孙训方材料力学第五版答案
孙训方材料力学(I)第五版课后习题答案完整版
解: (1)
1 fdx F , 有 kl 3 F 3 3 k 3F / l
l
0
FN ( x1 ) 3Fx 2 / l 3dx F ( x1 / l )3
0
l
FN 3 cos 45 0 FN 1 F2 FN 3 sin 45 F 0 F 0.45 F 0.15 0 N1 F1 60 KN , F1 401KN , F1 0 KN , 由胡克定理, FN 1l 60 107 0.15 l1 3.87 EA1 210 109 12 10 6 l2 FN 2l 40 107 0.15 4.76 EA2 210 109 12 10 6
从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
(2)
V F Ay F1 l1 +F2 l2 0 Ay 20.33 ()
2-16 简易起重设备的计算简图如图所示。已知斜杆 AB 用两根 63mm×40mm×4mm 不等边角钢 组成,钢的许用应力[σ]=170MPa。试问在提起重量为 P=l5kN 的重物时,斜杆 AB 是否满足强度 条件? 解:1.对滑轮 A 进行受力分析如图: ∑FY=0; FNABsin300=2F,得,FNAB=4F=60kN 2.查附录的 63mm×40mm×4mm 不等边角钢的面积 A=4.058×2=8.116cm² 由正应力公式: σ=FNAB /A=60×10³/(8.116×10-4)=73.9×106 Pa=73.9MPa<[σ] 所以斜杆 AB 满足强度条件。 2-17 简单桁架及其受力如图所示,水平杆 BC 的长度 l 保持不变,斜杆 AB 的长度可随夹角 的变 化而改变。两杆由同一种材料制造,且材料的许用拉应力和许用压应力相等。要求两杆内的应力 同时达到许用应力,且结构的总重量为最小时,试求: (1)两杆的夹角; (2)两杆横截面面积的比值。
孙训方材料力学第五版课后习题答案详解
孙训⽅材料⼒学第五版课后习题答案详解Microsoft Corporation孙训⽅材料⼒学课后答案[键⼊⽂档副标题]lenovo[选取⽇期]第⼆章轴向拉伸和压缩2-1? 2-2? 2-3? 2-4? 2-5? 2-6? 2-7? 2-8? 2-9 下页2-1? 试求图⽰各杆1-1和2-2横截⾯上的轴⼒,并作轴⼒图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
返回2-2 ?试求图⽰等直杆横截⾯1-1,2-2和3-3上的轴⼒,并作轴⼒图。
若横截⾯⾯积,试求各横截⾯上的应⼒。
解:返回2-3?试求图⽰阶梯状直杆横截⾯1-1,2-2和3-3上的轴⼒,并作轴⼒图。
若横截⾯⾯积,,,并求各横截⾯上的应⼒。
解:返回2-4? 图⽰⼀混合屋架结构的计算简图。
屋架的上弦⽤钢筋混凝⼟制成。
下⾯的拉杆和中间竖向撑杆⽤⾓钢构成,其截⾯均为两个75mm×8mm的等边⾓钢。
已知屋⾯承受集度为的竖直均布荷载。
试求拉杆AE和EG横截⾯上的应⼒。
解:=1)? 求内⼒取I-I分离体?得? (拉)取节点E为分离体,故(拉)2)求应⼒75×8等边⾓钢的⾯积A=11.5 cm2(拉)(拉)2-5(2-6)? 图⽰拉杆承受轴向拉⼒,杆的横截⾯⾯积。
如以表⽰斜截⾯与横截⾯的夹⾓,试求当,30,45,60,90时各斜截⾯上的正应⼒和切应⼒,并⽤图表⽰其⽅向。
解:2-6(2-8) ?⼀⽊桩柱受⼒如图所⽰。
柱的横截⾯为边长200mm的正⽅形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的⾃重,试求:(1)作轴⼒图;(2)各段柱横截⾯上的应⼒;(3)各段柱的纵向线应变;(4)柱的总变形。
解:? (压)(压)返回2-7(2-9) ?⼀根直径、长的圆截⾯杆,承受轴向拉⼒,其伸长为。
试求杆横截⾯上的应⼒与材料的弹性模量E。
解:2-8(2-11) ?受轴向拉⼒F作⽤的箱形薄壁杆如图所⽰。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
材料力学第五版孙训方版课后习题答案
从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
(2)
V F Ay F1 l1 +F2 l2 0 Ay 20.33 ( )
[习题 2-17] 简单桁架及其受力如图所示,水平杆 BC 的长度 l 保持不变,斜杆 AB 的长度 可随夹角 的变化而改变。 两杆由同一种材料制造, 且材料的许用拉应力和许用压应力相等。
1000 tan 4.7867339 o 83.7(mm)
(3)求荷载 F 的值 以 C 结点为研究对象,由其平稀衡条件可得:
Y 0 : 2N sin a P 0
P 2 N sin a 2A sin
2 735 0.25 3.14 12 sin 4.787 0 96.239( N )
1 18117 2 1414 256212 1600 ( ) 1.366(mm) 故: A 35000 210000 113 210000 177
[习题 2-13] 图示 A 和 B 两点之间原有水平方向的一根直径 d 1mm 的钢丝, 在钢丝的中点 C 加一竖向荷载 F。 已知钢丝产生的线应变为 0.0035 , 其材料的弹性模量 E 210GPa , 钢丝的自重不计。试求: (1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律) ; (2)钢丝在 C 点下降的距离 ; (3)荷载 F 的值。 解: (1)求钢丝横截面上的应力
N AB cos N BC 0
N BC N AB cos
(2)求工作应力
F cos F cot sin
2-17
AB
BC
材料力学第五版课后题答案(孙训芳)
材料⼒学第五版课后题答案(孙训芳)材料⼒学(I)第五版(孙训芳编)⽢肃建筑职业技术学院长安⼤学⼟⽊⼯程材料⼒学复习材料材料⼒学第五版课后答案(孙训芳编)4-1试求图⽰各梁中指定截⾯上的剪⼒和弯矩 a (5)=h (4)001100110002222200022132241111223121140,222233RA RB S S q F F a q a q F q a a q aa M q a q a q aF M q a a q a a q a ----====-==-===-=b (5)=f (4)4-2试写出下列各梁的剪⼒⽅程和弯矩⽅程,并作剪⼒图和弯矩图 a (5)=a (4)b(5)=b(4)f(5)=f(4)4-3试利⽤载荷集度,剪⼒和弯矩间的微分关系做下列各梁的弯矩图和剪⼒e和f题)(e)(f)(h)4-4试做下列具有中间铰的梁的剪⼒图和弯矩图。
4-4 (b) 4-5 (b)4-5.根据弯矩、剪⼒与荷载集度之间的关系指出下列玩具和剪⼒图的错误之处,并改正。
4-6.已知简⽀梁的剪⼒图如图所⽰,试做梁的弯矩图和荷载图,梁上五集中⼒偶作⽤。
4-6(a) 4-7(a)4-7.根据图⽰梁的弯矩图做出剪⼒图和荷载图。
4-8⽤叠加法做梁的弯矩图。
4-8(b) 4-8(c)4-9.选择合适的⽅法,做弯矩图和剪⼒图。
4-9(b) 4-9(c)4-104-14.长度l=2m的均匀圆⽊,欲锯做Fa=0.6m的⼀段,为使锯⼝处两端⾯开裂最⼩,硬是锯⼝处弯矩为零,现将圆⽊放在两只锯⽊架上,⼀只锯⽊架放在圆⽊⼀段,试求另⼀只锯⽊架应放位置。
x=0.4615m4-184-19M=30KN 4-214-234-254-284-294-334-364-355-25-35-75-15。
(精品)材料力学第五版(孙训方)课后题答案
材料力学第五版课后答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F kF l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(l xr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+-du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100udu d d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
材料力学第五版课后题答案(孙训芳)22页word文档
式中, ,故:
[习题2-11]图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量 ,已知 , , , 。试求C点的水平位移和铅垂位移。
2-11图
解:(1)求各杆的轴力
以AB杆为研究对象,其受力图如图所示。
因为AB平衡,所以
由对称性可知, ,
(2)求C点的水平位移与铅垂位移。
A点的铅垂位移:
解:墩身底面的轴力为:
2-3图
墩身底面积:
因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
[习题2-7]图示圆锥形பைடு நூலகம்受轴向拉力作用,试求杆的伸长。
2-7图
解:取长度为 截离体(微元体)。则微元体的伸长量为:
因此,
[习题2-10]受轴向拉力F作用的箱形薄壁杆如图所示。已知该材料的弹性常数为 ,试求C与D两点间的距离改变量 。
B点的铅垂位移:
1、2、3杆的变形协(谐)调的情况如图所示。由1、2、3杆的变形协(谐)调条件,并且考虑到AB为刚性杆,可以得到
C点的水平位移:
C点的铅垂位移:
[习题2-12]图示实心圆杆AB和AC在A点以铰相连接,在A点作用有铅垂向下的力 。已知杆AB和AC的直径分别为 和 ,钢的弹性模量 。试求A点在铅垂方向的位移。
(5)求两杆横截面面积的比值
因为: , ,
所以:
[习题2-18]一桁架如图所示。各杆都由两个等边角钢组成。已知材料的许用应力 ,试选择AC和CD的角钢型号。
解:(1)求支座反力
由对称性可知,
(2)求AC杆和CD杆的轴力
以A节点为研究对象,由其平
衡条件得:
2-18
以C节点为研究对象,由其平衡条件得:
(3)由强度条件确定AC、CD杆的角钢型号
材料力学第五版孙训方版课后习题答案
[习题2-2]一打入基地内的木桩如以下图,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如以下图。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向紧缩构件,因此其底面上的正应力均匀散布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ [习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体〔微元体〕。
那么微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如以下图。
孙训方材料力学(I)第五版课后习题答案完整版
第二章轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
2-2 一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx²(k为常数),试作木桩的轴力图。
解:由题意可得:⎰0lFdx=F,有1/3kl ³=F,k=3F/l ³F N (x 1)=⎰1x 3Fx ²/l ³dx=F(x 1 /l) ³2-3 石砌桥墩的墩身高l=10m ,其横截面面尺寸如图所示。
荷载F=1000KN ,材料的密度ρ=2.35×10³kg/m ³,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为 的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
材料力学答案
材料力学第五版孙训方版课后习题答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(l xr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
孙训方材料力学第五版课后习题答案解析详细讲解
WORD格式可编辑Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
孙训方材料力学第五版答案
=(向下)(向下)为保证,点A移至,由图中几何关系知;返回第三章扭转3-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。
试作轴的扭矩图。
解:kNkNkNkN返回3-2(3-3)圆轴的直径,转速为。
若该轴横截面上的最大切应力等于,试问所传递的功率为多大?解:故即又故返回3-3(3-5)实心圆轴的直径mm,长m,其两端所受外力偶矩,材料的切变模量。
试求:(1)最大切应力及两端截面间的相对扭转角;(2)图示截面上A,B,C三点处切应力的数值及方向;(3)C点处的切应变。
解:=返回3-4(3-6)图示一等直圆杆,已知,,,。
试求:(1)最大切应力;(2)截面A相对于截面C的扭转角。
解:(1)由已知得扭矩图(a)(2)返回3-5(3-12)长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。
实心轴直径为d;空心轴外径为D,内径为,且。
试求当空心轴与实心轴的最大切应力均达到材料的许用切应力),扭矩T相等时的重量比和刚度比。
解:重量比=因为即故故刚度比==返回3-6(3-15) 图示等直圆杆,已知外力偶矩,,许用切应力,许可单位长度扭转角,切变模量。
试确定该轴的直径d。
解:扭矩图如图(a)(1)考虑强度,最大扭矩在BC段,且(1)(2)考虑变形(2)比较式(1)、(2),取返回3-7(3-16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。
外力偶矩,,。
已知:,,。
试校核该轴的强度和刚度。
解:扭矩图如图(a)(1)强度=,BC段强度基本满足=故强度满足。
(2)刚度BC段:BC段刚度基本满足。
AE段:AE段刚度满足,显然EB段刚度也满足。
返回3-8(3-17) 习题3-1中所示的轴,材料为钢,其许用切应力,切变模量,许可单位长度扭转角。
材料力学第五版-孙训方版-课后习题答案
习题22一打入基地内的木桩如图所示杆轴单位长度的摩擦力fkx2试做木桩的后力图。
解由题意可得3302331103/3//llNfdxFklFkFlFxFxldxFxl1有3 习题23 石砌桥墩的墩身高ml10其横截面面尺寸如图所示。
荷载kNF1000材料的密度3/35.2mkg试求墩身底部横截面上的压应力。
解墩身底面的轴力为gAlFGFN 23图942.31048.935.210114.32310002kN 墩身底面积14.9114.32322mA 因为墩为轴向压缩构件所以其底面上的正应力均匀分布。
MPakPamkNAN34.071.33914.9942.31042 习题27 图示圆锥形杆受轴向拉力作用试求杆的伸长。
27图解取长度为dx截离体微元体。
则微元体的伸长量为xEAFdxld llxAdxEFdxxEAFl00 lxrrrr12122112112dxlddrxlrrr 2211222udxlddxAdxldddudxlddd22212112duddldx12222221212ududdlduuddlxAdx 因此2202100ududdEFlxAdxEFdxxEAFlllllldxlddddEFluddEFl011221021221212212212111221ddllddddEFl 1221222ddddEFl214dEdFl 习题210 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该材料的弹性常数为E试求C与D两点间的距离改变量CD。
解EAFEAF/ 式中aaaA422故EaF4 EaFaa4 EFaaa4EFaa4aaaCD12145243232 12145243232aaaDC EFEFaaCDDCCD4003.141214512145 习题211 图示结构中AB为水平放置的刚性杆杆123材料相同其弹性模量GPaE210已知ml1221100mmAA23150mmAkNF20。
试求C 点的水平位移和铅垂位移。
孙训方材料力学第五版课后习题答案详解
Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A= cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
孙训方材料力学第五版课后习题答案详细讲解
Microsoft Corporation训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
材料力学第五版(I)孙训方版课后习题答案
材料力学第五版(I)孙训方版课后习题答案材料力学第五版孙训方版课后习题答案材料力学第五版(一)孙迅芳对课后练习的回答[习题3-2]实心圆轴的直径d?100mm,长l?1m,其两端所受外力偶矩me?14kn?m,材料的切变模量g?80gpa。
试求:(1)最大剪应力和两端之间的相对旋转角;(2)图示截面上a、b、c三点处切应力的数值及方向;(3)c点处的切应变。
解:(1)计算最大切应力及两端面间的相对转角?max?mt?e。
wpwp11?d3??3.14159?1003?196349(mm3)。
3-21616式中,wp?故:?maxme14?106n?mm???71.302mpa3wp196349mm??t?l11,式中,ip??d4??3.14159?1004?9817469(mm4)。
故:gip3232t?l14000n?m?1m??0.0178254(rad)?1.02o92?124gip80?10n/m?9817469?10m??(2)求图示截面上a、b、c三点处切应力的数值及方向? A.B最大值?71.302 MPa,根据横截面上的剪应力分布规律:a、b、c三点的切应力方向如图所示。
?c??b?0.5?71.302?35.66mpa,(3)计算c点处的切应变?c?12?cg?35.66mpa?4?3?4.4575?10?0.446?10380?10mpa4-3试着利用荷载集中、剪力和弯矩之间的微分关系来绘制弯矩图和剪力E和F(以下梁的问题)1材料力学第五版孙迅芳版课后练习答案(e)(f)(h)4-8用叠加法绘制梁的弯矩图。
4-8(b)4-8(c)二材料力学第五版孙训方版课后习题答案三材料力学第五版孙训方版课后习题答案6-124材料力学第五版孙迅芳版课后练习答案[习题7-14]单元体各面上的应力如图所示。
试用应力圆的几何关系求主应力及最大切应力。
[习题7-15(a)]解:坐标平面应力:X(70,-40),y(30,-40),Z(50,0)单元体图应力圈由xy平面内应力值作a、b点,连接a、b交应力圆半径:C轴中心(50,0)[习题7-15(b)]解:坐标平面应力:X(60,40),y(50,0),Z(0,-40)单元体图应力圈轴于c点,oc=30,故应力圆圆心c(30,0)五由xz平面内应力作a、b点,连接a、b交。
孙训方材料力学第五版课后习题答案详解
Microsoft Corporation 孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A= cm2(拉)(拉)返回2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:返回2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
孙训方材料力学(I)第五版课后习题答案
第二章 轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:;; (b )解:;;(c )解: ; 。
(d) 解: 。
[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1) 求内力取I-I 分离体得(拉)取节点E 为分离体,故(拉)2) 求应力75×8等边角钢的面积 A =11.5 cm 2(拉)(拉)2-5图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π2-10 受轴向拉力F 作用的箱形薄壁杆如图所示。
孙训方材料力学(I)第五版课后习题答案完整版
1 fdx F , 有 kl 3 F 3 3 k 3F / l
l
0
FN ( x1 ) 3Fx 2 / l 3dx F ( x1 / l ) 3
0
l
FN 3 cos 45 0 FN 1 F2 FN 3 sin 45 F 0 F 0.45 F 0.15 0 N1 F1 60KN , F1 401KN , F1 0KN , 由胡克定理, FN 1l 60 10 7 0.15 l1 3.87 EA1 210 109 12 10 6 l2 FN 2l 40 107 0.15 4.76 EA2 210 109 12 10 6
2-11 图示结构中,AB 为水平放置的刚性杆,杆 1,2,3 材料相同,其弹性模量 E 210GPa ,已 知 l 1m , A1 A2 100mm 2 , A3 150mm 2 , F 20kN 。试求 C 点的水平位移和铅垂位移。
受力图 2-11 图 解: (1)求各杆的轴力 以 AB 杆为研究对象,其受力图如图所示。 因为 AB 平衡,所以
式中, l1 1000 / sin 45 1414( mm) ; l 2 800 / sin 30 1600( mm)
A1 0.25 3.14 12 2 113 mm 2 ; A2 0.25 3.14 15 2 177 mm 2
故: A
1 18117 2 1414 256212 1600 ( ) 1.366(mm) 35000 210000 113 210000 177
从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=(向下)(向下)为保证,点A移至,由图中几何关系知;返回第三章扭转3-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。
试作轴的扭矩图。
解:kNkNkNkN返回3-2(3-3)圆轴的直径,转速为。
若该轴横截面上的最大切应力等于,试问所传递的功率为多大?解:故即又故返回3-3(3-5)实心圆轴的直径mm,长m,其两端所受外力偶矩,材料的切变模量。
试求:(1)最大切应力及两端截面间的相对扭转角;(2)图示截面上A,B,C三点处切应力的数值及方向;(3)C点处的切应变。
解:=返回3-4(3-6)图示一等直圆杆,已知,,,。
试求:(1)最大切应力;(2)截面A相对于截面C的扭转角。
解:(1)由已知得扭矩图(a)(2)返回3-5(3-12)长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。
实心轴直径为d;空心轴外径为D,内径为,且。
试求当空心轴与实心轴的最大切应力均达到材料的许用切应力),扭矩T相等时的重量比和刚度比。
解:重量比=因为即故故刚度比==返回3-6(3-15) 图示等直圆杆,已知外力偶矩,,许用切应力,许可单位长度扭转角,切变模量。
试确定该轴的直径d。
解:扭矩图如图(a)(1)考虑强度,最大扭矩在BC段,且(1)(2)考虑变形(2)比较式(1)、(2),取返回3-7(3-16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。
外力偶矩,,。
已知:,,。
试校核该轴的强度和刚度。
解:扭矩图如图(a)(1)强度=,BC段强度基本满足=故强度满足。
(2)刚度BC段:BC段刚度基本满足。
AE段:AE段刚度满足,显然EB段刚度也满足。
返回3-8(3-17) 习题3-1中所示的轴,材料为钢,其许用切应力,切变模量,许可单位长度扭转角。
试按强度及刚度条件选择圆轴的直径。
解:由3-1题得:故选用。
返回3-9(3-18) 一直径为d的实心圆杆如图,在承受扭转力偶矩后,测得圆杆表面与纵向线成方向上的线应变为。
试导出以,d和表示的切变模量G的表达式。
解:圆杆表面贴应变片处的切应力为圆杆扭转时处于纯剪切状态,图(a)。
切应变(1)对角线方向线应变:(2)式(2)代入(1):返回3-10(3-19)有一壁厚为25mm、内径为250mm的空心薄壁圆管,其长度为1m,作用在轴两端面内的外力偶矩为180。
试确定管中的最大切应力,并求管内的应变能。
已知材料的切变模量。
解:3-11(3-21)簧杆直径mm的圆柱形密圈螺旋弹簧,受拉力作用,弹簧的平均直径为mm,材料的切变模量。
试求:(1)簧杆内的最大切应力;(2)为使其伸长量等于6mm所需的弹簧有效圈数。
解:,故因为故圈返回3-12(3-23)图示矩形截面钢杆承受一对外力偶矩。
已知材料的切变模量,试求:(1)杆内最大切应力的大小、位置和方向;(2)横截面矩边中点处的切应力;(3)杆的单位长度扭转角。
解:,,由表得MPa返回第四章弯曲应力4-14-24-34-44-54-64-74-84-94-10下页4-1(4-1)试求图示各梁中指定截面上的剪力和弯矩。
解:(a)(b)(c)(d)=(e)(f)(g)(h)=返回4-2(4-2) 试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图。
解:(a)(b)时时(c)时时(d)(e)时,时,(f)AB段:BC段:(g)AB段内:BC段内:(h)AB段内:BC段内:CD段内:返回4-3(4-3)试利用荷载集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。
返回4-4(4-4)试作下列具有中间铰的梁的剪力图和弯矩图。
返回4-5(4-6)已知简支梁的剪力图如图所示。
试作梁的弯矩图和荷载图。
已知梁上没有集中力偶作用。
返回4-6(4-7) 试根据图示简支梁的弯矩图作出梁的剪力图与荷载图。
返回4-7(4-15) 试作图示刚架的剪力图、弯矩图和轴力图。
返回4-8(4-18)圆弧形曲杆受力如图所示。
已知曲杆轴线的半径为R,试写出任意横截面C上剪力、弯矩和轴力的表达式(表示成角的函数),并作曲杆的剪力图、弯矩图和轴力图。
解:(a)(b)返回4-9(4-19)图示吊车梁,吊车的每个轮子对梁的作用力都是F,试问:(1)吊车在什么位置时,梁内的弯矩最大?最大弯矩等于多少?(2)吊车在什么位置时,梁的支座反力最大?最大支反力和最大剪力各等于多少?解:梁的弯矩最大值发生在某一集中荷载作用处。
,得:当时,当M极大时:,则,故,故为梁内发生最大弯矩的截面故:=返回4-10(4-21)长度为250mm、截面尺寸为的薄钢尺,由于两端外力偶的作用而弯成中心角为的圆弧。
已知弹性模量。
试求钢尺横截面上的最大正应力。
解:由中性层的曲率公式及横截面上最大弯曲正应力公式得:由几何关系得:于是钢尺横截面上的最大正应力为:返回第五章梁弯曲时的位移5-15-25-35-45-55-65-75-85-1(5-13)试按迭加原理并利用附录IV求解习题5-4。
解:(向下)(向上)(逆)(逆)返回5-2(5-14) 试按迭加原理并利用附录IV求解习题5-5。
解:分析梁的结构形式,而引起BD段变形的外力则如图(a)所示,即弯矩与弯矩。
由附录(Ⅳ)知,跨长l的简支梁的梁一端受一集中力偶M作用时,跨中点挠度为。
用到此处再利用迭加原理得截面C的挠度(向上)返回5-3(5-15) 试按迭加原理并利用附录IV求解习题5-10。
解:返回5-4(5-16) 试按迭加原理并利用附录IV求解习题5-7中的。
解:原梁可分解成图5-16a和图5-16d迭加,而图5-16a又可分解成图5-16b和5-16c。
由附录Ⅳ得返回5-5(5-18)试按迭加原理求图示梁中间铰C处的挠度,并描出梁挠曲线的大致形状。
已知EI为常量。
解:(a)由图5-18a-1(b)由图5-18b-1=返回5-6(5-19)试按迭加原理求图示平面折杆自由端截面C的铅垂位移和水平位移。
已知杆各段的横截面面积均为A,弯曲刚度均为EI。
解:返回5-7(5-25)松木桁条的横截面为圆形,跨长为4m,两端可视为简支,全跨上作用有集度为的均布荷载。
已知松木的许用应力,弹性模量。
桁条的许可相对挠度为。
试求桁条横截面所需的直径。
(桁条可视为等直圆木梁计算,直径以跨中为准。
)解:均布荷载简支梁,其危险截面位于跨中点,最大弯矩为,根据强度条件有从满足强度条件,得梁的直径为对圆木直径的均布荷载,简支梁的最大挠度为而相对挠度为由梁的刚度条件有为满足梁的刚度条件,梁的直径有由上可见,为保证满足梁的强度条件和刚度条件,圆木直径需大于。
返回5-8(5-26) 图示木梁的右端由钢拉杆支承。
已知梁的横截面为边长等于0.20m的正方形,,;钢拉杆的横截面面积。
试求拉杆的伸长及梁中点沿铅垂方向的位移。
解:从木梁的静力平衡,易知钢拉杆受轴向拉力40于是拉杆的伸长为=木梁由于均布荷载产生的跨中挠度为梁中点的铅垂位移等于因拉杆伸长引起梁中点的刚性位移与中点挠度的和,即返回第六章简单超静定问题6-16-26-36-46-56-66-76-86-96-106-116-126-136-1试作图示等直杆的轴力图。
解:取消A端的多余约束,以代之,则(伸长),在外力作用下杆产生缩短变形。
因为固定端不能移动,故变形协调条件为:故故返回6-2图示支架承受荷载各杆由同一材料制成,其横截面面积分别为,和。
试求各杆的轴力。
解:设想在荷载F作用下由于各杆的变形,节点A移至。
此时各杆的变形及如图所示。
现求它们之间的几何关系表达式以便建立求内力的补充方程。
即:亦即:将,,代入,得:即:亦即:(1)此即补充方程。
与上述变形对应的内力如图所示。
根据节点A的平衡条件有:;亦即:(2);,亦即:(3)联解(1)、(2)、(3)三式得:(拉)(拉)(压)返回6-3 一刚性板由四根支柱支撑,四根支柱的长度和截面都相同,如图所示。
如果荷载F作用在A点,试求这四根支柱各受力多少。
解:因为2,4两根支柱对称,所以,在F力作用下:变形协调条件:补充方程:求解上述三个方程得:返回6-4 刚性杆AB的左端铰支,两根长度相等、横截面面积相同的钢杆CD和EF使该刚性杆处于水平位置,如图所示。
如已知,两根钢杆的横截面面积,试求两杆的轴力和应力。
解:,(1)又由变形几何关系得知:,(2)联解式(1),(2),得,故,返回6-5(6-7) 横截面为250mm×250mm的短木柱,用四根40mm×40mm×5mm的等边角钢加固,并承受压力F,如图所示。
已知角钢的许用应力,弹性模量;木材的许用应力,弹性模量。
试求短木柱的许可荷载。
解:(1)木柱与角钢的轴力由盖板的静力平衡条件:(1)由木柱与角钢间的变形相容条件,有(2)由物理关系:(3)式(3)代入式(2),得(4)解得:代入式(1),得:(2)许可载荷由角钢强度条件由木柱强度条件:故许可载荷为:返回6-6(6-9)图示阶梯状杆,其上端固定,下端与支座距离。
已知上、下两段杆的横截面面积分别为和,材料的弹性模量。
试作图示荷载作用下杆的轴力图。
解:变形协调条件故故,返回6-7(6-10)两端固定的阶梯状杆如图所示。
已知AC段和BD段的横截面面积为A,CD段的横截面面积为2A;杆材料的弹性模量为,线膨胀系数℃-1。
试求当温度升高℃后,该杆各部分产生的应力。
解:设轴力为,总伸长为零,故==返回6-8(6-11)图示为一两端固定的阶梯状圆轴,在截面突变处承受外力偶矩。
若,试求固定端的支反力偶矩,并作扭矩图。
解:解除B端多余约束,则变形协调条件为即故:即:解得:由于故返回6-9(6-13)一空心圆管A套在实心圆杆B的一端,如图所示。
两杆在同一横截面处各有一直径相同的贯穿孔,但两孔的中心线构成一个角。
现在杆B上施加外力偶使杆B扭转,以使两孔对准,并穿过孔装上销钉。
在装上销钉后卸除施加在杆B上的外力偶。
试问管A和杆B横截面上的扭矩为多大?已知管A和杆B的极惯性矩分别为;两杆的材料相同,其切变模量为G。
解:解除Ⅱ端约束,则Ⅱ端相对于截面C转了角,(因为事先将杆B的C端扭了一个角),故变形协调条件为=0故:故:故连接处截面C,相对于固定端Ⅱ的扭转角为:=而连接处截面C,相对于固定端I的扭转角为:=应变能==返回6-10(6-15)试求图示各超静定梁的支反力。
解(a):原梁AB是超静定的,当去掉多余的约束铰支座B时,得到可静定求解的基本系统(图i)去掉多余约束而代之以反力,并根据原来约束条件,令B点的挠度,则得到原超静定梁的相当系统(图ii)。
利用的位移条件,得补充方程:由此得:由静力平衡,求得支反力,为:剪力图、弯矩图分别如图(iii),(iv)所示。