中考数学重难点突破专题二:作图问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学重难点突破专题二:作图问题

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

专题二作图问题

类型1尺规作图

1.(2017·兰州)在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程:

已知:直线l和l外一点P.

求作:直线l的垂线,使它经过点P.

作法:如图:(1)在直线l上任取两点A、B;

(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;

(3)作直线PQ.

参考以上材料作图的方法,解决以下问题:

(1)以上材料作图的依据是:______________________________________________

(2)已知:直线l和l外一点P.

求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)

解:(1)到线段两端点距离相等的点在这条线段的垂直平分线上

(2)如图⊙P 即为所求.

2.(2017·六盘水)如图,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN =30°,B 为AN ︵的中点,P 是直径MN 上一动点.

(1)利用尺规作图,确定当PA +PB 最小时P 点的位置(不写作法,但要保留作图痕迹).

(2)求PA +PB 的最小值.

解:(1)如图1所示,点P 即为所求;

(2)由(1)可知,PA +PB 的最小值即为A′B 的长,连接OA′、OB 、OA ,∵A′点为点A 关直

线MN 的对称点,∠AMN =30°,∴∠AON =∠A′ON =2∠AMN =2×30°=60°,又∵B 为AN

︵的中点,∴AB ︵=BN ︵,∴∠BON =∠AOB =12∠AON =30°,∴∠A′OB =60°+30°=90°,又

∵MN =4,∴OA′=OB =12MN =12×4=2.∴在Rt △A′OB 中,A′B =22,∴PA +PB 的最小值

为2 2.

3.(2017·舟山)如图,已知△ABC ,∠B =40°.

(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);

(2)连接EF ,DF ,求∠EFD 的度数.

解:(1)如图1,⊙O 即为所求.

(2)如图2,连接OD ,OE ,∴OD ⊥AB ,OE ⊥BC ,∴∠ODB =∠OEB =90°,∵∠B =40°,∴∠DOE =140°,∴∠EFD =70°.

4.(2017·海宁模拟)小明在“课外新世界”中遇到这样一道题:如图1,已知∠AOB =30°与线段a ,你能作出边长为a 的等边三角形△COD 吗小明的做法是:如图2,以O 为圆心,线段a 为半径画弧,分别交OA ,OB 于点M ,N ,在弧MN 上任取一点P ,以点M 为圆心,MP 为半径画弧,交弧CD 于点C ,同理以点N 为圆心,NP 为半径画弧,交弧CD 于点D ,连结CD ,即△COD 就是所求的等边三角形.

(1)请写出小明这种做法的理由;

(2)在此基础上请你作如下操作和探究(如图3):连结MN ,MN 是否平行于CD 为什么

(3)点P 在什么位置时,MN ∥CD 请用小明的作图方法在图1中作出图形(不写作法,保留作图痕迹).

解:(1)如图2,连结OP ,由题意可得MC ︵=MP ︵,∴∠COM =∠POM ,PN ︵=DN ︵,

∴∠PON =∠DON ,∴∠POM +∠PON =∠COM +∠DON =30°,∴∠COD =2∠MON =60°,∴△OCD 是等边三角形;(2)不一定,只有当∠COM =15°,CD ∥MN ,理由:∵∠COM =15°,∠MON =30°,∴∠CON =45°,∵∠C =60°,∴∠OEC =75°,∵ON =

OM ,∴∠ONM =∠OMN =75°,∴∠OEC =∠ONM ,∴CD ∥MN ;(3)当P 是MN ︵的中点时,

MN∥CD;如图3所示.

类型2网格作图和其他

5.(2017·枣庄)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为( B )

A.22<r<17 <r<32

<r<5 D.5<r<29

解:给各点标上字母,如图所示.AB=22+22=22,AC=AD=42+12=17,AE =32+32=32,AF=52+22=29,AG=AM=AN=42+32=5,∴17<r<32时,除点A外恰好有3个在圆内.

6.我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.

(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B,其相似比为__1∶2__.在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有__121__个小三角形;

(2)若△A是正三角形,你认为通过复制能形成的正多边形是__正三角形或正六边形__;

(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.

解析:(1)△A-△A1是经过旋转所得,△A1-△A2是经过旋转所得,△A2-△A3是经过平移所得.由于△B是由4个△A组成,因此S△B=4S△A,因此相似比为2∶1.当△C的一条边上有11个小三角形时,那么它们的相似比为11∶1,面积比121∶1,即△C中有121个这样的小三角形;故答案为:1∶2,121.(2)正三角形或正六边形.(3)如图.

7.阅读理解:

如图①,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把点E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把点E叫做四边形ABCD的边AB上的强相似点.

解决问题:

(1)如图①,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相

相关文档
最新文档