布直方图如图所示.(Ⅰ)利用分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从这三组中各抽取几人?(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,求这2人不在同一组的概率;(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值.【分析】(Ⅰ)利用分层抽样和频率分布直方图能求出在[40,45),[45,50),[50,55]三组中分别抽取的人数.(Ⅱ)从抽取的5人中随机选出2人,基本事件总数2510n C==,这2人不在同一组包含的基本事件个数112 3227m C C C=+=,由此能求出这2人不在同一组的概率.(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,利用频率分布直方图的性质能求出估计该地区中学生暑期研学旅行支出的平均值.【解答】解:(Ⅰ)分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从[40,45)中抽取:0.06530.060.020.02⨯=++人,从[45,50)中抽取:0.02510.060.020.02⨯=++人,从[50,55)中抽取:0.02510.060.020.02⨯=++人.(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,基本事件总数2510n C==,这2人不在同一组包含的基本事件个数1123227m C C C=+=,∴这2人不在同一组的概率710mpn==.(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值为:32.50.04537.50.06542.50.06547.50.02552.50.02540.5x=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.【点评】本题考查频数、概率、平均数的求法,考查频率分布直方图的性质、分层抽样、古典概型等基础知识,考查运算求解能力,是基础题.14.(2019•大兴区一模)随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a的值;(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).【分析】(Ⅰ)由频率分布直方图的性质能求出a .(Ⅱ)设事件A 为“这2人手机内安装“APP ”的数量都低于60”.被抽取的智能手机内安装“APP ”的数量在[50,60)的有4人,分别记为1a ,2a ,3a ,4a ,被抽取的智能手机内安装“APP ”的数量在[60,70]的有1人,记为1b ,从被抽取的智能手机内安装“APP ”的数量不低于50的居民中随机抽取2人进一步调研,利用列举法能求出这2人安装APP 的个数都低于60的概率. (Ⅲ)第4组 (或者写成[30,40)). 【解答】(共13分)解:(Ⅰ)由(0.0110.0160.0180.0040.001)101a a ++++++⨯=,⋯⋯(2分) 得0.025a =.⋯⋯(3分)(Ⅱ)设事件A 为“这2人手机内安装“APP ”的数量都低于60”. ⋯⋯(1分) 被抽取的智能手机内安装“APP ”的数量在[50,60)的有0.004101004⨯⨯=人, 分别记为1a ,2a ,3a ,4a ,⋯⋯(2分)被抽取的智能手机内安装“APP ”的数量在[60,70]的有0.001101001⨯⨯=人, 记为1b ,⋯⋯(3分)从被抽取的智能手机内安装“APP ”的数量不低于50的居民中随机抽取2人进一步调研,共包含10个基本事件, 分别为12a a ,13a a ,14a a ,11a b ,23a a ,24a a ,21a b ,34a a ,31a b ,41a b ,⋯⋯(5分) 事件A 包含6个基本事件,分别为12a a ,13a a ,14a a ,23a a ,24a a ,34a a ,⋯⋯(6分) 则这2人安装APP 的个数都低于60的概率63()105P A ==.⋯⋯(7分) (Ⅲ)第4组 (或者写成[30,40)).⋯⋯(3分)【点评】本题考查频率、概率的求法,考查频率分布直方图的应用,考查用数学知识解决实际生活问题的能力,考查运算求解能力,是基础题.15.(2019•山东模拟)某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图.(Ⅰ)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(Ⅱ)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;(Ⅲ)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)【分析】(Ⅰ)设事件A 为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于65单”依题意,连锁店的人均日快递业务量不少于65单的频率分别为:0.2,0.15,0.05,由此能估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率.(Ⅱ)设事件B 为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)”从四名新聘骑手中随机选取2名骑手,利用列举法能求出至少有1名骑手选择方案(1)的概率.(Ⅲ)方法1:求出快餐店人均日快递量的平均数,从而方案(1)日工资约为50623236+⨯=,方案2日工资约为100(6244)5190236+-⨯=<,由此得到骑手应选择方案(1). 方法2:设骑手每日完成快递业务量为n 件,分别求出方案(1)的日工资和方案(2)的日工资,从而建议骑手应选择方案(1).方法3:设骑手每日完成快递业务量为n 单,方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩求出结果,建议骑手选择方案(1). 【解答】解:(Ⅰ)设事件A 为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于65单” 依题意,连锁店的人均日快递业务量不少于65单的频率分别为:0.2,0.15,0.05因为0.20.150.050.4++=所以估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率P (A )0.4=. (Ⅱ)设事件B 为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)” 从四名新聘骑手中随机选取2名骑手,有6种情况,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}, 其中至少有1名骑手选择方案(1)的情况为:{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁} 所以至少有1名骑手选择方案(1)的概率5()6P B = (Ⅲ)方法1:快餐店人均日快递量的平均数是:300.05400.05500.2600.3700.2800.15900.0562⨯+⨯+⨯+⨯+⨯+⨯+⨯=因此,方案(1)日工资约为50623236+⨯= 方案2日工资约为100(6244)5190236+-⨯=< 故骑手应选择方案(1)方法2:设骑手每日完成快递业务量为n 件 方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩当17n <时,12y y <依题意,可以知道25n ,所以这种情况不予考虑 当25n 时,令5031005(44)n n +>+-,则85n <,即若骑手每日完成快递业务量在85件以下,则方案(1)日工资大于方案(2)日工资, 而依题中数据,每日完成快递业务量超过85件的频率是0.05,较低, 故建议骑手应选择方案(1)方法3:设骑手每日完成快递业务量为n 单, 方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩所以方案(1)日工资约为1400.051700.052000.22300.32600.22900.153200.05236⨯+⨯+⨯+⨯+⨯+⨯+⨯= 方案(2)日工资约为1000.051000.051300.21800.32300.22800.153300.05194.5⨯+⨯+⨯+⨯+⨯+⨯+⨯= 因为236194.5>,所以建议骑手选择方案(1).。

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( ) A. 7 B. 8 C. 9 D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( ) A. 9 B. 12 C. 15 D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x <32这个范围的频率为( )棉花纤维长度x频数 0≤x <8 1 8≤x <16 2 16≤x <24 8 24≤x <32 6 32≤x <403A.0.8 B .0.7 C .0.4 D .0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是( )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的196、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( )A. 51.5~57.5B. 69.5~75.5C. 68.5~76.5D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.12、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.313、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.1518、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 .20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了____名学生.(2)在这个问题中,样本是指_____________________.(3)视力在4.85~5.15这一组内的频数是_______.(4)如果视力小于4.85均属视力不良,那么该校约有_________名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a=____,b=____,m=____,n=____.(2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h的人数.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:(1)图中a的值为____.(2)绘制扇形统计图时,成绩x在“70≤x<80”范围内所对应扇形的圆心角的度数为____.(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?参考答案一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( C )A. 7B. 8C. 9D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( A )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( B )A. 9B. 12C. 15D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为(A)棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是(C )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的19 【解】 8+10+14+8+5=45(人),故A 选项正确. 体重在50~55 kg 的人数有14人,最多,故B 选项正确. “45~50 kg ”这一组的频率是10÷45=29, “60~65 kg ”这一组的频率是5÷45=19, 29-19=19≠0.1,故C 选项错误.5÷45=19,故D 选项正确. 故选C.6、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( B ) A. 51.5~57.5 B. 69.5~75.5 C. 68.5~76.5 D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( A )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 4 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 7 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.[解析] 45-15=30,3<30÷8<4,∴组距应为4.若第1组的下限为14.5,则其上限为14.5+4=18.5;最末一组的上限为14.5+4×8=14.5+32=46.5.[答案] 418.546.512、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.3【解析】∵被调查的总人数为6÷0.15=40(人),∴B组的人数为40×0.3=12(人),即a=12.13、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为 10%14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= 9 .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 8 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .【解答】解:观察直方图可知:因为该样本中体重不小于55kg的频数为:9+5+2=16,所以该样本中体重不小于55kg的频率是0.4.故答案为:0.4.17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.15【解答】解:∵频率,∴频数=频率×总数=0.35×40=14人.故答案为14.18、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.【解答】解:空气质量类别为优和良的天数占总天数的百分比为100%=80%, 故答案为:80.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 24.【解答】解:由题意可得,第④组的频数为:100﹣4﹣8﹣12﹣24﹣18﹣7﹣3=24,故答案为:24.20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 0.6 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?解:(1)全班共有2+4+21+13+8+4=52(名)学生.(2)组距是80-60=20次,组数是6.(3)跳绳次数在120≤x<160范围内的学生有13+8=21(人).22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了__160__名学生.(2)在这个问题中,样本是指__160名学生的视力情况__.(3)视力在4.85~5.15这一组内的频数是__40__.(4)如果视力小于4.85均属视力不良,那么该校约有__1250__名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.解(1)某地九年级学生参加消防知识竞赛的成绩(2)=0.32.(3)该地九年级获得奖励的人数约是(13+7)÷1%=2000(人)24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?【解】 (1)12÷42+3+4+6+4+1=60(件).(2)第四组上交的作品数量最多,有12×64=18(件).(3)第四组的获奖率为1018=59,第六组的获奖率为2÷⎝⎛⎭⎫12×14=23=69. ∵59<69,∴第六组获奖率较高.25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a =____,b =____,m =____,n =____. (2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h 的人数.【解】 (1)∵b =18÷0.12=150,∴n =36÷150=0.24,∴m =1-0.12-0.3-0.24-0.14=0.2,∴a=0.2×150=30.(2)补全频数直方图如解图中斜纹所示.(3)3000×(0.12+0.2)=960.答:估计该校学生一周的课外阅读时间不足3 h的人数为960.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.解:(1)B组捐款户数是10,则A组捐款户数为10×=2,样本容量为(2+10)÷(1﹣8%﹣40%﹣28%)=50.(2)统计表C、D、E 组的户数分别为20,14,4.组别 捐款额(x)元 户数A 1≤x<50 aB 100≤x<200 10C 200≤x<300 20D 300≤x<400 14E x≥400 4(3)估计全社区捐款不少于300元的户数是1000×(28%+8%)=360(户).27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x <100”.根据图中信息回答下列问题: (1)图中a 的值为____.(2)绘制扇形统计图时,成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为____. (3)此次比赛共有300名学生参加,若将“x ≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.【解】 (1)a =30-(2+12+8+2)=6,故a =6.(2)成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为360°×1230=144°. (3)获得“优秀”的学生大约有300×8+230=100(人).28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题: (1)这次抽样调查,一共抽取学生 人; (2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?【解答】解:(1)这次抽样调查,一共抽取学生4÷10%=40(人);(2)扇形统计图中,扇形E的圆心角度数是36054°,故答案为:40;54°;(3)身高在160≤x<170的人数为:40×20%=8人,补全频数分布直方图如图所示;(4)400×45%=180(人),答:估计身高在160≤x<170的学生约有180人.。

概率频率分布直方图练习题

概率频率分布直方图练习题

概率频率分布直方图练习题Prepared on 22 November 20201.(本题满分12分)某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.2、(本题满分12分)为调查民营企业的经营状况,某统计机构用分层抽样的方法从A 、B 、C 三个城市中,抽取若干个民营企业组成样本进行深入研究,有关数据见下表:(单位:个)(1)求x 、y 的值;(2)若从城市A 与B 抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市A 的概率.3、某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,产品的等级系数越大表明产品的质量越好.现从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:34 53 67该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品,3ξ<为不合格品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率; (2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率.4、某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x ,价格满意度为y ).(1)求高二年级共抽取学生人数;(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;(3)为提高食堂服务质量,现从3x <且24y ≤<的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.5、(本小题满分12分)为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:(1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.6、(本小题满分12分)某学校甲、乙两个班参加体育达标测试,统计 测试成绩达标人数情况得到如图所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为110. (1)请完成上面的列联表;(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.7、(本小题满分12分)对某校高一年级学生参加社区服务次数统计,随机抽去了M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:(1)求出表中,,,M r m n 的值; (2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求组别 候车时间 人数 一 2 二 6 三 4 四 2 五1组别 达标不达标 总计甲班8乙班 54合计120图3a0.06b 至少一人参加社区服务次数在区间[)25,30内的概率. 8、(本小题满分12分)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

频率分布直方图练习题

频率分布直方图练习题

频率分布直方图练习题1、根据《中华人民共和国道路交通安全法》,酒后驾车的血液酒精浓度在20~80mg/100mL(不含80)组距之间,而醉酒驾车的血液酒精浓度在80mg/100mL(含0.080)以上。

在某地区一周内,共查处500名酒后驾车和醉酒驾车的司机。

通过对这些司机血液中酒精含量的检测,得到了频率分布直方图。

根据直方图,可估算醉酒驾车的司机人数约为70人。

2、对100名学生进行随机抽样,测得他们的身高(单位cm)。

将身高分为区间[155,160),[160,165),[165,170),[170,175),[175,180),[180,185),并得到样本身高的频率分布直方图。

根据直方图,可以得到身高在170cm以上的学生人数为30人。

将身高在[170,175),[175,180),[180,185)三个区间内的学生分别记为A、B、C三组,从这三组中分层抽样选取6人,则从A、B、C三组中分别抽取的人数为2、2、2人。

3、某部门为了确定对某路段进行限速60km/h是否合理,对通过该路段的500辆汽车的车速进行检测,并将所得数据按照组距[40,50),[50,60),[60,70),[70,80]分组,得到频率分布直方图。

根据直方图,可以得出这500辆汽车中车速低于限速的汽车有90辆。

4、某校从参加高三年级期末考试的学生中抽出60名学生,并统计了他们的历史成绩(成绩均为整数且满分为100分)。

将不低于50分的成绩分为五段,得到部分频率分布直方图。

根据直方图,历史成绩在[70,80)的学生人数为16人。

5、给定XXX青年歌手大奖赛上某位选手得分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的方差为25.4.6、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图。

根据直方图,可得到a=141.若要从身高在[120,130),[130,140),[140,150)三组内的学生中,用分层抽样的方法选取18人参加活动,则应从每组中分别选取6人。

频率分布直方图高考真题教师版

频率分布直方图高考真题教师版

频率分布直方图一.选择题(共10小题)1.(2020•天津)从一批零件中抽取80个,测量其直径(单位:)mm,将所得数据分为9组:[5.31,5.33),[5.33,5.35), ,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C.20D.362.(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1403.(2014•广东)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,104.(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第)一组,第二组,⋯,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.185.(2013•四川)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),⋯,[30,35),[35,40]时,所作的频率分布直方图是()A.B.C.D.6.(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.607.(2013•陕西)对一批产品的长度(单位:)mm进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09B.0.20C.0.25D.0.458.(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588B.480C.450D.1209.(2012•安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差10.(2011•湖北)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18B.36C.54D.72二.填空题(共8小题)11.(2015•湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.12.(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:)cm,所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.13.(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为.︒数据得到的样本频率分布直方图,其中14.(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:C)平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5C︒的城市个数为11,则样本中平均气温不︒的城市个数为.低于25.5C15.(2011•浙江)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是.16.(2010•福建)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于.17.(2010•北京)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.18.(2010•江苏)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有根棉花纤维的长度小于20mm.三.解答题(共12小题)19.(2017•北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),[80⋯,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.(2016•四川)我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),⋯,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)估计居民月均水量的中位数.21.(2016•北京)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当3w=时,估计该市居民该月的人均水费.22.(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?23.(2015•安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60], ,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.24.(2014•北京)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)25.(2014•广东)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:1212(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.26.(2010•湖北)为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)(Ⅰ)在表格中填写相应的频率;(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.27.(2010•广东)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500], ,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.28.(2010•陕西)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm之间的概率;(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.29.(2010•湖南)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(Ⅰ)求直方图中x的值.(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.30.(2010•安徽)某市2010年4月1日4 月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,(Ⅰ)完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.频率分布直方图参考答案与试题解析一.选择题(共10小题)1.(2020•天津)从一批零件中抽取80个,测量其直径(单位:)mm,将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C.20D.36【解答】解:直径径落在区间[5.43,5.47)的频率为(6.255)0.020.225+⨯=,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.2258018⨯=个,故选:B.2.(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【解答】解:自习时间不少于22.5小时的频率为:(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的频数为:0.7200140⨯=,故选:D.3.(2014•广东)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【解答】解:由图1知:总体个数为35002000450010000++=,∴样本容量100002%200=⨯=,分层抽样抽取的比例为150,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为4050%20⨯=.故选:A.4.(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:)kPa的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋯,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.5.(2013•四川)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),⋯,[30,35),[35,40]时,所作的频率分布直方图是()A.B.C.D.【解答】解:根据题意,频率分布表可得:故选:A.6.(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【解答】解:成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率(0.0050.010)200.3P=+⨯=,又低于60分的人数是15人,则该班的学生人数是1550 0.3=.故选:B.7.(2013•陕西)对一批产品的长度(单位:)mm进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09B.0.20C.0.25D.0.45【解答】解:由频率分布直方图知识可知:在区间[15,20)和[25,30)上的概率为0.045[1(0.020.04⨯+-++0.060.03)5]0.45+⨯=.故选:D .8.(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120【解答】解:根据频率分布直方图,成绩不低于60(分)的频率为110(0.0050.015)0.8-⨯+=.由于该校高一年级共有学生600人,利用样本估计总体的思想,可估计该校高一年级模块测试成绩不低于60(分)的人数为6000.8480⨯=人.故选:B .9.(2012•安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差【解答】解:()14567865x =⨯++++=甲, ()15556965x =⨯++++=乙, 甲的成绩的方差为221(2212)25⨯⨯+⨯=, 以的成绩的方差为221(1331) 2.45⨯⨯+⨯=. 故选:C .10.(2011•湖北)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18B.36C.54D.72【解答】解:观察直方图易得数据落在[10,12)的频率(0.020.050.150.19)20.82=+++⨯=;数据落在[10,12)外的频率10.820.18=-=;⨯=,∴样本数落在[10,12)内的频数为2000.1836故选:B.二.填空题(共8小题)11.(2015•湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=3.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.【解答】解:(1)由题意,根据直方图的性质得(1.5 2.5 2.00.80.2)0.11+++++⨯=,解得3aa=(2)由直方图得(3 2.00.80.2)0.1100006000+++⨯⨯=故答案为:(1)3 (2)600012.(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:)cm,所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.0150.025)100.4+⨯=,⨯=(株).∴底部周长小于100cm的频数为600.424故答案为:24.13.(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为0.0044;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为.【解答】解:(Ⅰ)依题意及频率分布直方图知,⨯+⨯+⨯+⨯+⨯+⨯=,x0.0024500.0036500.006050500.0024500.0012501解得0.0044x=.()II样本数据落在[100,150)内的频率为0.0036500.18⨯=,样本数据落在[150,200)内的频率为0.006500.3⨯=.样本数据落在[200,250)内的频率为0.0044500.22⨯=,故在这些用户中,用电量落在区间[100,250)内的户数为(0.180.300.22)10070++⨯=.故答案为:0.0044;70.︒数据得到的样本频率分布直方图,其中14.(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:C)平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5C︒的城市个数为11,则样本中平均气温不︒的城市个数为9.低于25.5C【解答】解:平均气温低于22.5C ︒的频率,即最左边两个矩形面积之和为0.1010.1210.22⨯+⨯=,所以总城市数为110.2250÷=,平均气温不低于25.5C ︒的频率即为最右面矩形面积为0.1810.18⨯=,所以平均气温不低于25.5C ︒的城市个数为500.189⨯=.故答案为:9.15.(2011•浙江)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是 600 .【解答】解:由频率分布直方图成绩小于60 的学生的频率为10(0.0020.0060.012)0.2++=,所以成绩小于60分的学生数是30000⨯,2600=故答案为:60016.(2010•福建)将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n 等于 60 .【解答】解:设第一组至第六组数据的频率分别为2x ,3x ,4x ,6x ,4x ,x ,则234641x x x x x x +++++=, 解得120x =, 所以前三组数据的频率分别是234,,202020, 故前三组数据的频数之和等于23427202020n n n ++=, 解得60n =.故答案为60.17.(2010•北京)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = 0.03 .若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.【解答】解:直方图中各个矩形的面积之和为1,10(0.0050.0350.020.01)1a∴⨯++++=,解得0.03a=.由直方图可知三个区域内的学生总数为10010(0.030.020.01)60⨯⨯++=人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为1810360⨯=人.故答案为:0.03,3.18.(2010•江苏)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有30根棉花纤维的长度小于20mm.【解答】解:由图可知,棉花纤维的长度小于20mm段的频率为0.010.010.04++,则频数为100(0.010.010.04)530⨯++⨯=.故答案为:30.三.解答题(共12小题)19.(2017•北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),[80⋯,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯=故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=,估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.20.(2016•四川)我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),⋯,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)估计居民月均水量的中位数.【解答】解:()1(0.080.160.420.500.120.080.04)0.5=++++++++⨯,I a a整理可得:2 1.42a=+,a=.∴解得:0.3II估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:()由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.120.080.04)0.50.12++⨯=,又样本容量为30万,则样本中月均用水量不低于3吨的户数为300.12 3.6⨯=万.(Ⅲ)根据频率分布直方图,得;⨯+⨯+⨯+⨯=<,0.080.50.160.50.300.50.420.50.480.5+⨯=>,0.480.50.50.730.5∴中位数应在[2,2.5)组内,设出未知数x,令0.080.50.160.50.300.50.420.50.50.5⨯+⨯+⨯+⨯+⨯=,x解得0.04x=;+=.∴中位数是20.04 2.0421.(2016•北京)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当3w=时,估计该市居民该月的人均水费.【解答】解:(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,用水量小于等于3立方米的频率为85%,∴为使80%以上居民在该用的用水价为4元/立方米,w∴至少定为3立方米.(2)当3w=时,该市居民的人均水费为:(0.110.15 1.50.220.25 2.50.153)40.05340.050.5100.05340.051100.05340.05 1.51010.5⨯+⨯+⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,∴当3w=时,估计该市居民该月的人均水费为10.5元.22.(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解答】解:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x++++++⨯=,解方程可得0.0075x=,∴直方图中x的值为0.0075;(2)月平均用电量的众数是2202402302+=,(0.0020.00950.011)200.450.5++⨯=<,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.0020.00950.011)200.0125(220)0.5a++⨯+⨯-=可得224a=,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.01252010025⨯⨯=,月平均用电量为[240,260)的用户有0.00752010015⨯⨯=, 月平均用电量为[260,280)的用户有0.0052010010⨯⨯=, 月平均用电量为[280,300)的用户有0.0025201005⨯⨯=, ∴抽取比例为11125151055=+++,∴月平均用电量在[220,240)的用户中应抽取12555⨯=户. 23.(2015•安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],⋯,[80,90],[90,100](1)求频率分布图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【解答】解:(1)因为(0.0040.0180.02220.028)101a +++⨯+⨯=,解得0.006a =;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.0220.018)100.4+⨯=,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:500.006103⨯⨯=(人),记为1A ,2A ,3A ;受访职工评分在[40,50)的有:500.004102⨯⨯=(人),记为1B ,2B . 从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是1{A ,2}A ,1{A ,3}A ,1{A ,1}B ,1{A ,2}B ,2{A ,3}A ,2{A ,1}B ,2{A ,2}B ,3{A ,1}B ,3{A ,2}B ,1{B ,2}B ,又因为所抽取2人的评分都在[40,50)的结果有1种,即1{B ,2}B , 故所求的概率为110P =. 24.(2014•北京)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)【解答】解:(Ⅰ)由频率分布表知:1周课外阅读时间少于12小时的频数为681722251290+++++=,1∴周课外阅读时间少于12小时的频率为900.9 100=;(Ⅱ)由频率分布表知:数据在[4,6)的频数为17,∴频率为0.17,0.085a∴=;数据在[8,10)的频数为25,∴频率为0.25,0.125b∴=;(Ⅲ)数据的平均数为10.0630.0850.1770.2290.25110.12130.06150.02170.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(小时),∴样本中的100名学生该周课外阅读时间的平均数在第四组.25.(2014•广东)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:1212(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率. 【解答】解:(1)(40,45]的频数17n =,频率10.28f =;(45,50]的频数22n =,频率20.08f =; (2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A ,则至少有一人的日加工零件数落在区间(30,35]为事件A ,已知该厂每人日加工零件数落在区间(30,35]的概率为15,P ∴(A )0441256(1)5625C =-=, ()1P A P ∴=-(A )369625=, ∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为369625.26.(2010•湖北)为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示) (Ⅰ)在表格中填写相应的频率;。

1.6频率分布直方图作业

1.6频率分布直方图作业

1、在频率分布直方图中,每个小长方形的面积表示 A. 组数12 B. 频数13 C. 频率6 D.组距频率2、一个容量为n 的样本分成若干组,已知某组的频数和频率分别为30和0.25,则n =_______3、容量为100的样本数据,按从小到大的顺序分为8组,如下表:第三组的频数和频率分别是 A. 14和0.14 B. 0.14和14 C.141和0.14 D. 31和1414、观察新生婴儿的体重,其频率分布直方图如上图所示,则新生婴儿体重在(2 700,3300)内的频率为A.0.0018B.0.18C.0.3D.0.541、在某餐厅内抽取100人,其中有30人在15岁以下,35人在16至25岁,25人在26至45岁,10人在46岁以上,则数 0.35是16到25岁人员占总体分布的 A.概率 B.频率 C.累计频率 D.频数2、一个容量为20的样本数据,分组后组距与频数如下:[10,20]2个,[20,30]3个,[30,40]4个,[40,50]5个,[50,60]4个,[60,70]2个,则样本在区间(-∞,50)上的频率为A.5%B.25%C.50%D.70%3、观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(]2700,300000011、从存放号码分别为1,2,…,10的卡片的盒子中,在放回地取100次,每次取一张卡片则取到号码为奇数的频率是 A .0.53 B.0.5 C .0.47 D .0.37 2、3.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约有( )(A) 30辆(B) 40辆(C) 60辆(D) 80辆3、为了估计某产品寿命的分布,对产品进行追踪调查,记录如下:(1)画出频率分布直方图;(2)估计产品在200~500以内的频率.1、为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男(1)求出表中a ,m 的值. (2)画出频率分布直方图和频率折线图2、为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整(1)求出表中,,,m n M N 所表示的数分别是多少? (2)画出频率分布直方图.(3)全体女生中身高在哪组范围内的人数最多?)。

频率分布直方图大题 -完整获奖版

频率分布直方图大题 -完整获奖版

1、某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100].(Ⅰ)求频率分布图中a的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.2、名学生某次数学考试成绩(单位:分)的频数分布直方图如下: (Ⅰ)求频数直方图中a的值;(Ⅱ)估计这20名学生所在班级在本次数学考试中的平均成绩;(Ⅲ)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.频率/组距成绩(分)3a2a3、为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是,,,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)估计在这次测试中,学生跳绳次数的中位数、众数、平均数。

10.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?11.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?18、初三两个班电脑参赛成绩(均为整数)整理后分成五组,绘出频率分布直方图,从左到右一、三、四、五小组的频率分别是, , , ,第二小组的频数是40。

频率分布直方图考试题

频率分布直方图考试题

频率分布直方图北鲲五班练习题1.用样本估计总体,以下说法正确的选项是〔〕A.样本的结果就是总体的结果B.样本容量越大,估计就越准确C.样本的标准差可以近似地反映总体的平均状态D.数据的方差越大,说明数据越稳定2.一支田径队有男队员56人,女队员42人,用分层抽样的方法从全体运发动中抽出一个容量为28的样本,那么应抽取男队员的人数为〔〕A.12 B.14 C.16 D.183.某学校有教职工共160人,其中有教师104人,管理人员32人,后勤效劳人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,那么在20人的样本中应抽取后勤人员的人数为( )A. 3B. 4C. 5D. 64.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.各层中依次抽取的人数分别是〔〕A. 8,4,3B. 6,5,4C. 7,5,3D. 8,5,25. 某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组〔1-5号,6-10号,…,196-200号〕.假设第5组抽出的号码为22,那么第1组至第3组抽出的号码依次是〔〕A. 3,8,13B. 2,7,12C. 3,9,15D. 2,6,126.一个容量为n的样本,分成假设干组,某组的频数和频率分别是40,0.125,那么n的值为A. 640B.320C.240D. 1607.个容量为32的样本,某组样本的频率为0.125,那么该组样本的频数为.A. 2B. 4C. 6D. 8 ( )8.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.45,75,15B. 45,45,45C.30,90,15D. 45,60,309.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,那么老年人、中年人、青年人分别各抽取的人数是( ) A. 6,12,18 B. 7,11,19 C. 6,13,17 D. 7,12,1710.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,教师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是( ).A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法11.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2 :3 :5.现用分层抽n样方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量12.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了解普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进展普通话水平测试,其中不到40岁的教师中应抽取的人数是___________.13.在某次学生考试的成绩中随机抽取假设干学生的成绩,分组与各组的频数如下:[40,50),4;[50,60),1;[60,70),10;[70,80),11;[80,90),18;[90,100),6,估计本次考试的及格率为__________ .14.把容量是100,那么第8组的频率是.规定:车辆驾驶员血液酒精浓度在20~80 mg/100mL〔不含80〕之间,属于酒后驾车;血液酒精浓度在80mg/100mL 〔含80〕以上时,属醉酒驾车。

高考数学频率分布直方图大题训练题(含答案)

高考数学频率分布直方图大题训练题(含答案)

频率分布直方图大题训练题一、解答题(共18题;共205分)1.(2020·龙岩模拟)某电讯企业为了了解某地区居民对电讯服务质量评价情况,随机调查100 名用户,根据这100名用户对该电讯企业的评分,绘制频率分布直方图,如图所示,其中样本数据分组为,,…… .(1)估计该地区用户对该电讯企业评分不低于70分的概率,并估计对该电讯企业评分的中位数;(2)现从评分在的调查用户中随机抽取2人,求2人评分都在的概率.2.(2020·芜湖模拟)某学校为了了解该校高三年级学生寒假在家自主学习的情况,随机对该校300名高三学生寒假的每天学习时间(单位:h)进行统计,按照,,,,的分组作出频率分布直方图如图所示.参考公式:,其中.参考附表:0.050 0.010 0.001(Ⅰ)根据频率分布直方图计算该校高三年级学生的平均每天学习时间(同一组中的数据用该组区间中点值代表);(Ⅱ)该校规定学习时间超过4h为合格,否则不合格.已知这300名学生中男生有140人,其中合格的有70人,请补全下表,根据表中数据,能否有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关?3.(2020·泰安模拟)某水果批发商经销某种水果(以下简称A水果),购入价为300元/袋,并以360元/袋的价格售出,若前8小时内所购进的A水果没有售完,则批发商将没售完的A水果以220元/袋的价格低价处理完毕(根据经验,2小时内完全能够把A水果低价处理完,且当天不再购进).该水果批发商根据往年的销量,统计了100天A水果在每天的前8小时内的销售量,制成如下频数分布条形图.现以记录的100天的A水果在每天的前8小时内的销售量的频率作为A水果在一天的前8小时内的销售量的概率,记X表示A水果一天前8小时内的销售量,n表示水果批发商一天批发A水果的袋数.(1)求X的分布列;(2)以日利润的期望值为决策依据,在与中选其一,应选用哪个?4.(2020·南昌模拟)某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标Z来衡量产品的质量.当时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标Z的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.(1)从该企业生产的所有产品中随机抽取4件,求至少有1件优等品的概率;(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测,买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为X元,求X的分布列与数学期望.5.(2020·南昌模拟)在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由3个人依次出场解密,每人限定时间是1分钟内,否则派下一个人.3个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲100次的测试记录,绘制了如下的频率分布直方图.(1)若甲解密成功所需时间的中位数为47,求a、b的值,并求出甲在1分钟内解密成功的频率;(2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为,其中表示第个出场选手解密成功的概率,并且定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立.①求该团队挑战成功的概率;②该团队以从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人员数目X 的分布列与数学期望.6.(2020·江西模拟)冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.出现的新型冠状病毒(nCoV)是从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检测血液中的指标A.现从采集的血液样品中抽取500份检测指标A的值,由测量结果得下侧频率分布直方图:(1)求这500份血液样品指标A值的平均数和样本方差(同一组数据用该区间的中点值作代表,记作);(2)由频率分布直方图可以认为,这项指标的值X服从正态分布,其中近似为样本平均数,近似为样本方差.在统计学中,把发生概率小于3‰的事件称为小概率事件(正常条件下小概率事件的发生是不正常的).该医院非常关注本院医生健康状况,随机抽取20名医生,独立的检测血液中指标A的值,结果发现4名医生血液中指标A的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由.附:参考数据与公式:,,;若,则① ;② ;③.,,,.7.(2020·江西模拟)年前某市质监部门根据质量管理考核指标对本地的500家食品生产企业进行考核,然后通过随机抽样抽取其中的50家,统计其考核成绩(单位:分),并制成如下频率分布直方图.(1)求这50家食品生产企业考核成绩的平均数(同一组中的数据用该组区间的中点值为代表)及中位数a(精确到0.01)(2)该市质监部门打算举办食品生产企业质量交流会,并从这50家食品生产企业中随机抽取4家考核成绩不低于88分的企业发言,记抽到的企业中考核成绩在的企业数为X,求X的分布列与数学期望(3)若该市食品生产企业的考核成绩X服从正态分布其中近似为50家食品生产企业考核成绩的平均数,近似为样本方差,经计算得,利用该正态分布,估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家?(结果保留整数).附参考数据与公式:则,.8.(2020·漯河模拟)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:附参考数据:,若随机变量X服从正态分布,则,,.(1)根据频率分布直方图,估计50位农民的平均年收入(单位:千元);(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得=6.92,利用该正态分布,求:①在扶贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入标准大约为多少千元?②为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?9.(2017·黑龙江模拟)某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排粪型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如xIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不舍右端点)(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;(2)从乙组准确回忆结束在|12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量x.求X分布列及数学期望;(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.10.(2018·南宁模拟)在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以(斤)(其中)表示米粉的需求量,(元)表示利润.(1)估计该天食堂利润不少于760元的概率;(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求的分布列和数学期望.11.(2020·辽宁模拟)某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?12.(2020·大连模拟)某校从参加高三模拟考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取个,求至多有人在分数段内的概率.13.(2020·莆田模拟)为了解某地网民浏览购物网站的情况,从该地随机抽取100名网民进行调查,其中男性、女性人数分别为45和55.下面是根据调查结果绘制的网民日均浏览购物网站时间的频率分布直方图,将日均浏览购物网站时间不低于40分钟的网民称为“网购达人”,已知“网购达人”中女性有10人.参考公式:,其中.参考数据:0.102.7063.841 5.024 6.635 7.879 10.828(1)根据已知条件完成下面的列联表,并判断是否有90%的把握认为是否为“网购达人”与性别有关;(2)将上述调査所得到的频率视为概率,现在从该地的网民中随机抽取3名,记被抽取的3名网民中的“网购达人”的人数为X,求X的分布列、数学期望和方差.14.(2020·长春模拟)笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值给宣纸确定质量等级,如下表所示:公式在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(1)估计该公式生产宣纸的年利润(单位:万元);(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值的频率,如下表所示:其中为改进工艺前质量标准值的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.15.(2020·蚌埠模拟)随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.参考答案:,.(1)由大数据可知,在18到44岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);(2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;(3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从18到35岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在18到26岁的概率.16.(2020·辽宁模拟)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有天,从这天中任取两天,设为这两天中客流量超过7万人的天数.求的分布列和期望.17.(2020·江门模拟)2019年7月1日到3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如图的频率分布直方图.(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表);(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航量程X近似地服从正态分布,经计算第(1)问中样本标准差s的近似值为50.用样本平均数作为的近似值,用样本标准差s作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率;(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正,反面的概率都是,方格图上标有第0格、第1格、第2格……第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从k到),若掷出反面,遥控车向前移动两格(从k到),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第n格的概率为,试证明是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.参考数据:若随机变量服从正态分布,则,,.18.(2020·肇庆模拟)某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值.(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)①②③评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望.答案解析部分一、解答题1.【答案】(1)解:由题意,该地区用户对该电讯企业评分的频率分布如下表:因此可估计评分不低于70分的概率为;对该电讯企业评分的中位数设为x,可得,则,解得,所以可估计对该电讯企业评分的中位数为;(2)解:受调查用户评分在的有人,若编号依次为1,2,3,4,从中选2人的事件有、、、、、,共有个基本事件;受调查用户评分在的有人,若编号依次为1,2,3,..9,10,从中选2人,可得共有个基本事件;因此2人评分都在的概率.【解析】【分析】(1)由题意列出频率分布表,求和即可估计该地区用户对该电讯企业评分不低于70分的概率;利用中位数两侧的概率和相等列方程即可估计对该电讯企业评分的中位数;(2)由题意计算出受调查用户评分在、的人数,求出总的基本事件个数及满足要求的基本事件的个数,由古典概型概率公式即可得解.2.【答案】解:(Ⅰ)高三年级学生平均每天的学习时间为:(h);(Ⅱ)300名学生中合格的人数为(人),故补全表格如下:所以所以有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关.【解析】【分析】(Ⅰ)根据频率分布直方图直接计算平均值即可;(Ⅱ)先求出300名学生中合格的人数,再补全表格,然后根据表格数据和公式计算,最后将与进行比较,进而得出结论.3.【答案】(1)解:由题意知,根据条形图,可得A水果在每天的前8小时内的销售量分别为14,15,16,17的频率分别是0.2,0.3,0.4和0.1 ,所以X的分布列为140.2(2)解:当时,设Y为水果批发商的日利润,则Y的可能取值为760,900,可得,所以期望,当时,设Z为水果批发商的日利润,则Z的可能取值为680,820,960,可得,所以期望.因为,综上可知,当时的日利润期望值大于时的日利润期望值,故答案为:.【解析】【分析】(1)由题意知,根据条形图,得到销售量分别为14,15,16,17的频率,进而得到随机变量X的分布列;(2)分别求得当和时,利润的数学期望,比较即可得到结论.4.【答案】(1)解:由题意知,500件产品中共有优等品件,则从样本中随机取一件为优等品的概率为,所以从该企业生产的所有产品中随机抽取4件,没有一件是优等品的概率为,则随机抽取4件,至少有1件优等品的概率为.(2)解:检测出3件或4件为优等品时,检测出的优等品低于3件时,,由题意知,,故X的分布列为所以数学期望.【解析】【分析】(1)先求出从样本中随机取一件为优等品的概率,再求从该企业生产的所有产品中随机抽取4件,没有一件是优等品的概率,从而可求出至少有一件是优等品的概率.(2)由题意求出检测出3件或4件为优等品时及检测出的优等品低于3件时的X的值,结合第一问求出,,从而可得X的分布列,即可计算其数学期望5.【答案】(1)解:甲解密成功所需时间的中位数为47,,解得,,解得,由频率分布直方图知,甲在分钟内解密成功的频率是;(2)解:①由题意及(1)可知第一个出场选手解密成功的概率为,第二个出场选手解密成功的概率为,第三个出场选手解密成功的概率为,所以该团队挑战成功的概率为;②由①可知按从小到大的顺序的概率分别、、,根据题意知的取值为、、,则,,,所以所需派出的人员数目的分布列为:因此,.【解析】【分析】(1)根据中位数左右两边的矩形面积之和均为0.5可求得a、b的值,并根据频率分布直方图求得甲在1分钟内解密成功的频率;(2)①由(1)得出,求出、的值,由此得出该团队挑战成功的概率为;②由题意可得出随机变量X的可能取值有1、2、3,利用独立事件的概率乘法公式计算出随机变量X在不同取值下的概率,据此可得出随机变量X的分布列,结合期望公式可计算出X的数学期望值.6.【答案】(1)解:根据题意,由频率分布直方图可知,500份血液样品指标A值的平均数为:,500份血液样品指标A值的样本方差为:.(2)解:由题意知:指标的值服从正态分布,,,则,所以,.随机抽取20名医生独立检测血液中指标的值,就相当于进行了20次独立重复试验,记“20名医生中出现4名医生血液中指标的值大于正常值20,03”为事件,则,所以从血液中指标的值的角度来看:该院医生的健康率是正常的.【解析】【分析】(1)由频率分布直方图,直接利用平均数和方差公式,求出500份血液样品指标值的平均数和样本方差;(2)由(1)得出指标的值服从正态分布,从而可求出,在根据独立重复试验中的概率求法,求出20名医生中出现4名医生血液中指标的值大于正常值20.03的概率,即可判断该院医生的健康率是否正常7.【答案】(1)解:由题意,这50家食品生产企业考核成绩的平均数为:(分),由频率分布图可知内,所以,解得分.(2)解:根据题意,这50家食品生产企业中考核成绩不低于88分的企业有:(家),其中考核成绩在内的企业有(家),所以X可能取值有0,1,2,3,4则,,,,,所以X的分布列为所以.(3)解:由题意得,所以,所以,所以(家),所以500家食品生产企业质量管理考核成绩高于90.06分的有79家.【解析】【分析】(1)利用频率分布直方图的性质能求出这50家食品生产企业考核成绩的平均数和中位数;(2)由已知得到考核成绩在内的企业有5家,得出随机变量的可能取值,分别求出相应的概率和分布列,求得数学期望;(3)根据题意得,由此估计该市500家食品生产企业质量管理考核成绩高于90.06分的企业个数.8.【答案】(1)解:千元.故估计50位农民的年平均收入为17.40千元.(2)解:由题意知,① ,所以时,满足题意,即最低年收入大约为14.77千元.②由,每个农民的年收入不少于12.14千元的事件的概率为0.9773,记1000个农民的年收入不少于12.14千元的人数为则,其中于是恰好有k个农民的年收入不少于12.14千元的事件概率为,。

第9章统计专题3 频率分布直方图常考题型专题练习——【含答案】

第9章统计专题3 频率分布直方图常考题型专题练习——【含答案】

1频率分布直方图【知识总结】 1.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率;(3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3. 频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2【巩固练习】1、随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如表所示.分组 频数 频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n 1 f 1(45,50] n 2 f 2(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值;(2)根据上述频率分布表,画出样本频率分布直方图和频率分布折线图. 【答案】(1) n 1=7,n 2=2,f 1=0.28,f 2=0.08 (2)见解析【解析】(1)由所给数据知,落在区间(40,45]内的有7个,落在(45,50]内的有2个,故1n =7,2n =2,所以f 1=125n =725=0.28,f 2=225n =225=0.08. (2)样本频率分布直方图和频率分布折线图如图所示.32. 为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是( )A .35B .48C .60D .75【答案】C【解析】设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.0375+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n =515250.75++=60.故选:C.3、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为若低于60分的人数是15人,则该班的学生人数是( )A .B .C .D.【答案】B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.4、某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )4A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8[解析] 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误;1分钟仰卧起坐的次数超过30的频率为0.2,∴超过30次的人数为400×0.2=80,故C正确;1分钟仰卧起坐的次数少于20的频率为0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.[答案] C5、某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用[)0,0.1[)0.1,0.2[)0.2,0.3[)0.3,0.4[)0.4,0.5[)0.5,0.6[)0.6,0.756水量频数132 49 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:7(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析;(2)0.48;(3)347.45m . 【解析】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48; (3)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为8()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=.6、某电视台为宣传本省,随机对本省内1565~岁的人群抽取了n 人,回答问题“本省内著名旅游景点有哪些”统计结果如图表所示(1)分别求出a b x y 、、、的值;(2)从第234、、组回答正确的人中用分层抽样的方法抽取6人,求第234、、组每组各抽取多少人?(3)指出直方图中,这组数据的中位数是多少(取整数值)?【答案】(1)5a =,27b =,0.9x =,0.2y =;(2)2人,3人,1人;(3)42【解析】(1)由已知第4组人数为9250.36=,∴251000.02510n ==⨯,9由频率分布直方图得第一组人数为:1000.011010⨯⨯=,100.55a =⨯=,第二组人数为:1000.021020⨯⨯=,180.920x ==, 第三组人数为:1000.031030⨯⨯=,300.927b =⨯=,第五组人数为:1000.0151015⨯⨯=,30.215x ==. (2)第2、3、4组回答正确人数分别18、27、9,共54人,设第234、、组分别抽取,,x y z 人,则65418279x y z===,解得2,3,1x y z ===. (3)第1、2组频率和为0.10.20.3+=,第4、5组频率和为0.250.150.4+=,第3组频率为0.3,设中位数为m ,则350.50.3100.3m --=,241423m =≈. ∴中位数为42.7、某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.10(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=,∴0.0075x =.(2)月平均用电量的众数是2202402302+=, ∵(0.0020.00950.011)200.450.5++⨯=<, 月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=,可得224a =, ∴月平均用电量的中位数为2248、为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.频率分布表组别分组频数频率1 [50,60) 9 0.182 [60,70) a3 [70,80) 20 0.404 [80,90) 0.085 [90,100] 2 b合计 1请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a,b,c,d的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内.1112【答案】(1) a =15,b =0.04,c =0.03,d =0.004 (2) 70≤x <80 【解析】(1)样本容量为9÷0.18=50,50×0.08=4, 所以a =50-9-20-4-2=15,b =2÷50=0.04,c =15÷50÷10=0.03,d =0.04÷10=0.004.(2)因为样本容量为50,则样本的中位数是第25,26个数据的平均数, 而第25,26个数据均位于70≤x <80范围内, 所以小王的测试成绩在70≤x <80范围内.9、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.分数段[)50,60[)60,70[)70,80[)80,90:x y1∶12∶13∶44∶513(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数. 【答案】(1)0.005a =;(2)73(分);(3)10.【解析】(1)由频率分布直方图知(20.020.030.04)101a +++⨯=,解得0.005a =. (2)由频率分布直方图知这100名学生语文成绩的平均分为550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(分).(3)由频率分布直方图知语文成绩在[)50,60,[)60,70,[)70,80,[)80,90各分数段的人数依次为:0.005101005,0.041010040,0.031010030,0.021010020⨯⨯=⨯⨯=⨯⨯=⨯⨯=由题中给出的比例关系知数学成绩在上述各分数段的人数依次为1455,4020,3040,2025234⨯=⨯=⨯=.故数学成绩在[50,90)之外的人数为100(5204025)10-+++=.10.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分[75,85) [85,95) [95,105) [105,115) [115,125) 组频数 6 26 38 22 8(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?14【答案】(1)见解析;(2)平均数100,方差为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【解析】(1)直方图如图,(2)质量指标值的样本平均数为x=⨯+⨯+⨯+⨯+⨯=.800.06900.261000.381100.221200.08100质量指标值的样本方差为22222s=-⨯+-⨯+⨯+⨯+⨯=.(20)0.06(10)0.2600.38100.22200.08104(3)质量指标值不低于95的产品所占比例的估计值为++=,0.380.220.080.68由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.11、从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量1516结果得到如下频数分布表:质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228()1在图中作出这些数据的频率分布直方图;()2估计这种产品质量指标值的平均数、中位数(保留2位小数);()3根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)直方图见解析;(2)平均数100,中位数99.74;(3)不能. 【解析】()1由已知作出频率分布表为:质量指标值分组[)75,85 [)85,95 [)95,105 [)105,115 [)115,12517频数 6 26 38 22 8频率0.06 0.26 0.38 0.22 0.08由频率分布表作出这些数据的频率分布直方图为:()2质量指标值的样本平均数为:800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=,[)75,95内频率为:0.060.260.32+=,∴中位数位于[)95,105内,设中位数为x ,则0.50.260.06951099.740.38x --=+⨯≈,∴中位数为99.74.()3质量指标值不低于95 的产品所占比例的估计值为0.380.220.080.68++=.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.18。

概率频率分布直方图练习题

概率频率分布直方图练习题

1.(本题满分12分)某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值; (2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.2、(本题满分12分)为调查民营企业的经营状况,某统计机构用分层抽样的方法从A 、B 、C 三个城市中,抽取若干个民营企业组成样本进行深入研究,有关数据见下表:(单位:个)(1)求x 、y 的值;(2)若从城市A 与B 抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市A 的概率.3、某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,产品的等级系数越大表明产品的质量越好.现从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品,3ξ<为不合格品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率. 4、某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级: 1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x ,价格满意度为y ).(1)求高二年级共抽取学生人数;(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;(3)为提高食堂服务质量,现从3x <且24y ≤<的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.5、(本小题满分12分)为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示: (1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.6、(本小题满分12分)某学校甲、乙两个班参加体育达标测试,统计 测试成绩达标人数情况得到如图所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为110. (1)请完成上面的列联表;(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.7、(本小题满分12分)对某校高一年级学生参加社区服务次数统计,随机抽去了M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下: (1)求出表中,,,M r m n 的值;(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少一人参加社区服务次数在区间[)25,30内的概率.8、(本小题满分12分)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

概率频率分布直方图练习题

概率频率分布直方图练习题

1.(本题满分12分)某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (1)求直方图中x 的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.2、(本题满分12分)为调查民营企业的经营状况,某统计机构用分层抽样的方法从A 、B 、C 三个城市中,抽取若干个民营企业组成样本进行深入研究,有关数据见下表:(单位:个)(1)求x 、y 的值;(2)若从城市A 与B 抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市A 的概率.3、某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,产品的等级系数越大表明产品的质量越好.现从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 3 46 3 47 5 3 48 5 3 8 3 4 3 4 4 7 5 6 7该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品,3ξ<为不合格品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率. 4、某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级: 1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x ,价格满意度为y ).(1)求高二年级共抽取学生人数;(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;(3)为提高食堂服务质量,现从3x <且24y ≤<的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.5、(本小题满分12分)为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:(1)估计这60名乘客中候车时间少于10分钟的人数;(2)若从上表第三、四组的6人中随机抽取2人作进一步Array的问卷调查,求抽到的两人恰好来自不同组的概率.6、(本小题满分12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如图所示的列联表,已知.在全部学生中随机抽取1人为不达标的概率为110(1)请完成上面的列联表;(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.7、(本小题满分12分)对某校高一年级学生参加社区服务次数统计,随机抽去了M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:(1)求出表中,,,M r m n 的值;(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少一人参加社区服务次数在区间[)25,30内的概率.8、(本小题满分12分)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题1:(2011中山期末A )2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 ( ) A .30辆 B .60辆 C .300辆
D .600辆
变式:(2009山东卷理B)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且 小于104克的产品的个数是 ( ). B.75 C. 60
变式:(2011杭州质检B )某初一年级有500名同学,将他们的身高(单位:cm )数据绘制
成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .
变式:(2009湖北卷B )下图是样本容量为200的频率分布直方图。

根据样本的频率分布直方图估计,样本数据落在【6,10】内的频数为 ,数据落在(2,10)内的概率约为 。

96 98 100 102 104 106

频率/组距
例题3(2011华附月考B )为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是,,,第一小组的频数为 5.
(1)求第四小组的频率;
(2)参加这次测试的学生人数是多少
(3)在这次测试中,学生跳绳次数的中位数落在第几小组内
例题4(2011·惠州三调A)右图是2010年在惠州市举行的全省运动会上,七位评委为某跳水比赛项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩 数据的平均数和方差分别为( )
A .84,
B .84,
C .85,
D .85,4
变式:(2010年高考天津卷A)甲、乙两人在10天中每天加工零件的个数用茎叶图表示下图,中间一列的数字表示零件个数,两边的数字表示零件个数的位数。

则这10天甲、乙两人日加工零件的平均数分别为????????? 和?? ????????。

8 9 4 4 6 4 7 3
7 9
例题5(2011佛山一检C)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽
取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望EX.
变式:(2010广雅月考B)下图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,
已知图甲中从左向右第一组的频数为4000.在样本中记月收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000),[3000,3500),[3500,4000]的人数依次为A1、A2、…、A6.图乙是统计图甲中月工资收入在一定范围内的人数的算法流程图,则样本的容量n= _________;图乙输出的S=_________.(用数字作答)
四:方向预测、胜利在望
1.(A级) 某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将
测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,
成绩大于等于14秒且小于15秒;……
第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率
分布直方图.
设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小
于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为.
7.(B级)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为岁~18岁的男生体重(kg),得到频率分布直方图如下:
根据上图可得这100名学生中体重在[,)的学生人数是.
8.(A级)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为.
9.(A级)某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么①,②分别为.
10.(A级)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.
11(B级)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交
作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各
长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加评比
(2)哪组上交的作品数量最多有多少件
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高
16.(C级)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.
(1)第二小组的频率是多少样本容量是多少
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少。

相关文档
最新文档