大学物理电磁感应 ppt课件
合集下载
大学普通物理学经典课件——电磁感应.ppt
B
R
E R
B r
E
E
E
r<R
B
R
B dS 0 S
H
L
dl
I
涡旋电场: E dl d B ds
L
dt S
一 位移电流
S2
S1
-+ -+
-+
L -+ I
-
dD dt
+ +
I
-
jc -
-
D
+
+ jc
+
B
AI
例 半经为R,相距 l(l R) 的圆形空气平板电容器,两端
L dI RI
dt
Idt LIdI RI2dt
2r R
l K
t Idt 1 LI 2 t RI 2dt
0
2
0
自感线圈磁能
电
电源反 回路电
源 作 功
抗自感 电动势 作的功
阻所放
出的焦 耳热
Wm
1 2
LI 2
自感线圈磁能
Wm
1 LI 2 2
I
L
L n2V , B nI
如图所示。设直导线中的电流强度为I,导线ab 长为L,a端到直导线的距离为d,求导线ab中的
动生电动势,并判断哪端电势较高。
a
大学物理《电磁学》PPT课件
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
大学物理电磁感应电磁场和电磁波PPT课件
③ 连接MN成一回路 常数ddt 0
NM MN NM MN2RvB
例4 已知如图 求 的大小和方向
解:
fg
① 用动生电动势公式
I
v
l2
设回路方向: e—f—g—h—e
x e l1 h
effggh he
fghe0
ef hg (v B )d l(v B )d l
作匀速转动. 求线
圈中的感应电动势.
N
enO
'
B
iR
O
已知 S, N,, 求 .
解 设 t 0 时,
en与
B同向
,
则
t
N
N NB co S ts
enO
'
B
dNBSsint
dt
ω
令 mNBS
则 msint
O
iR
msint
金属块
发接 生高 器频
抽真空 金 属 电 极
阻
尼 摆N
S
涡电流加热金属电极
*12-3 自感和互感
自感现象
L
R
通过线圈的电流变化
时,线圈自身会产生感应 现象.
一 自感电动势 自感 穿过闭合电流回路的磁通量
ΦLI
(1)自感 LΦI
若线圈有 N 匝,
IB
磁通匝数 N Φ自感 L I
一 电磁感应现象 磁铁相对线圈运动
通电线圈相对线圈 运动
磁场中运动的导体所产生的感应现象
二 电磁感应定律
电流通断时所产生的
当穿过闭合回路所围 感应现象
面积的磁通量发生变化时,
回路中会产生感应电动势,
电磁感应优秀课件
自感系数
电磁感应
对于一个任意的回路
L
d dt
d dI
dI dt
L
L
dI dt
L dΨ Ψ dI I
自感(系数)的物理意义:
① L dΨ Ψ dI I
在数值上等于回路中通过单位电流时, 通过自身回路所包围面积的磁通链数。
电磁感应
②
L
d
dt
d( LI ) L dI I dL
解: r R E涡 • dl L
B
•
dS
t
S
分布。 E
L E涡dl
S
B dS t
dB
R L E
d
t
E r
0
B E
E涡
2r
dB dt
r 2
E涡
r 2
dB dt
方向:逆时针
电磁感应
r R
L E涡 •
dl
S'
B t
•
dS
在圆柱体外,由于
l H • dl NI
H 2r NI
H NI 2r
I
R2 R1
B NI
2r
d
B
•
dS
NI
hdr
2r
h
r dr
电磁感应
d
B
•
dS
NI
hdr
2r
d
NIh 2
R2
R1
dr r
NIh ln( R2 )
2
R1
N N 2Ih ln( R2 )
2
R1
L
N 2h
ln(
R2
)
I 2
R1
电磁感应
大学物理 电磁感应 课件 PPT
解:设DE中点为坐标原点,在DE上距原点为x处取线元dx,两长 直导线在dx处的磁场为
B
B1
B2
0I 2
[ r
1 l
x
r
1 l
] x
2
2
d i
vBdx
0 Iv [ 2 r
dx l
x
r
dx l
] x
l
2
2
i
2
d i
l
0 Iv ln
r l r
2
Example 1
设空间有磁场存在的圆柱形区域的半径为R=5cm,磁感应强度 对时间的变化率为dB/dt=0.2T/s,试计算离开轴线的距离r等于2cm、 5cm及10cm处的涡旋电场。
B dl 0 I
i
L
cP d
b
c
d
a
B dl a B dl b B dl c B dl d B dl
b
2a B dl 2BL
又:
0
I 0iL, 所以
B 0i
2
例题:一无限大平行板电容器极板间的电场强度为E,一 均匀磁场B与E垂直,现有一电子(-e,m)从负极出来,初 速度为零。求:电子刚好不能到达正极板的距离d。
求棒AC两端的电势差。
O
D
C
B A
复习
一、法拉第电磁感应定律 d
dt
二、动生电动势
闭合回路
i
v
B
dl
l
不闭合回路
b
i a v B dl
三、感生电动势
L
Ek
dl
d dt
四、感生电场与静电场
例行3放.置一一长矩直形导线线圈中,通线有圈正平弦面交与流长电直i导线I在m 同si一n w平,t面在内长,直求导任线一旁瞬平
B
B1
B2
0I 2
[ r
1 l
x
r
1 l
] x
2
2
d i
vBdx
0 Iv [ 2 r
dx l
x
r
dx l
] x
l
2
2
i
2
d i
l
0 Iv ln
r l r
2
Example 1
设空间有磁场存在的圆柱形区域的半径为R=5cm,磁感应强度 对时间的变化率为dB/dt=0.2T/s,试计算离开轴线的距离r等于2cm、 5cm及10cm处的涡旋电场。
B dl 0 I
i
L
cP d
b
c
d
a
B dl a B dl b B dl c B dl d B dl
b
2a B dl 2BL
又:
0
I 0iL, 所以
B 0i
2
例题:一无限大平行板电容器极板间的电场强度为E,一 均匀磁场B与E垂直,现有一电子(-e,m)从负极出来,初 速度为零。求:电子刚好不能到达正极板的距离d。
求棒AC两端的电势差。
O
D
C
B A
复习
一、法拉第电磁感应定律 d
dt
二、动生电动势
闭合回路
i
v
B
dl
l
不闭合回路
b
i a v B dl
三、感生电动势
L
Ek
dl
d dt
四、感生电场与静电场
例行3放.置一一长矩直形导线线圈中,通线有圈正平弦面交与流长电直i导线I在m 同si一n w平,t面在内长,直求导任线一旁瞬平
大学物理电磁学PPT课件
磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍
大学物理电磁学第十章电磁感应PPT课件
d Idq n2Rd 2 R R dR
dI在圆心处产生的磁场
16
dB20R dI120 dR
由于整个带电园盘旋转,在圆心产生的B为
BR2d R1
B 1 20( R2R 1)
穿过导体小环的磁通
R2
Bd 1 2 S 0( R 2R 1)r2
r R1
R
导体小环中的感生电动势
d d t1 20 (R 2R 1)r2d d t
本质 :能量守恒定律在电磁感应现象上的具体体现
影响感生电流的因素 dm i
6
相对运动
dt R
B
切割磁力线
磁通量m变化
m变化的数量和方向 m变化的快慢
I感
I
•
v
感生电流
3. 电动势
Q
-Q
7
(1)电源
++ ++
仅靠静电力不能维持稳恒电流。
+ +
+ +
维持稳恒电流需要非静电力。
++ ++
F非
____________
r nˆ
B
o
d0
x
13
这是一个磁场非均匀且
随时间变化的题目。
h
r nˆ
1、求通过矩形线圈磁通 o
B
dBd cso s2 0rIbdx rx
d0
x
d d 0 0 a 2 a 2Bc do s sd d 0 0 a 2 a 22 0Ibx2 x h d 2 x
0Ibln 4
例1 有一水平的无限长直导线,线中通有交变电流 12
II0cost,导线距地面高为 h,D点在通电导线的
dI在圆心处产生的磁场
16
dB20R dI120 dR
由于整个带电园盘旋转,在圆心产生的B为
BR2d R1
B 1 20( R2R 1)
穿过导体小环的磁通
R2
Bd 1 2 S 0( R 2R 1)r2
r R1
R
导体小环中的感生电动势
d d t1 20 (R 2R 1)r2d d t
本质 :能量守恒定律在电磁感应现象上的具体体现
影响感生电流的因素 dm i
6
相对运动
dt R
B
切割磁力线
磁通量m变化
m变化的数量和方向 m变化的快慢
I感
I
•
v
感生电流
3. 电动势
Q
-Q
7
(1)电源
++ ++
仅靠静电力不能维持稳恒电流。
+ +
+ +
维持稳恒电流需要非静电力。
++ ++
F非
____________
r nˆ
B
o
d0
x
13
这是一个磁场非均匀且
随时间变化的题目。
h
r nˆ
1、求通过矩形线圈磁通 o
B
dBd cso s2 0rIbdx rx
d0
x
d d 0 0 a 2 a 2Bc do s sd d 0 0 a 2 a 22 0Ibx2 x h d 2 x
0Ibln 4
例1 有一水平的无限长直导线,线中通有交变电流 12
II0cost,导线距地面高为 h,D点在通电导线的
大学物理电磁感应(PPT课件)
路中都会建立起感应电动势,且此感应电动势正比于 磁通量对时间变化率的负值。
i
k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
-N d - d(N) - d
dt
dt
dt
NΦ
磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
L A O B
εi
d
dt
1 BL2 dθ 1 BL2ω
2
dt 2
<
0
动生电动势方向:A O O端电势高
例17.5 在空间均匀的磁场B Bz中,长为L的导
线ab绕z轴以 匀速旋转,导线ab与z轴夹角为
求:导线ab中的电动势。
解:建坐标,在坐标l 处取dl
B
该段导线运动速度垂直纸面向内
dΦ
1 R (Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
b
结 1、动生电动势只存在于运动的导体上,不运动的 论 导体没有动生电动势。
2、电动势的产生并不要求导体必须构成回路, 构成回路仅是形成电流的必要条件。
3、要产生动生电动势,导体必须切割磁感线。
导线AB在单位时间内 扫过的面积为:
ABBA vl
i
k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
-N d - d(N) - d
dt
dt
dt
NΦ
磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
L A O B
εi
d
dt
1 BL2 dθ 1 BL2ω
2
dt 2
<
0
动生电动势方向:A O O端电势高
例17.5 在空间均匀的磁场B Bz中,长为L的导
线ab绕z轴以 匀速旋转,导线ab与z轴夹角为
求:导线ab中的电动势。
解:建坐标,在坐标l 处取dl
B
该段导线运动速度垂直纸面向内
dΦ
1 R (Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
b
结 1、动生电动势只存在于运动的导体上,不运动的 论 导体没有动生电动势。
2、电动势的产生并不要求导体必须构成回路, 构成回路仅是形成电流的必要条件。
3、要产生动生电动势,导体必须切割磁感线。
导线AB在单位时间内 扫过的面积为:
ABBA vl
大学物理课件电磁感应
电磁感应的应用
发电机
利用电磁感应原理将机械能转化为电能的设备。
变压器
通过电磁感应变换交流电压或电流大小的设备。
感应炉
利用电磁感应产生的感应电流进行加热或熔化金属。
感应电流和感应电动势的定的关系,感应电动势是产生感应电流的驱动力。
自感和互感
自感是指导体中的电流变化所产生的感应电动势,互感是指两个或者多个线 圈之间电流变化所产生的感应电动势。
电磁感应的实验
楞次定律实验
通过观察磁感线、导体和电流的相 互关系,验证电磁感应的规律。
法拉第电磁感应定律实验
利用变化的磁场和线圈,观察感应 电流的产生。
变压器实验
通过改变线圈的匝数和电流大小, 研究变压器的工作原理。
电磁感应的问题与解答
1 为什么变压器能改变电压?
变压器利用互感作用,通过改变线圈的匝数比例,实现对电压的改变。
2 如何提高感应电流的大小?
增大磁通量变化率、增加导体长度、减小导体电阻等方法都可以提高感应电流的大小。
3 为什么感应电流会引起感应电动势?
根据法拉第电磁感应定律,当导体中的磁通量发生变化时,会引起感应电动势,使感应 电流产生。
大学物理课件电磁感应
本课件将介绍电磁感应的概念、法拉第电磁感应定律、电磁感应的应用、感 应电流和感应电动势的关系、自感和互感、电磁感应的实验,以及电磁感应 的一些常见问题与解答。
电磁感应的概念
电磁感应是指当导体中的磁通量发生变化时,会在导体中产生感应电流或感 应电动势的现象。
法拉第电磁感应定律
法拉第电磁感应定律表明,当导体中的磁通量发生变化时,感应电动势的大 小与磁通量的变化率成正比。
电磁感应 ppt课件
英国物理学家法拉第从1822年起, 经过十年的努力,终于在1831年发 现了磁也能生电。 利用磁场产生电流的现象叫做电磁 感应
电磁感应产生的电流叫做感应电流
二、电磁感应现象
【方向】
结论: 磁场 方向和 感应电流的方向与________ 导体切割磁感线运动 方向有关。 _____________________ 改变感应电流方向的方法:
课题 方案
探究感应电流的产生条件与特点
思考
1.闭合导线在磁场中怎样运动才能产生电流呢? 2.感应电流方向与运动、磁场方向有什么关系呢? 3.感应电流的大小会与哪些因素有关呢? 4.电磁感应中是否存在能量的转换?
二、电磁感应现象
【活动】观看视频,思考这个实验说明了什么?
探究感应电流产生的条件
器材: 蹄形磁铁 导体 灵敏电流计 开关 导线
——————、————————。
二、电磁感应现象
【大小】 探究影响感应电流大小的因素? (磁场强弱) (切割快慢) 1.因素: 2.结论: 1.当切割快慢相同时,磁场强,电流大。 【应用方向】 实现了机械能向电能的转化。
2.当磁场强弱相同时,切割快,电流大。
神奇的电磁感应现象实 现了人类多年磁生电的 梦想。这一现象在电能 的开发和利用方面对你 有何启示呢? 【思考】 科学家利用这一现象发明了什么重要工具?
三、发电机
2
【方案】
设 计 流 程
三、发电机
2
【方案】
设 计 流 程
三、发电机
2
【方案】
设 计 流 程
三、发电机
【结构】
磁体、电刷、线圈、转轴、铜环、转动装置等。 (定子) (转子)
三、发电机
【特点】
大学物理电磁学ppt完整版
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
电磁感应PPT课件
11.2.1 运动导体中的感应电动势
dΦm d(BS)
dt
dt
Babdx Bl
dt
d
a
l
x
c
b
单位时间内导线切割的磁场线数
B
动生电动势的非静电力
非静电力
F m e( B )
非静电场强
EK
Fm
B
e
d
a
B
l
c x b Fm
动生电动势
baE Kdlba(B )dl
➢ 讨论
(1) 注意矢量之间的关系
按此原理设计的测量磁通的装置称为磁通计。
例 在无限长直载流导线的磁场中,有一运动的导体线框,导
体线框与载流导线共面 求 线框中的感应电动势 解 通过面积元的磁通量
dΦmBdS2 π0Ixbdx
Φ mdΦ mlla2 π 0Ixbdx
I l x
a
b
dx
20πIblnll a
(选顺时针方向为正)
F m 2 u F m 2 e u B euB
功率为
F m ( u ) ( F m 1 F m 2 ) ( u ) 0
例 在空间均匀的磁场中导线ab绕oo’ 轴以匀角速度ω旋转
求 导线ab中的电动势
解 B BlB s in
a/2
2π
a 2
互感系数
MΦ0aln3
I 2π
互感电动势
M
dI dt
20πaln3I0cost
dr r
例 计算共轴的两个长直螺线管之间的互感系数
设两个螺线管的半径、长度、 匝数为 R 1,R 2,l1,l2,N 1,N 2
1
解 设 I1
l1 l2 l,R 1R 2
大学物理电磁感应课件全篇
上两式中,M是两线圈的互感.
由上述关系可知,一个自感线圈截成相等的两部分 后,每一部分的自感均小于原线圈自感的二分之一.
在无磁漏的情况下可以证明 M L.1L2 .
在考虑磁漏的情况下 M K L1L2 ,K≤1称为耦合 系数.
§11-5 磁场能量
11.5.1 自感磁能
自感为L的线圈与电源接通,线圈中的电流i将要由 零增大至恒定值I.这一电流变化在线圈中所产生的 自感电动势与电流的方向相反,起着阻碍电流增大 的作用.
f (e)v B
f的方向从b指向a.
图10.4 动生电动势
在洛仑兹力作用下,自由电子有向下的定向漂 移运动.如果导轨是导体,在回路中将产生沿abcd方 向的电流;如果导轨是绝缘体,则洛仑兹力将使自 由电子在a端积累,使a端带负电而b端带正电.在ab 棒上产生自上而下的静电场.静电场对电子的作用力 从a指向b,与电子所受洛仑兹力方向相反.当静电力 与洛仑兹力达到平衡时,ab间的电势差达到稳定值, b端电势比a端电势高.
图10.12 互感现象
在两线圈的形状、相互位置保持不变时,根据毕
奥—萨伐尔定律,由电流I1产生的空间各点磁感应 强度B1均与I1成正比.因而B1穿过另一线圈(2)的磁通 链Ψ21也与电流I1成正比.即
21 M21I1
同理
12 M12I2
式中M21和M12是两个比例系数.实验与理论均证明 M21=M12,故用M表示,称为两线圈的互感系数, 简称互感.
两个有互感耦合的线圈串联后等效于一个自感线圈, 但其等效自感系数不等于原来两线圈的自感系数之 和.见图10.14,其中图10.14(a)的联接方式叫顺接, 其联接后的等效自感L为
L L1 L2 2M
图10.14 自感线圈的串联
由上述关系可知,一个自感线圈截成相等的两部分 后,每一部分的自感均小于原线圈自感的二分之一.
在无磁漏的情况下可以证明 M L.1L2 .
在考虑磁漏的情况下 M K L1L2 ,K≤1称为耦合 系数.
§11-5 磁场能量
11.5.1 自感磁能
自感为L的线圈与电源接通,线圈中的电流i将要由 零增大至恒定值I.这一电流变化在线圈中所产生的 自感电动势与电流的方向相反,起着阻碍电流增大 的作用.
f (e)v B
f的方向从b指向a.
图10.4 动生电动势
在洛仑兹力作用下,自由电子有向下的定向漂 移运动.如果导轨是导体,在回路中将产生沿abcd方 向的电流;如果导轨是绝缘体,则洛仑兹力将使自 由电子在a端积累,使a端带负电而b端带正电.在ab 棒上产生自上而下的静电场.静电场对电子的作用力 从a指向b,与电子所受洛仑兹力方向相反.当静电力 与洛仑兹力达到平衡时,ab间的电势差达到稳定值, b端电势比a端电势高.
图10.12 互感现象
在两线圈的形状、相互位置保持不变时,根据毕
奥—萨伐尔定律,由电流I1产生的空间各点磁感应 强度B1均与I1成正比.因而B1穿过另一线圈(2)的磁通 链Ψ21也与电流I1成正比.即
21 M21I1
同理
12 M12I2
式中M21和M12是两个比例系数.实验与理论均证明 M21=M12,故用M表示,称为两线圈的互感系数, 简称互感.
两个有互感耦合的线圈串联后等效于一个自感线圈, 但其等效自感系数不等于原来两线圈的自感系数之 和.见图10.14,其中图10.14(a)的联接方式叫顺接, 其联接后的等效自感L为
L L1 L2 2M
图10.14 自感线圈的串联
电磁感应课件ppt
右手定则在直流电中的应用
用于判断电流方向与磁场方向的关系。
右手定则在交流电中的应用
用于判断电流方向与磁场方向的关系,但需注意交流电的矢量性。
楞次定律与右手定则的实例
楞次定律的实例
当一个条形磁铁插入线圈时,线 圈中会产生抵抗磁通变化的感应 电流,从而阻碍磁铁的插入。
右手定则的实例
当直流电通过一个线圈时,用右 手握住线圈,拇指指向电流方向 ,四指指向即为磁场方向。
法拉第电磁感应定律
说明电磁感应现象,磁场可由 电场感应产生,而电场也可由
磁场感应产生。
麦克斯韦方程组的实例
静电场的电势分布
通过电势分布来描述静电场的性质和规律 。
恒定电流的磁场
描述恒定电流产生的磁场分布和性质,如 磁感线的形状和方向。
电磁感应现象
如发电机的工作原理,磁场感应电场,电 场感应磁场等。
• 安培环路定律:$ • abla \times \overset{\longrightarrow}{E} = -\frac{\partial \overset{\longrightarrow}{B}}{\partial t}$ • 法拉第电磁感应定律:$ • abla \times \overset{\longrightarrow}{B} = \mu_{0}\overset{\longrightarrow}{J} + \frac{\partial
VS
详细描述
将一根导线置于磁场中,并通以交变电流 ,根据右手定则,用右手握住导线,让大 拇指指向电流方向,四指的弯曲方向就是 磁场方向。在实验中,可以通过观察电流 表指针的偏转方向来验证右手定则。
谢谢您的聆听
THANKS
楞次定律的表述
感应电流的方向总是要使感应电动势反抗 引起感应电流的原磁场的磁通变化。
用于判断电流方向与磁场方向的关系。
右手定则在交流电中的应用
用于判断电流方向与磁场方向的关系,但需注意交流电的矢量性。
楞次定律与右手定则的实例
楞次定律的实例
当一个条形磁铁插入线圈时,线 圈中会产生抵抗磁通变化的感应 电流,从而阻碍磁铁的插入。
右手定则的实例
当直流电通过一个线圈时,用右 手握住线圈,拇指指向电流方向 ,四指指向即为磁场方向。
法拉第电磁感应定律
说明电磁感应现象,磁场可由 电场感应产生,而电场也可由
磁场感应产生。
麦克斯韦方程组的实例
静电场的电势分布
通过电势分布来描述静电场的性质和规律 。
恒定电流的磁场
描述恒定电流产生的磁场分布和性质,如 磁感线的形状和方向。
电磁感应现象
如发电机的工作原理,磁场感应电场,电 场感应磁场等。
• 安培环路定律:$ • abla \times \overset{\longrightarrow}{E} = -\frac{\partial \overset{\longrightarrow}{B}}{\partial t}$ • 法拉第电磁感应定律:$ • abla \times \overset{\longrightarrow}{B} = \mu_{0}\overset{\longrightarrow}{J} + \frac{\partial
VS
详细描述
将一根导线置于磁场中,并通以交变电流 ,根据右手定则,用右手握住导线,让大 拇指指向电流方向,四指的弯曲方向就是 磁场方向。在实验中,可以通过观察电流 表指针的偏转方向来验证右手定则。
谢谢您的聆听
THANKS
楞次定律的表述
感应电流的方向总是要使感应电动势反抗 引起感应电流的原磁场的磁通变化。
大学物理教程—13,电磁感应(精选)PPT38页
ቤተ መጻሕፍቲ ባይዱ
谢谢!
大学物理教程—13,电磁感应(精选)
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
大学物理教程—13,电磁感应(精选)
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论:
当穿过闭合回路的磁通量发生变化时,不管这种
变化是由什么原因的,回路中有电流产生。这一现
象称为电磁感应现象。
电磁感应现象
bB
c
中产生的电流称为
感应电流,相应的
v
电动势称为感应电 a
d
动势。
二.楞次定律
楞次总结出:闭合回路
bB
c
中感应电流的方向,总 是反对(或阻止)原回 路中磁通量的变化。
a
v
l
v
l
Blx
x
A
d
dx
i
dt
Bl dt
i大小vBl 电动势方向 AB
二、磁场中转动的闭合线圈
线圈法线与B线为 角,则
BScos
d
d
i N
dt
NBS sin dt
N
设线圈以恒定角速度旋转,则:
S
θ
i NBS sint ( t)
max sin t
交变电动势
例、一长直导线中通电流I=10A,有一长为L=0.2m的
解: 选l如图所示
s
B dS
r l1 r
oi 2 x
l2dx
b
o Iol2 sin t ln r l1
2
r
i x
i
d dt
a r o
oIo 2
l2
cos
t
ln
r
r
l1
l1
c
l
l2 dx
d
x
§9-2 动生电动势
i
d dt
d dt
SB dS
根据磁通量变化的不同原因,把感应 电动势分为两种情况加以讨论。
+ +
Ek
-
+ + + -
+
A + FK - B
+ 电源 -
电源:提供非静电力的装置 VA VB
非二静、电电场:动非势静电力与E试k 探电Fq荷k 电量的比值
电动势:描写电源内非静电力作功本领的物理量
+
A q Ek dl
+
外 电 路 :Ek 0
A q L Ek dl
+
+ +
Ek
-
+ + + -
+
A + FK - B
+ 电源 -
定义: 单位正电荷绕闭合路V径A 一 V周B,电源中
非静电力所作的功。
A
q
L Ek dl
单位:伏
方向:由负极经内电路到正极
§9-1 法拉第电磁感应定律
一、电磁感应现象
实验一:
S
当条形磁铁插入
或拔出线圈回路时,
N
在线圈回路中会产生
电流,而当磁铁与线
d减小
d 0 dt d 0 dt
B
n
l
N v S
d 0 dt
(4)由
i
d
dt
确定
正负
i 0
i 0
ii方方向向与 与ll方方向向相一反致
n
B
l
i i
N N v S S
i
d dt
0
例:利用法拉第电磁感应定律判断感应电动势
的方向
B
n
l
i
N N v S S
动生电动势:在稳恒磁场中运动着的导体 内产生的感应电动势。
感生电动势:导体不动,因磁场的变化产 生的感应电动势。
一、动生电动势产生的原因
运动导体内电
B
子受到洛仑兹力的
作F用:e(v
B)
Ii
E k
-
v
l
非静电场:
Ek
v
B
F
A
电动势: i
L Ek dl
Ii
d
楞次定律判断感应电动势的方向:
B
S
i i
N N
S
N
S
三、法拉第电磁感应定律
实 验 给 出 :Ii
d dt
(磁 通 量 随 时 间 的 变 化 )
说明有(i 感应电动势)存在
即
i
d dt
εi
d(SI制) dt
与
i
d
dt
有 关 , 与无 关 , 与 回 路 的 材 料 无关 。
的
i
存
在
与
回
路
是
否
闭
合无
关
,
而I
的
i
存
在
与回路是否闭合有关。
法拉第电磁感应定律的文字表述:
当穿过回路所包围面积的磁通量发生变化 时,回路中产生的感应电动势的大小与穿过 回路的磁通量对时间的变化率成正比。
d 单位:(韦伯)
i dt
注:若回路有多匝导线,则
(i 伏特)
i
N
d
dt
d( N )
dt
d
dt
说明:
B的方向与 n的方向一致
当N 极远离线圈时:
由
i
d
dt
知
0
d 0 dt
i 0
2. 若回路电阻为R ,则
感应电流:
Ii
i
R
1 R
d dt
感应电量:
感应电量与磁通量的变化成正比,与磁通量 变化的快慢无关。在实验中,可以通过测量感 应电量和电阻来确定磁通量的变化。
3. 若回路有多匝导线,则
i
N
d dt
金属棒与导线垂直共面。当棒以速度v=2m/s平行与
长解直:导线dl匀速d运x动B时,求o棒I 产生的动生电v动 B势 。
d i
(v
B)
2dxx
I
A
dl
v
B
Bvdx
i
al o Iv a 2
dx x
x dx
a
l
o Iv ln a l
0
x
2 a
动生电动势方向:BA VA VB
1、式中的负号反映了感应电动势的方向
利用法拉第电磁感应定律判断感应电动势的方向
(1)可以任意规定“绕行正方向”,通常为
右l和旋法符线号方系向统n:
绕行方向 符合右
螺旋
(2)确定的正负
B
n
l
N
n
S
B线
与n夹
角
小
于90时
,
0(即为正)
(3)确定
d dt
的正负
0 随时间增大
d 0 dt
0 随时间减小
圈保持相对静止时,
则回路中不存在电流。
实验二:
以通电线圈代替条形磁铁
1、当载流线圈B相对 于线圈A运动时,线圈 A回路内有电流存在。 2、当载流线圈B相对 于线圈A静止时,如 果改变线圈B的电流, 则线圈A回路中也会 产生电流。
R B
A
实验三:
bB
c
v
a
d
将闭合回路置于稳恒磁场B中,当导体棒 在导体轨道上滑行时,回路内出现了电流。
d( N) dt
ddt (为磁通链数)
若每匝磁通不相同, 则
i
i
d i dt
4. 与非静电性场强EK的联系
i L EK dl
i
d
dt
d dt
B dS
S
d
L EK
dl
dt
SB dS
S是 以L为 周 界 的 任 意 曲 面
例、一长直导线通以电流 i Io sin t 旁边有一个共 面的矩形线圈abcd。求:线圈中的感应电动势。
第九章
电磁感应 电磁场理论
电源和电动势(参考 §8-1 )
一、电源:
+
+
电容器放电
+
+
-
+ ++
A+
+
-
FK - B
+
+
-
结论:电容器不能作为电源
VA VB
在回路中要出现稳恒电流必须存在稳恒电场。
外电路:电流从高电势向低电势运动。
内电路:电荷将克服静电场力作功,从低电势向高电 势运动。
+
+
+
B(v
B)
dl
A
方向:由A到B
例、一矩形导体线框,宽为l,与运动导体棒构成闭
合回路。如果导体棒以速度v作匀速直线运动,求
回路内的感应电动势。 B
解: 法一
选 dl 如图所示
i
B(v
B)
dl
A l
l
dl
v
0 vBdl
vBl
A
电动势方向 AB
法二:
B
选l如图所示
d i dt