高三数学质量检测试题

合集下载

2024-2025学年山东省济宁一中高三上学期第一次质量检测数学试题及答案

2024-2025学年山东省济宁一中高三上学期第一次质量检测数学试题及答案

济宁市第一中学2024—2025学年度第一学期质量检测(一)高三数学注意事项:1.答题前,考生先将自己的姓名、考生号、座号填写在相应位置,认真核对条形码上的姓名、考生号和座号,并将条形码粘贴在指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.回答非选择题时,必须使用0.5毫米黑色签字笔书写,按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试题卷上答题无效。

保持卡面清洁,不折叠,不破损。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}128,{13}x A x B x x =<<=+<∣∣,则A B = ()A.()0,3 B.()4,3- C.()4,2- D.()0,22.命题“()000,ln 10x x ∃>+>”的否定是()A .()000,ln 10x x ∃≤+≤B .()000,ln 10x x ∃>+>C .()0,ln 10x x ∀≤+≤D .()0,ln 10x x ∀>+≤3.“1m =-或4m =”是“幂函数()()22333m m f x m m x+-=--在()0,∞+上是减函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.随机变量()~,X B n p ,若()1E X =,()34D X =,则()3P X ==()A.116B.364C.164D.32565.某班上有5名同学相约周末去公园拍照,这5名同学站成一排,其中甲、乙两名同学要求站在一起,丙同学不站在正中间,不同的安排方法数有()A.24B.36C.40D.486.已知一系列样本点()(),1,2,3,i i x y i = 的一个经验回归方程为ˆˆ2yx a =+,若样本点()1,1-的残差为2,则ˆa=().A .1-B .1C .5-D .57.已知定义在R 上的函数()f x 的导函数为()f x ',若()13f =,且R x ∀∈,()1f x '->,则()2f x x -<-的解集为()A.(),1∞--B.()1,1-C.()1,∞+ D.()1,∞-+8.已知函数()()22,0e ln 11,0x x ax a x f x x x ⎧---<⎪=⎨+++≥⎪⎩的值域为R ,则a 的取值范围是()A.(],2-∞- B.[]2,0-C.(][),22,-∞-+∞U D.(][),12,-∞-⋃+∞二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.将一组数据的每一个数据减去同一个数后,新数据的方差与原数据方差相同B.线性相关系数r 越大,两个变量的线性相关性越强C.设随机变量()2~2,X N σ,()040.4P x <<=,则()00.3P x <=D.在残差的散点图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好10.已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D≤三、填空题:本题共3小题,每小题5分,共15分.12.函数()log (32)2a f x x =-+恒过定点______.13.已知1()2P B =,1()4P AB =,3(|)5P B A =,则()P A =______.14.若曲线()1lnf x x x=与()2g x ax =总存在关于原点对称的点,则a 的取值范围为__________.四、解答题:本题共6小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()2ln f x x ax x =+-,R a ∈.(1)若函数()22y f x x =-在(]0,2上单调递减,求a 的取值范围:(2)若直线e y x =与()f x 的图象相切,求a 的值.16.(15分)已知()21nx +展开式的二项式系数和为a ,1(nx x+展开式的奇数项的二项式系数和为b ,且32a b -=,则在21()2nx x-的展开式中,求解下列问题:(1)二项式系数最大的项;(2)系数的绝对值最大的项.17.(15分)某学校有东,西两个阅览室,甲同学每天晚自习选择其中一个阅览室学习,第一天晚自习选择东阅览室的概率是25.如果第一天去东阅览室,那么第二天去东阅览室的概率为47;如果第一天去西阅览室,那么第二天去东阅览室的概率为23;(1)记甲同学前两天去东阅览室的总天数为X ,求X 的分布列及数学期望;(2)如果甲同学第二天去西阅览室,那么第一天去哪个阅览室的可能性更大?请说明理由.18.(17分)某研究团队收集了10组某作物亩化肥施用量和亩产量的数据(),i i x y ,1i =,2,3,…,10,其中i x (单位:公斤)表示亩化肥施用量,i y (单位:百公斤)表示该作物亩产量,并对这些数据作了初步处理,得到了一些统计量的值如右表所示:表中ln i i t x =,ln i i z y =,1i =,2,3,…,10.通过对这10组数据分析,发现当亩化肥施用量在合理范围内变化时,可用函数d y cx =模拟该作物亩产量y 关于亩化肥施用量x 的关系.101ii i t z=∑101ii t=∑101ii z=∑1021ii t=∑38.51517.547(1)根据表中数据,求y 关于x 的经验回归方程;(2)实际生产中,在其他生产条件相同的条件下,出现了亩施肥量为30kg 时,该作物亩产量仅约为510kg 的情况,请给出解释;(3)合理施肥、科学管理,能有效提高该作物的投资效益(投资效益=产出与投入比).经试验统计可知,该研究团队的投资效益ξ服从正态分布()4,1N ,政府对该研究团队的奖励方案如下:若3ξ≤,则不予奖励;若36ξ<≤,则奖励10万元;若6ξ>,则奖励30万元.求政府对该研究团队的奖励金额的数学期望.附:①ln15 2.7≈,ln 30 3.4≈;②对于一组数据(),i i x y (1i =,2,3,…,n ),其经验回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计分别为1221ˆniii nii x ynxy bxnx ==-=-∑∑,ˆˆa y bx=-;③若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈,()33)0.9973P X μσμσ-≤≤+≈.19.(17分)已知函数()()()e 1,ln xf x xg x a x x =-=+,且()()f x g x ≥恒成立(0)a >.(1)求实数a 的值;(2)证明:()32e 3ln 2sin xx x x x >++.济宁市第一中学2024—2025学年度第一学期质量检测(一)高三数学答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.D3.B4.B5.C6.C7.D 【详解】构造函数()()g x f x x =-+,(1)312g -=-=,()()10g x f x ''=--+<,即函数()g x 在上单调递减,()2f x x -<-等价于()(1)g x g <-,解得1x >-.即()2f x x -<-的解集为()1,∞-+.8.C 【详解】当0x ≥时,()e ln 11xy x =+++,所以1e 01xy x '=+>+在[)0,∞+上恒成立,所以函数()f x 在[)0,∞+上单调递增,所以()()02f x f ≥=,0x ≥.当0x <时,22y x ax a =---,若0a -<即0a >,函数()f x 在(),a -∞-上单调递增,在(),0a -上单调递减,所以()()2f x f a a a ≤-=-,0x <.又函数的值域为R ,所以22a a -≥,(0a >)⇒2a ≥;若0a ->即a<0,函数()f x 在(),0∞-上单调递增,所以()()0f x f a <=-,0x <.又函数的值域为R ,所以2-≥a (a<0)⇒2a ≤-.综上可知:2a ≤-或2a ≥.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.ACD10.ABD 【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,则(f x -1)(3)f x =+,即()(4)f x f x =+,因此()f x 是周期为4的周期函数,C 正确;令=1x -,得(2)(0)(2)f f f -+=-,则(0)0f =,因此(2024)(0)0f f ==,A 错误;由(26)(2)f x f x +=-,得(6)()f x f x +=-,则()[(12)6](6)f x f x f x -=-+=-,因此()f x 的图象关于直线3x =-对称,B 正确;由(6)()f x f x +=-,得()f x 的图象关于直线3x =对称,因此直线34x n =-+及34()x n n =+∈Z 均为()f x 图象的对称轴,从而75(2)(0)0,(()122f f f f -====,令32x =,得33(1)(1)022f f -++=,即15(()122f f =-=-,则139()((1222f f f ===-,故20251113574049(1)()(2()3(4()2025()222222kk kf k f f f f f =--=-+-+--∑ (1234)(2021202220232024)20252025=--+++--++= ,D 正确.故答案为:BCD三、填空题:本题共3小题,每小题5分,共15分.12.(1,2)13.71214.1,e ⎛⎤-∞ ⎥⎝⎦【详解】若曲线()1ln f x x x =与()2g x ax =总存在关于原点对称的点,则()2g x ax =上的点()2,x ax关于原点的对称点()()2,,0x ax x --<在曲线()1ln f x x x=上,所以方程()()21ln ln ,0ax x x x x x ⎛⎫-=-=-<⎪-⎝⎭有解,令t x =-,则方程()2ln ,0at t t t -=->有解,即方程()ln ,0ta t t =>有解,令()()ln ,0t h t t t=>,则()21ln t h t t -'=,令()0h t '>,得0e t <<,令()0h t '<,得t e >,所以()h t 在()0,e 上单调递增,在()e,+∞上单调递减,且()1e ef =,当t 趋于0时,()ln t h t t =趋于负无穷,当t 趋于正无穷时,()ln th t t =趋于0,所以()()ln ,0t h t t t =>的值域为1,e ⎛⎤-∞ ⎥⎝⎦,所以a 的范围为1,e ⎛⎤-∞ ⎥⎝⎦.15.(1)(,-∞(2)e 1-【详解】(1)记()()()222ln ,y f x x ax x x g x g x =-=--=在(]0,2上单调递减,()120g x a x x '=--≤对(]0,2x ∀∈恒成立,min 12a x x ⎛⎫∴≤+ ⎪⎝⎭,而12x x +≥=12x x =即x =时,等号成立,所以当2x =时,12x x +取得最小值为a ∴≤所以a的取值范围为(,.-∞(2)设直线e y x =与()f x 的图象相切于()20000n ,l P x x ax x +-,()00112,2f x x a k x a x x '=+-=+-,由题意可知02000012e,ln e ,x a x x ax x x ⎧+-=⎪⎨⎪+-=⎩①②001e 2a x x =+-⇒,代入20000001e 2ln e x x x x x x ⎛⎫⇒++--= ⎪⎝⎭②,2001ln 0x x ∴--=,左边式子关于0x 单调递减且01x =时,左边00,1x =∴=e 12e 1.a =+-=-16.【答案】(1)352x -;(2)6154x .【解析】【小问1详解】依题意,12,2n n a b -==,于是12232n n --=,即1232n -=,解得6n =,所以261()2x x-的展开式中第4项的二项式系数最大,即323334615C ((22)T x x x =-=-.【小问2详解】由(1)知,261()2x x-展开式的通项公式为2612316611C ()(62,,)C 2kkk k k kk T k x x k x --+=-=-∈≤,设第1k +项的系数的绝对值最大,因此1166116611(C (C 2211(C (C 22k kk k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,整理得6!6!2!(6)!(1)!(7)!6!6!2!(6)!(1)!(5)!k k k k k k k k ⎧≥⋅⎪---⎪⎨⎪⋅≥⎪-+-⎩,解得4733k ≤≤,而N k ∈,则2k =,即系数的绝对值最大的项是第3项,所以系数的绝对值最大的项为226636115(C 24T x x =-=.17.【答案】(1)分布列见解析,3635(2)第一天去西阅览室的可能性更大,理由见解析【解析】【小问1详解】设=i A “第i 天去东阅览室”()1,2i =,j B =“第j 天去西阅览室”()1,2j =,则1A 与1B 对立,2A 与2B 对立由题意得,0,1,2X =()()()()121212210|11535P X P B B P B P B B ⎛⎫⎛⎫====-⨯-=⎪ ⎪⎝⎭⎝⎭()()()12121P X P A B P B A ==+()()()()121121||P A P B A P B P A B =+242241157537⎛⎫⎛⎫=⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭()()()()121212482|5735P X P A A P A P A A ====⨯=则X 的分布列为X12P1547835所以()14836012573535E X =⨯+⨯+⨯=【小问2详解】由全概率公式得()()()()()2121121||P B P A P B A P B P B B =+24221115753⎛⎫⎛⎫⎛⎫=⨯-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1335=所以()12|P A B =()()122P A B P B ()()()1212|P A P B A P B ==241657131335⎛⎫⨯- ⎪⎝⎭=所以()()121267|1|11313P B B P A B =-=-=所以()()1212||P A B P B B <所以如果甲同学第二天去西阅览室,那么第一天去西阅览室的可能性更大18.【答案】(1)12e y x =;(2)答案见解析;(3)88685(元).【解析】【小问1详解】对d y cx =两边取对数得:ln ln ln y c d x =+,即ln z c dt =+,由表中数据得:101115 1.51010i i t t ====∑,101117.51.751010ii z z ====∑,1012210211038.5101.51.750.547101.510i i i ii t ztzd tt==--⨯⨯===-⨯-∑∑,所以1ln 1.75 1.512c z dt =-=-⨯=,则e c =,所以y 关于x 的经验回归方程为12e y x =.【小问2详解】由(1)得,当30x =时ln 30ln 1 2.72y =+≈,所以15y =,所以当亩化肥施用量为30kg 时,估计粮食亩产量应约为1500kg.出现亩施肥量为30kg ,亩产量仅约为510kg 的情况,可能是因为施肥过量,导致作物有部分被烧坏,从而导致产量下降.【小问3详解】因为3μσ-=,26μσ+=,所以()()0.95450.68273620.68270.81862P P ξμσξμσ-<≤=-<≤+=+=,()10.9545(6)20.022752P P ξξμσ->=>+==,设政府对该研究团队的奖励金额为η,则()1000000.81863000000.022*******E η=⨯+⨯=(元).19.【答案】(1)1(2)证明见解析【解析】【小问1详解】令()()()()e ln 1xh x f x g x x a x x =-=-+-,则()()()()1e 11e 1(0)xx x x a h x x a x x x +-⎛⎫'=+-+=> ⎪⎝⎭,设()e (0)xx x a a ϕ=->,则()()10e xx x ϕ'=+>对任意0x >恒成立,所以()x ϕ在()0,∞+上单调递增,又()()()00,e 10aa a a ϕϕ=-<=->,所以存在唯一实数()()000,,0x a x ϕ∈=,所以当()00,x x ∈时,()()()()10,x x h x hx x ϕ+⋅=<'单调递减;当()0,x x ∈+∞时,()()()()10,x x h x hx xϕ+⋅=>'单调递增;所以()()0min 0000()e ln 1xh x h x x a x x ==-+-,因为()()0000e 00xx x a x a ϕ=-=<<,所以00ex x a =,且00ln ln (0)x x a a +=>.所以min ()ln 10h x a a a =--≥,设()ln 1(0)F a a a a a =-->,则()()11ln ln F a a a =-+=-',所以()F a 在()0,1上单调递增,()1,+∞上单调递减,所以()()10F a F ≤=,而依题意必有()0F a ≥,所以()0=F a ,此时1a =,第7页/共7页所以若不等式()()f x g x ≥恒成立,则正实数a 的值为1.【小问2详解】由(1)知,当1a =时,()()f x g x ≥对任意0x >恒成立.所以()0,,e ln 1xx x x x ∞∀∈+≥++,当且仅当1x =时等号成立,则3322e ln (0)x x x x x x x ≥++>,所以要证明()32e 3ln 2sin (0)x x x x x x >++>,只需证()3222ln 3ln 2sin (0)x x x x x x x x ++>++>,即证323ln 2sin (0)x x x x x +>+>.设()()ln 1,sin G x x x m x x x =-+=-,则()111(0)x G x x x x-'=-=>,则()G x 在()0,1上单调递增,()1,+∞上单调递减,所以()()()0,,10x G x G ∀∈+∞≤=,即ln 1(0)x x x ≤->,又由()cos 10m x x =-≤'在()0,∞+恒成立,()m x 在()0,∞+上单调递减,所以()()()0,,00x m x m ∞∀∈+<=,即sin (0)x x x <>,所以要证323ln 2sin (0)x x x x x +>+>,只需证()32312(0)x x x x x +≥-+>,即32530(0)x x x x +-+≥>,令()3253H x x x x =+-+,可得()()()2325351H x x x x x =+-=+-',则()H x 在()0,1上单调递减,()1,+∞上单调递增,所以当()0,x ∈+∞时,()()10H x H ≥=,即322530,0x x x +-+≥>恒成立,所以()323ln 2sin x x e x x x >++.。

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,52. 已知,则=( )i22i z =-z A. 2 B. 13. 已知.若,则( )a = ()2a b a+⊥ cos ,a b=A.B.D. 4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C .充要条件D. 既不充分也不必要条件5.此正四棱锥的体积为( )A. B. C.D.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对B. 2对C. 3对D. 4对7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A. B. C. 1D. 11e+e 1-e二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C 17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE V AE BD CD 4BD=(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,5【正确答案】B【分析】首先把集合用列举法表示出来,再运用交集的运算进行求解即可.P 【详解】若,,则是的正因数,而的正因数有,,,,61y x =+y ∈N 1x +661236所以,{}6,0,1,2,51P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N 因为,{}15Q x x =-≤<所以,{}0,1,2P Q ⋂=故选:B.2. 已知,则=( )i22i z =-z A. 2 B. 1【正确答案】C【分析】根据复数的运算法则计算出复数,再计算复数的模.z 【详解】由题意知,()()()i 22i i 22i 22i 22i z +==--+2i 28-=11i 44=-+所以,z ==故选:C.3. 已知.若,则()a = ()2a b a+⊥ cos ,a b =A.B.D. 【正确答案】B【分析】根据向量垂直可得,代入向量夹角公式即可得结果.32a b ⋅=-【详解】因为,且,()2a b a+⊥1a = 则,可得,()2220a a a ab b +⋅=+⋅= 21322a b a⋅=-=-rr r 所以.cos ,a b a b a b⋅===⋅r r r r r r 故选:B.4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【正确答案】A【分析】利用等比数列的性质,分别判断充分性与必要性即可.【详解】设等比数列的公比为,{}n a q 由,得,()223123111111S a a a a a q a q a q q ma =++=++=++=21q q m ++=当时,,解得或,充分性不成立;7m =217q q ++=2q =3q =-当时,,必要性成立.2q =217q q m ++==所以“”是“的公比为2” 的必要不充分条件.7m ={}n a 故选:A5. 此正四棱锥的体积为( )A. B. C. D. 【正确答案】B【分析】根据正四棱柱及正四棱锥的体积公式可得正四棱锥的高与斜高的关系式,进而可得解.【详解】如图所示,正四棱柱为,正四棱锥,1111ABCD A B C D -1O ABCD -设底边边长,高AB a =1OO =则,1O E ==又正四棱柱的侧面积,114S AB OO =⋅=正四棱锥的侧面积,21142S AB O E a=⋅⋅=则,解得,a=a =所以正四棱锥体积,2113ABCD V S OO =⋅==故选:B.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对 B. 2对C. 3对D. 4对【正确答案】C【分析】作出的图象,再作出函数关于原点对称的图象,进而数形结()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭合判断即可.【详解】作出的图象,再作出函数关于原点对称的图象如图所示.()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭因为函数关于原点对称的图象与图象有三个交点,故1,0,2xy x ⎛⎫=≥ ⎪⎝⎭22,0,y x x x =-+<图象上关于原点对称的点有3对.()fx故选:C7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π【正确答案】A【分析】先化简,根据图象变换求出,将方程转化为()f x ()g x ()21g x m -=,由函数图象的对称性求出答案.()12m g x +=()g x 【详解】根据题意可得,()1πcos sin 26f x x x x ⎛⎫=+=+ ⎪⎝⎭所以,()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,,7π012x ≤≤ππ3π2332x ∴≤+≤所以在上单调递增,在上单调递减,关于对称,()g x π0,12⎡⎤⎢⎥⎣⎦π7π,1212⎡⎤⎢⎥⎣⎦()g x π12x =且,,()π06g g ⎛⎫== ⎪⎝⎭π112g ⎛⎫= ⎪⎝⎭7π112g ⎛⎫=- ⎪⎝⎭方程等价于有两个不同的解,()21g x m -=()12m g x +=12,x x .12ππ2126x x ∴+=⨯=故选:A.8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A.B. C. 1D. 11e +e 1-e【正确答案】C【分析】构建,分析可知的定义域为,且在()()ln f x ax x b=--()f x (0,+∞)()0f x ≤内恒成立,利用导数可得,整理可得,构建(0,+∞)ln 1a b ≤+1e ln ln b a a a +-≥-,利用导数求其最值即可.()1ln ,ee g a a a a =-≤≤【详解】设,()()ln f x ax x b=--因为,可知的定义域为,所以在内恒成立,1e e a ≤≤()f x (0,+∞)()0f x ≤(0,+∞)又因为,()111xf x x x -=-='令,解得;令,解得;f ′(x )>001x <<f ′(x )<01x >可知在内单调递增,在内单调递减,()f x (0,1)(1,+∞)则,可得,则,()()1ln 10f x f a b ≤=--≤ln 1a b ≤+1ln e e b aa +≥=可得,当且仅当时,等号成立,1e ln ln b a a a +-≥-ln 1a b =+令,则,()1ln ,e e g a a a a =-≤≤()111a g a a a '-=-=令,解得;令,解得;()0g a '>1e a <≤()0g a '<11e a <≤可知在内单调递增,在内单调递减,则,()g a (]1,e 1,1e ⎡⎫⎪⎢⎣⎭()()11g a g ≥=即,当且仅当时,等号成立,1eln ln 1b a a a +-≥-≥1,1a b ==-所以的最小值为1.1eln b a +-故选:C.方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>【正确答案】ABD【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D.【详解】由题可得,,33log 15log 310a =>=>55log 15log 510b =>=>,即,所以,1515110log 3log 5a b ∴<=<=110a b <<0a b >>对于A ,因为,所以,故A 正确;0a b >>lg lg a b >对于B ,,,故B 正确;15151511log 3log 5log 151a b +=+== a b ab ∴+=对于C ,因为,所以,故C 错误;0a b >>1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭对于D ,因为,,0a b >>111a b +=所以,()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当,即时等号成立,这与已知矛盾,所以,故D 正4b aa b =2a b =35a b =49a b +>确.故选:ABD.10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 【正确答案】AC【分析】利用斐波那契数列的定义结合递推关系一一判定选项即可.【详解】对于A ,由题可得,,,,,故A 正确;32a =43a =55a =68a =713a =对于B ,因为,又,21112n n n n n n n n a a a a a a a a ++--=+=++=+12n n n a a a --=+所以,即,故B 错误;21213n n n n n a a a a a +---++=+223n n n a a a +-=+对于C ,2024202320222023202120202023202132a a a a a a a a a a =+=++==++++ ,故C 正确;2023202131a a a a =++++ 对于D ,2025202420232024202220212024202243a a a a a a a a a a =+=++=++++ ,故D 错误.20242022421a a a a a =+++++ 故选:AC.11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π【正确答案】ACD【分析】作出相应图形,先证明平面平面,再结合给定条件确定动点轨迹,//BDNM CEF 求出长度即可判断;建立空间直角坐标系,根据题意确定动点轨迹,求解长度即可判断,A B 将平面翻折到与平面共面,连接,与交于点,此时取到CEF 1111D C B A PC EF Q PQ CQ +最小值,利用勾股定理求出即可判断,先找到球心,利用勾股定理得出半径,求,PQ CQ C 出外接球的表面积即可判断.D 【详解】如图,取,的中点为,连接,,11A D 11A B ,N M ,,,,MN DN BD BM NE 11B D所以,又E ,F 分别是棱,的中点,11//MN B D 11B C 11C D 所以,所以,11//EF B D //MN EF 平面,平面,MN ⊄CEF EF ⊂CEF 平面,//MN ∴CEF 因为分别是棱,的中点,所以,且,,N E 11A D 11B C //NE CD NE CD =所以四边形为平行四边形,CDNE 所以,又平面,平面,//ND CE ND ⊄CEF CE ⊂CEF 平面,//ND ∴CEF 又,平面,MN ND N = ,MN ND ⊂BDNM 所以平面平面,//BDNM CEF点P 是正方形内的动点,且平面,1111D C B A //DP CEF 所以点P 的轨迹为线段,由勾股定理得,故正确;MN MN ==A 如图,以为原点,以所在直线为轴,轴,轴,A 1,,AB AD AA x y z 由题意得,设,(0,0,0)A (,,4)P x y,AP ==所以,所以点的轨迹为为圆心,半径为1的个圆,221x y +=P 1A 14所以点P 的轨迹长度为.故错误;1π2π42⋅=B 如图,将平面翻折到与平面共面,CEF 1111DC B A 连接,与交于点,此时取到最小值,PC EF Q PQ CQ+,且,CE CF === 2PE PF ==所以点为的中点,所以Q EFPQ EQ ===所以,CQ ===即的最小值为,故正确;PQ CQ +C如图,连接,交于点,连接,PF 11B D 1O PE 若P 是棱的中点,则,11A B 90FEP ∠= 所以是外接圆的一条直径,所以是外接圆的圆心,FP PEF !1O PEF !过点作平面的垂线,则三棱锥的外接球的球心一定在该垂线上,1O ABCD P CEF -O 连接,设,则,OP 1OO t =2222t R +=连接,,所以,OC 12AC ==()(2224t R -+=所以,解得,()(222224t t +=-+52=t 所以,222541244R =+=所以三棱锥的外接球的表面积为,故正确.P CEF -24π41πS R ==D 故选.ACD方法点睛:三棱锥外接球的半径的求法:(1)先找两个面的外心;(2)过外心作所在平面的垂线,两垂线的交点即为球心;(3)构造直角三角形,利用勾股定理求出半径.有时无须确定球心的具体位置,即只用找一个面的外心,则球心一定在过该外心与所在平面的垂线上.第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++【正确答案】.430x y -+=【分析】首先求函数的导数,再根据二次函数求最小值,即可求切线的斜率,以及代入切线方程,即可求解.【详解】由题意,223673(1)4y x x x '=++=++所以时,,又时,,1x =-min4y '=1x =-1y =-所以所求切线的方程为,即.14(1)y x +=+430x y -+=故.430x y -+=13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =【正确答案】【分析】设,在,,分别根据锐角三角函数定义求PO h =Rt POA △Rt POB △Rt POC △出,最后利用余弦定理进行求解即可.,,OA OB OC 【详解】设塔的高,PO h =在中,,同理可得,,Rt POA △otan 30OP OA ==OB =OC h =在中,,则,OAC πOBA OBC ∠+∠=cos cos OBA OBC ∠=-∠,22222222OB AB OA OB BC OC OB AB OB BC +-+-∴=-⋅⋅.=h =所以塔的高度为米.故答案为.14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ【正确答案】23【分析】根据中点坐标公式可得,进而可得为等比数列,()*122n n n a a a n +++=∈N {}1n n a a +-即可利用累加法求解,由极限即可求解.121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详解】不妨设点、,设点,()10,0A ()21,0A ()(),0n n A a n *∈N 则数列满足,,,{a n }10a =21a =()*122n n n a a a n +++=∈N 所以,,1212n nn n a a a a +++--=-所以,数列是首项为,公比为的等比数列,{}1n n a a +-211a a -=12-所以,,11111122n n n n a a --+⎛⎫⎛⎫-=⨯-=- ⎪⎪⎝⎭⎝⎭当时,2n ≥()()()2121321110122n n n n a a a a a a a a --⎛⎫⎛⎫=+-+-++-=++-++- ⎪ ⎪⎝⎭⎝⎭ ,1111212113212n n --⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+也满足,故对任意的,.10a =121132n n a -⎡⎤⎛⎫=--⎢⎥⎪⎝⎭⎢⎥⎣⎦n *∈N 121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦所以,,故11212lim 1323n n A P ∞-→+⎧⎫⎡⎤⎪⎪⎛⎫=--=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭23λ≥故答案为.23四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d 数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 【正确答案】(1),,24a =2n n a =*N n ∈(2)332n nn T +=-【分析】(1)先将代入题干表达式计算出,再将代入题干表达式即可计算1n =12a =2n =出的值,当时,由,可得,两式相减进一步推导即可2a 2n ≥22n n S a +=1122n n S a --+=发现数列是以为首项,为公比的等比数列,从而计算出数列的通项公式;{}n a 22{}n a (2)先根据第题的结果写出与的表达式,再根据题意可得,()1n a 1n a +()11n n n a a n d +-=+通过计算出的表达式即可计算出数列的通项公式,最后运用错位相减法即可计算出n d 1n d ⎧⎫⎨⎬⎩⎭前项和.n n T 【小问1详解】由题意,当时,,解得,1n =111222S a a +=+=12a =当时,,即,解得,2n =2222S a +=12222a a a ++=24a =当时,由,可得,两式相减,可得,2n ≥22n n S a +=1122n n S a --+=122n n n a a a -=-整理,得,∴数列是以2为首项,2为公比的等比数列,12n n a a -={}n a ∴,.1222n n n a -=⋅=*N n ∈【小问2详解】由(1)可得,,,2nn a =112n n a ++=在与之间插入个数,使得这个数依次组成公差为的等差数列,n a 1n a +n ()2+n n d 则有,()11n n na a n d +-=+∴,∴,1211nn n n a a d n n +-==++112n n n d +=∴,1231211123412222n n n n T d d d +=++⋅⋅⋅+=+++⋅⋅⋅+,()2311111123122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得,2112311111121111133221122222222212n n n n n n n n n T ++++-+++=+++⋅⋅⋅+-=+-=--∴.332n n n T +=-16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C【正确答案】(1)π3B =(2)18-【分析】(1)由正弦定理及两角和的正弦公式可得角的大小;B (2)由等面积法可得,再由正弦定理可得的值,再由22b ac =sin sin A C ,可得的值.cos cos()B A C =-+cos cos A C 【小问1详解】因为,π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭由正弦定理可得,12sin cos sin sin 2B A A A C ⎛⎫+=+ ⎪ ⎪⎝⎭即sin cos sin sin sin()B A A B A A B +=++即,sin cos sin sin sin cos cos sin B A A B A A B A B +=++,sin sin sin cos B A A A B =+在三角形中,,sin 0A >,cos 1B B -=即,因为,则π1sin 62B ⎛⎫-= ⎪⎝⎭(0,)B π∈ππ5π,666B ⎛⎫-∈- ⎪⎝⎭可得,则.ππ66B -=π3B =【小问2详解】因为边上的高,AC h =所以①21122ABC S b h b =⋅==又②11sin 22ABC S ac B ac === 由①②可得,22b ac =由正弦定理可得,2sin 2sin sin B A C =结合(1)中可得,π3B =3sin sin 8A C =因为,()1cos cos cos cos sin sin 2B A C A C A C =-+=-+=所以.1311cos cos sin sin 2828A C A C =-=-=-17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE VAE BD CD 4BD =(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 【正确答案】(1)证明见解析(2【分析】(1)连接,利用勾股定理证明,再根据线面垂直的判定定BE ,BE DE BE AE ⊥⊥理证得平面,再根据面面垂直的判定定理即可得证;BE ⊥ADE (2)以点为原点,建立空间直角坐标系,利用向量法求解即可.E【小问1详解】连接,BE 由题意,2,60,120AD DE ADE BCE ==∠=︒∠=︒则为等边三角形,ADE V 由余弦定理得,所以2144222122BE ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭BE =则,222222,DE BE BD AE BE BD +=+=所以,,BE DE BE AE ⊥⊥又平面,,,AE DE E AE DE ⋂=⊂ADE 所以平面,BE ⊥ADE 又平面,所以平面平面;BE ⊂ABCE ADE ⊥ABCE 【小问2详解】如图,以点为原点,建立空间直角坐标系,E 则,()()()(()2,0,0,0,,,,0,0,0A B CD E -设,()01DF DB λλ=≤≤故,()((,,1,EC ED DB=-==-,((()1,1,AD AD DF λλ=+=-+-=--因为轴垂直平面,故可取平面的一条法向量为,z ABCE ABCE ()0,0,1m =所以,cos ,m AF m AF m AF⋅===化简得,解得或(舍去),23830λλ+-=13λ=3λ=-所以,1133DF DB ⎛==- ⎝ 设平面的法向量为,DEC (),,n x y z =则有,可取,00n EC x n ED x ⎧⋅=-=⎪⎨⋅=+=⎪⎩)1n =- 所以点到平面FDEC18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=【正确答案】(1),最大值为0 2a =(2)证明见解析(3)2个,证明见解析【分析】(1)由求出的值,即可得到解析式,再利用导数求出函数的单调(0)0f '=a ()f x 区间,从而求出函数的最大值;(2)依题意即证当时,记,π,π6x ⎡⎤∈⎢⎥⎣⎦1sin ln(1)2x x ++>1()sin ln(1)2m x x x =++-,当时直接说明即可,当,利用导数说明函数的单调π,π6x ⎡⎤∈⎢⎥⎣⎦π5π,66x ⎡⎤∈⎢⎥⎣⎦5π,π6x ⎛⎤∈ ⎥⎝⎦性,即可得证;(3)设,,当时,由(1)知,()()h x f x x =+()1,x ∞∈-+(1,0)x ∈-()(0)0f x f <=则,当时,利用导数说明函数的单调性,结合零点存在性定理判断函()0f x x +<π()0,x ∈数的零点,当时,,令,[π,)x ∈+∞()1ln(1)h x x x ≤++-()1ln(1)(π)l x x x x =++-≥利用导数说明在区间上单调递减,即可得到,从而说明函数在()l x [π,)+∞()0l x <无零点,即可得解.[π,)+∞【小问1详解】由题意知,且,(0)0f =(0)0f '=,1()cos 1f x x a x '=+-+ ,解得,(0)20f a '∴=-=2a =,,()sin ln(1)2f x x x x ∴=++-()1,x ∞∈-+则,1()cos 21f x x x '=+-+当时,,.故,0x ≥cos 1≤x 111x ≤+()0f x '≤所以在区间上单调递减,所以.()f x [0,)+∞()(0)0f x f £=当时,令,10x -<<1()cos 21g x x x =+-+则,21()sin (1)g x x x '=--+,,,sin (0,1)x -∈ 211(1)x >+()0g x '∴<在区间上单调递减,则,()f x '∴(1,0)-()(0)0f x f ''>=在区间上单调递增,则,则.()f x ∴(1,0)-()(0)0f x f <=()()max 00f x f ==综上所述,,的最大值为.2a =()f x 0【小问2详解】因为,()sin ln(1)2f x x x x =++-要证当时,即证,π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>1sin ln(1)2x x ++>记,,1()sin ln(1)2m x x x =++-π,π6x ⎡⎤∈⎢⎥⎣⎦当时,,,π5π,66x ⎡⎤∈⎢⎥⎣⎦1sin 12x ≤≤ln(1)0x +>;1()sin ln(1)02m x x x ∴=++->当时,,5π,π6x ⎛⎤∈ ⎥⎝⎦1()cos 1m x x x '=++记,则,1()()cos 1n x m x x x '==++21()sin 0(1)n x x x '=--<+在区间上单调递减,则,()m x '∴5π,π6⎛⎤ ⎥⎝⎦5π6()065π6m x m ⎛⎫<=+< '+⎝'⎪⎭则在区间上单调递减,()m x 5π,π6⎛⎤⎥⎝⎦,()11()(π)sin πln(π1)ln π1022m x m ∴≥=++-=+->综上所述,当时,.π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>【小问3详解】设,,()()sin ln(1)h x f x x x x x =+=++-()1,x ∞∈-+,1()cos 11h x x x '∴=+-+当时,由(1)知,(1,0)x ∈-()(0)0f x f <=故,()()0f x x f x +<<故在区间上无实数根.()0f x x +=(1,0)-当时,,因此为的一个实数根.0x =(0)0h =0()0f x x +=当时,单调递减,π()0,x ∈1()cos 11h x x x '=+-+又,,(0)10h '=>1(π)20π1h '=-<+存在,使得,∴0(0,π)x ∈()00h x '=所以当时,当时,00x x <<ℎ′(x )>00πx x <<ℎ′(x )<0在区间上单调递增,在区间上单调递减,()h x ∴()00,x ()0,πx ,又,()0(0)0h x h ∴>=(π)ln(π1)π2π0h =+-<-<在区间上有且只有一个实数根,在区间上无实数根.()0f x x ∴+=()0,πx (]00,x 当时,,[π,)x ∈+∞()1ln(1)h x x x ≤++-令,()1ln(1)(π)l x x x x =++-≥,1()1011x l x x x -'∴=-=<++故在区间上单调递减,,()l x [π,)+∞()(π)ln(1π)π13π0l x l ≤=+-+<-<于是恒成立.故在区间上无实数根,()0f x x +<()0f x x +=[π,)+∞综上所述,有2个不相等的实数根.()0f x x +=方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈【正确答案】(1)2和5为两个质数“理想数” (2)的值为12或18m(3)证明见解析【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道必为奇数,则必为偶数,结合整除知识得解;9m a m =-m (3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】以内的质数为,202,3,5,7,11,13,17,19,故,所以为“理想数”;212=21a =2,而,故不是“理想数”;33110⨯+=1052=3,而,故是“理想数”;35116⨯+=41612=5,而,故不是“理想数”;37122⨯+=22112=7,而,故不是“理想数”;311134⨯+=34172=11,而,故不是“理想数”;313140⨯+=4058=13,而,故不是“理想数”;317152⨯+=52134=17,而,故不是“理想数”;319158⨯+=58292=19和5为两个质数“理想数”;2∴【小问2详解】由题设可知必为奇数,必为偶数,9m a m =-m ∴存在正整数,使得,即:∴p 92p m m =-9921p m =+-,且,921p ∈-Z211p-≥,或,或,解得,或,211p ∴-=213p -=219p-=1p =2p =,或,即的值为12或18.1991821m ∴=+=-2991221m =+=-m 【小问3详解】显然偶数"理想数"必为形如的整数,()*2k k ∈N 下面探究奇数"理想数",不妨设置如下区间:,((((0224462222,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦若奇数,不妨设,1m >(2222,2k k m -⎤∈⎦若为"理想数",则,且,即,且,m (*3112s m s +=∈N )2s >(*213s m s -=∈N )2s >①当,且时,;(*2s t t =∈N )1t >41(31)133t t m -+-==∈Z ②当时,;()*21s t t =+∈N 2412(31)133t t m ⨯-⨯+-==∉Z ,且,(*413t m t -∴=∈N )1t >又,即,22241223t k k--<<1344134k t k-⨯<-≤⨯易知为上述不等式的唯一整数解,t k =区间]存在唯一的奇数"理想数",且,(2222,2k k -(*413k m k -=∈N )1k >显然1为奇数"理想数",所有的奇数"理想数"为,()*413k m k -=∈N 所有的奇数"理想数"的倒数为,∴()*341kk ∈-N 1133134144441k k k ++<=⨯---1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭,即.21111171111124431124⎛⎫<⨯++++<+⨯=⎪⎝⎭-- ()*73n S n <∈N 知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。

河北省石家庄市2024届高三教学质量检测(三)数学试卷

河北省石家庄市2024届高三教学质量检测(三)数学试卷

石家庄市2024年普通高中学校毕业年级教学质量检测(三)数学(本试卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2ii z -=,则|z |=()A.B.C.3D.5【答案】B 【解析】【分析】根据复数的除法运算化简复数,再求复数的模长即可.【详解】由已知得2i (2i)i 2i 112i i i i 1z --+====--⨯-,所以z ==,故选:B.2.已知圆221:1C x y +=和圆2226890C x y x y +--+=:,则两圆公切线的条数为()A.1B.2C.3D.4【答案】C 【解析】【分析】根据圆与圆的位置关系求两圆圆心距及两圆半径,从而可判断两圆位置关系,即可得公切线条数.【详解】圆221:1C x y +=的圆心为()10,0C ,半径11r =,圆2226890C x y x y +--+=:的圆心()23,4C ,半径24r =,则12125C C r r ===+,故两圆外切,则两圆公切线的条数为3.故选:C.3.已知等差数列{}n a 的前n 项和为195,1,627n S a S a ==+,则5S =()A.25 B.27C.30D.35【答案】A 【解析】【分析】借助等差数列及其前n 项和的性质计算可得公差,结合等差数列求和公式计算即可得.【详解】设等差数列{}n a 的公差为d ,则有()()1117894262a a d a d ++⨯++=,又11a =,则()()62714914d d =⨯+++,解得2d =,则()511425252S ++⨯⨯==.故选:A.4.已知双曲线()2222:10,0y x C a b a b-=>>其上焦点到双曲线的一条渐近线的距离为3,则双曲线C 的渐近线方程为()A.y =B.33y x =±C.32y x =±D.233y x =±【答案】B 【解析】【分析】设双曲线()2222:10,0y x C a b a b-=>>的上焦点为(0,)c ,由题意可得3=,可求b ,由已知可求a ,可求渐近线方程.【详解】设双曲线()2222:10,0y x C a b a b-=>>的上焦点为(0,)c ,双曲线的渐近线方程为0by ax ±=,由点到直线的距离公式可得3b ===,又双曲线()2222:10,0y x C a b a b-=>>a =所以双曲线C 的渐近线方程为30y ±=,即3y x =±.故选:B.5.设,,αβγ是三个不同的平面,,m l 是两条不同的直线,则下列命题为真命题的是()A.若,,m l αβαβ⊥⊂⊥,则m l ∥B.若,,m l αβαβ⊂⊂ ,则m l∥C.若,,m l m αβαβ⊥⋂=⊥,则l β⊥ D.若,,l m l m αβγ⋂=⊥ ,则αγ⊥【答案】D 【解析】【分析】根据线面位置关系依次讨论各选项即可得答案.【详解】对于A 选项,若,,m l αβαβ⊥⊂⊥,则//l α或l ⊂α,无法确定m 与l 的关系,错误;对于B 选项,根据面面平行的性质定理,缺少m l ∥的条件,它们可能平行或异面,错误;对于C 选项,根据面面垂直的性质定理,缺少条件l ⊂α,,l β平行、相交或l β⊂均有可能,错误;对于D 选项,若,,l m l m αβγ⋂=⊥ ,则l γ⊥,由面面垂直的判定定理可得αγ⊥,正确.故选:D6.某项活动在周一至周五举行五天,现在需要安排甲、乙、丙、丁四位负责人值班,每个人至少值班一天,每天仅需一人值班,已知甲不能值第一天和最后一天,乙要值班两天且这两天必须相邻,则不同安排方法的种数为()A.24B.10C.16D.12【答案】D 【解析】【分析】分乙值前两天,乙值后两天及乙不值第一天和最后一天进行讨论即可得.【详解】若乙值前两天,则甲有两种选择,共有1222C A 4=,若乙值后两天,则甲有两种选择,共有1222C A 4=,若乙不值第一天和最后一天,共有1222C A 4=,共有44412++=种不同安排方法.故选:D .7.已知角,αβ满足()1tan ,2sin cos sin 3αβαβα==+,则tan β=()A.13B.16C.17D.2【答案】C 【解析】【分析】借助()βαβα=+-对已知化简,可求出()tan αβ+的值,再由()()tan tan βαβα=+-可解.【详解】因为()2sin cos sin βαβα=+,即()()2sin cos sin αβααβα⎡⎤+-=+⎣⎦,所以()()()2sin cos 2cos sin cos sin αβααβααβα+-+=+,整理得()()2sin cos 3cos sin αβααβα+=+,变形得()31tan tan 22αβα+==,所以()()()tan tan 1tan tan 1tan tan 7αβαβαβααβα+-⎡⎤=+-==⎣⎦++.故选:C8.已知抛物线2:8C y x =的焦点为F ,斜率为()0k k >的直线过F 与C 交于,P Q 两点,若FP FQ -=,则k 的值为()A.1B.C.2D.3【答案】C 【解析】【分析】设出直线方程,联立曲线后得到横坐标有关韦达定理,结合焦半径公式计算即可得解.【详解】由2:8C y x =可得()2,0F ,则():2PQ l y k x =-,()11,P x y ,()22,Q x y ,联立()228y k x y x⎧=-⎨=⎩,得()22224840k x k x k -++=,42421664641664640k k k k ∆=++-=+>,212224884k x x k k++==+,124x x =,由焦半径公式可得1122p FP x x =+=+,2222pFQ x x =+=+,则12FP FQ x x -=-=,则有21284422k x k ++==+,22284422k x k -+==+,21224254x x k ⎛⎫=+-= ⎪⎝⎭,解得2k =±,又0k >,故2k =.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某校“五一田径运动会”上,共有12名同学参加100米、400米、1500米三个项目,其中有8人参加“100米比赛”,有7人参加“400米比赛”,有5人参加“1500米比赛”,“100米和400米”都参加的有4人,“100米和1500米”都参加的有3人,“400米和1500米”都参加的有3人,则下列说法正确的是()A.三项比赛都参加的有2人B.只参加100米比赛的有3人C.只参加400米比赛的有3人D.只参加1500米比赛的有1人【答案】ABD 【解析】【分析】根据总人数和各个项目的人数,可求出三项比赛都参加的人数,从而可判定各选项.【详解】根据题意,设A ={x x 是参加100米的同学},B ={x x 是参加400米的同学},C ={x x 是参加1500米的同学},则()()()card 8,card 7,card 5,A B C ===且()()()card 4,card 3,card 3,A B A C B C === 则()()()card 128754332A B C ⎡⎤=-++-++=⎣⎦ ,所以三项比赛都参加的有2人,只参加100米比赛的有3人,只参加400米比赛的有2人,只参加1500米比赛的有1人.故选:ABD10.函数()()ππ4sin 02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭的部分图象如图所示,则下列说法中正确的是()A.π6ϕ=-B.()f x 的图象关于直线πx =对称C.()12π4cos 23f x x ⎛⎫=- ⎪⎝⎭D.若方程()2f x =在()0,m 上有且只有5个根,则26π,10π3m ⎛⎤∈ ⎥⎝⎦【答案】ACD 【解析】【分析】根据图象可求得函数()f x 的解析式,再根据三角函数的性质依次判断各选项.【详解】对于A ,由()02f =-,得4sin 2ϕ=-,即1sin 2ϕ=-,又ππ22ϕ-<<,π6ϕ∴=-,故A 正确;对于C ,又()f x 的图象过点π,03⎛⎫⎪⎝⎭,则π03f ⎛⎫= ⎪⎝⎭,即ππsin 036ω⎛⎫-= ⎪⎝⎭,πππ36k ω∴-=,即得132k ω=+,k ∈Z ,又02ω<≤,12ω∴=,所以()1ππ12π12π4sin 4sin 4cos 2622323f x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-=+-=- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,故C 正确;对于B ,因为()1π4sin 26f x x ⎛⎫=-⎪⎝⎭,而()ππππ4sin 4sin 263f ⎛⎫=-== ⎪⎝⎭故直线πx =不是函数()f x 的对称轴,故B 错误;对于D ,由()2f x =,得12π1cos 232x ⎛⎫-=⎪⎝⎭,解得2π4πx k =+或2π4π3k +,Z k ∈,方程()2f x =在()0,m 上有5个根,从小到大依次为:2π14π26π,2π,,6π,333,而第7个根为10π,所以26π10π3m <≤,故D 正确.故选:ACD.11.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为11B C 的中点,则下列说法正确的有()A.若点O 为BD 中点,则异面直线MO 与1CC 所成角的余弦值为5B.若点N 为线段BC 上的动点(包含端点),则MN DN +C.若点P 为CD 的中点,则平面AMP 与四边形11CDD C D.若点Q 在侧面正方形11ADD A 内(包含边界)且1MQ AC ⊥,则点Q 【答案】BD 【解析】【分析】取BC 中点E ,连接,,ME MO OE ,OME ∠为异面直线MO 与1CC 所成角,可判断A ;将侧面11BCC B 延BC 旋转至与平面ABCD 共面,根据两点间线段最短可判断B ;对于C ,如图以点D 为原点,以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,取11A B 靠近1B 的四等分点,则可证明//MF AP ,判断C ;并确定点Q 的轨迹为直线1x z +=在正方形11ADD A 内的线段,判断D.【详解】对于A ,取BC 中点E ,连接,,ME MO OE ,则1//CC ME ,所以OME ∠为异面直线MO 与1CC 所成角,在Rt OEM △中,25cos 5ME OME OM ∠==,故A 错误;对于B ,将侧面11BCC B 延BC 旋转至与平面ABCD 共面,如图连接DM ,交BC 与点N ,此时MN DN +最小,且MN DN DM +===B 正确;对于C ,如图,以点D 为原点,以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则()()()2,0,0,0,1,0,1,2,2,A P M 因为平面//ABCD 平面1111D C B A ,所以平面AMP 与平面1111D C B A 的交线为过点M 且平行于AP 的直线,取11A B 靠近1B 的四等分点F ,连接FM ,并延长交11C D 于点S ,连接SP ,交1CC 于点T ,由32,,22F ⎛⎫⎪⎝⎭,所以()11,,0,2,1,02MF AP ⎛⎫=-=- ⎪⎝⎭ ,则12MF AP =-,则//MF AP ,所以MF 为平面AMP 与平面1111D C B A 的交线,则SP 为平面AMP 与平面11CDD C 的交线,所以TP 为平面AMP 与四边形11CDD C 的交线,由于11Rt Rt FB M SC M ≅ ,所以1112SC FB ==,又1Rt Rt SC T PCT ,所以43CT =,则53PT ==,故C 错误;对于D ,因为点Q 在侧面正方形11ADD A 内,设(),0,Q x z ,则()()12,2,2,1,2,2A C MQ x z =--=---,因为1MQ AC ⊥,所以()()214220x z -----=,化简为1x z +=,则点Q 的轨迹为直线1x z +=在正方形11ADD A,故D 正确.故选:BD【点睛】关键点睛:本题选项D 为空间动点轨迹的探索问题,解答本题的关键是利用空间直角坐标系探索出动点的轨迹.三、填空题:本题共3小题,每小题5分,共15分.12.为了解全市高三学生的体能素质情况,在全市高三学生中随机抽取了1000名学生进行体能测试,并将这1000名学生的体能测试成绩整理成如下频率分布直方图.则直方图中实数a 的值为______.【答案】0.015【解析】【分析】利用直方图直方块总面积为1,进行运算解出a 即可.【详解】由直方图可知:组距为10,所以()100.0050.0200.0400.0201a ⨯++++=,解得0.015a =.故答案为:0.015.13.给定函数()()21,f x x x g x x x=+=+,用()M x 表示()(),f x g x 中的较大者,记()()(){}max ,M x f x g x =.若函数()y M x =的图象与y a =有3个不同的交点,则实数a 的取值范围是______.【答案】()10,2,4⎛⎫+∞ ⎪⎝⎭【解析】【分析】在同一坐标系下画出()()21,f x x x g x x x=+=+的图象,求出交点坐标;结合图象再做出满足条件的直线y a =,进而求出a 的取值范围即可.【详解】由()()()2221010x x x x f x x x x x x ⎧+≤-≥⎪=+=⎨---<<⎪⎩或,()1g x x x =+,因为()()(){}max ,M x f x g x =,所以图象变为:其中()()2max1104x xx +=-≤≤,当且仅当12x =-时取最大值;且设两函数在第一象限的交点为P ,即当0,0x y >>,()()21f x x xg x x x ⎧=+⎪⎨=+⎪⎩,解得:()1,2P ,由题意y a =与函数()y M x =的图象有3个不同的交点,由数形结合易知:10a 4<<,或2a >,故答案为:()10,2,4∞⎛⎫⋃+ ⎪⎝⎭.14.已知数列{}n a 满足:12211,2,2n n n a a a a a ++==-=,定义:()mod4a b ≡表示整数a 除以4的余数与整数b 除以4的余数相同,例:()()19mod4,622mod4≡≡.设()()42,0mod4,123mod4kk k k a b k a ⎧⎪≡=⎨≡⎪⎩或或,其中*k ∈N ,数列{}n b 的前n 项和为n S ,则4b =______;满足2024m S ≥的m 最小值为______.【答案】①.2②.40【解析】【分析】由12211,2,2n n n a a a a a ++==-=,可得当n 为4的倍数时,n a 也是4的倍数,当n 不为4的倍数时,n a 也不是4的倍数,则得当k 是4的倍数时,42kk b =,当k 不是4的倍数时,k b k =,即可得4b ,取()*4n s s =∈N,计算出nS后,再计算40S 及39S 即可得解.【详解】由212n n n a a a ++-=,则3415a =+=,410212a =+=,则1a 、2a 、3a 都不是4的倍数,4a 是4的倍数,5432a a a =+,不是4的倍数,65443252a a a a a =+=+,不是4的倍数,76543434321042125a a a a a a a a a =+=+++=+,不是4的倍数,87643434322410522912a a a a a a a a a =+=+++=+,是4的倍数,依次可得当n 为4的倍数时,n a 也是4的倍数,当n 不为4的倍数时,n a 也不是4的倍数,由()()42,0mod4,123mod4kk k k a b k a ⎧⎪≡=⎨≡⎪⎩或或,则有当k 是4的倍数时,42kk b =,当k 不是4的倍数时,k b k =,则44422b ==;当()*4n s s =∈N,12123256722snS=+++++++++ ()212344222484s s s =+++++++++-+++ ()()()212144442122ss s s s -+⨯+=+--21221822222622s s s s s s s ++=++---=+-,当40n =,即10s =时,有14021610226002048226462024S =⨯+-=+-=>,01040394264622646102416222024S b S =-=-=-=<,故满足2024m S ≥的m 最小值为40.故答案为:2;40.【点睛】关键点点睛:本题关键点在于借助题意,得到当k 是4的倍数时,42kkb =,当k 不是4的倍数时,k b k =,从而可通过计算当()*4n s s =∈N 时的n S .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC 中,角、、A B C 所对的边分别为,4,9a b c c ab ==、、.(1)若2sin 3C =,求sin sin A B ⋅的值;(2)求ABC 面积的最大值.【答案】(1)14(2)【解析】【分析】(1)根据正弦定理可得sin ,sin 66a bA B ==,从而可求sin sin A B ⋅的值;(2)利用基本不等式可得22218a b ab +≥=,再根据余弦定理可得cos C 的范围,从而可得sin C 的范围,结合三角形面积公式,即可得ABC 面积的最大值.【小问1详解】由正弦定理6sin sin sin c b a C B A ===,可得sin ,sin 66a bA B ==,91sin sin 66364a b A B ∴⋅=⋅==【小问2详解】9ab = ,22218a b ab ∴+≥=,由余弦定理可得2222161cos 2189a b c ab C ab +--=≥=,1cos 19C ∴≤<,()28001cos 81C ∴<-≤,0sin 9C ∴<≤,19sin sin 22S ab C C ∴==≤,当且仅当3a b ==时,等号成立,此时ABC 面积取得最大值16.在推动电子制造业高质量发展的大环境下,某企业统筹各类资源,进行了积极的改革探索.下表是该企业每月生产的一种核心产品的产量()315x x ≤≤(件)与相应的生产总成本y (万元)的四组对照数据.x57911y200298431609企业研究人员建立了y 与x 的两种回归模型,利用计算机算得近似结果如下:经验回归方程①:311733ˆx y =+;经验回归方程②:26860ˆ1yx =-.其中经验回归方程①的残差图如图所示(残差=观测值-预测值):(1)在下表中填写经验回归方程②的残差,根据残差分析,判断哪一个经验回归方程更适宜作为y 关于x 的回归方程,并说明理由;x57911y200298431609ˆe(2)从该企业在过去几年生产的该产品中随机抽取100件,优等品有60件,合格品有40件.每件优等品利润为20万元,每件合格品利润为15万元.若视频率为概率,该企业某月计划生产12件该产品,记优等品件数为X ,总利润为Y .(ⅰ)求Y 与X 的关系式,并求()E X 和()E Y ;(ⅱ)记该月的成本利润率p ,在(1)中选择的经验回归方程下,求p 的估计值.(结果保留2位小数)附:成本利润率=总利润总成本.【答案】(1)残差数据表见解析,经验回归方程①更适宜作为y 关于x 的回归方程(2)(ⅰ)1805Y X =+,()7.2E X =,()216E Y =;(ⅱ)0.29【解析】【分析】(1)先列出经验回归方程②的残差数据表以及经验回归方程②的残差图,对比回归方程①进行选择,并给出理由即可;(2)对于(ⅰ),先求出优等品的概率,分析得出()12,0.6X B ~,进而得出求Y 与X 的关系式,并解出()E X 和()E Y 即可;对于(ⅱ),由(ⅰ)知总利润为216万元,总成本估计值319ˆ12173743y =+=(万元),再求出p 的估计值即可.【小问1详解】经验回归方程②的残差数据如下表:x57911y200298431609ˆe 2018-21-21经验回归方程②的残差图如图所示:经验回归方程①更适宜作为y 关于x 的回归方程.(以下理由或其他合理的理由,说出一条即可得分):理由1:经验回归方程①这4个样本点的残差的绝对值都比经验回归方程②的小.理由2:经验回归方程①这4个样本的残差点落在的带状区域比经验回归方程②的带状区域更窄.理由3:经验回归方程①这4个样本的残差点比经验回归方程②的残差点更贴近x 轴.【小问2详解】(ⅰ)由题意知,每件产品为优等品的概率0600.6100P ==,则()12,0.6X B ~,因此()120.67.2E X =⨯=,由()2015125180Y X X X =+⨯-=+,则()()5180216E Y E X =+=;(ⅱ)由(ⅰ)知总利润为216万元,总成本估计值319ˆ12173743y =+=(万元),则2160.29749p =≈.17.已知函数()()()211ln 02f x x a x a x a =-++>.(1)讨论函数()f x 的单调性;(2)当2a =时,若函数()()211e 2x g x f x x -=-+,求函数()g x 极值点的个数.【答案】(1)答案见解析(2)2【解析】【分析】(1)求导得()()21x a x af x x'-++=,分类讨论当01a <<,1a >,1a =时分别确定导函数的符合从而得函数单调性即可;(2)求导得()12e 3x g x x --+'=,令()12e 3x h x x-=-+,求导确定其单调性与最值,从而可得()g x 的单调与极值情况.【小问1详解】()()()211x a x a a f x x a x x-++=-++='()()1,0x x a x x --=>,当01a <<时,当()()0,,1,x a x ∞∈∈+时,()()0,f x f x '>单调递增;当(),1x a ∈时,()()0,f x f x '<单调递减.当1a >时,当()()0,1,,x x a ∞∈∈+时,()()0,f x f x '>单调递增;当()1,x a ∈时,()()0,f x f x '<单调递减;当1a =时,()()0,f x f x '≥在()0,∞+单调递增.【小问2详解】2a =时,()()112e32ln ,e 3x x g x x x g x x--=-+-+'=,设()()()11222e3,e ,x x h x h x h x x x--=-+-''=在区间()0,∞+单调递增.因为()()1110,2e 02h h ''=-=-,所以存在唯一()01,2x ∈使得()00h x '=,当()00,x x ∈时,()()0,h x h x '<单调递减,即()g x '单调递减;当()0,x x ∞∈+时,()()0,h x h x '>单调递增,即()g x '单调递增.()10g '=,且()g x '在()01,x 单调递减,所以()00g x '<,又()2e 20g ='->因此()g x '在区间()0,2x 存在唯一零点t当()()0,1,,x x t ∞∈∈+时,()()0,g x g x '>单调递增;当()1,x t ∈时,()()0,g x g x '<单调递减;所以()g x 极值点为1,t ,因此()g x 极值点个数为2.18.如图,在五棱锥S ABCDE -中,平面SAE ⊥平面AED ,,AE ED SE AD ⊥⊥.(1)证明:SE ⊥平面AED ;(2)若四边形ABCD 为矩形,且1,3SE AB AD ===,2BN NC =.当直线DN 与平面SAD 所成的角最小时,求三棱锥D SAE -体积.【答案】(1)证明见解析(2)34【解析】【分析】(1)借助面面垂直的性质定理与线面垂直的判定定理推导即可得;(2)建立适当空间直角坐标系,借助空间向量可得当直线DN 与平面SAD 所成的角最小时EAD ∠的大小,结合体积公式计算即可得解.【小问1详解】因为平面SAE ⊥平面,,AED DE EA DE ⊥⊂平面AED ,平面SAE 平面AED AE =,所以DE ⊥平面SAE ,又SE ⊂平面SAE ,所以DE SE ⊥,又因为,SE AD ED AD D ⊥= ,且,AD DE ⊂平面AED ,所以SE ⊥平面AED ;【小问2详解】以E 为坐标原点,分别以,,EA ED ES 为,,x y z轴建立空间直角坐标系,设π0,2EAD θθ⎛⎫⎛⎫∠=∈ ⎪ ⎪⎝⎭⎝⎭,则()()()3cos ,0,0,0,3sin ,0,0,0,1A D S θθ,可得CD 与y 轴夹角为θ,所以()sin ,cos ,0DC θθ=,()1cos ,sin ,03CN DA θθ==-,()sin cos ,cos sin ,0DN DC CN θθθθ=+=+-,()()3cos ,0,1,0,3sin ,1SA SD θθ=-=- ,平面SAD 的法向量记为(),,n x y z =,由00n SA n SD ⎧⋅=⎪⎨⋅=⎪⎩,得3cos 03sin 0x z y z θθ-=⎧⎨-=⎩,令3sin cos z θθ=,得()sin ,cos ,3sin cos n θθθθ=,22cos ,DN n =,即26cos ,13DN n =,当π4θ=时,等号成立,此时,直线DN 与平面SAD 的所成的角取得最小值,此时119313344D SAE ADE V S SE -=⋅=⋅⋅= .19.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12(F F O 为坐标原点,直线l 与C 交于,A B 两点,点A 在第一象限,点B 在第四象限且满足直线OA 与直线OB 的斜率之积为14-.当l 垂直于x 轴时,1232F A F B =- .(1)求C 的方程;(2)若点P 为C 的左顶点且满足(0,0)OP OA OB λμλμ=+<<,直线PA 与OB 交于1B ,直线PB 与OA交于1A .①证明:22λμ+为定值;②证明:四边形11AB A B 的面积是AOB 面积的2倍.【答案】(1)2214x y +=(2)①证明见解析;②证明见解析【解析】【分析】(1)取l 垂直x 轴特殊情况研究,由直线OA 与直线OB 的斜率之积为14-,且1232F A F B ⋅=- 求出A 点坐标,再代入椭圆方程待定系数法求解即可;(2)①由OP OA OB λμ=+建立,,P A B 坐标之间关系,利用,,P A B 在椭圆上及直线OA 与直线OB 的斜率之积为14-消去1122,,,x y x y ,即可得证;②设()()()()1122133144,,,,,,,,:A x y B x y A x y B x y l x my n =+,利用韦达定理将直线OA 与直线OB 的斜率之积为14-表示出来即可得到,m n 的关系2224n m =+,再表示出AOB 面积11sin 2S OA OB AOB =⋅⋅∠,四边形11AB A B 的面积2111sin 2S A A B B AOB =⋅⋅∠;若要证212S S =,只需证112A A B B OA OB ⋅=⋅.转化为证明3142122y y y y y y -⋅-=⋅,由题将,y y 34用12,y y 表示,化简即可.【小问1详解】当l 垂直x 轴时,由直线OA 与直线OB 的斜率之积为14-,故11:,:22OA y x OB y x ==-,设()()()2,,2,0A t t B t t t ->,则22212343332F A F B t t t ⋅=--=-=- ,解得2t =,即22A ⎫⎪⎪⎝⎭,则222221123a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1a b ==,故C 的方程为2214x y +=;【小问2详解】(2)①设()()()1122,,,,2,0A x y B x y P -,由OP OA OB λμ=+ 知121220x x y y λμλμ-=+⎧⎨=+⎩①②,将224+⨯①②得()()22121244x x y y λμλμ+++=,即()()()2222221122121244244xy x y x x y y λμλμ+++++=.由,A B 为C 上点,则2222112244,44x y x y +=+=.又直线OA 与直线OB 的斜率之积为14-,故121214y y x x =-,即121240x x y y +=.因此221λμ+=;②由题直线l 斜率不为0,设()()()1122:,,,,,2,0l x my n A x y B x y P =+-由①联立2244x y x my n⎧+=⎨=+⎩,消去x 得()()222224240,Δ1640m y mny n m n+++-==+->,212122224,44mn n y y y y m m -+=-=++,由()()12121212440x x y y my n my n y y +=+++=,即()()()()2212121212440my n my n y y m y y mn y y n +++=++++=,即2224n m =+.因此有()()22212121212122244,,42m n y y y y y y y y y y n n n-+=-=-=+-=.AOB 面积11sin 2S OA OB AOB =⋅⋅∠,四边形11AB A B 的面积2111sin 2S A A B B AOB =⋅⋅∠,即若要证212S S =,只需证112A A B B OA OB ⋅=⋅.设()()133144,,,A x y B x y ,故只需证3142122y y y y y y -⋅-=⋅即可.直线12122:2,:x xPA x y OB x y y y +=-=,联立解得()12124122212122222y y y y y x y y x y n y y y ==+--+,同理得()12123211121212222y y y y y x y y x y n y y y ==+--+.故()()()()()2222123142121212222212121224222482824n n y y n y y y y y y y y y y n n n y y n y y y y n n ++⋅--⋅-=⋅⋅=⋅⋅=⋅+-----+-+故问题得证.【点睛】关键点点睛:本题解题的关键是将212S S =表示为112A A B B OA OB ⋅=⋅后将同一直线上的弦长比值问题转化为纵坐标的比值问题,即证明3142122y y y y y y -⋅-=⋅,而,y y 34可以用12,y y 表示出来,从而达到消元化简的目的.。

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)【注意】本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1 至10题为选择题,每小题2分,共20分;第Ⅱ卷为非选择题,共80分。

考试时间120分钟。

第Ⅰ卷(选择题,共20分)一、选择题(本大题共10小题,每小题2分,共20分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 将函数$f(x)= \sin(x-\frac{\pi}{6})+2x$ 的图像上对称的两个点P和Q分别对应于$f(x)=7$ 和$f(x)=-1$,则点P和Q的坐标分别是()A. $\left(\frac{5\pi}{6}, 7\right), \left(\frac{11\pi}{6}, -1\right)$B. $\left(\frac{5\pi}{6}, -1\right), \left(\frac{7\pi}{6}, 7\right)$C. $\left(\frac{5\pi}{6}, 7\right), \left(\frac{7\pi}{6}, -1\right)$D. $\left(\frac{7\pi}{6}, -1\right), \left(\frac{11\pi}{6}, 7\right)$【解析】根据函数图像对称性和点过该函数能确定两个点,即可得到答案为C。

2. 若$\frac{(x+2)^2-1}{x+1}>0$,则实数x的取值范围是()A. $x>2$ 或 $-1<x<-2$B. $x>2$ 或 $-1<x<-2$ 或 $x<-3$C. $x<-3$ 或 $-2<x<-1$D. $x>-3$ 或 $x<-1$ 或 $x<-2$【解析】根据不等式性质和解析式展开,结合一元二次不等式求解可得答案为B。

河北省部分学校2025届高三上学期质量检测二数学试题(含答案)

河北省部分学校2025届高三上学期质量检测二数学试题(含答案)

河北省部分学校2025届高三上学期质量检测二数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|x 2−9x +20≤0},B ={x|log 2(x−3)<1},则A ∪B =( )A. (−∞,5)B. [4,5)C. (−∞,5]D. (3,5]2.设复数z 满足(1−i)z =3−i 3,则z =( )A. 2+iB. 2−iC. 1−2iD. 1+2i3.已知非负实数x ,y 满足x +y =1,则12x +11+y 的最小值为( )A. 3+222B. 3+224C. 2D. 434.已知非零向量a ,b 满足|a +b |=|a|−|b |,则( )A. |a +b |>|b | B. |a−b |<|a |C. |a +b |>|a−b |D. (a +b )⋅(a−b )≥05.已知函数f(x)=cos ωx− 3sin ωx(ω>0)的部分图象如图所示,则下列选项不正确的是( )A. 函数f(x)的图象关于点(7π12,0)中心对称B. 函数f(x)的单调增区间为[kπ−2π3,kπ−π6](k ∈Z)C. 函数f(x)的图象可由y =2sin ωx 的图象向左平移5π6个单位长度得到D. 函数g(x)=f(tωx),(t >0)在(0,π)上有2个零点,则实数t 的取值范围为(724,1324]6.对于一个函数:当自变量x 取a 时,其函数值等于2a ,则称a 为这个函数的H 数.若二次函数y =ax 2+4x +c(a,c 为常数且a ≠0)有且只有一个H 数1,且当0≤x ≤m 时,函数y =ax 2+4x +c−2的最小值为−3,最大值为1,则m 的取值范围是( )A. 0≤m ≤2B. 1≤m ≤3C. 2≤m ≤3D. 2≤m ≤47.若e x 1⋅x 3=ln x 2⋅x 3=1,则下列不等关系一定不成立的是( )A. x 3>x 2>x 1B. x 3>x 1>x 2C. x 2>x 1=x 3D. x 2>x 1>x 38.在ΔABC 中,B =π4,C =5π12,AC =26,AC 的中点为D ,若长度为3的线段PQ(P 在Q 的左侧)在直线BC 上移动,则AP +DQ 的最小值为( )A.30+2 102B.30+3 102C.30+4 102D.30+5 102二、多选题:本题共3小题,共18分。

安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案

安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案

六安市2024年高三教学质量检测数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2log 1,A x x x =≤∈Z,{}220B x xx =+-<,则A B = ()A.{}0,1 B.{}2,1-- C.{}1,0- D.{}1-【答案】D 【解析】【分析】解出对数不等式和一元二次不等式,再根据交集含义即可.【详解】2log ||1x ≤,即22log ||log 2x ≤,则22x -≤≤且0x ≠,则{}2,1,1,2A =--,{}21B x x =-<<,所以{}1A B ⋂=-.故选:D .2.已知复数z 的共轭复数在复平面内对应的点为()2,2-,则复数1z的虚部为()A.1-B.i- C.14-D.1i 4-【答案】C 【解析】【分析】得到22i z =+,利用复数除法法则得到111i 44z =-,求出虚部.【详解】由已知得22i z =+,()()122i 1i 11i 22i 22i 444z --===-+-,则复数1z 的虚部为14-.故选:C3.已知向量a =,向量(1,b =- ,则a 与b 的夹角大小为()A.30︒B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量a =,(1,b =-,则cos ,222a b 〈〉==-⨯ ,而0,180a b ︒≤〈〉≤︒ ,所以a,b的夹角为150︒.故选:D4.等差数列{}n a 的公差不为0,其前n 项和为n S ,若()83124m S a a a =++,则m =()A.11B.12C.13D.14【答案】C 【解析】【分析】由等差数列的前n 项和公式与通项公式转化为基本量计算即可.【详解】设等差数列{}n a 的公差为d ,所以81828S a d =+,则有()11118282214a d a d a m d a +=+++-+⎡⎤⎣⎦,即()141d m d =+,又0d ≠,所以114m +=,所以13m =.故选:C.5.函数()e 4,1ln ,1x x x f x x x ⎧+-<=⎨≥⎩,若()()()21105f a f a f +≤--,则实数a 的取值范围是()A.{}1- B.(],1-∞-C.[)1,-+∞ D.11,e⎡⎫--⎪⎢⎣⎭【答案】A 【解析】【分析】原不等式变形为()()25110f a f a ⎡⎤+≤-⎣⎦,再利用分段函数的单调性即可得到不等式,解出即可.【详解】当1x <时,()e 4xf x x =+-,因为e ,4x y y x ==-在(),1∞-上单调递增,此时()f x 单调递增,当1x ≥时,易知()ln f x x =单调递增,且当1x =时,1e 14e 30ln1+-=-<=,则()f x 在R 上单调递增,因为211a +≥,则()()()()()222215ln 1ln5ln5151f a f a a f a ⎡⎤++=++=+=+⎣⎦,所以由()()()21105f a f a f +≤--得()()25110f a f a ⎡⎤+≤-⎣⎦,所以()25110a a +≤-,解得1a =-.故选:A .6.已知ππcos 2cos 63αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭()A.35 B.45C.45-D.35-【答案】B 【解析】【分析】根据诱导公式结合二倍角公式,利用齐次式计算可得.【详解】因为πππ632αα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,所以ππcos sin 63αα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,则ππsin 2cos 33αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即πtan 23α⎛⎫+= ⎪⎝⎭,所以222πππ2sin cos 2tan 2πππ4333sin 22sin cos πππ3335sin cos tan 1333ααααααααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+=++=== ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.7.圆()222:0O x y r r +=>上一点1,22A r r ⎛⎫⎪⎝⎭关于x 轴的对称点为B ,点E ,F 为圆O 上的两点,且满足EAB FAB ∠=∠,则直线EF 的斜率为()A.B.3C.3D.13【答案】B 【解析】【分析】根据圆的性质以及斜率乘积与直线垂直的关系即可.【详解】由EAB FAB ∠=∠知BOE BOF ∠=∠,所以OB EF ⊥,而212OB OArk k r =-=-=,∴3EF k =.故选:B.8.某种生命体M 在生长一天后会分裂成2个生命体M 和1个生命体N ,1个生命体N 生长一天后可以分裂成2个生命体N 和1个生命体M ,每个新生命体都可以持续生长并发生分裂.假设从某个生命体M 的生长开始计算,记n a 表示第n 天生命体M 的个数,n b 表示第n 天生命体N 的个数,则11a =,10b =,则下列结论中正确的是()A.413a = B.数列{}nnb a 为递增数列C.5163ni b==∑ D.若{}n n a b λ+为等比数列,则1λ=【答案】B 【解析】【分析】根据给定条件,求出递推公式,进而求出数列{},{}n n a b 的通项公式,再逐项分析判断即得.【详解】依题意,12n n n a a b +=+,12n n n b b a +=+,则113()n n n n a b a b +++=+,而111a b +=,因此数列{}n n a b +是首项为1,公比为3的等比数列,13n n n a b -+=,又11n n n n a b a b ++=--,因此111n n a a b b -=-=,于是1312n n a -+=,1312n n b --=,对于A ,3431142a +==,A 错误;对于B ,11131213131n n n n n b a ----==-++,显然数列12{}31n -+是递减数列,因此{}n n b a 为递增数列,B 正确;对于C ,51014134058ni b==++++=∑,C 错误;对于D ,1122331,2,54a b a b a b λλλλλ==+=++++,由{}n n a b λ+为等比数列,得2(2)54λλ+=+,解得1λ=或1λ=-,当1λ=时,13n n n b a λ-+=,显然数列{}n n a b λ+是等比数列,当1λ=-时,1n n a b λ+=,显然数列{}n n a b λ+是等比数列,因此当数列{}n n a b λ+是等比数列时,1λ=或1λ=-,D 错误.故选:B【点睛】思路点睛:涉及求数列单调性问题,可以借助作差或作商的方法判断单调性作答,也可以借助函数单调性进行判断.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,既是偶函数,又在区间()0,∞+上单调递增的是()A.ln y x =B.ln y x= C.2y x -= D.e e x xy -=+【答案】AD 【解析】【分析】A 选项,根据函数奇偶性得到()ln f x x =为偶函数,且在()0,∞+单调递增,A 正确;B 不满足奇偶性,C 不满足单调性;D 选项,满足为偶函数,且求导得到函数在()0,x ∈+∞上单调递增,得到答案.【详解】A 选项,()ln f x x =定义域为()(),00,x ∈-∞⋃+∞,且()()ln ln f x x x f x -=-==,故()ln f x x =为偶函数,且()0,x ∈+∞时,ln y x =单调递增,故A 正确;B 选项,ln y x =的定义域为()0,∞+,故不是偶函数,故B 项错误;C 选项,()0,x ∈+∞时,2y x -=单调递减,故C 项错误;D 选项,()e exxg x -=+的定义域为R ,且()()e e x xg x g x --=+=,故()e exxg x -=+是偶函数,且()0,x ∈+∞时,()e e0xxg x -'=->,函数单调递增,故D 项正确.故选:AD10.地震释放的能量E 与地震震级M 之间的关系式为lg 4.8 1.5E M =+,2022年9月18日我国台湾地区发生的6.9级地震释放的能量为1E ,2023年1月28日伊朗西北发生的5.9级地震释放的能量为2E ,2023年2月6日土耳其卡赫拉曼马拉什省发生的7.7级地震释放的能量为3E ,下列说法正确的是()A.1E 约为2E 的10倍B.3E 超过2E 的100倍C.3E 超过1E 的10倍D.3E 低于1E 的10倍【答案】BC 【解析】【分析】根据题意,结合对数运算公式,即可判断.【详解】A.()12lg lg 1.5 6.9 5.9E E -=⨯-,所以 1.51210E E =,故A 错误;B.()32lg lg 1.57.7 5.9E E -=⨯-, 2.73210100E E =>,故B 正确;C.()31lg lg 1.57.7 6.9E E -=⨯-, 1.2311010E E =>,故C 项正确,D 项错误.故选:BC11.已知函数()f x 的导函数为()f x ',对任意的正数x ,都满足()()()22f x xf x f x x <<-',则下列结论正确的是()A.()1122f f ⎛⎫< ⎪⎝⎭B.()()1122f f <C.()11422f f ⎛⎫<- ⎪⎝⎭D.()()11214f f <+【答案】BC 【解析】【分析】设()()()0f x g x x x=>,利用导数求出()g x 的单调性,据此即可判断A 和B 选项,设()()()220f x x h x x x-=>,根据导数求出()h x 的单调性,据此即可求解C 和D 选项.【详解】设()()()0f x g x x x=>,则()()()20xf x f x g x x'-='>,所以()g x 在()0,∞+上单调递增,由()112g g ⎛⎫>⎪⎝⎭得()1122f f ⎛⎫> ⎪⎝⎭,故A 项错误;由()()12g g <得()()1122f f <,故B 项正确;设()()()220f x x h x x x-=>,则()()()()()()()()243222220f x x f x x x xf x f x x h x x x ---⋅--=''=<',所以()h x 在()0,∞+上单调递减,由()112h h ⎛⎫<⎪⎝⎭得()11422f f ⎛⎫<- ⎪⎝⎭,故C 项正确:由()()12h h >得()()11214f f >+,故D 项错误.故选:BC.12.在棱长为1的正方体1111ABCD A B C D -中,P 为棱上一点,满足1PA PC d +=(d 为定值),记P 点的个数为n ,则下列说法正确的是()A.当d =2n =B.1d <<+时,6n =C.当d =时,15n =D.n 的最大值为18【答案】AD 【解析】【分析】由点P 的位置进行分类讨论判断求解即可.【详解】当点P 位于A 或1C 处时,d当P 在AB 棱上由A 到B 移动时,d 1,当P 在AD ,1AA ,1C C ,11C B ,11C D 等棱上移动时,d 1+当P 在1BB 棱上由B 到1B 移动时,d 由11+;当P 在BC ,DC ,1D D ,11A B ,11A D 等棱上移动时,d 也是由1+再由增大到1+.故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.抛物线24y x =的焦点F 与x 轴上一点A 的连线的中点P 恰在抛物线上,则线段AF 的长为______.【答案】316##0.1875【解析】【分析】根据题意求线段AF 的中点坐标,结合抛物线的定义分析求解.【详解】因为24y x =,即214x y =,可知抛物线的焦点10,16F ⎛⎫⎪⎝⎭,准线为116y =-,设(),0A a ,则线段AF的中点为1,232a ⎛⎫⎪⎝⎭,则113321632PF =+=,所以3216AF PF ==.故答案为:316.14.如图,在四边形ABCD 中,AD AB ⊥,120ADC ∠=︒,AB =,1AD =,2CD =,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积为______.【答案】(12π+【解析】【分析】作出辅助线,求出各边长度,求出以AB 为半径的圆的面积,以CD 为母线和CE 为半径的圆锥的侧面积,以BC 为母线的圆台的面积,相加后得到答案.【详解】作CE AD ⊥,CFAB ⊥,E ,F 为垂足,因为120ADC ∠=︒,所以60EDC ∠=︒,因为2CD =,所以1DE =,CE =,故==AF CE ,又AB =1AD =,故2CF AE AD DE ==+=,BF AB AF =-=,由勾股定理得CB ==,四边形ABCD 绕直线AD 旋转一周所成几何体的表面积分为三部分,以AB 为半径的圆的面积(2π12π=,以CD 为母线和CE 为半径的圆锥的侧面积πrl =,以BC 为母线的圆台的侧面积+=所以该几何体的表面积为(12π+.故答案为:(12π+15.已知函数()()()22cos0f x x ωω=>的最小正周期为π,将函数()y f x =的图象上的所有点向右平移π6个单位长度,再将所得的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到()y g x =的图象,则()y g x =在ππ,124⎡⎤⎢⎥⎣⎦上的值域为______.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】【分析】化简()f x 的解析式,根据()f x 的最小正周期求得ω,根据三角函数图象变换的知识求得()g x ,进而求得()g x 在ππ,124⎡⎤⎢⎣⎦上的值域.【详解】()cos21f x x ω=+,2ππ2ω=,22ω=,()cos21f x x =+,将函数()y f x =的图象上的所有点向右平移π6个单位长度,得到ππcos 21cos 2163y x x ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上各点的横坐标缩短为原来的12,得到()πcos 413g x x ⎛⎫=-+ ⎪⎝⎭,因为ππ,124x ⎡⎤∈⎢⎥⎣⎦,所以π2π40,33x ⎡⎤-∈⎢⎥⎣⎦,所以π1cos 4,132x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()y g x =在ππ,124⎡⎤⎢⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦.故答案为:1,22⎡⎤⎢⎥⎣⎦16.已知2F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,圆222:O x y a +=与双曲线C 的渐近线在第一象限交于点A ,点B 在双曲线C 上,222BF F A =-,则双曲线C 的渐近线方程为______.【答案】2y x =±【解析】【分析】求出点A 的坐标及2AF 长,由222BF F A =-可得点A 为2BF 的中点,再结合双曲线定义求解即得.【详解】由222BF F A =-,得点A 为2BF 的中点,记1F 为C 的左焦点,连接1BF ,令半焦距为c ,则122BF OA a ==,由222b y x ax y a ⎧=⎪⎨⎪+=⎩,解得2a x cab y c ⎧=⎪⎪⎨⎪=⎪⎩,即2(,)a ab A c c ,而2(,0)F c ,因此2222()()a ab AF c b c c=-+=,由双曲线定义得222b a a -=,即2b a =,所以双曲线C 的渐近线方程为2y x =±.故答案为:2y x=±四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,()()140n n S a λλλ-=->.(1)求证:数列{}n a 为等比数列;(2)当2λ=时,设1221log log n n n a n a n b a a ++++=+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析(2)261939n n nT n +=+【解析】【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩作差得到1n n a a λ+=,即可得证;(2)由(1)可得12n n a +=,则321122323n n n b n n n n ++=+=+-++++,再利用裂项相消法计算可得.【小问1详解】证明:因为()()140n n S a λλλ-=->,当1n =时,()1114S a λλ-=-,解得14a =,由()14n n S a λλ-=-得()1114n n S a λλ++-=-,两式作差得()()()111144n n n n S S a a λλλλ++---=---,即()111n n n a a a λλλ++-=-,则1n n a a λ+=,又0λ>,所以数列{}n a 是首项为4,公比为λ的等比数列.【小问2详解】当2λ=时,由(1)得11422n n n a -+=⨯=,又223121322232log log log log 2322n n n n n n n a n a n n n b a a n n ++++++++++=+=+=+++,所以322131112232323n n n n n b n n n n n n +++++-=+=+=+-++++++,所以1111112344523n T n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1111112344523n n n ⎛⎫=+-+-+⋅⋅⋅+- ⎪++⎝⎭21161923339n n n n n +⎛⎫=+-=⎪++⎝⎭.18.在ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c .(1)若12b a =,6sin sin B A -=,求角A 的值;(2)若π3A =,且b 是a 和3c 的等差中项,求cos B 的值.【答案】(1)π3A =或2π3(2)1cos 7B =-【解析】【分析】(1)根据题意利用正弦定理边化角即可得结果;(2)由等差中项可得23a b c =-,结合余弦定理解得83b c =,73a c =,代入余弦定理即可得结果.【小问1详解】因为12b a =,由正弦定理sin sin b a B A=得1sin sin 2B A =,又因为6sin sin B A -=sin 2A =,且()0,πA ∈,所以π3A =或2π3.【小问2详解】显然0,0,0a b c >>>,由b 是a 和3c 的等差中项得23b a c =+,即230a b c =->,可得32b c >,因为π3A =,由余弦定理2222cos a b c bc A =+-可得()22223b c b c bc -=+-,化简得2231180b bc c -+=,即()()380b c b c --=,解得83b c =或b c =(舍去),由23a b c =-,可得73a c =,由余弦定理222cos 2a c b B ac +-=,得22278133cos 7723c c c B c c ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==-⎛⎫⨯ ⎪⎝⎭.19.已知函数()()36R f x x ax a =+-∈.(1)若函数()f x 的图象在2x =处的切线与x 轴平行,求函数()f x 的图象在3x =-处的切线方程;(2)讨论函数()f x 的单调性.【答案】19.15480x y -+=20.答案见解析【解析】【分析】(1)先求导函数再求斜率最后写出切线方程;(2)分类讨论列表根据导函数求单调性.【小问1详解】()23f x x a ='+.由题意()2120f a ='+=,解得12a =-,所以()3126f x x x =--,()33f -=,()315f '-=()f x 在3x =-处的切线方程为15480x y -+=【小问2详解】()23f x x a ='+.①当0a ≥时,()0f x '≥,()f x 在R 上单调递增.②当0a <时,由()0f x '=得x =,()f x 在R 上的变化情况如下表:由上表可得()f x 在,∞⎛- ⎝上单调递增,在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增.综上,当0a ≥时,增区间为(),∞∞-+,无减区间;当0a <时,增区间为,∞⎛- ⎝和∞⎫+⎪⎪⎭,减区间为⎛ ⎝.20.如图,在三棱锥A BCD -中,CE BD ⊥,垂足为点E ,AH ⊥平面BCD ,垂足H 在CE 上,点F 在AC 上,且CEF CAH ∠=∠.(1)证明:AC ⊥平面BDF ;(2)若22BE DE ==,22CH EH ==,三棱锥A BCD -的体积为BF 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)5.【解析】【分析】(1)利用线面垂直得到线线垂直,由CEF CAH ∠=∠,可得出AC EF ⊥,利用线面垂直的判定定理可以证得AC ⊥平面BDF ;(2)通过三棱锥A BCD -的体积,可以求出AH ,进一步求AC ,由两个三角形AHC ,EFC 相似,得出F 为AC 的中点,然后建立空间直角坐标系,求平面ABD 的法向量,进而可以求得直线与平面所成角的正弦值.【小问1详解】由AH ⊥平面BCD ,BD ⊂平面BCD ,得AH BD ⊥,又CE BD ⊥,而AH ⊂平面ACE ,CE ⊂平面ACE ,AH CE H = ,所以BD ⊥平面ACE ,又AC ⊂平面ACE ,所以BD AC ⊥.再由AH ⊥平面BCD ,EC ⊂平面BCD ,得AH EC ⊥,得90AHC ∠=︒,又CEF CAH ∠=∠,ACH ECF ∠=∠,得90EFC AHC ︒∠=∠=,即AC EF ⊥.又EF ⊂平面BDF ,BD ⊂平面BDF ,EF BD E = ,所以AC ⊥平面BDF .【小问2详解】由条件知11133322A BCD BCD V S AH BD CE AH AH -=⋅=⨯⨯⨯⨯==所以AH =,在Rt AHC 中,2228412AC AH CH =+=+=,所以AC =由(1)知Rt Rt AHC EFC ~△△,所以FC ECHC AC =,即2FC =,得FC =,可知F 为AC 的中点,过点H 作HG BD ∥交BC 于点G由(1)易得HG ,HC ,HA 两两垂直,以{HG 、HC 、}HA正交基底,建立空间直角坐标系H xyz -,如图所示由题意可知,(0,0,A ,()2,1,0B -,()0,1,0E -,()0,2,0C,(F .则(0,1,EA = ,()2,0,0EB =,(2,BF =- ,设平面ABD 的一个法向量为(),,n x y z =,则020EA n y EB n x ⎧⋅=+=⎪⎨⋅==⎪⎩,令1z =-,则y =,所以平面ABD的一个法向量()0,1n =-,设直线BF 与平面ABD 所成角θ,则sin =cos<,5n BF n BF n BFθ⋅>===⋅.故直线BF 与平面ABD所成角的正弦值为5.21.平面内一动点P 到直线:4l y =的距离,是它到定点()0,1F 的距离的2倍.(1)求动点P 的轨迹Γ的方程;(2)经过点F 的直线(不与y 轴重合)与轨迹Γ相交于M ,N 两点,过点M 作y 轴平行线交直线l 于点T ,求证:直线NT 过定点.【答案】(1)22143y x +=(2)证明见解析【解析】【分析】(1)由题意得4y -=,化简即可得解;(2)设直线MN 的方程以及,,M N T 的坐标,联立若椭圆方程,由韦达定理得()121232kx x x x =+,表示出NT 的方程,令0x =,证明此时y 为定值即可得证.【小问1详解】由题意,设动点P 的坐标为(),x y,则4y -=,平方整理得22143y x +=,所以点P 的轨迹Γ方程为22143y x+=.【小问2详解】由题意,设直线MN 的方程为1y kx =+,()11,M x y ,()22,N x y ,则()1,4T x .将1y kx =+代入22143y x +=得()2234690k x kx ++-=,所以122634k x x k -+=+,122934x x k -=+,显然0∆>,所以()121232kx x x x =+.因为直线NT 的方程为()212144y y x x x x --=--,令0x =,则()21221221122121214144x x kx x x y x x kx x y x x x x x x -+---===---()()21122121213545222x x x x x x x x x x --+-===--,因此,直线NT 过定点50,2⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:本题第二问的关键是采用设线法,设直线MN 的方程为1y kx =+,再将其椭圆方程联立得到韦达定理式,再化积为和得到()121232kx x x x =+,再得到直线NT 的方程,令0x =计算即可.22.已知函数()()()22ln 211R 2m f x x x m x m =+-++∈.(1)求函数()f x 的极值;(2)设函数()f x 有两个极值点12,x x ,求证:()()122f x f x f m ⎛⎫+< ⎪⎝⎭.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求定义域,求导,对导函数因式分解,分0m ≤,12m =,12m >,102m <<,得到函数的单调性,进而得到函数的极值情况;(2)由(1)得110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭,并得到()()12212ln 222f x f x m m m +=---,2222ln 44f m m ⎛⎫=-+ ⎪ ⎪⎝⎭,作差法得到()()21222f x f x f m ⎛⎫⎫+-=-- ⎪⎪ ⎪⎭⎝⎭,结合m 的范围得到结论.【小问1详解】()()22ln 2112m f x x x m x =+-++的定义域为()0,∞+,()()()()()()2212212210mx m x x mx f x mx m x x x x-++--'=+-+==>①若0m ≤,则()20f '=,()0,2x ∈时()0f x '>,()2,x ∞∈+时()0f x '<,故()f x 在()0,2x ∈上单调递增,在()2,x ∞∈+上单调递减,所以函数的极大值为()22ln221f m =--,无极小值,②若12m =,则()()2202x f x x'-=≥,()f x 在()0,∞+上单调递增,无极值.③若12m >,由()()()210x mx f x x--'==得2x =或1x m =,10,x m ⎛⎫∈ ⎪⎝⎭时()0f x '>,1,2x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,()2,x ∞∈+时()0f x '>,故()f x 在10,m ⎛⎫ ⎪⎝⎭,()2,∞+上单调递增,在1,2m ⎛⎫⎪⎝⎭上单调递减,所以极大值为112ln 12f m m m ⎛⎫=---⎪⎝⎭,极小值为()22ln221f m =--.④若102m <<,由()()()210x mx f x x--'==得2x =或1x m =,()0,2x ∈时()0f x '>,12,x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,1,x m ∞⎛⎫∈+ ⎪⎝⎭时()0f x '>,故()f x 在()0,2,1,m ∞⎛⎫+⎪⎝⎭上单调递增,在12,m ⎛⎫⎪⎝⎭上单调递减,所以极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=---⎪⎝⎭.综上,当0m ≤时,极大值为()22ln221f m =--,无极小值;当102m <<时,极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭;当12m =时,()f x 无极值;当12m >时,极大值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭,极小值为()22ln221f m =--.【小问2详解】由(1)知函数()f x 有两个极值点时,110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭.()()()121122ln2212ln 12f x f x f f m m m m ⎛⎫+=+=----- ⎪⎝⎭212ln222m m m=---,()222224ln 222122ln 44f m m m m m ⎛⎫=+-++=-++ ⎪ ⎪⎝⎭,所以()()122122462f x f x f m m m ⎛⎫+-=--++- ⎪⎪⎝⎭22442⎫=-+-=-⎪⎭,因为110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭2≠,所以()()212220f x f x f m ⎛⎫⎫+-=-+< ⎪⎪ ⎪⎭⎝⎭,即()()1222f x f x f m ⎛⎫+<- ⎪ ⎪⎝⎭.【点睛】方法点睛:在导数解答题中,单调性问题是绕不开的一个问题,因为单调性是解决后续问题的关键,利用导函数求解函数单调性步骤,先求定义域,再求导,导函数能因式分解的要进行因式分解,根据导函数的正负号,确定函数的单调区间,若不能直接求出,可能需要多次求导.。

河南省濮阳市2024-2025学年高三9月质量检测考试数学试题(含解析)

河南省濮阳市2024-2025学年高三9月质量检测考试数学试题(含解析)

2024—2025学年高三9月质量检测考试数 学全卷满分150分,考试时间120分钟.注意事项:1. 答卷前,考生务必将自己的姓名、班级、考场号、座位号、考生号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,i 为虚数单位,为z 的共轭复数,则( )A.B. 4C. 3D.2.已知集合,,则( )A. B. C. D. 3. 半径为4的实心球与半径为2的实心球体积之差的绝对值为( )A.B. C. D.4. 已知向量,,其中,若,则( )A. 40B. 48C. 51D. 625. 已知的内角A ,B ,C 的对边a ,b ,c 成等差数列,且,,则( )A. 5B. C. 4D. 36. 已知点在抛物线C:上,则C 的焦点与点之间的距离为( )A. 4B.C. 2D.7. 已知a ,且,,,则( )24i z =+z 1z -=(){}3log 22M x y x ==+<{}2024x N y y ==M N = ()2,7-()2,3-()0,7()7,+∞1O 2O 224π376π75π215π3()1,54a λ=+ ()2,8b λ=+ 0λ≥a b ∥ ()a ab ⋅+=ABC △20ac =4cos 5B =b =121,34A p p ⎛⎫++ ⎪⎝⎭()220x py p =>()1,2b ∈R 0b ≠1a b ≠-1sin 1a b a bα-=+ab =A.B. C.D. 8. 已知当时,恒成立,则实数a 的取值范围为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知直线与圆D :有两个交点,则整数m 的可能取值有( )A. 0B. -3C. 1D. 310. 已知对数函数,则下列说法正确的有( )A. 的定义域为B. 有解C. 不存在极值点D. 11. 北京时间2024年8月12日凌晨,第33届法国巴黎奥运会闭幕式正式举行,中国体育代表团以出色的表现再次证明了自己的实力,最终取得了40枚金牌、27枚银牌和24枚铜牌的最佳境外参赛成绩,也向世界展示了中国体育的蓬勃发展和运动员们顽强拼搏的精神.某校社团为发扬奥运体育精神举办了竞技比赛,此比赛共有5名同学参加,赛后经数据统计得到该5名同学在此次比赛中所得成绩的平均数为8,方差为4,比赛成绩,且,则该5名同学中比赛成绩的最高分可能为( )A. 13B. 12C. 11D. 10三、填空题:本题共3小题,每小题5分,共15分.12. 曲线在点处的切线方程为______.13. 被10除的余数为______.14. 在中,若,,三点分别在边,,上(均不在端点上),则,,的外接圆交于一点O ,称为密克点.在梯形ABCD 中,,,M 为CD 的中点,动点P 在BC 边上(不包含端点),与的外接圆交于点Q (异于点P ),则BQ 的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知椭圆C :的焦距为.(1)求C 的标准方程;1cos 1cos αα-+πtan 4α⎛⎫+⎪⎝⎭1sin 1sin αα-+2πtan 42α⎛⎫+ ⎪⎝⎭0x >ln e ln x x x x a -≥(],1-∞(21,e ⎤⎦(],2-∞[)e,+∞y x =22224x y my m +-=-()()log 1x f x x =+()f x ()0,+∞()2f x =()f x ()()()11f x f x x >+>[]0,15x ∈*x ∈N 21e1x y x -=-()1,0203111A B C △1M 1N 1P 11A B 11B C 11C A 111A M P △111B M N △111C N P △60B C ∠=∠=︒22AB AD ==ABP △CMP △()222210x y a b a b +=>>(2)若,直线l :交椭圆C 于E ,F 两点,且,求t 的值.16.(15分)交通强国,铁路先行,每年我国铁路部门都会根据运输需求进行铁路调图,一铁路线l 上有自东向西依次编号为1,2,…,21的21个车站.(1)为调查乘客对调图的满意度,在编号为10和11两个站点多次乘坐列车P 的旅客中,随机抽取100名旅客,得出数据(不完整)如下表所示:车站编号满意不满意合计102840113合计85完善表格数据并计算分析:依据小概率值的独立性检验,在这两个车站中,能否认为旅客满意程度与车站编号有关联?(2)根据以往调图经验,列车P 在编号为8至14的终到站每次调图时有的概率改为当前终到站的西侧一站,有的概率改为当前终到站的东侧一站,每次调图之间相互独立.已知原定终到站编号为11的列车P 经历了3次调图,第3次调图后的终到站编号记为X ,求X 的分布列及均值.附:,其中.0.10.010.0012.7066.63510.82817.(15分)如图,四棱锥的底面为平行四边形,且,.(1)仅用无刻度直尺作出四棱锥的高PH ,写出作图过程并证明;(2)若平面平面PCD ,平面平面PBC ,证明:四边形ABCD 是菱形.18.(17分)已知.(1)证明:是奇函数;5,02A ⎛⎫- ⎪⎝⎭()302x ty t =+>AEF △0.001α=1323()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++αx αP ABCD -AP CP =BP DP =P ABCD -PAB ⊥PAD ⊥()()ln 0x a f x ax a x a -⎛⎫=+>⎪+⎝⎭()f x(2)若,证明在上有一个零点,且.19.(17分)对于一个正项数列,若存在一正实数,使得且,有,我们就称是-有限数列.(1)若数列满足,,,证明:数列为1-有限数列;(2)若数列是-有限数列,,使得且,,证明:.()()()12120f x f x x x =<<()f x (),a +∞0x 2102x x x -≤{}n a λ*n ∀∈N 2n ≥121n n a a a a λ-+++≥ {}n a λ{}n a 11a =21a =()123n n n a a a n --=+≥{}n a {}n a λ0M ∃>*n ∀∈N 2n ≥n a M ≤222111121111n i in a a M a a a a λ=⎛⎫≥+- ⎪+++⎝⎭∑2024—2025学年高三9月质量检测考试数学参考答案1. A 【解析】由,可得.故选A.2. C 【解析】由可得,则;,故,则.故选C.3. A【解析】由题意可知体积之差的绝对值为.故选A.4. C 【解析】因为,,且,故,解得或(舍去),经检验当时,,故.故选C.5. B 【解析】由题意可得,,由余弦定理可得,,解得.故选B.6. D 【解析】因为点在抛物线C 上,所以,整理得,解得或(舍去),故焦点为,故C 的焦点与点之间的距离为故选D.7. D 【解析】由题意可得,解得.24i z =+24i 11i 14z --=-==-=()3log 22x +<029x <+<()2,7M =-20240xy =>()0,N =+∞()0,7M N = 334425632224π4π2πππ33333⨯-⨯=-=()1,54a λ=+ ()2,8b λ=+a b ∥ ()()54218λλ++=⨯0λ=145-0λ=a b ∥ ()()()1,43,121341251a a b ⋅+=⋅=⨯+⨯= 20ac =2b a c =+()2222282cos 24725b ac ac B a c ac ac b =+-=+--=-b =121,34A p p ⎛⎫++⎪⎝⎭()2121234p p p ⎛⎫+=+ ⎪⎝⎭272102p p --=2p =14-()0,1()1,2=1sin 1ab a bα-=+2222sin cos 2sincos1sin 22221sin sin cos 2sin cos 2222a b αααααααααα+++==-+-22222sin cos 1tan π222tan 42sin cos 1tan 222ααααααα⎛⎫⎛⎫++ ⎪ ⎪⎛⎫⎝⎭⎝⎭==+ ⎪⎝⎭⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=故选D.8. A 【解析】由对恒成立,令,则,令,得,当时,,当时,,所以在上单调递减,在上单调递增,所以,即.令,,,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以.故选A.9. AC 【解析】联立,消去x 可得,则,解得故选AC.10. BCD 【解析】对于A 选项,由对数函数的定义知的定义域为,故A 错误.对于B 选项,令,则,即,解得(负值舍去),故B 正确.对于C 选项,,可知,ln e ln x x x x a -≥0x >()ln f x x x =()ln 1f x x ='+()0f x '=1ex =10e x <<()0f x '<1e x >()0f x '>()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()11e ef x f ⎛⎫≥=-⎪⎝⎭1ln e x x ≥-ln t x x =()1e e t g t t t ⎛⎫=-≥- ⎪⎝⎭()e 1t g t '=-10e t -≤<()0g t '<0t >()0g t '>()g t 1,0e ⎡⎫-⎪⎢⎣⎭()0,+∞()()min 01g t g ==1a ≤22224y xx y my m=⎧⎨+-=-⎩222240y my m -+-=()()222840m m ∆=--->m -<<()f x ()()0,11,+∞ ()log 12x x +=21x x =+210x x --=x =()()()ln 1log 1ln x x f x x x+=+=()()()()2ln 1ln 11ln x x x x f x x x x-+++'=设函数,可知,令,解得,则在上单调递减,在上单调递增,且在上,则的图象为的图象向左平移一个单位长度,易得两者无交点,则无零点,即不存在极值点,故C 正确.对于D 选项,方法一:由的单调性可知,D 正确.方法二:作差有,且,故,D 正确.故选BCD.11. BC 【解析】设该5名同学在此次比赛中所得成绩分别为,,,,,易得,则,且,则,不妨设最大.对于A 选项,若,则不成立,故A 错误;对于B 选项,若,例如7,7,7,7,12,满足题意,故B 正确;对于C 选项,若,例如5,7,8,9,11,满足题意,故C 正确;对于D 选项,若,则,可得,可知该方程组无正整数解,故D 错误.故选BC.12. 【解析】,故时,,故曲线在点处的切线方程为.13. 1 【解析】()ln g x x x =()ln 1g x x ='+()0g x '=1e x =()g x 10,e ⎛⎫⎪⎝⎭1,e⎛⎫+∞ ⎪⎝⎭()0,1()0g x <()()1ln 1y x x =++()g x ()f x '()f x ()f x ()()()()()11log 1log 2x x f x f x x x +-+=+-+()()()2ln 1ln ln 2ln ln 1x x x x x +-⋅+⋅+=()()()()222ln ln 22ln 1ln ln 2ln 122x x x x x x ⎡⎤⎡⎤+++⋅+<<=+⎢⎥⎢⎥⎣⎦⎣⎦()()()11f x f x x >+>1x 2x 3x 4x 5x ()12345185x x x x x x =++++=1234540x x x x x ++++=()()()()()2222212243588814588x s x x x x -+-+-+-+⎡⎤==⎣⎦-()()()()()22222123458888820x x x x x -+-+-+-+-=5x 513x =()()()()2222123488885x x x x -+-+-+-=-512x =511x =510x =()()()()22221234888816x x x x -+-+-+-=12342222123430496x x x x x x x x +++=⎧⎨+++=⎩33y x =-()212e x y x x -'=+1x =3y '=21e 1x y x -=-()1,033y x =-()10201010192891010103910110C 10C 10C 101==-=-⨯+⨯--⨯+,所以被10除的余数为1.14.【解析】如图,延长BA ,CD 交于点E ,则为正三角形.由题设结论,,,的外接圆有唯一公共点,该公共点即为题中的点Q ,故点Q 在的外接圆上.由题意得,,则是直角三角形,故其外接圆半径.在中,由余弦定理可知,,当Q 在线段BD 上,且时,BQ.15. 解:(1)由题意得,,(2分)又,(4分)则,(5分)所以C 的标准方程为.(6分)(2)由题意设,,联立,整理得,(7分)则,,(8分)故.(10分)设直线l 与x 轴的交点为,()9182791010101010C 10C 10C 1⨯-⨯+⨯--=+ 2031-EBC △ABP △CMP △AME △AME △120BAD ∠=︒90BAM ∠=︒AME △1R AD ==ABD △BD ==1QD =1-2c =c =c e a ==2a =2222b a c =-=22142x y +=()11,E x y ()22,F x y 2232142x ty x y ⎧=+⎪⎪⎨⎪+=⎪⎩()2272304t y ty ++-=12232ty y t +=-+()122742y y t =-+12y y -===3,02D ⎛⎫⎪⎝⎭又,则,(11分)故,(12分)解得.(13分)16. 解:(1)补充列联表如下:车站编号满意不满意合计102812401157360合计8515100(3分)零假设为:旅客满意程度与车站编号无关,则,(6分)所以根据小概率值的独立性检验,推断不成立,即认为旅客满意程度与车站编号有关联.(7分)(2)经分析,X 的可能取值为8,10,12,14.(8分);(9分);(10分);(11分),(12分)则X 的分布列为X 8101214P(13分)所以.(15分)17. 解:(1)连接AC ,BD 交于点H ,连接PH ,5,02A ⎛⎫-⎪⎝⎭35422AD ⎛⎫=--= ⎪⎝⎭12122AEF S AD y y =⋅-==△t =0H ()220.001100283571220010.8284060851517x χ⨯⨯-⨯==>=⨯⨯⨯0.001α=0H ()3288327P X ⎛⎫=== ⎪⎝⎭()2214103339P X ⎛⎫==⨯⨯= ⎪⎝⎭()2122123339P X ⎛⎫==⨯⨯= ⎪⎝⎭()31114327P X ⎛⎫===⎪⎝⎭8274929127()8421810121410279927E X =⨯+⨯+⨯+⨯=则PH 是四棱锥的高.(2分)由于该四棱锥底面为平行四边形,故点H 为AC 与BD 的中点.(3分)又,,故有,,(4分)又,AC ,平面ABCD ,故平面ABCD ,即PH 为四棱锥的高.(6分)(2)(方法一)证明:以H 为原点,以、的方向分别为x 轴、z 轴的正方向,以垂直于BC 的直线为y 轴,建立如图所示的空间直角坐标系.(7分)设,,,,.则,,.(8分)设平面PAB 、平面PCD 的法向量分别为,,则,,(9分)令,解得,.所以,.(10分)因为平面平面PCD ,所以,①(11分)同理可得平面PAD 、平面PBC 的一个法向量分别为,.故,即,②(12分)P ABCD -AP CP =BP DP =PH AC ⊥PH BD ⊥AC BD H = BD ⊂PH ⊥P ABCD -BC HP (),,0A a d (),,0B b d -(),,0C a d --(),,0D b d -()0,0,P h (),2,0BA CD a b d ==- (),,BP b d h =- (),,DP b d h =-()1111,,n x y z = ()2222,,n x y z =()11111200a b x dy bx dy hz ⎧-+=⎨-++=⎩()22222200a b x dy bx dy hz ⎧-+=⎨-+=⎩122x x dh ==1112()()x dh y b a h z b a d =⎧⎪=-⎨⎪=+⎩2222()()x dh y b a h z b a d =⎧⎪=-⎨⎪=-+⎩()()()12,,n dh b a h b a d =-+ ()()()22,,n dh b a h b a d =--+PAB ⊥()()2222221240n n d h b a h a b d ⋅=+--+= ()30,,n h d = ()40,,n h d =-22340n n h d ⋅=-= h d =①②联立解得.(13分)因此,.(14分)故,而四边形ABCD 是平行四边形,故四边形ABCD 是菱形.(15分)(方法二)证明:过点H 作交AB 于点E ,交CD 于点F ,过点H 作交BC 于点M ,交AD 于点N ,连接PE ,PF ,PM ,PN ,因为平面ABCD ,AB ,平面ABCD ,所以,.(7分)因为EF ,平面PEF ,所以平面PEF ,又平面PEF ,所以.(8分)易得平面PAB 与平面PCD 的交线平行于AB ,又平面平面PCD ,平面PAB ,所以平面PCD ,又平面PCD ,所以.(10分)因为MN ,平面PMN ,所以平面PMN ,又平面PMN ,所以.(11分)易得平面PAD 与平面PBC 的交线平行于BC ,又平面平面PBC ,平面PBC ,所以平面PAD ,又平面PAD ,所以.(13分)因为H 为平行四边形ABCD 对角线的交点,所以,,所以,所以,(14分)又,所以,所以平行四边形ABCD 是菱形.(15分)18. 证明:(1)易得的定义域为,(2分).由奇函数的定义知是奇函数.(6分)2ab d =AD a b =--AB a b ===--AB AD =EF AB ⊥MN BC ⊥PH ⊥BC ⊂PH AB ⊥PH BC ⊥PH ⊂AB ⊥PE ⊂AB PE ⊥PAB ⊥PE ⊂PE ⊥PF ⊂PE PF ⊥PH ⊂BC ⊥PM ⊂BC PM ⊥PAD ⊥PM ⊂PM ⊥PN ⊂PM PN ⊥HE HF =HM HN =1122PH EF MN ==EF MN =AB EF BC MN ⋅=⋅AB BC =()f x ()(),,a a -∞-+∞ ()()ln x a f x a x x a --⎛⎫--=--- ⎪-+⎝⎭()ln ln x a x a ax ax f x x a x a -+-⎛⎫⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭=--()f x(2)由对称性,不妨取,则,(7分)而.(8分)下证,设,,,,则(当且仅当,,即时取等号).(14分)另一方面,的定义域为,.由对称性,不妨取,则,故在上单调递增.(15分)当时,;当时,.由零点存在定理知在上有一个零点,(16分)故.(17分)19. 证明:(1)当时,;(2分)当时,,(6分)故数列是1-有限数列.(7分)(2)由,得,(9分)31x x =-()()()()()()()23232323ln 0x a x a f x f x a x x x a x a ⎡⎤--+=++=⎢⎥++⎢⎥⎣⎦()()()()()2232323232ln 2x a x a x x f a x x x a x a ⎡⎤-+-+⎛⎫=++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦()()2323202x x f f x f x +⎛⎫≥=+ ⎪⎝⎭2x a m -=3x a n -=2x a p +=3x a q +=()()()()()()()()()()22232322323x a x a x a x a m n mn x a x a x a x a pq p q ⎡⎤-+---+-=-⎢⎥++++++⎢⎥⎣⎦()()()()()()2222pq m n mn p q pm qn qm pn p q pq p q pq +-+--++==()()()22323220a x x x x p q pq +-=≥+m n =p q =23x x =()f x ()(),,a a -∞-+∞ ()()()2a f x a x a x a =++-'x a >()0f x a '>>()f x (),a +∞x a →()f x →-∞x →+∞()f x →+∞()f x (),a +∞0x 2102x x x -≤2n =121a a ==2n >122121n n n n n a a a a a a a ----++++>+= {}n a 121n n a a a a λ-+++≥ ()2221211n n a a a a λ-≥+++于是有(13分).(17分)()222212112111nn i i i i a a a a a λ==-≥++++∑∑ ()()2221121121n i i i a a a a a a a λ=-≥+++++++∑ 222112112111n i i i i a a a a a a a a λ=-⎛⎫+⋅-≥ ⎪++⋅⋅⋅+++⋅⋅⋅+⎝⎭=∑222112112111n i i i a M a a a a a a λ=-⎛⎫+⋅- ⎪++⋅⋅⋅+++⋅⋅⋅+⎝⎭∑221112111n a M a a a a λ⎛⎫+- ⎪+=++⎝⎭。

浙江省衢州、丽水、湖州三地市2024届高三上学期11月教学质量检测数学试题

浙江省衢州、丽水、湖州三地市2024届高三上学期11月教学质量检测数学试题

一、单选题二、多选题1.已知数列满足,(,),则的整数部分是( )A .0B .1C .2D .32. 已知全集,,,.则( )A.B.C.D.3.已知集合,集合,集合,则( )A.B.C.D.4. 函数的单调递增区间是( )A.B.C.D .和5. 我国已进行了7次人口普查,如图是7次人口普查男性、女性人数及有大学文化的人数占比的统计图.据统计图中的信息,下列说法不正确的是()A .1964年至1982年间人口增长数最多B .1982年后,全国总人口增长率逐步放缓C .具有大学文化的人数逐步增大D .男性人数与女性人数的差值逐步减小6.已知且,若任意,不等式均恒成立,则的取值范围为( )A.B.C.D.7. 已知圆锥的侧面积是底面积的倍,则该圆锥的侧面展开图扇形的圆心角大小为( )A.B.C.D.8.已知二次函数,满足,且在区间上的最大值为,若函数有唯一零点,则实数的取值范围是( )A.B.C.D.9. 如图,在多面体中,,,两两垂直,四面体是正四面体,,分别为,的中点,则下列结论正确的是( )浙江省衢州、丽水、湖州三地市2024届高三上学期11月教学质量检测数学试题三、填空题四、解答题A.B.C .平面D.10.已知曲线,则下面结论正确的是( )A .把上各点的横坐标变为原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线B.把上各点的横坐标变为原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把向左平移个单位长度,再把得到的曲线上各点的横坐标变为原来的倍.纵坐标不变,得到曲线D.把向左平移个单位长度,再把得到的曲线上各点的横坐标变为原来的倍,纵坐标不变,得到曲线11. 在平面直角坐标系中,,点是圆上的动点,则( )A.当的面积最大时,点的坐标为B.C .若点不在轴上,则平分D .当直线与圆相切时,12. 已知定义在上的函数满足,且函数为奇函数,则( )A.函数是周期函数B .函数为上的偶函数C .函数为上的单调函数D .函数的图像关于点对称13. 已知,,从点处射出的光线经x 轴反射后,反射光线与平行,且点B到该反射光线的距离为,则实数______.14.的展开式中的系数为______.15.写出一个对称中心为的函数___________.16. 在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.17.已知正项数列的前n项和为,给出以下三个条件:①,;②;③,.从这三个条件中任选一个解答下面的问题.(1)求数列的通项公式;(2)设,求数列的前n 项和.注:如果选择多个条件分别解答,按第一个解答计分18. 已知椭圆:()的左,右焦点分别为,,为椭圆上的一个动点,的最大值为,且点到右焦点距离的最大值为.(1)求椭圆的方程;(2)已知过点的直线交椭圆于,两点,当的面积最大时,求此时直线的方程.19. 已知函数.(1)若曲线在处的切线与直线垂直,求实数的值.(2),使得成立,求实数的取值范围.20. 某兴趣小组为了研究昼夜温差大小与患感冒人数多少之间的关系,请一所中学校医务室人员统计近期昼夜温差情况和到该校医务室就诊的患感冒学生人数,如下是2021年10月、11月中的5组数据:日期10月8日10月18日10月28日11月8日11月18日昼夜温差x(℃)8116155就诊人数y131712199(1)通过分析,发现可用线性回归模型拟合就诊人数y与昼夜温差x之间的关系,请用以上5组数据求就诊人数关于昼夜温差的线性回归方程(结果精确到0.01);(2)若由(1)中所求的线性回归方程得到的估计数据与所选出的数据的误差均不超过2人,则认为得到的线性回归方程是理想的试用11月8和11月18日两组数据检验(1)中所求的线性回归方程是否理想?参考数据:,.参考公式:,.21. 已知函数.(1)讨论函数的单调性;(2)对给定的,函数有零点,求的取值范围;(3)当,时,,记在区间上的最大值为m,且,求n的值.。

福建省漳州市2025届高三毕业班第一次教学质量检测 数学试题(含解析)

福建省漳州市2025届高三毕业班第一次教学质量检测 数学试题(含解析)

福建省漳州市2025届高三毕业班第一次教学质量检测数学试题一、单选题(本大题共8小题)1.若集合{}2340A x x x =-->∣,则A =R ð()A.{}14xx -≤≤∣B.{14}xx -<<∣C.{41}xx -<<∣D.{}41xx -≤≤∣2.设复数3i1iz -=+,则复数z 的虚部为()A.-2i B.2-C.2iD.23.已知,a b 为单位向量,若0a b a b +--= ,则a b -= ()A.2B.C.1D.04.若()tan 2tan ,sin t αβαβ=-=,则()sin αβ+=()A.2tB.2t-C.3tD.3t-5.已知双曲线22:4C x y -=,点M 为C 上一点,过M 分别作C 的两条渐近线的垂线,垂足分别为,A B ,则四边形OAMB (O 为原点)的面积为()A.1B.2C.4D.66.在正四棱锥1111P A B C D -中,11PB PD ⊥.用一个平行于底面的平面去截该正四棱锥,得到几何体111111,1,2ABCD A B C D AB A B -==,则几何体1111ABCD A B C D -的体积为()A.6B.3C.6D.97.已知函数()πtan (0)4f x x ωω⎛⎫=+> ⎪⎝⎭,若方程()1f x =在区间()0,π上恰有3个实数根,则ω的取值范围是()A.(]2,3B.[)2,3C.(]3,4D.[)3,48.已知函数()222cos x x f x x x -=+++,若()()()3,e ,πa f b f c f =-==,则()A.b a c <<B.b c a <<C.c a b<<D.c b a<<二、多选题(本大题共3小题)9.已知()2,X N μσ~,则()A.()E X μ=B.()D X σ=C.()()1P X P X μσμσ≤++≤-=D.()()2P X P X μσμσ≥+>≤-10.已知定义在R 上的函数()f x 不恒等于()0,π0f =,且对任意的,x y ∈R ,有()()()()222f x f y f x y f x y +=+-,则()A.()01f =B.()f x 是偶函数C.()f x 的图象关于点()π,0中心对称D.2π是()f x 的一个周期11.在2024年巴黎奥运会艺术体操项目集体全能决赛中,中国队以69.800分的成绩夺得金牌,这是中国艺术体操队在奥运会上获得的第一枚金牌.艺术体操的绳操和带操可以舞出类似四角花瓣的图案,它可看作由抛物线2:2(0)C y px p =>绕其顶点分别逆时针旋转90180270 、、后所得三条曲线与C 围成的(如图阴影区域),,A B 为C 与其中两条曲线的交点,若1p =,则()A.开口向上的抛物线的方程为212y x =B.4AB =C.直线x y t +=截第一象限花瓣的弦长最大值为34D.阴影区域的面积大于4三、填空题(本大题共3小题)12.(x ﹣1x)4的展开式中的常数项为.13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.2024年新高考数学Ⅰ卷多选题的计分标准如下:①本题共3小题,每小题6分,共18分;②每小题的四个选项中有两个或三个正确选项,全部选对的得6分,有选错或不选的得0分;③部分选对的得部分分(若某小题正确选项为两个,漏选一个正确选项得3分;若某小题正确选项为三个,漏选一个正确选项得4分,漏选两个正确选项得2分).考生甲在此卷多选题的作答中,第一小题选了三个选项,第二小题选了两个选项,第三小题选了一个选项,则他多选题的所有可能总得分(相同总分只记录一次)的第80百分位数为.四、解答题(本大题共5小题)15.在ABC V 中,,,A B C 的对边分别为,,a b c ,且满足__________.请在①()()()()sin sin sin a b A C a c A C -+=-+;②ππ1sin cos 634C C ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,这两个中任选一个作为条件,补充在横线上,并解答问题.(1)求C ;(2)若ABC V 的面积为D 为AC 的中点,求BD 的最小值.16.某学校食堂有,A B 两家餐厅,张同学第1天选择A 餐厅用餐的概率为13.从第2天起,如果前一天选择A 餐厅用餐,那么次日选择A 餐厅用餐的概率为34;如果前一天选择B 餐厅用餐,那么次日选择A 餐厅用餐的概率为12.设他第n 天选择A 餐厅用餐的概率为n P .(1)求2P 的值及1n P +关于n P 的表达式;(2)证明数列23n P ⎧⎫-⎨⎬⎩⎭是等比数列,并求出{}n P 的通项公式.17.已知边长为4的菱形ABCD (如图1),π,3BAD AC ∠=与BD 相交于点,O E 为线段AO 上一点,将三角形ABD 沿BD 折叠成三棱锥A BCD -(如图2).(1)证明:BD CE ⊥;(2)若三棱锥A BCD -的体积为8,二面角B CE O --的余弦值为10,求OE 的长.18.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为12,F F ,离心率为2,点P为C 上一点,12PF F 周长为2,其中O 为坐标原点.(1)求C 的方程;(2)直线:l y x m =+与C 交于,A B 两点,(i)求OAB △面积的最大值;(ii)设OQ OA OB =+,试证明点Q 在定直线上,并求出定直线方程.19.定义:如果函数()f x 在定义域内,存在极大值()1f x 和极小值()2f x ,且存在一个常数k ,使()()()1212f x f x k x x -=-成立,则称函数()f x 为极值可差比函数,常数k 称为该函数的极值差比系数.已知函数()1ln f x x a x x=--.(1)当52a =时,判断()f x 是否为极值可差比函数,并说明理由;(2)是否存在a 使()f x 的极值差比系数为2?a -若存在,求出a 的值;若不存在,请说明理由;(3)若522a ≤≤,求()f x 的极值差比系数的取值范围.参考答案1.【答案】A【分析】解出一元二次不等式可得集合A ,再由补集定义即可求得结果.【详解】解不等式2340x x -->可得4x >或1x <-,即{4A xx =>∣或}1x <-,因此可得{}14A xx =-≤≤R ∣ð.故选A.2.【答案】D【解析】根据复数的除法运算化简求出z 即可.【详解】23i (3i)(1i)34i i 12i 1i 22z ----+====-+,12iz ∴=+∴z 的虚部为2.故选D.3.【答案】B【分析】先由已知条件得a b a b +=- ,两边平方得0a b⋅= ,进而由向量模长公式即可计算求解a b -.【详解】因为0a b a b +--=,故a b a b +=- ,所以22a b a b +=- 即()()22a ba b +=- ,所以22a b a b ⋅=-⋅ 即0a b⋅= ,所以a b -故选B.4.【答案】C【分析】利用同角的三角函数关系以及两角差的正弦公式求出sin cos 2,cos sin t t αβαβ==,再利用两角和的正弦公式即可求得答案.【详解】由tan 2tan αβ=,得sin 2sin cos cos αβαβ=,即sin cos 2cos sin αβαβ=,由()sin t αβ-=,得sin cos cos sin t αβαβ-=,故sin cos 2,cos sin t t αβαβ==,则()sin sin cos cos sin 3t αβαβαβ+=+=.故选C.5.【答案】B【分析】先确定四边形OAMB 为矩形,然后点(),M m n ,求出其到两个渐近线的距离,相乘计算即可得答案.【详解】双曲线C :224x y -=,即22144x y -=,为等轴双曲线,渐近线的夹角为90 ,则四边形OAMB 为矩形,设点(),M m n ,且224m n -=,点(),M m n 到渐近线0x y -=的距离为,点(),M m n 到渐近线0x y +=的距离为,则四边形的面积为2222m n -=.故选B.6.【答案】C【分析】由题可知,几何体1111ABCD A B C D -为正四棱台,求出正四棱台高,再由台体的体积公式即可得出答案.【详解】设正四棱锥1111P A B C D -的侧棱长为a ,连接11A C 与11B D 交于点1O ,连接1PO ,则1PO ⊥平面ABCD ,因为112A B =,所以11B D ==因为11PB PD ⊥,所以在Rt 11PB D !中,(222a a +=,解得:2a =,所以1PO =又因为用一个平行于底面的平面去截该正四棱锥,得到几何体1111,1ABCD A B C D AB -=,则几何体1111ABCD A B C D -为正四棱台,连接,AC BD 交于点O ,所以O 为1PO 的中点,所以122PO OO ==,所以几何体1111ABCD A B C D -的体积为:(22121326⋅+⋅=.故选C.7.【答案】C【分析】借助正切型函数的图象性质计算即可得.【详解】当()0,πx ∈时,πππ,π444x ωω⎛⎫+∈+ ⎪⎝⎭,则由题意可得tan 1y x =-在ππ,π44x ω⎛⎫∈+ ⎪⎝⎭上有3个实数根,即可得πππ3ππ4π444ω+<+≤+,解得34ω<≤,即ω的取值范围是(]3,4.故选C.8.【答案】A【分析】先求出函数()f x 的奇偶性,由奇偶性得()()33a f f =-=,接着利用导数工具二次求导研究函数()f x 在()0,+∞上单调性,由单调性即可判断,,a b c 的大小关系.【详解】因为()222cos x x f x x x -=+++,所以函数定义域为R ,()()()()2222cos 22cos x x x x f x x x x x f x ---=++-+-=+++=,所以函数()f x 为偶函数,故()()33a f f =-=,当0x >时,()()()()22ln 22sin x xf x x xg x -=+'--=,所以()()()()222ln 22cos x xg x x -=++-',因为()()222ln 20,2cos 0x xx -+>->,所以()0g x '>,所以()g x 在()0,+∞单调递增,故()()00g x g >=即()0f x '>,所以()f x 在()0,+∞单调递增,又e 3π<<,所以()()()e 3πf f f <<,所以b a c <<.故选A.【思路导引】比较函数值大小问题通常通过研究函数的奇偶性和单调性来分析,故本题先求出函数()f x 的奇偶性,接着利用导数工具研究函数()f x 在()0,+∞上单调性,进而由函数奇偶性和单调性即可判断,,a b c 的大小关系.9.【答案】AC【分析】正确理解正态分布的概念,即可判断A,B 两项,利用正态分布曲线的对称性以及概率分布的特点易推理判断C,D 两项.【详解】由()2,X N μσ~可得()E X μ=,()2D X σ=,故A 正确;B 错误;对于C,利用正态曲线的对称性可知,()()P X P X μσμσ≤-=≥+,故()()()()1P X P X P X P X μσμσμσμσ≤++≤-=≤++≥+=,即C 正确;对于D,利用正态曲线的对称性可知,()()P X P X μσμσ≤-=≥+,而()()2P X P X μσμσ≥+>≥+,故()()2P X P X μσμσ≥+<≤-,故D 错误.故选AC.10.【答案】ABC【分析】利用赋值法令x y =根据表达式可判断A 正确,再根据偶函数定义可得B 正确;取πx y +=并根据对称中心定义可得C 正确,由对称中心以及偶函数性质可判断4π是()f x 的一个周期,可得D 错误.【详解】对于A,根据题意令x y =,则由()()()()222f x f y f x y f x y +=+-可得()()()()22220f x f x f x f +=,解得()01f =,即A 正确;对于B,令x y =-可得()()()()()2220222f x f x f f x f x +-==,所以()()22f x f x =-,即可得对任意的x ∈R 满足()()f x f x =-,即()f x 是偶函数,所以B 正确;对于C,令πx y +=,则由()()()()222f x f y f x y f x y +=+-可得()()()()2π222ππ20f y f y f f y -+=-=,即()f x 满足()()2π0f x f x -+=,因此可得()f x 的图象关于点()π,0中心对称,即C 正确;对于D,由于()f x 是偶函数且()()2π0f x f x -+=,所以满足()()2π0f x f x -+=,即()()2π0f x f x ++=,可得()()2π2πf x f x -=+,也即()()4πf x f x =+,所以4π是()f x 的一个周期,即D 错误.故选ABC.11.【答案】ABD【分析】对于A,利用旋转前后抛物线焦点和对称轴变化,即可确定抛物线方程;对于B,联立抛物线方程,求出点,A B 的坐标,即得;对于C,将直线与抛物线方程联立求出,M N 的坐标,由两点间距离公式求得弦长,利用换元和函数的图象即可求得弦长最大值;对于D,利用以直线近似取代曲线的思想求出三角形面积,即可对阴影部分面积大小进行判断.【详解】由题意,开口向右的抛物线方程为2:2C y x =,顶点在原点,焦点为11(,0)2F ,将其逆时针旋转90 后得到的抛物线开口向上,焦点为21(0,)2F ,则其方程为22x y =,即212y x =,故A 正确;对于B,根据A 项分析,由2222y xx y ⎧=⎨=⎩可解得,0x =或2x =,即2A x =,代入可得2A y =,由图象对称性,可得(2,2),(2,2)A B -,故4AB =,即B 正确;对于C,如图,设直线x y t +=与第一象限花瓣分别交于点,M N ,由22y x t y x =-+⎧⎨=⎩解得11M M x t y ⎧=+⎪⎨=⎪⎩22y x t x y =-+⎧⎨=⎩解得,11N N x y t ⎧=⎪⎨=+⎪⎩,即得(11),1,1M t N t +--+,则弦长为:|||2|MN t =+-,由图知,直线x y t +=经过点A 时t 取最大值4,经过点O 时t 取最小值0,即在第一象限部分满足04t <≤,不妨设u =13u <≤,且212u t -=,代入得,221|||22||(2)1|22u MN u u -=+---,(13u <≤)由此函数的图象知,当2u =时,||MN取得最大值为2,即C 错误;对于D,根据对称性,每个象限的花瓣形状大小相同,故可以先求18部分面积的近似值.如图,在抛物线21,(0)2y x x =≥上取一点P ,使过点P 的切线与直线OA 平行,由1y x '==可得切点坐标为1(1,)2P ,因:0OA l x y -=,则点P 到直线OA的距离为124d =,于是11242OPA S = ,由图知,半个花瓣的面积必大于12,故原图中的阴影部分面积必大于1842⨯=,故D 正确.故选ABD.【思路导引】本题主要考查曲线与方程的联系的应用问题,解题思路是,理解题意,结合图形对称性特征,通过曲线方程联立,计算判断,并运用函数的图象单调性情况,有时还需要以直代曲的思想进行估算、判断求解.12.【答案】6;【分析】先得出二项式的展开式中的通项()42+141rr r r T C x -=-,令420r -=,可得答案.【详解】因为(x ﹣1x )4的展开式中的通项为:()442+14411rr r r r r r T C x C x x --⎛⎫=-=- ⎪⎝⎭,令420r -=,得2r =,所以(x ﹣1x)4的展开式中的常数项为()223416T C =-=,故答案为:6.13.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.【答案】13【分析】根据多选题的计分标准,结合甲在此卷多选题的作答情况、百分位数的定义进行求解即可.【详解】甲在此卷多选题的作答中,第一小题选了三个选项,因此甲此题的得分可以是0分,或6分;第二小题选了两个选项,因此甲此题的得分可以是0分,或4分,或6分;第三小题选了一个选项,因此甲此题的得分可以是0分,或2,或3,因此甲多选题的所有可能总得分为0分,2分,3分,4分,6分,7分,8分,9分,12分,13分,14分,15分,共12种情况,因为1280%=9.6⨯,所以甲多选题的所有可能总得分(相同总分只记录一次)的第80百分位数为13分,故答案为:13.15.【答案】(1)任选一条件,都有π3C =(2)【分析】(1)选①,由正弦定理角化边结合余弦定理,即可求得答案;选②,利用三角函数诱导公式求出2π1cos 34C ⎛⎫+= ⎪⎝⎭,结合角的范围即可求得答案;(2)利用三角形面积可求出20ab =,再将BD BC CD =+ 平方后结合基本不等式,即可求得答案;另外,也可利用BCD △的面积以及在BCD △中利用余弦定理求解.【详解】(1)选择条件①,()()()()sin sin sin a b A C a c A C -+=-+,则()()()sin sin sin a b B a c A C -=-+,由正弦定理可得()()()a b b a c a c -=-+,即222a b c ab +-=,所以2221cos 22a b c C ab +-==,由()0,πC ∈,所以π3C =.选择条件②,ππ1sin cos 634C C ⎛⎫⎛⎫-+= ⎪ ⎝⎭⎝⎭,即πππ1sin cos 2343C C ⎡⎤⎛⎫⎛⎫-++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2π1cos 34C ⎛⎫+= ⎪⎝⎭,由()ππ4π0,π,333C C ∈<+<,则π1cos 32C ⎛⎫+=- ⎪⎝⎭,所以π2π33C +=,则π3C =.(2)由11sin 22S ab C ab ===20ab =.又BD BC CD =+ ,所以2222()2BD BC CD BC BC CD CD =+=+⋅+ 222211111122224222b a a b b a ab ab ab ab ⎛⎫⎛⎫=+⨯⨯-+=+-≥-= ⎪ ⎪⎝⎭⎝⎭10=所以BD ≥ ,当且仅当a b ==时等式成立,所以BD 的最小值是.另解:因为ABC S D = 为AC 中点,所以111πsin 22223BDC ABC S S a b ===⋅⋅⋅ ,得20ab =,在BCD △中,由余弦定理得2222cos BD BC CD BC CD C=+-⋅⋅221111121042222a b ab a b ab ab =+-≥⋅-==所以BD ≥a b ==所以BD 的最小值是.16.【答案】(1)2712P =,11142n n P P +=+.(2)证明见解析,121334n n P -=-⨯.【分析】(1)根据题意,利用互斥事件的概率公式可求得2P ,再根据第n 天选择A 餐厅用餐的概率得到1n P +关于n P 的表达式;(2)由(1)可得到123n P +-是等比数列,利用等比数列的通项公式可求得n P .【详解】(1)设n A =“第n 天去A 餐厅用餐”,n B =“第n 天去B 餐厅用餐”,则Ωn n A B = ,且n A 与n B 互斥.根据题意得()()()()()111112,1,133n n P P A P B P A P B P A ===-==-,()()1131,42n n n n P A A P A B ++==∣∣,()()()()()2212112113217343212P P A P A P A A P B P A B ==+=⨯+⨯=∣∣,()()()()()()111131142n n n n n n n n n n P P A P A P A A P B P A B P P ++++==+=+-∣∣,即11142n n P P +=+.(2)12112111234234643n n n n P P P P +⎛⎫⎛⎫-=+-=-=- ⎪ ⎪⎝⎭⎝⎭又因为121033P -=-≠,所以23n P ⎧⎫-⎨⎬⎩⎭是以13-为首项,14为公比的等比数列,所以1211334n n P -⎛⎫⎛⎫-=-⨯ ⎪ ⎪⎝⎭⎝⎭,从而121334n n P -=-⨯.17.【答案】(1)证明见解析(2)2OE =【分析】(1)要证BD CE ⊥,只需证BD ⊥平面ACO ,只需证,AO BD CO BD ⊥⊥,由题易证;(2)由体积求出AO 的长,建立空间直角坐标系,假设()0,0,(0)E n n >,求出平面BCE CEO 、的法向量,由余弦值为10,求出n ,进而可求OE 的长.【详解】(1)因为四边形ABCD 是边长为4的菱形,并且π3BAD ∠=,所以,ABD BCD 均为等边三角形,故,AO BD CO BD ⊥⊥,且AO CO ==因为AO ⊂平面,ACO CO ⊂平面ACO ,且AO CO O = ,所以BD ⊥平面ACO因为CE ⊂平面ACO ,所以BD CE ⊥.(2)设A 到平面BCD 的距离为h ,因为等边三角形BCD △的边长为4,所以三棱锥A BCD -的体积为214834h ⨯⨯=,所以h =因为AO =AO ⊥平面BCD ,以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系O xyz -;则()()0,0,0,2,0,0O B,()(0,,0,0,C A ,设()0,0,(0)E n n >因为BD ⊥平面ACO ,所以()11,0,0m = 是平面ECO 的一个法向量,设平面BCE 的法向量为()2,,m x y z = ,又()()2,,2,0,BC BE n =-=- ,故222020m BC x m BE x nz ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩取x =1,y z ==得2m =⎭ ,因为二面角B CE O --的余弦值为所以1212m m m m ⋅=⋅解得:2n =或n =2OE =.18.【答案】(1)2212x y +=(2)(i)2;(ii)证明见解析,12y x =-.【分析】(1)根据题意,列出关于,,a b c 的方程组,即可求解;(2)(ⅰ)直线与椭圆方程联立,利用韦达定理求弦长AB ,并求点到直线的距离,结合三角形的面积公式,以及基本不等式,即可求面积的最大值;(ⅱ)利用韦达定理,结合向量的坐标公式,表示点Q 的坐标,即可求解定直线方程.【详解】(1)设焦距为2c,依题意,222,c a a c ⎧=⎪⎨⎪+=+⎩解得1,a c ⎧=⎪⎨=⎪⎩又222a b c =+,所以2221b a c =-=,所以C 的方程为2212x y +=.(2)(i)设()()1122,,,A x y B x y ,因为2212x y y x m ⎧+=⎪⎨⎪=+⎩,所以2234220x mx m ++-=,()221643220Δm m =-⨯⨯->,解得23m <,所以21212422,33m m x x x x -+=-=,3AB ===点O 到直线:0l x y m -+=的距离dOAB △的面积123S=⨯()2233322m m -+=⨯=当且仅当223mm -=,即m =OAB △面积的最大值为2.(ii)设(),Q x y ,由OQ OA OB =+ ,有()()1212,,x y x x y y =++,即1212x x x y y y =+⎧⎨=+⎩因为1243m x x +=-,所以1212223m y y x x m +=++=,故4323m x my ⎧=-⎪⎪⎨⎪=⎪⎩,于是有12y x =-,所以点Q 在定直线12y x =-.【关键点拨】本题第二问的关键是利用韦达定理表示弦长,以及坐标.19.【答案】(1)()f x 是极值可差比函数,理由见解析;(2)不存在a 使()f x 的极值差比系数为2a -,理由见解析;(3)102ln2,23ln23⎡⎤--⎢⎥⎣⎦.【分析】(1)利用函数的导函数求出单调区间,由此得出极大值与极小值,由“极值可差比函数”的定义,求出极值差比系数k 的值,这样的值存在即可判断.(2)反证法,假设存在这样的a ,又根据“极值可差比函数”的定义列出等量关系,证明无解即可.(3)由(2)得到参数a 与极值点的关系式,对关系式进行转化,得出相应函数,利用导函数求出单调性即可得出函数取值范围.【详解】(1)当52a =时,()15ln (0)2f x x x x x =-->,所以()()()2221215122x x f x x x x -='-=+-,当()10,2,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>;当1,22x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,所以()f x 在10,2⎛⎫ ⎪⎝⎭和()2,+∞上单调递增,在1,22⎛⎫ ⎪⎝⎭上单调递减,所以()f x 的极大值为153ln2222f ⎛⎫=- ⎪⎝⎭,极小值为()352ln222f =-,所以()110122ln22232f f ⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,因此()f x 是极值可差比函数.(2)()f x 的定义域为()()210,,1a f x x x+∞=+-',即()221x ax f x x -+'=,假设存在a ,使得()f x 的极值差比系数为2a -,则12,x x 是方程210x ax -+=的两个不等正实根,21212401Δa x x a x x ⎧=->⎪+=⎨⎪=⎩,解得2a >,不妨设12x x <,则21x >,由于()()1211221211ln ln f x f x x a x x a x x x ⎛⎫-=----- ⎪⎝⎭()11212211ln x x x a x x x ⎛⎫=-+- ⎪⎝⎭()()11121221222ln2ln ,x x a x x a x x x x x x ⎛⎫=--=-- ⎪-⎝⎭所以112222ln x a a x x x -=--,从而11221ln 1x x x x =-,得()22212ln 0,*x x x --=令()()2222121(1)2ln (1),0x x x g x x x x g x x x x -+-=-->==>',所以()g x 在()1,+∞上单调递增,有()()10g x g >=,因此()*式无解,即不存在a 使()f x 的极值差比系数为2a -.(3)由(2)知极值差比系数为11222ln x a x x x --,即1211222ln x x x x x x +--,不妨设120x x <<,令()12,0,1x t t x =∈,极值差比系数可化为12ln 1t t t +--,()2122121221122x x x x a t x x x x t+==++=++,又52a ≤≤,解得1142t ≤≤,令()()212ln 1112ln ,142(1)t t t t p t t t p t t t +-+⎛⎫=-≤≤= '⎪--⎝⎭,设()()2221121212ln 1,14t t h t t t t h t t t t t --⎛⎫=+-≤≤=--= ⎪'⎝⎭22(1)0t t -=-≤所以()h t 在1,14⎡⎤⎢⎥⎣⎦上单调递减,当1,14t ⎡⎤∈⎢⎥⎣⎦时,()()1102h t h h ⎛⎫≥>= ⎪⎝⎭,从而()0p t '>,所以()p t 在11,42⎡⎤⎢⎥⎣⎦上单调递增,所以()1142p p t p ⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭,即()102ln223ln23p t -≤≤-.故()f x 的极值差比系数的取值范围为102ln2,23ln23⎡⎤--⎢⎥⎣⎦.【思路导引】合理利用导函数和“极值可差比函数”定义,在(2)利用极值点的性质找到几个变量间的基本关系,利用函数单调性判断方程无解.(3)中的需要重复利用(2)几个重要的数量关系,对变量进行转化,利用导函数求出单调区间,得出取值范围是关键.。

2023届福建省福州市高三质量检测数学试题(解析版)

2023届福建省福州市高三质量检测数学试题(解析版)
(3)从 中选择0人划左桨,则 中的两人划右桨,从 中选2人划左桨,共有
所以,不同的选派方法共有19种.故选:C.
7.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n, 则()
A.α∥β且 ∥αB.α⊥β且 ⊥β
C.α与β相交,且交线垂直于 D.α与β相交,且交线平行于
〖答案〗D
福建省福州市2023届高三质量检测数学试题
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,若 ,则 ()
A. 2B. 3C. 6D. 7
〖答案〗B
〖解析〗因为集合 , ,且 ,所以
故 .故选:B.
2.在复平面内,复数 对应的点位于第二象限,则复数 对应的点位于()
11.如图,一个半径为3m的筒车,按逆时针方向匀速旋转1周.已知盛水筒Р离水面的最大距离为5.2m,旋转一周需要60s.以P刚浮出水面时开始计算时间,Р到水面的距离d(单位:m)(在水面下则d为负数)与时间t(单位:s)之间的关系为 , ,下列说法正确的是()
A.
B.
C.
D. 离水面的距离不小于3.7m的时长为20s
〖解析〗由 平面 ,直线 满足 ,且 ,所以 ,又 平面 , ,所以 ,由直线 为异面直线,且 平面 平面 ,则 与 相交,否则,若 则推出 ,与 异面矛盾,所以 相交,且交线平行于 ,故选D.
8.已知 ,函数 , .若 ,则 的取值范围是()
A. B.
C. D.
〖答案〗C
〖解析〗 ,即 ,
令 ,

9.已知互不相同的9个样本数据,若去掉其中最大和最小的数据,则剩下的7个数据与原9个数据相比,下列数字特征中不变的是()

山东省聊城市2024-2025学年高三上学期11月期中教学质量检测数学试题

山东省聊城市2024-2025学年高三上学期11月期中教学质量检测数学试题

山东省聊城市2024-2025学年高三上学期11月期中教学质量检测数学试题一、单选题1.若集合{}{4},128x A x x B x =∈≤=<≤N∣∣,则A B = ()A .(0,4]B .(1,3]C .{1,2,3}D .{0,1,2,3,4}2.若(1i)2i z +=-,则||z z -=()A .1B .3C .6D .93.已知,,,a b c a b ∈>R ,则下列不等式一定成立的是()A .22a b>B .2b a a b+>C .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22ac bc >4.已知51cos(),cos cos 1212αβαβ+==,则cos(22)αβ-=()A .78-B .4772-C .4772D .785.若向量(23,),(,1)a x x b x =+= ,则“3x =”是“//a b”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件6.在ABC V 中,π,4A AB AC =⋅=O ,则2AO AB AO AC ⋅+⋅ 的最小值为()A .4B .C .16D .7.设2(),1,()e , 1.x x a x f x x a x ⎧+≤-=⎨-+>-⎩,若(1)f -为()f x 的最小值,则实数a 的取值范围是()A .[]0,1B .[]0,2C .[]0,3D .[1,0]-8.若函数()f x 的定义域为(0,)+∞,且()()()2(),(1)1xf x y x y f x x x y f +-+=+=,则(2024)f =()A .20232024⨯B .20242046⨯C .20244047⨯D .20244048⨯二、多选题9.数列{}n a 中,记n S 为数列{}n a 的前n 项和,n T 为数列{}n a 的前n 项积,若116a =,()*120N n n a a n +-=∈,则()A .512n n a -⎛⎫= ⎪⎝⎭B .51322n n S -=-C .数列{}2log n a 是单调递增数列D .当n T 取最大值时,4n =或5n =10.若函数2()sin cos cos (0)f x x x x ωωωω=>,则()A .1(0)2f =B .当1ω=时,函数()f x 在区间π,04⎡⎤-⎢⎥⎣⎦上单调递增C .当2ω=时,将sin 4y x =图象向左平移π12个单位后得到()f x 的图象D .当函数()f x 在(0,π)上恰有2个零点和2个极值点时,ω的取值范围是513,612⎛⎫⎪⎝⎭11.若点()()()112212,,,A x y B x y x x ≠是函数()sin 2(R)f x x ax a =+∈图像上的两点,则()A .对任意点A ,存在无数点B ,使曲线()y f x =在点A ,B 处的切线的倾斜角相等B .当函数()y f x =存在极值点时,实数a 的取值范围为[2,2]-C .当120x x ≠且()y f x =在点A ,B 处的切线都过原点时,1212tan 2tan 22x x x x -=-D .当直线AB 的斜率恒小于1时,实数a 的取值范围为(,1]-∞-三、填空题12.函数()sin 23x f x π⎛⎫=+ ⎪⎝⎭的最小正周期为.13.我国火力发电厂大气污染物排放标准规定:排放废气中二氧化硫最高允许浓度为320mg /m .已知我国某火力发电厂排放废气中二氧化硫的初始浓度为3100mg /m ,现通过某种工艺对排放废气进行过滤处理,处理后废气中剩余二氧化硫的浓度y (单位:3mg /m )与处理时间t (单位:分钟)满足关系式:0910ty N ⎛⎫= ⎪⎝⎭,那么从现在起至少经过分钟才能达到排放标准.(参考数据:lg 20.3010,lg 30.4771≈≈,结果取整数)14.设()22e x f x ax b =-+,若,a b ∃∈R ,使得()1f x ≤-对x ∀∈R 恒成立,则2a ba-的取值范围是.四、解答题15.已知函数3211()(,R)32f x x x mx n m n =+++∈在1x =处取得极小值76-.(1)求m ,n 的值;(2)若函数()y f x λ=-有3个不同零点,求实数λ的取值范围.16.记ABC V 的内角A ,B ,C 的对边分别是a ,b ,c ,已知2cos cos cos a A b C c B =+.(1)求A ;(2)若ABC V 的面积为29a ,求sin sin B C +.17.函数()y f x =图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,可以将其推广为:函数()y f x =图象关于点(,)P m n 成中心对称图形的充要条件为函数()y f x m n =+-为奇函数,已知函数11()2(1)x x f x a a a --=-+>.(1)证明:函数()f x 的图象关于点(1,2)成中心对称图形;(2)判断函数()f x 的单调性,若()2(43)4f t f t +-<,求实数t 的取值范围.18.数列{}n a 中,若d ∃∈R ,使得*n ∀∈N ,都有212n n n a a a d ++++=成立,则称数列{}n a 为“三合定值数列”,已知125,3,0a a d ==-=.(1)求345,,a a a ;(2)设1n n n b a a +=+,证明:数列{}n b 为等比数列,并求n a ;(3)设(2)nn n c a =-,求数列{}n c 的前n 项和n S .19.设函数()()()()1ln 1R f x a x a x a =+-+Î,()()e R x g x b b =+∈已知曲线()y g x =在点()()1,1g 处的切线方程为e 1y x =-.(1)求b 的值;(2)讨论函数()f x 的单调性;(3)若()()g x f x ≥对[)0,x ∞∀∈+恒成立,求实数a 的取值范围.。

福建省厦门市2024届高三下学期第二次质量检测数学试题

福建省厦门市2024届高三下学期第二次质量检测数学试题

福建省厦门市2024届高三下学期第二次质量检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}14A x x =-≤,40x B x x ⎧⎫-=≥⎨⎬⎩⎭,则()R A B =I ð( ) A .()0,4 B .[)0,4 C .[](]3,04,5-UD .[)(]3,04,5-U2.已知正项等差数列{}n a 的公差为d ,前n 项和为n S ,且()()22334441,41S a S a =+=+,则d =( ) A .1B .2C .3D .43.已知α,β为关于x 的实系数方程2450x x -+=的两个虚根,则αβαβ+=+( )AB .CD .4.已知样本()2,1,3,,4,5R x x ∈的平均数等于60%分位数,则满足条件的实数x 的个数是( ) A .0B .1C .2D .35.在平面直角坐标系xOy 中,点P 在直线3410x y ++=上.若向量()3,4a =r ,则OP u u u r 在a r上的投影向量为( ) A .34,55⎛⎫-- ⎪⎝⎭B .34,55⎛⎫ ⎪⎝⎭C .34,2525⎛⎫-- ⎪⎝⎭D .34,2525⎛⎫ ⎪⎝⎭6.设1F ,2F 分别是双曲线22221x y a b-=(0a >,0b >)的左右焦点,P 为双曲线左支上一点,且满足112PF F F =,直线2PF 与双曲线的一条渐近线垂直,则双曲线的离心率为( )A .53B C .2 D 7.已知()()()cos 140sin 110sin 130ααα︒-+︒+=︒-,求tan α=( )AB .CD .8.设集合{}1,0,1A =-,(){}12345,,,,,1,2,3,4,5i B x x x x x x A i =∈=,那么集合B 中满足1234513x x x x x ≤++++≤的元素的个数为( )A .60B .100C .120D .130二、多选题9.为了预测某地的经济增长情况,某经济学专家根据该地2023年1~6月的GDP 的数据y (单位:百亿元)建立了线性回归模型,得到的经验回归方程为$$0.42y x a=+,其中自变量x 指的是1~6月的编号,其中部分数据如表所示:参考数据:()662211796,70i i i i y y y===-=∑∑.则下列说法正确的是( ) A .经验回归直线经过点()3.5,11 B .$10.255a= C .根据该模型,该地2023年12月的GDP 的预测值为14.57百亿元 D .相应于点()44,x y 的残差为0.10310.如图1,扇形ABC 的弧长为12π,半径为AB 上有一动点M ,弧AB 上一点N 是弧的三等分点,现将该扇形卷成以A 为顶点的圆锥,使得AB 和AC 重合,则在图2的圆锥中( )A .圆锥的体积为216πB .当M 为AB 中点时,线段MN 在底面的投影长为C .存在M ,使得MN AB ⊥D .min MN =11.设()f x ,()g x 都是定义在R 上的奇函数,且()f x 为单调函数,()11f >,若对任意x ∈R 有()()f g x x a -=(a 为常数),()()()()222g f x g f x x ++=+,则( )A .()20g =B .()33f <C .()f x x -为周期函数D .21(4)22nk f k n n =>+∑三、填空题12.已知抛物线C :y 2=4x 的焦点为F ,A 为C 上一点,且|AF |=5,O 为坐标原点,则OAF △的面积为.13.已知函数()()()sin 0f x x ωϕω=+>在ππ,36⎡⎤-⎢⎥⎣⎦上单调,π4ππ633ff f ⎛⎫⎛⎫⎛⎫==-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则ω的可能取值为.14.已知函数()log ab f x x x =-(0a >,0b >)且1b ≠),若()1f x ≥恒成立,则ab 的最小值为.四、解答题15.如图,三棱柱111ABC A B C -中,侧面11ABB A 是边长为2的菱形,1π3ABB ∠=,AC =M 为11A B 中点,CM =(1)证明:平面ABC ⊥平面11ABB A ;(2)若2BC =,求平面ABC 与平面1ABC 夹角的余弦值.16.定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,ABC V 的面积为S ,三个内角、、A B C 所对的边分别为,,a b c ,且222sin SC c b =-.(1)证明:ABC V 是倍角三角形; (2)若9c =,当S 取最大值时,求tan B .17.已知()2,0A ,()2,0B -,P 为平面上的一个动点.设直线,AP BP 的斜率分别为1k ,2k ,且满足1234k k ⋅=-.记P 的轨迹为曲线Γ.(1)求Γ的轨迹方程;(2)直线PA ,PB 分别交动直线x t =于点,C D ,过点C 作PB 的垂线交x 轴于点H .HC HD ⋅u u u r u u u r是否存在最大值?若存在,求出最大值;若不存在,说明理由.18.若*N n ∀∈,都存在唯一的实数n c ,使得()n f c n =,则称函数()f x 存在“源数列”{}n c .已知()(]ln ,0,1f x x x =∈. (1)证明:()f x 存在源数列; (2)(ⅰ)若()0f x≤恒成立,求λ的取值范围;(ⅱ)记()f x 的源数列为{}n c ,证明:{}n c 前n 项和53n S <.19.小明进行投篮训练,已知每次投篮的命中率均为0.5.(1)若小明共投篮4次,求在投中2次的条件下,第二次没有投中的概率;(2)若小明进行两组训练,第一组投篮3次,投中1X 次,第二组投篮2次,投中2X 次,求()12E X X -;(3)记()P i 表示小明投篮()2,3,i i =⋅⋅⋅次,恰有2次投中的概率,记()2,3,,X X n =⋅⋅⋅表示小明在投篮不超过n 次的情况下,当他投中2次后停止投篮,此时一共投篮的次数(当投篮n 次后,若投中的次数不足2次也不再继续投),证明:()()222n i E X P i +=≥∑.。

河南省信阳市2023-2024学年高三第一次教学质量检测数学试题(含答案解析)

河南省信阳市2023-2024学年高三第一次教学质量检测数学试题(含答案解析)

河南省信阳市2023-2024学年高三第一次教学质量检测数学
试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
二、多选题
..
..
.四个实数1-,2,x ,y 按照一定顺序可以构成等比数列,则xy 的可能取值有(
.1
8-
B .2-16
-D ..已知0a >,0b >,且a +,则不正确的是(

.14
ab ≥
B .2a 216a b
+≥D ..函数()f x 及其导函数f ',且()f x 是奇函数,设()4f x x -+,则以下结论正确的有(
.函数()2g x -的图象关于直线.若()g x 的导函数为g ,则()00g '=.()h x 的图象存在对称中心
.设数列{}a 为等差数列,44=,则()()h a h a ++三、填空题
四、解答题
参考答案:
又根据对称性可知()1f x 与12y =
形成的封闭图形的面积为又()()2124f x f x =-,[]4,8x ∈,所以2f 即212a a =,
故以此类推,有12n n a a +=,*n ∈N ,
所以数列{}n a 是以2为首项,2为公比的等比数列,
所以(
)1232122
12
n
n a a a a ⨯-+++⋅⋅⋅⋅⋅⋅+=
=-由8122510511+-=<,91221022511+-=>。

四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题(含解析)

四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题(含解析)

注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题.考试结束后,将答题卡交回.第Ⅰ卷(选择题,共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2A =--,(){}211B x x =+≤,则A B = ( )A. {}2,1--B. {}2,1,0-- C. []2,0- D. []22-,【答案】B 【解析】【分析】先求出集合B ,再根据集合交集运算即可得答案【详解】由()211x +≤,可得20x -≤≤,所以{}20B x x =-≤≤,所以A B = {}{}{}2,1,0,1,2202,1,0x x --⋂-≤≤=--.故选:B2. “22ac bc >”,是“a b >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】利用充分条件、必要条件的定义判断即得.【详解】若22ac bc >,则20,0c c ≠>,因此a b >,当a b >,0c =时,220ac bc ==,所以“22ac bc >”,是“a b >”的充分不必要条件.故选:A3. 已知0,0x y >>,且满足3x y xy +=-,则xy 的最小值为( )A. 3B. C. 6D. 9【答案】D 【解析】【分析】利用基本不等式化简已知条件,再解不等式求得xy 的范围,从而求得xy 的最小值.详解】3x y xy +=-≥)23310--=+≥,30,9xy -≥≥,当且仅当3x y ==时等号成立,所以xy 的最小值为9.故选:D4. 某公司根据近几年经营经验,得到广告支出与获得利润数据如下:广告支出x /万元258111519利润y /万元334550535864根据表中数据可得利润y 关于广告支出x 的经验回归方程为ˆ 1.6ˆ5yx a =+.据此经验回归方程,若计划利润达到100万元,估计需要支出广告费( )A. 30万元 B. 32万元C. 36万元D. 40万元【答案】D 【解析】【分析】先得求数据的中心点()10,50.5,代入ˆ 1.6ˆ5yx a =+得ˆ34a =,再由ˆ100=y 求得40x =即得.【详解】258111519106x +++++==,33455053586450.56y +++++==,因ˆ 1.6ˆ5yx a =+过点()x y ,故ˆ50.5 1.6510a =⨯+,得ˆ34a =,【故当ˆ100=y时,341001.65x +=,得40x =,故选:D5. 下列选项中,既是增函数,也是奇函数的是( )A. 2y x -= B. 1y x x=+C. sin y x x =-D. 1ln1x y x -=+【答案】C 【解析】【分析】分别判断函数的奇偶性和单调性即可.【详解】对于A ,令()2f x x -=,0x ≠,()()()22fx x x fx ---=-==,所以2y x -=是偶函数,故A 错误;对于B ,1y x x=+在(),1∞--和()1,+∞上单调递增,在()1,0-和()0,1上单调递减,故B 错误;对于C ,令()sin g x x x =-,R x ∈,()()()()sin sin g x x x x x g x -=---=--=-,所以sin y x x =-是奇函数,又1cos 0y x '=-≥,所以sin y x x =-是R 上的增函数,故C 正确;对于D ,令()1ln1x h x x -=+,()(),11,x ∈-∞-⋃+∞,则()()()11201111x x h x x x x x '+-⎛⎫'=⋅=> ⎪-+-+⎝⎭,所以函数1ln 1x y x -=+在(),1∞--和()1,+∞上单调递增,但在定义域上不单调,故D 错误.故选:C.6. 已知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,则1cos21cos2θθ-=+( )A. 9 B. 3C.13D.19【答案】B 【解析】【分析】根据两角和正切公式结合已知条件可求出tan θ=.【详解】由题意知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,的故πtan tan3tan 0π1tan tan 3θθθ++=-,解得tan θ=或tan θ=(舍去),则2221cos22sin tan 31cos22cos θθθθθ-===+,故选:B7. 某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )间的关系为0ektP P -=(e 是自然对数的底数,0P ,k 为正的常数).如果前9h 消除了20%的污染物,那么消除60%的污染物需要的时间约为( )(参考数据:lg 20.301≈)A. 33h B. 35h C. 37h D. 39h【答案】C 【解析】【分析】根据给定条件,求出常数k ,然后再令0.4P =即可解出t .【详解】依题意,900(120%)ekP P --=,解得1ln 0.89k =-,即900.8t P P =,当0(160%)P P =-时,9000.40.8tP P =,即90.80.4t=,解得9lg 0.49(2lg 21)9(120.301)37lg 0.83lg 21130.301t --⨯==≈≈--⨯,所以污消除60%的污染物需要的时间约为37h .故选:C8. 已知函数()()()()2231,0,e 3,0x x x f x g x mx x x ⎧-+≤⎪==⎨->⎪⎩,若关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,则实数m 的取值范围是( )A. 30,2⎛⎤⎥⎝⎦B. 2e 0,2⎛⎤ ⎥⎝⎦C. (]2e,0- D. ()3,00,2⎛⎤-∞ ⎥⎝⎦【答案】A 【解析】【分析】判断函数的单调性,作出函数图象,结合题意列出相应不等式组,即可求得答案.【详解】令()()2e3,0xh x xx =->,则()()()e 31x h x x x +'=-,当01x <<时,ℎ′(x )<0,则ℎ(x )在(0,1)上单调递减;当1x >时,ℎ′(x )>0,则ℎ(x )在(1,+∞)上单调递增;令()()231,0k x x x =-+≤,则其图象为开口向下,对称轴为1x =-的抛物线;由关于x 的不等式()()()0x f x g x -<,可知0x ≠,当0x >时,()()f x g x <,即有()()h x g x <;当0x <时,()()f x g x >,即有()()k x g x >;作出函数图象如图:要使关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,显然0m ≤不能满足题意,故需满足()()()()02222m h g k g ⎧>⎪≥⎨⎪-≤-⎩,即20e 232m m m>⎧⎪≥⎨⎪-≤-⎩,解得302m <≤,即m 的取值范围为30,2⎛⎤⎥⎝⎦,故选:A【点睛】关键点睛:解答本题的关键在于作出函数图象,从而列出相应不等式组,求得答案.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知数列{a n }的前n 项和为n S ,且116,6n n a a S +==+,则( )A. 342S = B. 2n nS a <C. {}n S 是等比数列 D. 存在大于1的整数n ,k ,使得n kS a =【答案】AB 【解析】【分析】通过n a 与n S 的关系,作差得到数列{}n a 是以6为首项,2为公比的等比数列,进而逐项判断即可.【详解】由16n n a S +=+,可得16,2n n a S n -=+≥两式相减可得:12,2n n a a n +=≥,又2211612,2a a S a =+==,所以数列{}n a 是以6为首项,2为公比的等比数列,所以162n n a -=⨯,626nn S =⨯-,所以3362642S =⨯-=,A 正确;262n n a =⨯,所以2n n S a <,B 正确;由626nn S =⨯-,可得1236,18,42S S S ===,显然3212S S S S ≠,可判断{}n S 不是等比数列,C 错误;若n k S a =,即162662n k -⨯-=⨯,也即1221n k --=,显然不存在大于1的整数,n k ,使得等式成立,D 错误;故选:AB10. 已知函数()22sin cos0)222xxxf x ωωωω=-+>在[)0,π上有且仅有4个零点,则( )A.1114,33ω⎛⎤∈⎥⎝⎦B. 令()π6g x f x ⎛⎫=+⎪⎝⎭,存在ω,使得()g x '为偶函数C. 函数()f x 在()0,π上可能有3个或4个极值点D. 函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增【答案】ABD 【解析】【分析】利用二倍角和辅助角公式化简得到()π2sin 3f x x ω⎛⎫=+⎪⎝⎭,根据()f x 在[)0,π上有且仅有4个零点,可确定πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭,进而解得111433ω<≤,再根据其范围结合函数图象和平移知识等逐一判断即可.【详解】()2π2sincossin 2sin (0)2223xxxf x x x x ωωωωωωω⎛⎫=-=+=+> ⎪⎝⎭对于A , [)0,πx ∈,πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在[)0,π上有且仅有4个零点,所以π4ππ5π3ω<+≤,解得111433ω<≤,∴1114,33ω⎛⎤∈ ⎥⎝⎦,故A 正确;对于B ,()π6g x f x ⎛⎫=+⎪⎝⎭ππππ2sin 2sin 6363x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()ππ2cos 63g x x ωωω'⎛⎫=++ ⎪⎝⎭为偶函数,则πππ,63k k ω+=∈Z ,即62,k k ω=-∈Z ,∵0,ω>∴取4ω=,()8cos 4g x x '=-为偶函数,满足题意,故B 正确;对于C ,x ∈(0,π),πππ,π333x ωω⎛⎫+∈+ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,(]ππ4π,5π3ω+∈,∴函数()f x 在()0,π上可能有4个或5个极值点, 故C 不正确;对于D ,若ππ,3535x ⎛⎫∈-⎪⎝⎭,则πππππ,3353353x ωωω⎛⎫+∈-++ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,∴ππ7π8πππ46π7π,,,353353535310515ωω⎡⎫⎛⎤-+∈+∈⎪ ⎢⎥⎣⎭⎝⎦,∴函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增. 故D 正确;故选:ABD.11. 已知函数()f x 的定义域为R ,()f x 不恒为0,且()()222f x f y x y x y f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,则( )A. ()0f 可以等于零 B. ()f x 的解析式可以为:()cos2f x x =C. 曲线f (x−1)为轴对称图形 D. 若()11f =,则201()20k f k ==∑【答案】BCD【解析】【分析】利用赋值法可得()00f =或()01f =,分类讨论可得()01f =,判断A ;.有一只判断出函数的奇偶性,可判断B ;结合B 的分析以及图象的平移可判断C ;判断出(){}f k 是以()11f =为首项,0为公差的等差数列,即可判断D.【详解】令0x y ==,可得()()000000222f f f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,可得()()200f f =,解得()00f =或()01f =,当()00f =时,则可得()()0222f x f x x x x x f f ++-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,则()0f x =,与()f x 不恒为0矛盾,所以()01f =,故A 错误;令y x =-,可得()()()()()()20,f x f x f f x f x f x +-=∴-=,所以()f x 为偶函数,因为()cos 2f x x =是偶函数,所以()f x 的解析式可以为:()cos2f x x =,故B 正确;因为()f x 为偶函数,所以()f x 的图象关于直线0x =对称,所以()1f x -关于直线1x =对称,所以曲线()1f x -为轴对称图形,故C 正确;令2,x k y k =+=,则可得()()2222222f k f k k f f +++⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以()()()*221,N f k f k f k k ++=+∈,又()()2022222f f f f +⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,解得()21f =,所以(){}f k 是以()11f =为首项,0为公差的等差数列,所以201()20k f k ==∑,故D 正确.故选:BCD.【点睛】关键点点睛:采用赋值法是解抽象函数的一种有效方法,多领会其思路.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12. 记ABC V 内角A ,B ,C 的对边分别为a ,b ,c .已知()22,3,cos 3b c B C ==+=-,则a =______.【解析】【分析】结合三角形内角和、诱导公式与余弦定理计算即可得解.【详解】由()()2cos cos πcos 3B C B C A ⎡⎤+=-+=-=-⎣⎦,故2cos 3A =,则22222cos 491253a b c bc A =+-=+-⨯=,故a =..13. 已知函数()|ln|2||f x x m =+-,m 为正的常数,则()f x 的零点之和为________.【答案】8-【解析】【分析】根据给定条件,探讨函数的对称性,再结合零点的意义即可求解得答案.【详解】函数()f x 的定义域为{R |2}x x ∈≠-,由()0f x =,得|ln|2||x m +=,令函数()|ln|2||g x x =+,(4)|ln|42|||ln |2||()g x x x g x --=--+=+=,则函数()y g x =图象关于直线2x =-对称,在同一坐标系内作出直线(0)y m m =>与函数()y g x =的图象,如图,直线(0)y m m =>与函数()y g x =的图象有4个交点,令其横坐标从左到右依次为1234,,,x x x x ,观察图象得14234x x x x +=+=-,所以()f x 的零点之和为8-.故答案为:8-14. 若2x =是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极大值点,则实数a 的取值范围为________.【答案】2e a <-【解析】【分析】根据函数的导数,对a 分类讨论,再结合()0f x '=的根,分类讨论,分析函数的极大值点即可得出答案.【详解】()()()()()e222e xx f x x a x x a =-+-=-+',当0a ≥时,e 0x a +>,当2x <时,f ′(x )<0,当2x >时,f ′(x )>0,所以()f x 在(),2∞-上单调递减,在()2,∞+上单调递增,所以2x =是函数的极小值点,不符合题意;当0a <时,令()0f x '=,可得()122,ln x x a ==-,若()2ln a <-,即2e a <-时,则2x <时,f ′(x )>0,函数()f x 单调递增,()2ln x a <<-时,f ′(x )<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+- ⎪⎝⎭的极大值点,符合题意;若()2ln a >-即20e a >>-时,则2x >时,f ′(x )>0,函数()f x 单调递增,()ln 2a x -<<时,f ′(x )<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极小值点,不符合题意;若()2ln a =-即2e a =-时,则R x ∈时,f ′(x )≥0,函数()f x 单调递增,函数()f x 无极值点,不符合题意.综上,当2e a <-时,2是函数()f x 的极大值点.故答案为:2e a <-【点睛】关键点点睛:首先观察导函数,当0a ≥时,分析函数单调性判断2是否为极大值点,当0a <时,根据()0f x '=的两根大小分类,由导数的正负得函数的单调性,再由单调性判断极大值点是否为2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 近年来,解放军强军兴军的深刻变化,感召了越来越多的高中优秀青年学子献身国防,投身军营.2024年高考,很多高考毕业学生报考了军事类院校.从某地区内学校的高三年级中随机抽取了900名学生,其中男生500人,女生400人,通过调查,有报考军事类院校意向的男生、女生各100名.(1)完成给出的列联表,并分别估计该地区高三男、女学生有报考军事类院校意向的概率;有报考意向无报考意向合计男学生女学生合计(2)根据小概率值0.10α=的独立性检验,能否认为学生有报考军事类院校的意愿与性别有关.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++ ++++.α0.250.150.100.050.0250.0100.0050.001xα1.3232.072 2.7063.841 5.024 6.6357.87910.828【答案】(1)列联表见解析,男生有报考军事类院校意向的概率为15,女生有报考军事类院校意向的概率为1 4(2)能认为学生有报考军事类院校的意愿与性别有关【解析】【分析】(1)先填写22⨯列联表,再根据古典概型概率计算公式求得正确答案.(2)计算2χ的知识,从而作出判断.【小问1详解】根据已知条件,填写22⨯列联表如下:有报考意向无报考意向合计男学生100400500女学生100300400合计200700900男生有报考军事类院校意向的概率为1001 5005=,女生有报考军事类院校意向的概率为1001 4004=.【小问2详解】()22900100300400100 3.214 2.072200700400500χ⨯-⨯=≈>⨯⨯⨯,所以能认为学生有报考军事类院校的意愿与性别有关.16. 记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知1sin 2a C =,且cos cos 1a C c A +=,(1)求ABC V 的面积;(2)若π4B =,求A .【答案】(1)14; (2)π8或5π8.【解析】【分析】(1)根据给定条件,利用余弦定理及三角形面积公式求解即得.(2)利用正弦定理,结合和角的正弦公式、二倍角公式求解即得.【小问1详解】在ABC V 中,由余弦定理及cos cos 1a C c A +=,得222222122a b c b c a a c ab bc+-+-⋅+⋅=,整理得1b =,而1sin 2a C =,所以ABC V 的面积11sin 24S ba C ==.【小问2详解】由(1)及正弦定理得1πsin sin sin 4a b A B ===a A =,于1sin 2A C =1sin(2π)4A A +=,12cos )A A A +=,即22sin cos 12sin A A A =-,因此sin 2cos 2A A =,即tan 21A =,由3π04A <<,得3π022A <<,解得π24A =或5π24A =,所以π8A =或5π8A =.17. 已知数列{}{},n n a b 满足()1n n n a nb +=,且1n a +是n b 与1n b +的等比中项.(1)若124a a +=,求1b 的值;(2)若12a =,设数列{}{},n n a b 的前n 项和分别为,n n S T .(ⅰ)求数列{}{},n n a b 的通项公式;(ⅱ)求n n T S -.【答案】(1)2(2)(ⅰ)()1n a n n =+,()21n b n =+(ⅱ)()32n n n n T S +-=【解析】【分析】(1)先得112b a =,2232b a =,利用1n a +是n b 与1n b +的等比中项可得;(2)(ⅰ)先求得1n n n b a n+=,利用1n a +是n b 与1n b +的等比中项可得12n n n a a n ++=,由累乘法可得()1n a n n =+,进而可得()21n b n =+;(ⅱ)先得1n n n a b -=+,利用等差数列前n 项和公式可得()32n n T S n n +-=.【小问1详解】由()1n n n a nb +=可得112b a =,2232b a =,由题意可知2a 是1b 与2b 的等比中项,故2212a b b =,可得22123a a a =,即213a a =,又因124a a +=,故11a =,故1122b a ==【小问2详解】(ⅰ)由()1n n n a nb +=得1n n n b a n +=,由题意可得1211121n n n n n n n a a a n n b b ++++++==⋅,得12n n n a a n ++=,故12n n a n a n++=,故()1112211321121n n n n n a a a a n n n n a n n a a a ---=⨯⨯⨯⨯+⨯⨯⨯=+--= ,()211n n n b a n n+==+,故()1n a n n =+,()21n b n =+(ⅱ)()()2111n n b n a n n n =+-=-++,()()1212n n n n T b b b a a a S =+++-++-()()()1122n n b a b a b a =-+-++- ()231n =++++ ()212n n++=()32n n +=18. 已知函数()3221f x x ax a x =+--.(1)当5a =-时,则过点()0,2的曲线()f x 的切线有几条?并写出其中一条切线方程;(2)讨论()f x 的单调性;(3)若()f x 有唯一零点,求实数a 的取值范围.【答案】(1)有3条切线,322y x =-+(2)答案见解析 (3)⎛⎫ ⎪ ⎪⎝⎭【解析】【分析】(1)根据导数的几何意义,设出切点得出切线斜率,列方程组分析解得个数即可;(2)求出导函数,对a 分类讨论即可得出函数单调区间;(3)根据函数的单调性,结合当x →+∞时,()f x →+∞,利用极大值建立不等式求解.【小问1详解】当5a =-时,()325251f x x x x =---,()231025f x x x =--',设切点为()00,x y ,因为切线过点(0,2),所以切线斜率存在,故可设切线方程为2y kx =+,则3200002002525131025kx x x x k x x ⎧+=---⎨=--⎩,化简可得()2200021330x x x --+=,即()()200012330x x x ---=,由2002330x x --=的判别式9240∆=+>知方程有2个不等实根且不为1,故()()200012330x x x ---=有3个不等的实根,所以切线有3条,其中一条切点横坐标为1,故3102532k =--=-,所以切线方程为322y x =-+.【小问2详解】()()()22323f x x ax a x a x a =+-=-+',当0a =时,()230f x x ='≥,所以函数R 上单调递增;当0a >时,3a a -<,所以x a <-或3ax <时,f ′(x )>0,()f x 单调递增,当3aa x -<<时,f ′(x )<0,()f x 单调递减;当0a <时,3aa ->,所以x a >-或3a x <时,f ′(x )>0,()f x 单调递增,当3ax a <<-时,f ′(x )<0,()f x 单调递减;综上,0a =时,()f x 在R 上单调递增,无递减区间;当0a >时,()f x 在(),a ∞--和,3a ∞⎛⎫+ ⎪⎝⎭上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()f x 在,3a ∞⎛⎫- ⎪⎝⎭和(),a ∞-+上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减.【小问3详解】当0a =时,3()1f x x =-,函数仅有1个零点1;当0a >时,由(2)知,()f x 的极大值为()f a -,且当x →+∞时,()f x →+∞,若()f x 有唯一零点,则333()10f a a a a -=-++-<,解得1a <,故()0,1a ∈,当0a <时,由(2)知,()f x 的极大值为3a f ⎛⎫⎪⎝⎭,同理,若()f x 有唯一零点,则3510327a f a ⎛⎫=--< ⎪⎝⎭,解得a >,故a ⎛⎫∈ ⎪ ⎪⎝⎭,综上,实数a的取值范围⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:对于含参数的函数,研究单调区间的关键在于对导函数的特点分析,本题导函数为二次函数,所以分析的重点在于导函数零点的关系,在根据函数有唯一零点求参数的时候,利用函数的极大值点建立不等式是解题关键.19. 已知函数()2ln 3f x x x x a =+-+,()f x 在(]0,1上的最大值为3ln24-.在(1)求实数a 的值;(2)若数列{}n a 满足()1231n n n n a a f a a +=+-,且143a =.(ⅰ)当2,n n ≥∈Z 时,比较n a 与1的大小,并说明理由;(ⅱ)求证:1312nii a=-<∑.【答案】(1)a =2(2)(1)1n a >,理由见详解;(2)证明见详解【解析】【分析】(1)利用导数判断()f x 的单调性求出最大值得解;(2)(i )由已知结合基本不等式可得1ln 12nn na a a +≥+,利用数学归纳法证明1n a >,()2,Z n n ≥∈,(ii )先构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a ,将所证明的式子放缩求和证明.【小问1详解】()()()121123x x f x x x x--'=+-=Q ,(]0,1x ∈,当102x <<时,10x -<,210x -<,()0f x '∴>,则()f x 在10,2⎛⎫⎪⎝⎭上单调递增,当112x ≤≤时,10x -≤,210x -≥,()0f x '∴≤,则()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,()max 11133ln ln 222424f x f a ⎛⎫∴==+-+=- ⎪⎝⎭,解得2a =所以实数a 的值为2.【小问2详解】(i )由(1)知,()2ln 32f x x x x =+-+,所以212ln 3231n n n n n n a a a a a a +=+-++-,即21ln 12n n n na a a a +++=,212n n a a +≥Q ,1ln 12nn na a a +∴≥+,.下面用数学归纳法证明1n a >,()2,Z n n ≥∈,当2n =时,143a =,1214lnln 3111823a a a ∴≥+=+>,假设()2,Z n k k k =≥∈时,命题成立,则1k a >,当1n k =+时,有1ln 112kk ka a a +≥+>成立,所以上述命题对2,Z n n ≥∈,均有1n a >成立.(ii )当1n =时,13112a -=<成立,当2n ≥时,令()ln 1x x x ϕ+=,则()2ln xx x ϕ-'=,当01x <<时,()0x ϕ'>,当1x >时,()0x ϕ'<,所以()x ϕ在()0,1上单调递增,在()1,+∞上单调递减,则()()11x ϕϕ<=,所以()()21ln 11ln 1112222n n n nn n n n n n a a a a a a a a a a ϕ+⎛⎫++++==+=+< ⎪⎝⎭,即11112n n a a +-<-,又由(i )知1n a >,则()11112+-<-n n a a ,()()()121313111ni n i a a a a =∴-=-+-++-⎡⎤⎣⎦∑L ()121111311222n a -⎡⎤⎛⎫<-++++ ⎪⎢⎥⎝⎭⎣⎦L 111123211322n n -⎛⎫=⨯⨯=- ⎪⎝⎭,102n >Q ,1112n ∴-<,12122n⎛⎫∴-< ⎪⎝⎭,即1312ni i a =-<∑,得证.【点睛】关键点点睛:本题最后小问证明的关键是构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a .。

北京市人大附中2024届高三10月质量检测练习数学试题及答案

北京市人大附中2024届高三10月质量检测练习数学试题及答案

北京市人大附中2024届高三10月质量检测练习数学试题一、单选题1.已知集合{}[]2,0,3A x x B =≤=,则A B = ()A .{3}B .{0}C .[]0,2D .{0,3}2.下列函数既是偶函数且又在()0,∞+上是单调递减函数的是()A .()cos 2f x x=B .()exf x =C .()lg f x x=D .()23f x x-=3.已知角θ的终边过点()12,5P -,则tan θ=()A .512-B .125-C .125D .5124.若0.32131,0.3,log 32a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 大小关系为()A .a b c>>B .b a c>>C .c b a>>D .a c b>>5.设,a b ∈R ,且0a b <<,则()A .11a b<B .2b ab>C .2a bab +>D .2b a a b+>6.某物体做直线运动,若它所经过的位移s 与时间t 的函数关系为()212s t t t =+,则这个物体在时间段1,2内的平均速度为()A .2B .32C .3D .527.已知{}12|2,0,log 1xA y y xB x x ⎧⎫==<=>⎨⎬⎩⎭,则“x A ∈”是“x B ∈”成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.如图是函数()y f x =的导函数()y f x '=的图象,下列结论正确的是()A .()y f x =在=1x -处取得极大值B .1x =是函数()y f x =的极值点C .2x =-是函数()y f x =的极小值点D .函数()y f x =在区间()1,1-上单调递减9.已知0a >且1a ≠,函数(),1,1x a x f x x a x ⎧≤=⎨-+>⎩,若函数()f x 在区间[]0,2上的最大值比最小值大52,则a 的值为()A .12或2B .23或2C .2或72D .12或7210.已知函数()11sin cos f x x x=+,在下列结论中:①2π是()f x 的一个周期;②()f x 的图象关于直线π4x =对称;③()f x 在区间π,02⎛⎫- ⎪⎝⎭上无最大值正确结论的个数为()A .0B .1C .2D .3二、填空题11.函数()()22ln 1xf x x x =++-的定义域为.12.已知函数()πsin 0,02y x ωϕωϕ⎛⎫=+><≤ ⎪⎝⎭,且此函数的一段图象如图所示,则ω=;ϕ=.13.在ABC V 中,60,2,3A AC BC ︒===则ABC V 的面积等于.14.扶贫小组帮助某农户建造一个面积为100㎡的矩形养殖区,有一面利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,则最低造价需要准备元.15.对函数(),f x 若存在区间[,](),M a b a b =<使得{|(),},y y f x x M M =∈=则称区间M 为函数()f x 的一个“稳定区间”,给出下列四个函数:(1)(),x f x e =(2)3(),f x x =(3)π()cos ,2f x x =(4)()ln 1,f x x =+其中存在“稳定区间”的函数有.(把所有可能的函数的序号都填上)三、解答题16.已知函数()321233f x x x =+-(1)求曲线()y f x =在点()()22f ,处的切线方程;(2)求函数()f x 的单调区间和极值.17.已知函数()()2π2sin πcos 2f x x x x ⎛⎫=+-+ ⎪⎝⎭(1)求()f x 的最小正周期;(2)当ππ,42x ⎡⎤∈⎢⎣⎦,求()f x 的最大值和最小值.18.某同学用“五点法”画函数()()||πsin 0,2f x A x k ωϕωϕ⎛⎫=++>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πxm π3n 5π6p ()sin A x kωϕ++1614-1(1)求出实数m ,n ,p 的值;(2)求出函数()f x 的解析式;(3)将()y f x =图象向左平移()0t t >个单位,得到()y g x =的图象.若()y g x =为偶函数,求t 的最小值.19.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足222sin sin sin sin sin 0A CB AC +-+=(1)求角B 的大小;(2)给出以下三个条件:条件①:22230a b c c -+-=:条件②:3a =;条件③:4ABC S =△从这三个条件中选择两个条件,使得ABC V 存在且唯一确定,请写出你选择的两个条件并回答下面的问题:(Ⅰ)求sin A 的值;(Ⅱ)点M 为线段AB 中点,点N 为线段BC 中点,点P 为线段MN 上一个动点,记PA PC λ=⋅ ,直接写出λ的最大值.20.已知函数()()32111,e ln 32x f x x x ax g x x x x -=++=+(1)判断函数()y g x =零点的个数,并说明理由;(2)对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x '≤'-求实数a 的取值范围;(3)在(2)的条件下,证明:0x ∀>,有()()g x f x ≥'.21.如图,T 是3行3列的数表,用(),1,2,3ij a i j =表示位于第i 行第j 列的数,且满足{}0,1ij a ∈.11a 12a 13a 21a 22a 23a 31a 32a 33a 数表中有公共边的两项称为相邻项,例如上表中11a 的相邻项仅有12a 和21a .对于数表T ,定义操作ij ϕ为将该数表中的ij a 以及ij a 的相邻项从x 变为1x -,其他项不变,并将操作的结果记为()ij T ϕ.已知数表0T 满足{}0,,1,2,3ij a i j =∈.记变换ψ为n 个连续的上述操作,即1122:,,,n n i j i j i j ϕϕϕψ ,使得()()()112210211,,,n n i j i j n i j n T T T T T T ϕϕϕ-=== ,并记()0n T T =ψ(1)给定变换112233:,,ϕϕϕψ,直接写出()30T T =ψ.(2)若T '满足122122231a a a a ====,其他项均为0.ψ是含n 次操作的变换且有()0T T '=ψ,求n 的最小值.(3)若变换ψ中每个操作ij ϕ至多只出现一次,则称变换ψ是一个“优变换”,证明:任给一个数表(){}{}:,0,1,,1,2,3ij ij T a a i j ∈∈,存在唯一的一个“优变换”ψ,使得()0T T =ψ.参考答案:题号12345678910答案CDABDBBCDB1.C【分析】按照交集的运算法则直接计算即可.【详解】因为集合{}[]{}2,0,303A x x B x x =≤==≤≤,所以{}[]020,2A B x x ⋂=≤≤=.故选:C.2.D【分析】根据余弦函数,指数函数,对数函数及幂函数的奇偶性和单调性逐一判断即可.【详解】对于A ,因为π3π044f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故()cos 2f x x =在()0,∞+上不是单调递减函数,A 不符题意;对于B ,函数()e xf x =在()0,∞+上是单调递增函数,故B 不符题意;对于C ,当()0,x ∈+∞时,()lg lg f x x x ==在()0,∞+上单调递增,故C 不符题意;对于D ,()()()()21233,0,,0f x xxx ∞∞--==∈+⋃-,因为203-<,所以函数()23f x x -=在()0,∞+上单调递减,因为()()()123f x x f x --==,所以()23f x x -=是偶函数,故D 符合题意.故选:D.3.A【分析】根据正切函数的定义计算.【详解】由题意,55tan 1212α==--.故选:A .【点睛】本题考查三角函数的定义,属于简单题.4.B【分析】由指数函数和对数函数的性质即可得出答案.【详解】因为0.3110122a ⎛⎫⎛⎫<=<= ⎪⎪⎝⎭⎝⎭,200.30.31b -=>=,1133log 3log 31c -===-,所以b a c >>.故选:B.5.D【分析】ABC 选项,可举出反例;D 选项,利用基本不等式进行求解.【详解】A 选项,当2,1a b =-=-时,111,12a b=-=-,故11a b >,A 错误;B 选项,当2,1a b =-=-时,21,2b ab ==,2b ab <,B 错误;C 选项,当2,1a b =-=-时,322a b +=-=,2a b+<,C 错误;D 选项,当0a b <<时,0,0b a a b >>,由基本不等式可得2b a a b +≥=,当且仅当ba ab=,即a b =时,等号成立,但a b ≠,故等号取不到,故2b aa b+>,D 正确.故选:D 6.B【分析】根据平均速度的公式计算.【详解】211211322212s v t ⎛⎫⨯+-+ ⎪∆⎝⎭===∆-.故选:B.7.B【分析】根据题意,化简集合,A B ,再由充分条件以及必要条件的定义判断即可.【详解】因为{}()2,00,1x A y y x ==<=,121log 10,2B x x ⎧⎫⎪⎪⎛⎫=>=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则B 是A 的真子集,所以“x A ∈”是“x B ∈”成立的必要不充分条件.故选:B 8.C【分析】根据导函数的正负即可求解()y f x =的单调性,即可结合选项逐一求解.【详解】由图象可知:当2x <-时,()()0,f x f x '<单调递减,当2x ≥-时,()()0,f x f x '≥单调递增,故2x =-是函数()y f x =的极小值点,()y f x =无极大值.故选:C 9.D【分析】按照a 与1的大小进行分类讨论,求出函数()f x 在[]0,2上的最值,从而可得a 的值.【详解】①当01a <<时,函数()f x 在[]0,1上是减函数,在(]1,2上也是减函数.∵()0011f a a ==>-+,∴函数的最大值为()01f =,而()()221f a a f =-+<=,∴函数()f x 的最小值为()22f a =-+,∴5212a -++=,解得()10,12a =∈,符合题意.②当1a >时,函数()f x 在[]0,1上是增函数,在(]1,2上是减函数.∵()11f a a =>-+,∴函数()f x 的最大值为()1f a =,而()22f a =-+,()001f a ==,当()1,3a ∈时,21a -+<,此时函数()f x 的最小值为()22f a =-+,因此有522a a -++=,无解;当[)3,a ∈+∞时,21a -+≥,此时函数()f x 的最小值为()01f =,因此有512a +=,解得()73,2a =∈+∞,符合题意.综上所述,实数a 的值为12或72.故选:D 10.B【分析】①②根据周期性和对称性满足的关系式判断;③利用换元法求函数()f x 在π,02x ⎛⎫∈- ⎪⎝⎭的最值情况.【详解】因为π11π112π07πππ7π44sin cos sin4444f f ⎛⎫⎛⎫-=+=-+=+= ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭,所以2π不是()f x 的一个周期,故①错误;()11π,π11cos sin 2ππ11π2sin cos ,22cos sin 2x x x f x f x x x x x x ⎧+≥⎪⎪⎛⎫-=+=≠⎨ ⎪⎛⎫⎝⎭⎪---+< ⎪⎪⎩⎝⎭,所以()f x 的图象不关于直线π4x =对称,故②错;()()()()222sin cos 11sin cos sin cos 1sin cos 1sin cos 2x x x x f x x x x x x x --=-+==----,π,02x ⎛⎫∈- ⎪⎝⎭,令πsin cos 4t x x x ⎛⎫=-=- ⎪⎝⎭,则3,444x ⎛⎫-∈-- ⎪⎝⎭πππ,)1t ⎡∈-⎣,22211t y t t t ==--,在)1t ⎡∈-⎣上单调递增,所以无最大值,即函数()f x 在π,02x ⎛⎫∈- ⎪⎝⎭上无最大值,故③正确.故选:B.11.[2,1)-【分析】根据函数特征直接求定义域即可.【详解】由函数()()2ln 1x f x x =+-可知,202,,21101x x x x x +≥≥-⎧⎧∴-≤<⎨⎨-><⎩⎩,所以定义域为[2,1)-.故答案为:[2,1)-12.2π4【分析】由图知7π3ππ2882T =-=,2πT ω=可得ω的值,再由()3π2πZ 8k k ϕ⨯+=∈以及π02ϕ<≤求得ϕ的值.【详解】由7π3ππ2882T =-=,可得πT =,所以2π2π=2πT ω==,此时解析式为()sin 2y x ϕ=+,由()3π2πZ 8k k ϕ⨯+=∈,可得()3ππZ 4k k ϕ=-+∈,又因为π02ϕ<≤,所以1k =,π4ϕ=,故答案为:2;π4.13【分析】利用三角形中的正弦定理求出角B ,C ,再利用三角形的面积公式求出△ABC 的面积.【详解】因为60,2,A AC BC ︒===2,,sin sin sin 60sin BC AC A B B︒=∴=sin 1,90,30,B BC ︒︒∴=∴==12sin 302ABC S ︒=⨯⨯=!14.3200【分析】假设正面铁栅和两侧墙长,可构造等式100xy =;列出造价409020z x y xy =++,利用基本不等式求得最小值.【详解】设正面铁栅长为x ,两侧墙长为y ,则100xy =于是造价为409020z x y xy=++则:4090202020120020003200z x y xy xy xy =++≥==+=,当且仅当4090 100x y xy ==,即20153x y ,==时取等号本题正确结果:3200【点睛】本题考查利用基本不等式解决实际问题,主要采用基本不等式求解和的最小值的方法.15.②③【详解】因为()x f x e =单调递增,所以若存在“稳定区间”则x e x =至少有两个解,而x e x >恒成立,所以()x f x e =不存在“稳定区间”;因为()3f x x =单调递增,所以若存在“稳定区间”则3x x =至少有两个解,显然成立,所以()3f x x =存在“稳定区间”;(3)因为[0,1],cos [0,1]2x x π∈∈,所以f(x)=π cos 2x 存在“稳定区间”;(4)因为()ln 1f x x =+单调递增,所以若存在“稳定区间”则ln 1x x +=至少有两个解,而ln 1x x +=只有一解x=1,所以()ln 1f x x =+不存在“稳定区间”;点睛:判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.16.(1)8100x y --=(2)递增区间为(),2-∞-和()0,∞+,递减区间为()2,0-,极大值为23,极小值为23-.【分析】(1)根据题意,求导得()f x ',由导数的几何意义即可得到结果.(2)根据题意,求导得()f x ',令()0f x '=即可得到极值点,从而得到结果.【详解】(1)因为()3212222633f =⨯+-=,且()22f x x x '=+,则()222228f '=+⨯=,所以曲线()y f x =在点()()22f ,处的切线方程为()682y x -=-,即8100x y --=.(2)因为()22f x x x '=+,令()0f x '=,解得2x =-或0x =,当(),2x ∞∈--时,()0f x '>,则函数()f x 单调递增;当()2,0x ∈-时,()0f x '<,则函数()f x 单调递减;当()0,x ∈+∞时,()0f x '>,则函数()f x 单调递增;所以()f x 的单调递增区间为(),2-∞-和()0,∞+,单调递减区间为()2,0-,当2x =-时,()f x 有极大值为()()3122224333f -=⨯-+-=,当0x =时,()f x 有极小值为()203f =-.综上所述,递增区间为(),2-∞-和()0,∞+,递减区间为()2,0-,极大值为23,极小值为23-.17.(1)()f x 的最小正周期为π.(2)最大值为2,最小值为1.【分析】(1)先化简()()2π2sin πcos 2f x x x x ⎛⎫=+-+ ⎪⎝⎭求出π()2sin 23f x x ⎛⎫=- ⎪⎝⎭,然后由最小正周期公式求解即可.(2)求()f x 在闭区间上的最大值和最小值即可.【详解】(1)()()2π2sin πcos 2f x x x x ⎛⎫=+-+ ⎪⎝⎭)22sin cos cos 2sin 2x x x x x =+--+-,πsin 222sin 23x x x ⎛⎫==- ⎪⎝⎭,所以()f x 的最小正周期为:2ππ2T ==.(2)由(1)可知,π()2sin 23f x x ⎛⎫=- ⎪⎝⎭,因为ππ,42x ⎡⎤∈⎢⎥⎣⎦,所以ππ2π2,363⎡⎤-∈⎢⎥⎣⎦x .所以当ππ232x -=时,max ()2f x =,当ππ236x -=时,min ()1f x =.所以当ππ,42x ⎡⎤∈⎢⎥⎣⎦,()f x 的最大值为2,最小值为1.18.(1)π12m =,712n =π,1312p =π(2)()5sin 216f x x ⎛⎫=-+ ⎪⎝⎭π(3)π3【分析】(1)根据表格列方程,解方程得到m ,n ,p ;(2)根据表格得到sin 01πsin 62A k A k +=⎧⎪⎨+=⎪⎩,解方程得到51A k =⎧⎨=⎩,然后结合(1)中结论即可得到()f x 的解析式;(3)根据图象的平移变换得到()g x ,根据()g x 为偶函数得到()0g 为最值,然后解方程求t 即可.【详解】(1)由题意得0ππ32π5π3π622πm n p ωϕωϕωϕωϕωϕ+=⎧⎪⎪+=⎪⎪+=⎨⎪⎪+=⎪⎪+=⎩,解得2π6π127π1213π12m n p ωϕ=⎧⎪⎪=-⎪⎪⎪=⎨⎪⎪=⎪⎪=⎪⎩,所以π12m =,712n =π,1312p =π.(2)由题意得sin 01πsin 62A k A k +=⎧⎪⎨+=⎪⎩,解得51A k =⎧⎨=⎩,所以()5sin 216f x x ⎛⎫=-+ ⎪⎝⎭π.(3)由题意得()5sin 2216g x x t ⎛⎫=+-+ ⎪⎝⎭π,因为()g x 为偶函数,所以()05sin 2166g t ⎛⎫=-+= ⎪⎝⎭π或()04g =-,即sin 216t ⎛⎫-=± ⎪⎝⎭π,即2,62t k k -=+∈πππZ ,解得,32k t k =+∈ππZ ,因为0t >,所以当0k =时,t 最小,最小为π3.19.(1)2π3B =(2)(Ⅰ)见解析;(Ⅱ)6-【分析】(1)由正弦定理和余弦定理得到1cos 2B =-,得到2π3B =;(2)(Ⅰ)选择①②和①③求出边长均不合要求,选择②③,得到ABC V 存在且唯一,并求出5c =,7b =,得到sin A (Ⅱ)取AC 的中点H ,推出22PA PC PH CH ⋅=- ,并得到点P 与N 重合时,PH 最大值为52,并求出λ的最大值.【详解】(1)222sin sin sin sin sin 0A C B A C +-+=,由正弦定理得2220a c b ac +-+=,故2221cos 222a cb ac B ac ac +--===-,因为()0,πB ∈,所以2π3B =,(2)(Ⅰ)选择①②,222222030a c b ac a b c c ⎧+-+=⎨-+-=⎩,解得30ac c +=,又3a =,所以60c =,解得0c =,此时ABC V 不存在,选择①③,222222030a c b ac a b c c ⎧+-+=⎨-+-=⎩,解得30ac c +=,又0c >,故3a =-,不合要求,此时ABC V 不存在,选择②③,1sin 2ABC S ac B == 21π3n 23si c ⨯=5c =,又3a =,2220a c b ac +-+=,故2925150b +-+=,解得7b =,由于357+>,故满足ABC V 存在且唯一,由正弦定理得sin sin a b A B =,即372πsin sin 3A =,解得sin A ,(Ⅱ)取AC 的中点H ,连接PH ,则2PA PC PH += ,2PA PC CH -= ,两式平方后相减得22PA PC PH CH ⋅=- ,其中72CH = ,当点P 与M 重合或与N 重合时,PH 最大,当点P 与M 重合时,1322PH a == ,当点P 与N 重合时,1522PH c == ,故PH 最大值为52PH = ,故22PA PC PH CH λ=⋅=- 最大值为2549644-=-.20.(1)1个(2)(],1-∞-(3)证明见解析【分析】(1)先求定义域,转变为求1()e ln x k x x -=+的零点个数,求导,根据单调性与零点的存在性定理即可求;(2)任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-,可转化为()()12max max 2f x g x ''≤-,则求出()1max f x ',()2max g x '即可求出实数a 的取值范围;(3)指对缩放不等式可知()1e 11x x x -≥-+=,1ln 1x x≥-(需证明),则可得12e ln 1x x x x x x -+≥+-,则不等式可证.【详解】(1)由()1e ln x g x x x x -=+,定义域为0+∞(,),()y g x =的零点等价于1()e ln x k x x -=+的零点,11()e 0x k x x -'=+>,所以()y k x =在(0,)+∞上单调递增,又11e 1(1)10,()e 10ek k -=>=-<,所以()y k x =在1(,1)e上只有一个零点,所以()y k x =的零点个数为1个,则()y g x =的零点个数也为1个.(2)因为()321132f x x x ax =++,所以()221124f x x x a x a ⎛⎫'=++=++- ⎪⎝⎭,所以()f x '在区间(]0,1上单调递增,故()()max 12f x f a ''==+.因为()1eln x g x x x x -=+,所以()()111e e ln 11e ln 1x x x g x x x x x ---'=+++=+++.令()()11e ln 1x h x x x -=+++,则()()112e x h x x x-'=++,又(]0,1x ∈,所以()0h x '>,故()g x '在区间(]0,1上单调递增,所以()()max 13g x g ''==.又对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-,所以()()max max 2f x g x ''≤-,即232a +≤-,解得1a ≤-,故实数a 的取值范围为(],1-∞-.(3)令()1e -=-x s x x ,0x >,则()1e 1-'=-x s x .令()0s x '=,解得1x =,则当()0,1x ∈时,()0s x '<,()s x 单调递减;当()1,x ∈+∞时,()0s x '>,()s x 单调递增,所以()()10s x s ≥=,即1e x x -≥(当且仅当1x =时,等号成立).令()1ln 1F x x x =+-,则()22111x F x x x x-'=-=.令()0F x '=,解得1x =,则当()0,1x ∈时,()0F x '<,()F x 单调递减;当()1,x ∈+∞时,()0F x '>,()F x 单调递增,所以()()10F x F ≥=,即1ln 1x x≥-+(当且仅当1x =时,等号成立),故11e ln 1x x x x-+≥-+(当且仅当1x =时,等号成立).又0x >,所以12e ln 1x x x x x x -+≥+-.因为1a ≤-,所以221x x x x a +-≥++,故12e ln x x x x x x a -+≥++,即()()'≥g x f x .21.(1)100010001(2)n 的最小值为3(3)证明过程见解析【分析】(1)按照题意进行求解即可;(2)先得到T ',分析得到T '的对称性和奇偶性质,当1n =,2n =时,不满足要求,3n =时,取变换111213:,,ϕϕϕψ,得到答案;(3)设A 是所有优变换的集合,B 是所有数表的集合,构造:f A B →,证明A 中的优变换和B 中数表为一一对应关系,证明出数表中的数据都可通过变换单独被改变,从而证明出结论.【详解】(1)0T 为000000000()1110T T ϕ=,故1T 为110100000()2221T T ϕ=,故2T 为100011010()3332T T ϕ=,故()30T T =ψ为100010001(2)T '为010111000由题意得,1113223133,,,,ϕϕϕϕϕ均改变了表格中的奇数个数据,定义为奇操作,12212332,,,ϕϕϕϕ均改变了表格中的偶数个数据,定义为偶操作,两次同样的操作,表格中数据不变,例如1111:,ϕϕψ不改变表格中数据,故n 的最大值为9,且变换满足交换律,例如1112:,ϕϕψ和1211:,ϕϕψ,结果相同,观察到T '是关于122232,,ϕϕϕ变换所在直线对称的,故变换也要关于这条直线轴对称,T '中有4个1,故相对于0T 改变了4个数,若1n =,通过验证,发现不能得到T ',若2n =,结合对称性和奇偶性,有1113:,ϕϕψ,2123:,ϕϕψ,3133:,ϕϕψ,1232:,ϕϕψ四种变换,经过验证,均不满足,若3n =,结合对称性和奇偶性,不妨取变换111213:,,ϕϕϕψ,()1110T T ϕ=,故1T 为110100000()2121T T ϕ=,故2T 为001110000()3132T T ϕ=,故()30T T =ψ为10111故n 的最小值为3;(3)设A 是所有优变换的集合,则A 中的优变换的个数为92,B 是所有数表的集合,则B 中的数表的个数为92,构造:f A B →,下面证明A 中的优变换和B 中数表为一一对应关系,由于,A B 中元素个数相同,要证每种变换都能等价变换为唯一的优变换,只需证每个数表都能通过变换得到,由(2)可知,11121322:,,,ϕϕϕϕψ可以得到以下数表,000000010由对称性可知,12212332,,,a a a a 可以单独被改变,又经过11:ϕψ变换得到110100000又1221,a a 可单独被改变,故可得到100000000即11a 可单独被改变,同理经过变换133133,,a a a 可单独被改变,经过22:ϕψ变换得到:111010又经过变换,12212332,,,a a a a 可单独被改变,可得到000010000故任给一个数表(){}{}:,0,1,,1,2,3ij ij T a a i j ∈∈,存在唯一的一个“优变换”ψ,使得()0T T =ψ.【点睛】新定义问题,要充分发掘题目中信息,将复杂问题抽丝剥茧,化难为简.(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东师大附中2011届高三第七次质量检测数学试题(文科)1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟,考试结束后,将答题纸和答题卡一并交回.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号;填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤,在试卷上作答无效.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合U={1,2,3,4},A={1},B={2,4},则()U C A B =( )A. {1}B. {2,4}C. {2,3,4}D. {1,2,3,4} 2.复数1iz i=+在复平面内对应点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左 面、右面”表示,如图是一个正方体的表面展开图,若图中“努” 在正方体的后面,那么这个正方体的前面是( ) A. 定 B. 有 C. 收 D. 获 4.为积极倡导“学生每天锻炼一小时”的活动,某学校举 办了一次以班级为单位的广播操比赛,9位评委给高三.1 班打出的分数如茎叶图所示,统计员在去掉一个最高分 和一个最低分后,算得平均分为91,复核员在复核时, 发现有一个数字(茎叶图中的x )无法看清,若记分员计 算无误,则数字x 应该是( )A. 2B. 3C. 4D. 5 5. 函数()sin()f x A x ωϕ=+(其中π0,||2A ϕ><)的图 象如图所示为了得到()f x 的图象,则只要将()sin 2g x x =的图像( )A. 向右平移π12个单位长度 B. 向右平移π6个单位长度C. 向左平移π12个单位长度 D. 向左平移π6个单位长度6. 已知函数2()2f x x bx =+的图象在点(0,(0))A f 处的切线L 与直线30x y -+=平行,若数列1()f n ⎫⎧⎨⎬⎩⎭的前n 项和为n S ,则2011S 的值为( )A. 2012 2011B.20102011C.20132012D.201120127. 已知2()4f x x x=-,则(sin)f x的最小值为()A. -5B. -4C. -3D. 08. 设O为坐标原点,A(1,1),若点B(x,y)满足2210101x yxy⎧+≥⎪≤≤⎨⎪≤≤⎩,则OA OB⋅取得最小值时,点B的个数是()A. 1B. 2C. 3D. 无数个9. 某公司租地建仓库,每月土地占用费1y与仓库到车站的距离成反比,而每月库存货物费2y与到车站的距离成正比,如果在距离车站12公里处建仓库,这两项费用1y和2y分别为3万元和12万元,那么要使这两项费用之和最小,仓库应建在离车站()A. 5公里处B. 6公里处C. 7公里处D. 8公里处10. 设()f x是定义在R上的奇函数,当0x>时,()2xf x e=-,则()f x的零点个数是()A. 0个B. 1个C. 2个D. 3个11. 设双曲线22221(0,0)x ya ba b-=>>的离心率为2e=,右焦点为(,0)f c,方程20ax bx c--=的两个实根分别为1x和2x,则点P(1x,2x)()A. 在圆228x y+=外 B. 在圆228x y+=上C. 在圆228x y+=内 D. 不在圆228x y+=内12.已知函数()y f x=的定义域是R,若对于任意的正数a,函数g(x)=f(x)-f(x-a)都是其定义域上的减函数,则函数()y f x=的图象可能是()二、填空题:本大题共4个小题,每小题4分,共16分.请把答案填在答题纸的相应位置.13.已知sin π 0()(-1)+1 >0x x f x f x x ≤⎧=⎨⎩,则5()6f 的值为 .14.按右图所示的程序框图运算,则输出S 的值是 .15. 如图,矩形的长为6,宽为3,在矩形内随机地撒300颗黄豆,数得落在影阴部分的黄豆为125颗,则我们可以估计出影阴部分的面积约为 . 16. 下列命题中:①命题“2R,0x x ∀∈≥”的否定是“2,0x R x ∃∈≤”; ②线性相关系数r 的绝对值越接近于1,表明两个变量线性相关程度越强;③若,//,//;n a m n m a ⊂则 ④ “25a =”是“直线230ax y a ++=与直线3(1)70x a y a +-+-=相互垂直”的充要条件.其中真命题的序号是 .(请填上所有真命题的序号)三、解答题:本大题共6个小题,满分74分,解答应写出必要的文字说明、证明过程或演算步骤.请将解答过程写在答题纸的相应位置. 17. (本题满分12分)已知函数2()3sin 22cos 1f x x x =++(Ⅰ)求函数()f x 的最小正周期和最小值; (Ⅱ)设ABC的内角,,A B C对边分别为,,,3,()3,(sin ,1)a b c c f C m A ===-且若与(2,sin )n B =垂直,求,a b 的值.18. (本题满分12分)为迎接建党90周年,某班开展了一次“党史知识 竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛 后,把成绩(满分为100分,分数均匀整数)进 行统计,制成如右图的频率分布表: (Ⅰ)求,,,a b c d 的值; (Ⅱ)若得分在之间的有机会进入决赛, 已知其中男女比例为2∶3,如果一等奖只有两名, 求获得一等奖的全部为女生的概率.19. (本题满分12分)如图所示,在矩形ABCD 中,4,2,AB AD E CD ==是的中点,O 为AE 的中点,以AE 为折痕将ADE 向上折起,使D 到P 点位置,且,PC PB F =是BP 的中点.(Ⅰ)求证:CF//面APE ; (Ⅱ)求证:.PO ABCE ⊥面20. (本题满分12分)已知数列{}n a 的前n 项的和22n S n n =+,数列{}n b 是正项等比数列,且满足1133112,()a b b a a b =-=.(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记n n n c a b =⋅,求数列{}n c 的前n 项的和.21. (本题满分12分)已知函数:()ln 3(0)f x x ax a =--≠ (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若对于任意的[1,2]a ∈,若函数23()[2()]2x g x x m f x '=+-在区间(a,3)上有最值,求实数m 的取值范围.22.(本题满分14分)直线:(1)l y k x =-过已知椭圆2222:1x y C a b+=经过点(0,离心率为12,经过椭圆C 的右焦点F 的直线l 交椭圆于A 、B 两点,点A 、F 、B 在直线x=4上的射影依次为点D 、K 、E.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 交y 轴于点M ,且,MA AF MB BF λμ==,当直线l 的倾斜角变化时,探求λμ+的值是否为定值?若是,求出λμ+的值,否则,说明理由;(Ⅲ)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.文科参考答案一、选择题二、填空题13. 1214. 63 15.15216. ②④三、解答题17. 解:(Ⅰ)π()2cos222sin(2)26f x x x x=++=++……………………2分令πππππ2π22π,ππ26236k x k k x k -+≤+≤+-+≤≤+得, ∴函数()f x 的单调递增区间为ππ[π,π],z,36k k k -++∈………………………4分(Ⅱ)由题意可知,ππ1()2sin(2)23,sin(2),662f C C C =++=∴+=πππ5π0π,2C+2C+,06666C C <<∴===或即(舍)或π3C =………………6分(sin ,1)(2,sin )m A n B =-=与垂直,2sin sin 0,A B a b ∴-==即2…………8分22222π2cos33c a b ab a b ab =+-=+-=②……………………………10分由①②解得,1, 2.a b ==………………………………………………………………12分 18.(Ⅰ)25500.15,0.5,5,0.150a b c d =⨯=====…………………………………4分 (Ⅱ)把得分在之间的五名学生分别计为“男甲,男乙,女甲,女乙,女丙”,则事件“一等奖只有两名”包含的所有事件为(男甲,男乙),(男甲,女甲),(男甲,女乙),(男甲,女丙),(男乙,女甲),(男乙,女乙),(男乙,女丙),(女甲,女乙),(女甲,女丙),(女乙,女丙),共10个基本事件,…………………………8分 事件“获得一等奖的全部为女生”包含的所有事件为(女甲,女乙),(女甲,女丙), (女乙,女丙),共3个基本事件,……………………………………………10分 获得一等奖的全部为女生的概率310P =………………………………………12分 19.解:(Ⅰ)取AB 中点G ,连接GF ,GC ,//,,EC AB EC AB =∴四边形AECG 为平行四边形,//,AE GC ∴………………………………………………………………………2分 在ABP 中,GF//AP…………………3分 又,GF GC G AE AP A ==所以平面APE//平面FGC………………5分 又FC FGC ⊂平面所以,CF//面APE……………………6分 (Ⅱ),PA PE OA OE PO AE ==∴⊥ 取BC 的中点H ,连OH ,PH , //,OH AB OH BC ∴∴⊥因为,PB PC BC PH =∴⊥所以BC POH ⊥面从而BC PO ⊥………………………………………………………………………10分 又BC 与PO 相交,可得PO ABCE ⊥面…………………………………………12分20. 解(1)数列{}n a 前n 项的和22n S n n =+121(N,2)n n n a S S n n n -∴=-=+∈≥……………………………………2分又13,n a S ==所以数列{}n a 的通项公式为*21()n a n n N =+∈………………………………3分因为数列{}n b 是正项等比数列,311311311311,4,,224b b a a a b a a ==-=∴==-……………………………………4分 公比为12,……………………………………………………………………………5分 数列{}n b 的通项公式为*13113()(N )222n n n b n -=⋅=⋅∈……………………………6分(2)所以13(21)(),2nn c n =+设数列{}n c 的前n 项的和为n T2113[35()22Tn =⋅+⋅+ (1)(21)()]2n n ++⋅231113[3()5()222n T =⋅+⋅+…+111(21)()(21)()]22n n n n +-⋅-+⋅ 231111(1)3{32[()()2222n T -=⋅+++…+111()](21)()}22n n n +-+⋅21111()(1())111223{32[](21)()}122212n n n T n -+-=⋅+-+⋅-115(615)()2n n T n ∴=-+⋅…………………………………………………………12分21. (Ⅰ)由已知得()f x 的定义域为(0,)+∞,且1()f x a x'=-,……………………2分当0a >时,()f x 的单调增区间为1(0,)a ,减区间为1(,)a+∞;当0a <时,()f x 的单调增区间为(0,)+∞,无减区间;…………………………6分(Ⅱ)2332()[2()](),22x mg x x m f x x a x x '=+-=++- 2()3(2)1,g x x m a x '∴=++-()g x 在区间(,3)a 上有最值,()g x ∴在区间(,3)a 上总不是单调函数,又()0(0)1(3)0g a g g '<⎧'=-∴⎨'>⎩ …………………………………………………………9分由题意知:对任意22[1,2],()3(2)1510a g a a m a a a ma '∈=++⋅-=+-<恒成立,21515,a m a a a -∴<=-因为[1,2]a ∈,所以192m ∴<-, 对任意恒成立,323m ∴>- 321932m ∴-<<-………………………………12分 22. 解:(Ⅰ)易知1,2c b e a ===因为222a b c =+ 224,1,a c ==∴椭圆C 的方程22143x y +=………………………………3分 (Ⅱ)易知直线l 的斜率存在,设直线l 方程(1),y k x =-且l 与y 轴交于M (0,-1),设直线l 交椭圆于1122(,),(,)A x y B x y 由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)84120k x k x k +-+-= 221212228412,3434k k x x x x k k -∴+=⋅=++………………………………6分 又由1111,(,)(1,),MA AF x y x y λλ=∴=--11,1x x λ∴=-同理221x x μ∴=-…………………………………………8分 12121212121228111()3x x x x x x x x x x x x λμ+-⋅∴+=+==----++⋅ 所以当直线l 的倾斜角变化时,λμ+的值为定值83-;…………………………10分 (Ⅲ)当直线l 斜率不存在时,直线l X ⊥轴,则ABED 为矩形,由对称性知,AE 与BD 相交FK 的中点5,0,2N ⎛⎫⎪ ⎭⎝ 猜想,当直线l 的倾斜角变化时,AE 与BD 相交于定点5,02N ⎛⎫⎪ ⎭⎝……………11分 证明:由(Ⅱ)知1122(,),(,)A x y B x y ,12(4,),(4,)D y E y ∴当直线l 的倾斜角变化时,首先证直线AE 过定点5,0,2N ⎛⎫⎪ ⎭⎝2121:(4)4AE y y l y y x x --=⋅-- 当52x =时,21122121132(4)3()422(4)y y x y y y y y x x --⋅--⎛⎫=+⋅-=⎪ --⎭⎝ 12211221112(4)(1)3()2(4)(1)3()2(4)2(4)x k x k x x x k x k x x x x -⋅----⋅---==-- 21211825()02(4)k kx x k x x x --++==- ∴点5,02N ⎛⎫⎪ ⎭⎝在直线AE l 上,同理可证,点5,02N ⎛⎫⎪ ⎭⎝也在直线BD l 上; ∴当m 变化时,AE 与BD 相交于定点5,02⎛⎫⎪ ⎭⎝……………………。

相关文档
最新文档