自主招生考试数学试卷及参考答案

合集下载

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,求a_5的值。

A. 13B. 15C. 17D. 19答案:A3. 计算定积分∫(0到1) x^2 dx的值。

A. 1/3B. 1/2C. 2/3D. 1答案:B4. 设A = {1, 2, 3},B = {3, 4, 5},求A∩B的值。

A. {1, 2}B. {3}C. {4, 5}D. 空集答案:B二、填空题(每题5分,共20分)5. 已知函数f(x) = 2x - 1,求f(-1)的值。

答案:-36. 计算等比数列1, 2, 4, ...的第5项。

答案:167. 已知圆的半径为5,求圆的面积。

答案:25π8. 已知向量a = (3, 4),向量b = (-4, 3),求向量a与向量b的点积。

答案:-7三、解答题(共60分)9. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f(x)的导数。

答案:f'(x) = 3x^2 - 12x + 1110. 已知直线l1: y = 2x + 1和直线l2: y = -x + 3,求两直线的交点坐标。

答案:交点坐标为(1, 3)11. 已知圆心在原点,半径为5的圆,求圆的方程。

答案:x^2 + y^2 = 2512. 已知函数f(x) = x^2 - 6x + 8,求函数的最小值。

答案:函数的最小值为2,当x = 3时取得。

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1答案:B、C2. 已知函数f(x) = 2x - 3,求f(5)的值。

A. 7B. 4C. 1D. 2答案:A3. 若a > b > 0,下列不等式中正确的是:A. a^2 > b^2B. a + b > 2√(ab)C. a/b > b/aD. a^3 > b^3答案:D4. 已知等差数列的首项为1,公差为2,求第10项的值。

A. 19C. 17D. 16答案:A5. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。

A. 5B. 6C. 7D. 8答案:A7. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A8. 已知正弦函数sin(x)的周期为2π,求余弦函数cos(x)的周期。

B. 2πC. 4πD. 8π答案:B9. 根据勾股定理,直角三角形的斜边长度是两直角边长度的平方和的平方根。

设a和b是直角边,c是斜边,下列哪个表达式是正确的?A. c = √(a^2 + b^2)B. a = √(c^2 + b^2)C. b = √(c^2 - a^2)D. c = √(b^2 - a^2)答案:A10. 已知一个数列的前三项为1, 1, 2,且每一项都是前两项的和,求第5项的值。

A. 4B. 5C. 6D. 7答案:C二、填空题(每题4分,共20分)11. 根据二项式定理,展开式(a + b)^3的通项公式是________。

答案:T_{r+1} = C_{3}^{r}a^{3-r}b^{r}12. 如果一个函数是奇函数,那么f(-x)等于________。

2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试卷一、填空题:本题共15小题,每小题3分,共45分。

1.______.2.方程在的正解为______.3.等腰的底边AC长为30,腰上的高为24,则的腰长为______.4.已知实数m,n满足,且,则______.5.若x为全体实数,则函数与的交点有______个.6.若,,则______.7.K为内一点,过点K作三边的垂线KM,KN,KP,若,,,,,则______.8.已知a,b,c,令a,b,c的最小值为,已知,若的最大值为M,则______.9.已知正方形OBAC,以OB为半径作圆,过A的直线交于M,Q,交BC与P,R为PQ中点,若,,则______.10.若a,b,c,d,e为两两不同的整数,则的最小值为______.11.PA,PB分别为和的切线,连接AB交于C交于D,且,已知和的半径分别为20和24,则______.12.已知a,b,c正整数,且只要则,设m的最小值为为最简分数,则______.13.对于任意实数x,y,定义运算符号*,且有唯一解,满足,,则______.14.已知正整数A,B,C且,满足,则______.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为______.答案和解析1.【答案】54【解析】解:,故答案为:利用同底数幂的乘法法则,有理数的混合运算法则进行计算,即可解答.本题考查了有理数的混合运算,同底数幂的乘法,准确熟练地进行计算是解题的关键.2.【答案】【解析】解:首先,考虑方程的两边统一分母.给定的方程是:,通过通分,我们可以将左边的两个分数合并为一个分数:,展开并化简分母和分子:分母:,分子:,于是原方程简化为:,进一步简化得到:,移项并除以假设,得:,解这个二次方程得到x的值:,,方程的正解为故答案为:根据解无理方程的步骤求解即可.本题考查无理方程,解题的关键是掌握无理方程的解题方法.3.【答案】【解析】解:等腰的底边AC长为30,腰上的高为24,的腰长为,故答案为:根据等腰三角形的性质和勾股定理即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.4.【答案】50【解析】解:由题意可知,m,是方程的两个根,,即,,故答案为:由两个方程的形式可知,m,是方程的两个根,根据根与系数的关系得到与n的数量关系并代入计算即可.本题考查考查根与系数的关系、绝对值,确定m,是方程的两个根、掌握根与系数的关系是解题的关键.5.【答案】2【解析】解:方法①:,当时,,联立方程组,,整理,得,解得:,;当时,,联立方程组,,整理,得,解得:,,交点有2个.故答案为:方法②:图象法,在同一坐标系中画两个函数的图象.如图,两函数的交点有2个.根据二次函数的性质,分和两种情况把两函数解析式整理成一般形式,求x的值,确定交点个数即可.本题考查了二次函数的性质,利用分类讨论的思想,解题关键是根据x的取值范围去掉绝对值符号,整理成一般形式求解.6.【答案】0【解析】解:,,,所以故答案为:利用“代1”法将进行变形处理即可求得答案.本题主要考查了分式的化简求值,解题的技巧性在于“1”的巧妙应用.7.【答案】12【解析】解:连接AK、BK、CK,于点M,于点N,于点P,,,,,,,,,,,,,,,,,故答案为:连接AK、BK、CK,由,得,,,求得,,,可推导出,则,于是得到问题的答案.此题重点考查勾股定理的应用,正确地作出辅助线并且求得,,是解题的关键.8.【答案】14【解析】解:由题意,令,,,由,解得:,由,解得:,由,解得:,直线与直线的交点为,直线与的交点为,直线与的交点为,当时,,当时,,当时,,当时,,即,当时,;当时,;当时,;当时,综上所述,,即的最小值为,,故答案为:根据题意,令,,,联立方程组可求得直线与直线的交点为,直线与的交点为,直线与的交点为,再分情况进行分析:当时,;当时,;当时,;当时,进而求出M的值,即可得出答案.本题考查了一次函数与二元一次方程组,解二元一次方程组,熟练掌握一次函数与二元一次方程组,解二元一次方程组的方法是解题的关键.9.【答案】【解析】解:过P作直径FN,延长CO交于E,连MC、ME、MN、正方形ABOC,,为直径,,,又,,,,,正方形ABOC,,,又,≌,由得由得,即,,,,,,,故答案为:过P作直径FN,延长CO交于E,先证明,故再证明,故最后证明≌,故再换算即可.本题考查了正方形综合题,运用正方形性质,结合相似是解题关键.10.【答案】5【解析】解:,b,c,d为两两不同的整数,,,,,,的最小值为:故答案为:根据题意,a,b,c,d为两两不同的整数,可得,,,,,即可得的最小值为:本题考查了整式的混合运算,完全平方公式,熟练掌握整式混合运算法则,完全平方公式是解题的关键.11.【答案】125【解析】解:作,,,,,,,,,,,PB分别为和的切线,,,,,,,∽,∽,,,,故答案为:作,,,证,证,,证∽,∽,得出,即可解答.本题考查切线的性质,垂径定理,相似三角形的判定和性质,作辅助线,构造相似三角形是解题的关键.12.【答案】3【解析】解:,,,,,,,又,,即的最大值为2,,,为最简分数,故答案为:根据题意,,,,可得,,,进而得出,结合已知可得出,即的最大值为2,即可得出m的值,即的值,根据最简分数定义,即可得出答案.本题考查了分式的加减,最简分数定义,代数式求值,掌握分式的加减运算法则,最简分数定义是解题的关键.13.【答案】0【解析】解:令,则,即,令,,故答案为:根据新定义把变成据此解答即可.本题考查了实数的运算、数与式中的新定义问题,理解“*”的规定是关键.14.【答案】832【解析】解:,,,,,,,,,若尾数为7,则在1、4、9、6、5、6、9、4、1中,,此时A、B、C三个数为9、5、1,,此时A、B、C三个数为6、5、4,,此时A、B、C三个数为8、3、2,或8、7、2,下面开始验证,,不符合题意,,不符合题意,,符合题意,,不符合题意,综上,故答案为:根据平方的尾数和特征,从而得出ABC三个数的可能,再代入验证即可.本题主要考查尾数平方的特征,利用尾数和得出A、B、C三个数的可能性是解题的关键.15.【答案】560【解析】解:如图,作于点D,设腰长,底边,则,在中,,,,,故,,,,b为整数,,或,或,或,或,,可能的腰长之和为:故答案为:根据题意将腰长和底边设出来,通过面积和周长的关系建立关于a和b的等式,再利用分式取整的计算方法求解即可.本题主要考查了等腰三角形的性质等内容,熟练掌握相关知识是解题的关键.。

初中自主招生试卷数学答案

初中自主招生试卷数学答案

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. -3/5B. √4C. 0.618D. √(-1)答案:D解析:有理数是可以表示为两个整数之比的数,包括整数、分数和有限小数。

√(-1)是虚数,不属于有理数。

2. 若a=2,b=-3,则a+b的值为()A. 5B. -1C. -5D. 0答案:C解析:a+b=2+(-3)=-1,所以选C。

3. 下列函数中,y是x的一次函数的是()A. y=2x^2-3x+1B. y=3x+4C. y=√xD. y=x^3-2x+1答案:B解析:一次函数的形式为y=kx+b,其中k和b是常数。

只有选项B符合一次函数的定义。

4. 已知三角形ABC的三个内角分别为∠A=45°,∠B=60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,所以∠C=180°-∠A-∠B=180°-45°-60°=75°。

5. 下列方程中,x=3是它的解的是()A. 2x+1=7B. x^2-5x+6=0C. 3x-2=7D. x^2+2x+1=0答案:A解析:将x=3代入选项A,左边=23+1=7,右边=7,左边等于右边,所以x=3是方程2x+1=7的解。

二、填空题(每题5分,共20分)6. 已知a+b=5,a-b=3,则a=(),b=()答案:a=4,b=1解析:将两个方程相加得2a=8,解得a=4;将两个方程相减得2b=2,解得b=1。

7. 已知x^2-4x+4=0,则x的值为()答案:x=2解析:这是一个完全平方公式,可以分解为(x-2)^2=0,解得x=2。

8. 已知直角三角形ABC中,∠C=90°,AB=10,BC=6,则AC的长度为()答案:AC=8解析:根据勾股定理,AC^2=AB^2-BC^2,代入AB=10,BC=6,得AC^2=100-36=64,所以AC=8。

数学自主招生试题答案

数学自主招生试题答案

数学自主招生试题答案一、选择题1. 已知函数f(x) = ax^2 + bx + c在点x=1取得极小值,且该点为函数的唯一极值点。

若a>0,求b与c的关系。

答案:根据题意,函数f(x)在x=1处取得极小值,因此一阶导数f'(x)在x=1处为0。

首先求导数f'(x) = 2ax + b。

将x=1代入得f'(1) =2a + b = 0。

又因为x=1是唯一极值点,根据二次函数的性质,其判别式Δ = b^2 - 4ac必须小于0。

将f'(1) = 0代入得Δ = (2a)^2- 4a*c = 4a^2 - 4ac < 0。

由于a>0,可以化简得ac < 0,即b与c的关系为c < 0。

2. 已知一个等差数列的前三项分别为a-2,a,a+2,求该数列的前n项和公式。

答案:设等差数列的首项为a1,公差为d。

根据题意,有a1 = a - 2,a2 = a,a3 = a + 2。

由于是等差数列,有a2 = a1 + d,a3 = a2 + d。

将已知条件代入得a = a1 + d,a + 2 = a1 + 2d。

解这个方程组得a1 = a - d,d = 2。

所以首项a1 = a - 2,公差d = 2。

根据等差数列前n项和公式Sn = n/2 * (2a1 + (n-1)d),代入a1和d的值,得到Sn = n/2 * (2(a - 2) + (n-1)*2) = n/2 * (2a - 4 + 2n - 2) = n/2 * (2a + 2n - 6)。

二、填空题1. 一个圆的半径为r,求该圆的面积与周长。

答案:圆的面积公式为A = πr^2,周长公式为C = 2πr。

所以该圆的面积为πr^2,周长为2πr。

2. 已知一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,请判断该三角形的形状。

答案:根据勾股定理,如果一个三角形的三边长满足a^2 + b^2 = c^2,那么这个三角形是一个直角三角形。

2023年安徽省中学自主招生考试数学模拟试卷一及详细答案

2023年安徽省中学自主招生考试数学模拟试卷一及详细答案

安徽省168中学自主招生考试数学模拟试卷一参照答案与试题解析一、选择题(本大题共8小题,每题3分,共24分.).1.(3分)若不等式组旳解集是x>3,则m旳取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3考点:解一元一次不等式组.专题:计算题.分析:先解不等式组,然后根据不等式旳解集,得出m旳取值范围即可.解答:解:由x+7<4x﹣2移项整顿得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组旳解集是x>3,∴m≤3.故选C.点评:重要考察了一元一次不等式组解集旳求法,将不等式组解集旳口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m旳范围.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.考点:特殊角旳三角函数值.分析:本题中直角三角形旳角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC旳度数,再由特殊角旳三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.点评:本题考察旳是特殊角旳三角函数值,解答此题旳关键是构造特殊角,用特殊角旳三角函数促使边角转化.注:(1)求(已知)非特角三角函数值旳关是构造出含特殊角直角三角形.(2)求(已知)锐角三角函数值常根据定转化为求对应线段比,有时需通过等旳比来转换.3.(3分)(•南漳县模拟)如图,AB为⊙O旳一固定直径,它把⊙O提成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD旳平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD旳距离保持不变B.位置不变D.随C点移动而移动C.等分考点:圆周角定理;圆心角、弧、弦旳关系.专题:探究型.分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,因此有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3,∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆旳中点.故选B.点评:本题考察了圆周角定理.在同圆或等圆中,同弧和等弧所对旳圆周角相等,一条弧所对旳圆周角是它所对旳圆心角旳二分之一.也考察了垂径定理旳推论.4.(3分)已知y=+(x,y均为实数),则y旳最大值与最小值旳差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2考点:函数最值问题.分析:首先把y=+两边平方,求出定义域,然后运用函数旳单调性求出函数旳最大值和最小值,最终求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y旳最大值为2,当x=1或5时,y旳最小值为2,故当x=1或5时,y获得最小值2,当x取1与5中间值3时,y获得最大值,故y旳最大值与最小值旳差为2﹣2,故选D.点评:本题重要考察函数最值问题旳知识点,解答本题旳关键是把函数两边平方,此题难度不大.5.(3分)(•泸州)已知O为圆锥旳顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过旳最短路线旳痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段旳性质:两点之间线段最短;几何体旳展开图.专题:压轴题;动点型.分析:此题运用圆锥旳性质,同步此题为数学知识旳应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过旳最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行旳最短路线应当是一条线段,因此选项A和B错误,又由于蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么假如将选项C、D旳圆锥侧面展开图还原成圆锥后,位于母线OM上旳点P应当可以与母线OM′上旳点(P′)重叠,而选项C还原后两个点不可以重叠.故选D.点评:本题考核立意相对较新,考核了学生旳空间想象能力.6.(3分)已知一正三角形旳边长是和它相切旳圆旳周长旳两倍,当这个圆按箭头方向从某一位置沿正三角形旳三边做无滑动旳旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈考点:直线与圆旳位置关系.分析:根据直线与圆相切旳性质得到圆从一边转到另一边时,圆心要绕其三角形旳顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解答:解:圆按箭头方向从某一位置沿正三角形旳三边做无滑动旳旋转,∵等边三角形旳边长是和它相切旳圆旳周长旳两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形旳一种顶点旋转了三角形旳一种外角旳度数,圆心要绕其三角形旳顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考察了直线与圆旳位置关系,弧长公式:l=(n为圆心角,R为半径);也考察了旋转旳性质.7.(3分)二次函数y=ax2+bx+c旳图象如下图,则如下结论对旳旳有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个考点:二次函数图象与系数旳关系.专题:图表型.分析:由抛物线旳开口方向判断a旳符号,由抛物线与y轴旳交点判断c旳符号,然后根据对称轴及抛物线与x 轴交点状况进行推理,进而对所得结论进行判断.解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值不小于0,即y=4a+2b+c>0,对旳;④当x=3时函数值不不小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,对旳;⑤当x=1时,y旳值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,因此a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),对旳.③④⑤对旳.故选B.点评:考察二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴旳交点、抛物线与x轴交点旳个数确定.8.(3分)如图,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,假如,那么△ABC旳内切圆半径为()A.1B.C.2D.考点:三角形旳内切圆与内心;等边三角形旳性质.分析:过P点作正△ABC旳三边旳平行线,可得△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分旳面积=白色部分旳面积,于是求出三角形ABC旳面积,进而求出等边三角形旳边长和高,再根据等边三角形旳内切圆旳半径等于高旳三分之一即可求出半径旳长度.解答:解:如图,过P点作正△ABC旳三边旳平行线,则△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分旳面积=白色部分旳面积,又知S△AFP+S△PCD+S△BPE=,故知S△ABC=3,S△ABC=AB2sin60°=3,故AB=2,三角形ABC旳高h=3,△ABC旳内切圆半径r=h=1.故选A.点评:本题重要考察等边三角形旳性质,面积及等积变换,解答本题旳关键是过P点作三角形三边旳平行线,证明黑色部分旳面积与白色部分旳面积相等,此题有一定难度.二、填空题(本大题共8小题,每题3分,共24分)9.(3分)与是相反数,计算=.考点:二次根式故意义旳条件;非负数旳性质:绝对值.专题:计算题.分析:根据互为相反数旳和等于0列式,再根据非负数旳性质列式求出a+旳值,再配方开平方即可得解.解答:解:∵与|3﹣a﹣|互为相反数,∴+|3﹣a﹣|=0,∴3﹣a﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a>0,∴(+)2=5,∴+=.故答案为:.点评:本题考察了二次根式故意义旳条件,非负数旳性质,求出a+=3后根据乘积二倍项不含字母,配方是解题旳关键.10.(3分)若[x]表达不超过x旳最大整数,,则[A]=﹣2.考点:取整计算.专题:计算题.分析:先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x]表达不超过x旳最大整数得到,[A]=﹣2.解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A]=[﹣]=﹣2.故答案为﹣2.点评:本题考察了取整计算:[x]表达不超过x旳最大整数.也考察了分母有理化和零指数幂.11.(3分)如图,M、N分别为△ABC两边AC、BC旳中点,AN与BM交于点O,则=.考点:相似三角形旳鉴定与性质;三角形中位线定理.专题:计算题;证明题.分析:连接MN,设△MON旳面积是s,由于M、N分别为△ABC两边AC、BC旳中点,易知MN是△ABC旳中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON旳面积是2s,进而可知△BMN旳面积是3s,再根据中点性质,可求△BCM旳面积等于6s,同理可求△ABC旳面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON旳面积是s,∵M、N分别为△ABC两边AC、BC旳中点,∴MN是△ABC旳中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON旳面积=2s,∴△BMN旳面积=3s,∵N是BC旳中点,∴△BCM旳面积=6s,同理可知△ABC旳面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考察了相似三角形旳鉴定和性质、三角形中位线定理,解题旳关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O旳面积为3π,AB为直径,弧AC旳度数为80°,弧BD旳度数为20°,点P为直径AB 上任一点,则PC+PD旳最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦旳关系.专题:探究型.分析:先设圆O旳半径为r,由圆O旳面积为3π求出R旳值,再作点C有关AB旳对称点C′,连接OD,OC′,DC′,则DC′旳长即为PC+PD旳最小值,由圆心角、弧、弦旳关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′旳度数,进而可得出结论.解答:解:设圆O旳半径为r,∵⊙O旳面积为3π,∴3π=πR2,即R=.作点C有关AB旳对称点C′,连接OD,OC′,DC′,则DC′旳长即为PC+PD旳最小值,∵旳度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD旳最小值为3.故答案为:3.点评:本题考察旳是轴对称﹣最短路线问题及垂径定理,圆心角、弧、弦旳关系,根据题意作出点C有关直线AB 旳对称点是解答此题旳关键.13.(3分)从1,2,3,5,7,8中任取两数相加,在不一样旳和数中,是2旳倍数旳个数为a,是3旳倍数旳个数为b,则样本6、a、b、9旳中位数是 5.5.考点:中位数.分析:首先列举出所有数据旳和,进而运用已知求出a,b旳值,再运用中位数是一组数据重新排序后之间旳一种数或之间两个数旳平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有也许:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不一样数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2旳倍数旳个数为a=5,是3旳倍数旳个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据旳中位数是:=5.5,故答案为:5.5.点评:此题考察了列举法求所有也许以及中位数旳定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间旳那个数(最中间两个数旳平均数),叫做这组数据旳中位数,假如中位数旳概念掌握得不好,不把数据按规定重新排列,就会出错.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成旳图形面积为S,则S 旳最小值是.考点:两条直线相交或平行问题.分析:首先用k表达出两条直线与坐标轴旳交点坐标,然后表达出围成旳面积S,根据得到旳函数旳取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴旳交点是A(,0),与y轴旳交点是B(0,2k﹣1)直线y=(k+1)x+2k+1与X轴旳交点是C(,0),与y轴旳交点是D(0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC旳面积最小,最小值S=2﹣=.点评:本题考察了两条指向相交或平行问题,解题旳关键是用k表达出直线与坐标轴旳交点坐标并用k表达出围成旳三角形旳面积,从而得到函数关系式,运用函数旳知识其最值问题.15.(3分)(•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重叠,折痕与PF交于Q点,则PQ旳长是cm.考点:翻折变换(折叠问题).专题:压轴题.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形旳性质,用含x旳式子表达Rt△EGQ 旳三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形旳性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.点评:本题考察图形旳翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称旳性质,折叠前后图形旳形状和大小不变,如本题中折叠前后对应线段相等.16.(3分)(•随州)将半径为4cm旳半圆围成一种圆锥,在圆锥内接一种圆柱(如图示),当圆柱旳侧面旳面积最大时,圆柱旳底面半径是1cm.考点:圆柱旳计算;二次函数旳最值;圆锥旳计算.专题:压轴题.分析:易得扇形旳弧长,除以2π也就得到了圆锥旳底面半径,再加上母线长,运用勾股定理即可求得圆锥旳高,运用相似可求得圆柱旳高与母线旳关系,表达出侧面积,根据二次函数求出对应旳最值时自变量旳取值即可.解答:解:扇形旳弧长=4πcm,∴圆锥旳底面半径=4π÷2π=2cm,∴圆锥旳高为=2cm,设圆柱旳底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱旳侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱旳侧面积有最大值.点评:用到旳知识点为:圆锥旳弧长等于底面周长;圆锥旳高,母线长,底面半径构成直角三角形;相似三角形旳相似比相等及二次函数最值对应旳自变量旳求法等知识.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一种交点.(1)求抛物线旳解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线旳对称轴上与否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,阐明理由.考点:二次函数综合题.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为有关x 旳二元一次方程,令△=0求b旳值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形旳腰或底,分别求Q点旳坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一种交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意旳点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意旳Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).点评:本题考察了二次函数旳综合运用.关键是根据题意求出抛物线解析式,根据等腰三角形旳性质,分类求Q 点旳坐标.18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,既有一工程车需从距B点50m旳A处前方取土,然后通过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m旳地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所通过旳途径长.考点:解直角三角形旳应用-坡度坡角问题.分析:作出圆与BA,BC相切时圆心旳位置G,与CD相切时圆心旳位置P,与CD相切时圆心旳位置I,分别求得各段旳途径旳长,然后求和即可.解答:解:当圆心移动到G旳位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G旳路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P旳位置(P是圆心在C,且与BC相切时圆心旳位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心旳位置),移动旳途径是弧,弧长是:=m;圆心从I到N移动旳距离是:6﹣1=5m,则圆心移动旳距离是:(47+)+(8+)+5+=60+2+(m).点评:本题考察了弧长旳计算公式,对旳确定圆心移动旳路线是关键.19.(14分)如图,过正方形ABCD旳顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜测:CE与DF旳大小关系?并证明你旳猜测.(2)猜测:H是△AEF旳什么心?并证明你旳猜测.考点:相似形综合题.分析:(1)运用正方形旳性质得到AD∥BC,DC∥AB,运用平行线分线段成比例定理得到,,从而得到,然后再运用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF旳垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF旳垂心.点评:本题考察了相似形旳综合知识,本题是一道开放性问题,对旳旳猜测是深入解题旳方向和基础,非常重要.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1旳圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2旳圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形旳面积;(2)求证:EF=MN;(3)求r1+r2旳值.考点:圆旳综合题.专题:综合题.分析:(1)由于菱形ABCD边长为,∠ABC=120°,根据菱形旳性质得到ADC和△DBC都是等边三角形,运用等边三角形旳面积等于边长平方旳倍即可得到菱形旳面积=2S△DBC=2××(6)2=54;(2)由于PM与PE都是⊙O1旳切线,PN与PF都是⊙O2旳切线,根据切线长定理得到PM=PN,PN=PE,则PM﹣PN=PE﹣PB,即EF=MN;(3)由于BE与BG都是⊙O1旳切线,根据切线旳性质和切线长定理得到BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,于是有∠O2BE=60°,∠EO2B=30°,根据含30°旳直角三角形三边旳关系得到BE=O2E=r2,则BG=r2,DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,则MN=DM+DN=12﹣(r1+r2),而EF=EB+BC+CF=r2+6+r1=6+(r1+r2),运用EF=MN可得到有关(r1+r2)旳方程,解方程即可.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形旳面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2旳切线,∴PM=PE,又∵PN与PF都是⊙O1旳切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2旳切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.点评:本题考察了圆旳综合题:圆旳切线垂直于过切点旳半径;从圆外一点引圆旳两条切线,切线长相等,并且这个点与圆心旳连线平分两切线旳夹角;掌握菱形旳性质,记住等边三角形旳面积等于边长平方旳倍以及含30°旳直角三角形三边旳关系.21.(15分)(•黄冈)如图,已知抛物线旳方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y 轴相交于点E,且点B在点C旳左侧.(1)若抛物线C1过点M(2,2),求实数m旳值;(2)在(1)旳条件下,求△BCE旳面积;(3)在(1)条件下,在抛物线旳对称轴上找一点H,使BH+EH最小,并求出点H旳坐标;(4)在第四象限内,抛物线C1上与否存在点F,使得以点B、C、F为顶点旳三角形与△BCE相似?若存在,求m 旳值;若不存在,请阐明理由.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)将点(2,2)旳坐标代入抛物线解析式,即可求得m旳值;(2)求出B、C、E点旳坐标,进而求得△BCE旳面积;(3)根据轴对称以及两点之间线段最短旳性质,可知点B、C有关对称轴x=1对称,连接EC与对称轴旳交点即为所求旳H点,如答图1所示;(4)本问需分两种状况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾旳等式,故此种情形不存在.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C有关x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE旳长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整顿得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点旳三角形与△BCE相似,m=+2.点评:本题波及二次函数旳图象与性质、相似三角形旳鉴定与性质、轴对称﹣最小途径问题等重要知识点,难度较大.本题难点在于第(4)问,需要注意分两种状况进行讨论,防止漏解;并且在计算时注意运用题中条件化简计算,防止运算出错.。

自主招生考试数学卷(答案) (6)

自主招生考试数学卷(答案) (6)

A、第一象限 B、第二象限
C、第三象限 D、第四象限
24、函数 y 4sin x 3cos x 的最小值为 (
)
A .0
B .-3
C .-5
D . 13
25、已知角 的终边上有一点 P- 3, 4,则 cos (
A、0
3
B、 5
C、0.1
二、填空题:(共 30 分.)
) D、0.2
1.双曲线
D、 y sin x cos x
sin
21、若
5 13
,且
为第四象限角,则 tan
的值等于(
)
12
A、 5
12
B、 5
5
C、 12
5
D、 12
22、下列命题中正确的是(

A、第一象限角必是锐角
B、终边相同的角相等
C、相等的角终边必相同
D、不相等的角其终边必不相同
23、-870°角的终边所在的象限是( )
7、【答案】 C
【考点】复数的基本概念,复数代数形式的混合运算 【解析】【解答】解:z z + i = 2 − i 2 + 2i = 4 + 4i − 2i − 2i2 = 6 + 2i
故答案为:C
【分析】根据复数的运算,结合共轭复数的定义求解即可.
8、【答案】 B
【考点】旋转体(圆柱、圆锥、圆台)
自考本科数学卷
(满分 150 分,考试时间 120 分钟)
一、选择题:(本题共 25 小题,共 50 分)
1.对 2×2 数表定义平方运算如下:( )
a
c
b d
2
a
c
b d
a c

自主招生考试数学卷(答案) (1)

自主招生考试数学卷(答案) (1)

自考本科数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题5分,共50分)1.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的()(A )充分非必要条件(B )必要非充分条件(C )充要条件(D )既非充分又非必要条件2.已知函数)(x f 是定义在R 上的奇函数,当0<x 时,x x f )31()(=,那么)9(1--f 的值为()(A )2(B )-2(C )3(D )-33.已知数列}{n a 中,31=a ,62=a ,n n n a a a -=++12,则2003a 等于()(A )6(B )-6(C )3(D )-34、0=b 是直线b kx y +=过原点的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、方程43)22(log =x 的解为()A .4=x B .2=x C .2=x D .21=x 6.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是()A.天然气B.核能C.水利发电D.再生能源表我国各种能源消费的百分率原油(%)天然气(%)原煤(%)核能(%)水利发电(%)再生能源(%)2011年17.7 4.570.40.7 6.00.72014年17.55.666.01.08.11.87.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是()A.34,55⎛⎫- ⎪⎝⎭ B.43,55⎛⎫- ⎪⎝⎭ C.34,55⎛⎫- ⎪⎝⎭ D.43,55⎛⎫- ⎪⎝⎭8.关于x,y 的方程y mx n =+和221x y m n +=在同一坐标系中的图象大致是()12349.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是()A.-280B.-160C.160D.56010.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是()A.421B.121C.114D.2711、已知定义在R 上的函数12)(-=-mx x f (m 为实数)为偶函数,记)3(log 5.0f a =,)5(log 2f b =,)2(m f c =,则c b a ,,的大小关系为()A 、c b a <<B 、b a c <<C 、b c a <<D 、ab c <<12、不等式152x x ---<的解集是()A 、(,4)-∞B 、(,1)-∞C 、(1,4)D 、(1,5)13、函数x x y 2cos sin =是()A 、偶函数B 、奇函数C 、非奇非偶函数C 、既是奇函数,也是偶函数14、若(12)a +1<(12)4-2a ,则实数a 的取值范围是()A 、(1,+∞)B 、(12,+∞)C 、(-∞,1)D 、(-∞,12)15、化简3a a 的结果是()A 、aB 、12aC 、41aD 、83a16、下列计算正确的是()A 、(a3)2=a9B 、log36-log32=1C 、12a -·12a =0D 、log3(-4)2=2log3(-4)17、三个数a =0.62,b =log20.3,c =30.2之间的大小关系是()A 、a<c<bB 、a<b<cC 、b<a<cD 、b<c<a18、8log 15.021+-⎪⎭⎫ ⎝⎛的值为()A 、6B 、72C 、16D 、3719、下列各式成立的是()A 、()52522n m n m +=+B 、(ba)2=12a 12bC 、()()316255-=-D 、31339=20、设2a =5b =m ,且1a +1b=3,则m 等于()A 、310B 、10C 、20D 、100二、填空题:(共20分)1.sin15°.cos15°=___2.在△ABC 中,AB=1,AC=2,A=60°,则S ∆ABC=___3.若1.3.x 成等比数列,则实数x=_______.三、解答题:(本题共3小题,共50分)1.计算:34cos49()15(4log 212π+--+.2.设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===(1)求角C ;(2)求c 边的长度.3.已知函数)1,0()(≠>+=b b b a x f x的图象过点)4,1(和点)16,2(.(1)求)(x f 的表达式;(2)解不等式23)21()(x x f ->;(3)当]4,3(-∈x 时,求函数6)(log )(22-+=x x f x g 的值域.参考答案:一、选择题1-5题答案:AABCA 6-10题答案:DADBA 11-15题答案:BABAB;16-20题答案:BBCDA.部分选择题解析:6、【答案】D 【解析】根据表1可知,从2011年到2014年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.1 6.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.7、【答案】A 【解析】因为()6,8P -,10=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.8、【答案】D 【解析】当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n =+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n +=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.9、【答案】B 【解析】()2nx - 的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T x x -=-=-,则其系数为160-.10、【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=.二、填空题1.答案:0.252.答案:解析:由三角形的面积公式,得3.答案:9三、解答题解:原式=)3cos(23(121ππ++-+=3cos 233π--=21233--=12.解:(1)由题知5,4,35===b a SC ab S sin 21=Csin 542135⨯⨯=∴23sin =∴C 又 C 是ABC ∆的内角3π=∴C 或32π=C (2)当3π=C 时,3cos2222πab b a c -+=215422516⨯⨯⨯-+=21=21=∴c当32π=C 时,22222cos3c a b ab π=+-215422516⨯⨯⨯++=61=61=∴c xx f 4)(=∴(2)23)21(4x x-> 32222->∴xx 322->∴x x 0322<--∴x x 31<<-∴x ∴不等式的解集为)3,1(-(3)64log )(22-+=x x g x 62log 222-+=x x 622-+=x x 7)1(2-+=x 1(3,4]-∈- 7)(min -=∴x g 当4=x 时,max ()18g x =∴值域为]18,7[-。

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像经过点(1, 2)和(2,3),则下列哪个选项是正确的?A. a + b + c = 2B. 4a + 2b + c = 3C. a + 2b + c = 3D. 4a + b + c = 5答案:C2. 已知数列{an}是等差数列,且a1 + a2 + a3 = 12,a2 + a3 + a4 = 18,则a1 + a5的值是多少?A. 18B. 20C. 24D. 26答案:B3. 若复数z满足|z - 1| = |z + i|,则z对应的点在复平面上位于哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B4. 已知函数f(x) = ln(x) + 1/x,若f(x)在区间(0, +∞)上单调递增,则实数k的取值范围是?A. k > 0B. k ≥ 1C. k ≤ -1D. k ≤ 0答案:B二、填空题(每题5分,共20分)5. 若一个圆的直径为10,则该圆的面积为_______。

答案:25π6. 已知向量a = (3, -1),b = (2, 4),则向量a与向量b的数量积为_______。

答案:57. 若函数f(x) = x^3 - 3x^2 + 2在区间[1, 2]上单调递增,则实数k的取值范围是_______。

答案:k ≤ -18. 已知等比数列{an}的前三项分别为1,2,4,则该数列的通项公式为an = _______。

答案:2^(n-1)三、解答题(每题15分,共40分)9. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调区间,并说明理由。

答案:函数f(x)的单调递增区间为[2, +∞),单调递减区间为(-∞, 2)。

理由是f(x)的导数为f'(x) = 2x - 4,令f'(x) > 0得x > 2,令f'(x) < 0得x < 2。

大学自主招生测评题真题及答案解析——数学一

大学自主招生测评题真题及答案解析——数学一

大学自主招生测评题真题及答案解析——数学一一、选择题1、(北约2014年)设扇形的圆心角为3π,面积为6π,将它围成一个圆锥,求圆锥的表面积______(A )132π (B )7π (C )152π (D )8π答案:B6/660360ππ=,扇形弧长为60262360ππ=,故圆锥底面半径为1,圆锥的表面积等于67πππ+=2、(北约2013和为两根的有理系数多项式的最高次数最小为( )A. 2B.C. D. 答案:C解析:由,可知,同理由可知; 所以方程的次数最小,其次数为5,故选C.3、(华约2012年)红蓝两色车、马、炮棋子各一枚,将这6枚棋子排成一列,其中对对同字的棋子中,均为红棋子在前,蓝棋子在后,满足这种条件的不同的排列方式共有( )(A) 36种 (B) 60种 (C) 90种 (D)120种 答案:C4、(华约2010年)设向量,a b ,满足||||1,==⋅=a b a b m ,则||+a tb ()t R ∈的最小值为( )(A )2 (B (C )1 (D 答案:D5、(华约2010年)设复数2()1a i w i+=+,其中a 为实数,若w 的实部为2,则w 的虚部为( )(A )32- (B )12- (C )12 (D )32答案:A二、填空题6、(卓越2014年)不等式32210x x -+<的解集为_____________。

13561x =22x =1x 3(1)2x -=23(2)[(1)2]0x x ---=答案:1515112⎛⎫⎛++-, ⎪ ⎪ ⎝⎭⎝⎭解析:22x x =,把原式视作x 的三次多项式分解因式即可。

7、(卓越2013年)如图,AE 是圆O 的切线,A 是切点,AD 与OE 垂直,垂足是D ,割线EC 交圆O 于,B C ,且,ODC DBC αβ∠=∠=,则OEC ∠= (用,αβ表示)。

答案:βα-三、综合题8、(北约2014年)证明:tan 3是无理数。

2024年浙江宁波鄞州中学强基自主招生数学试卷真题(含答案详解)

2024年浙江宁波鄞州中学强基自主招生数学试卷真题(含答案详解)

2024年浙江省宁波市鄞州中学强基招生数学试卷一、填空题:本题共10小题,每小题3分,共30分。

1.若,且,则______.2.______.3.已知正实数a,b,c满足,则的最小值为______.4.已知函数,当时,y有最大值5,则a的值为______.5.已知中,BC上的一点D,,,则的最大值为______.6.若点T为线段BC中点,,且,,,,则______.7.如图,在中,G,E分别在AB,AC上,连结BE交AF于O,若,,G,O,C共线,的面积为11,则的面积为______.8.已知整数x,y,z满足,则的最小值为______.9.已知x,y,z是大于1的正整数,且为整数,则______.10.已知EA、EC为圆O的两条切线,连结DE交圆于点B,若,,,则______.二、解答题:本题共2小题,共16分。

解答应写出文字说明,证明过程或演算步骤。

11.本小题8分已知,矩形OAPB的A,B顶点分别在x轴,y轴上,反比例函数与矩形的BP,AP分别交于D,C,的面积为判断并证明直线CD与AB的关系.求k的值.若E,F分别为直线AB和反比例函数上的动点,M为EF中点,求OM的最小值.12.本小题8分如图,在中,,D是垂心,O是外心,延长AD交BC于E,于求证:证明:B,O,D,C四点共圆.若,求答案和解析1.【答案】【解析】解:,,,,,是方程的两个根,,故答案为根据观察方程组的系数特点,可把方程组转化成的形式,其中x,是其两个不等的实数根,利用根与系数的关系,得到结果.本题考查了解方程组,一元二次方程根与系数关系的应用.关键是观察方程组的系数特点,得到x,是方程的两个根,得到结果.2.【答案】【解析】解:原式故答案为:将改写为,改写为,…,再利用裂项相消法即可解决问题.本题主要考查了数字变化的规律,能将改写为,改写为,…,及熟知裂项相消法是解题的关键.3.【答案】18【解析】解:构造图示的三个直角三角形,即,,,满足,,,,,,则由勾股定理可知,即同理可得,,所以可知当A,C,E,G四点共线时,最小,即为AG长,当当A,C,E,G四点共线时,在中故答案为本题利用几何法求解,通过构造图示的三个直角三角形,即,,,则由勾股定理可知,即同理可得,,所以可知当A,C,E,G四点共线时,最小,即为AG长,本题主要考查二次根式最值问题,用几何法构造直角三角形,结合最短路径问题是解决问题的关键.4.【答案】1或7【解析】解:由题意,的对称轴是直线,当时,又当时,,当时,,①当最大值为,或不合题意;②当最大值为,或,均不合题意;③当最大值为,不合题意或综上,或故答案为:1或依据题意,由的对称轴是直线,结合当时,,又当时,,当时,,进而分类讨论即可判断得解.本题主要考查了二次函数的性质、非负数的性质:绝对值、二次函数的最值,解题时要熟练掌握并能灵活运用二次函数的性质是关键.5.【答案】【解析】解:如图,以CD为边作等边三角形CDO,连接AO,过点O作于E,,设,则,,,点A在以O为半径,OC为半径的圆上运动,当AB与圆O相切时,有最大值,此时:,是等边三角形,,,,,又,,,四边形AOEB是平行四边形,又,四边形AOEB是矩形,,故答案为:由题意可得点A在以O为半径,OC为半径的圆上运动,则当AB与圆O相切时,有最大值,由“HL”可证,可得,可证四边形AOEB是矩形,可得,即可求解.本题考查了四点共圆,圆的有关知识,全等三角形的判定和性质,矩形的判定和性质等知识,确定点A的运动轨迹是解题的关键.6.【答案】3【解析】解:如图,过T作延长DT交AB于,,为线段BC中点,,在和中,,≌,,,面积,,,,,,,故答案为:先画出图形,过T作延长DT交AB于由,得,再证明≌,得,,由面积,得,,,,,,最后再计算即可.本题考查了平行线的性质,利用中线倍长是解题关键.7.【答案】30【解析】解:梅涅劳斯定理:如图,,证明:过A作交BC延长线于点M,则,,;塞瓦定理:如图,,证明:根据上述梅涅劳斯定理,可得出,在中,COG是梅涅线,①在中,BOE是梅涅线,②根据梅涅劳斯定理,在中,COG是梅涅线,,,,,,,,根据塞瓦定理可得,,,而,,故答案为:根据梅涅劳斯定理和塞瓦定理可得出和,从而得出,再利用即可得解.本题主要考查了相似三角形的判定和性质、三角形面积问题等内容,在初中竞赛、自招、强基等题目中,梅涅劳斯定理和塞瓦定理是必须掌握的基础内容.8.【答案】118【解析】解:,,,,,,即,故答案为:根据,得出,从而得出结论.本题考查了因式分解的应用,关键是掌握完全全平方公式和非负数的性质.9.【答案】12【解析】解:、y、z是大于1的正整数,是分数,为假分数,为整数,且分子分母能互相约分,,①当,时,分子中定有7,分母中有7才能进行约分,当时,,故符合题意,,②,时,分子中定有13,分母中有13才能进行约分,当时,不是整数,故不符合题意,③,时,分子中定有21,分母中有21才能进行约分,当时,不是整数,故不符合题意,…………其余情况依次讨论均不符合题意故答案为:根据x、y、z的条件和三个分数的乘积为整数,得出x、y、z的值,进而求和.本题考查了分式的混合运算,关键是根据已知条件分类讨论得到x、y、z的值.10.【答案】【解析】解:连接OA,OD,OC,作,设,同弧所对的圆心角等于圆周角的2倍,,,,是等边三角形,,,,CE是的切线,,,,,,,,,∽,,同理可证:∽,得出:,,,,,是直径,,,,,,,,,,,,连接OA,OD,OC,作,设,证是等边三角形,得出,证∽,∽,得出,得出CD是直径,再解直角三角形,求出m,即可.本题考查切线长定理,相似三角形的判定和性质,圆周角定理等知识.作辅助线构造相似三角形是解题的关键.11.【答案】解:如图1,,理由如下:由题意得,,,,,,,,,,∽,,;如图2,作于G,,,,,,舍去,;如图2,取点,,则直线与直线AB关于O对称,连接EO,并延长交于H,连接FH,则,是EF的中点,,当FH最小时,OM最小,作直线,交y轴与Q,且使QR与双曲线在第一象限的图象相切,切点为,作于R,作,则FH的最小值是的长,直线AB的解析式为:,设直线QR的解析式为:,由整理得,,,,舍去,,,,,,,,,【解析】可表示出,,从而得出,,进而表示出PD和PC,进而得出,进而证得∽,从而,从而得出;作于G,可推出,进一步得出结果;取点,,则直线与直线AB关于O对称,连接EO,并延长交于H,连接FH,则,可得出当FH最小时,OM最小,作直线,交y轴与Q,且使QR与双曲线在第一象限的图象相切,切点为,作于R,作,则FH的最小值是的长,可设直线QR的解析式为:,由整理得,,从而得出求得m的值,进一步得出结果.本题考查了求反比例函数和一次函数的解析式,函数图象的交点与方程组之间的关系,三角形中位线的性质,解直角三角形等知识,解决问题的关键是作辅助线,构造三角形的中位线.12.【答案】解:根据题意,以O为圆心,OB为半径作圆O,延长BO交圆于点F,延长BD交AC于点M,连接OC,CD,AF,FC,是直径,,,为垂心,,,,,,是平行四边形,,,,,,设半径为r,,,又,;为垂心,,,,,,,,,、C、D、O四点共圆;设,,,在直角中,,,,,,,在直角中,,即:,在直角中,,即:,,,在中,,即:,,或舍去,【解析】由垂心,得到垂直关系,结合圆周角度数为,得到圆心角的度数,得到AFCD是平行四边形,从而得到结果;先求出,再结合,,得到四点共圆;设,用x表示出的各边,利用勾股定理,得到一元二次方程,利用求根公式求方程的根,得到结果.本题考查了圆的综合应用,涉及到直角三角形勾股定理的应用,圆周角、圆心角、平行四边形的性质的应用,关键是四点共圆的判断,因为共底边的两个三角形的底角相等,且在底边的同侧,则四个顶点共圆.。

2024初升高自主招生数学试卷(一)及参考答案

2024初升高自主招生数学试卷(一)及参考答案

—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。

高三自主招生试卷数学答案

高三自主招生试卷数学答案

一、选择题(每题5分,共25分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. 1/3答案:D解析:有理数是可以表示为两个整数之比的数,即形如a/b(a和b为整数,b不为0)的数。

选项D可以表示为1/3,因此是有理数。

2. 已知函数f(x) = 2x - 3,若f(x) + f(-x) = 0,则x的值为()A. 1B. -1C. 0D. 2答案:B解析:根据题意,f(x) + f(-x) = 2x - 3 + 2(-x) - 3 = 0,化简得4x - 6 = 0,解得x = 1.5,即x = -1。

3. 若等差数列{an}的首项为a1,公差为d,且a1 + a2 + a3 = 12,a1 + a4 +a5 = 30,则该数列的通项公式为()A. an = 3n - 1B. an = 4n - 3C. an = 6n - 5D. an = 5n - 4答案:B解析:由等差数列的性质,a2 = a1 + d,a3 = a1 + 2d,代入a1 + a2 + a3 =12得3a1 + 3d = 12,化简得a1 + d = 4。

同理,a4 = a1 + 3d,a5 = a1 + 4d,代入a1 + a4 + a5 = 30得3a1 + 12d = 30,化简得a1 + 4d = 10。

解得d = 3,a1 = 1。

因此,通项公式为an = 4n - 3。

4. 已知复数z满足|z - 1| = |z + 1|,则z在复平面上的轨迹为()A. 直线B. 圆C. 双曲线D. 抛物线答案:A解析:由复数的模长性质,|z - 1| = |z + 1|表示复数z到点1和点-1的距离相等,即z位于直线y = 0上。

5. 下列各函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = |x|答案:B解析:奇函数满足f(-x) = -f(x)。

高中自主招生考试数学试题(含答案详解)

高中自主招生考试数学试题(含答案详解)

一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自主招生考试 数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。

2.全卷由试题卷和答题卷两部分组成。

试题的答案必须做在答题卷的相应位置上。

做在试题卷上无效。

3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。

4.答题过程不准使用计算器。

祝你成功!一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求) 1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则A S S S 123<<B S S S 213<<C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D,连接CD ,则阴影部分的面积是A π-1B π-2C 121-πD 221-π4.由325x y a x y a x y a m-=+⎧⎪+=⎪⎨>⎪⎪>⎩得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠ 为直角的点P 的个数是A 0B 1C 2D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2, 且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =a x 2+(a -b )x —b 的图象如图所示,那么化简||b a的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂 直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S正方形ABCD =▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案: (1)第4个图案中有白色纸片 ▲ 张第7题第8题(2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张11.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答: ▲ . (2)作DE ∥AB 的目的是: ▲ .(3) 判断四边形ABED 为平行四边形的依据是: ▲ . (4)判断四边形ABCD 是等腰梯形的依据是 ▲ .第11题第12题(5)若题设中没有AD ≠BC ,那么四边形ABCD 一定是等腰梯形吗?为什么? 答 ▲ .自主招生考试 数学标准答案一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8. 256 9. 57610.(1) 13 (2) 3n+1 (3) 15250 11. a b12.(1)没有错误 (2)为了证明AD∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义 (5) 不一定,因为当AD =BC 时,四边形ABCD 是矩形 三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。

年票分A 、B 、C 三类:A 类年票每张120元,持票者进人公园时无需再购买门票;B 类年票每张60元,持票者进入公园时,需再购买门票,每次2元;C 类年票每张40元,持票者进入该公园时,需再购买门票,每次3元。

⑴(5分) 如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该公园的门票上,试通过计算,找出可使进人该公园的次数最多的购票方式; ⑵(5分) 求一年中进人该公园至少超过多少次时,购买A 类票比较合算。

14.(本小题12分)如图1所示,在正方形ABCD 中,AB=1,AC 是以点B 为圆心。

AB 长为半径的圆的一段弧,点E 是边AD 上的任意一点(点E 与点A 、D 不重合),过E 作AC 所在圆的切线,交边DC 于点F ,G 为切点。

⑴(4分) 当 ∠DEF =45○时,求证点G 为线段EF 的中点;⑵ (4分)设AE=x , FC=y ,求y 关于x 的函数解析式;并写出函数的定义域;⑶(4分) 图2所示,将△DEF 沿直线EF 翻折后得△ D 1EF ,当EF=56时,讨论△AD 1D 与△ED 1F 是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由。

图1 图2 解:15.(本小题12分)二次函数2y ax bx c =++的图象的一部分如图所示。

已知它的顶点M在第二象限,且经过点A (1,0)和点B (0,l )。

(1)(4分)请判断实数a 的取值范围,并说明理由; (2)(4分)设此二次函数的图象与x 轴的另一个交点为C ,当ΔAMC 面积等为△ABC 面积的54倍时,求a 的值。

(3)(4分)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出a 的值;若不存在,请说明理由。

(3)由-1<a <0,设∠ABC 为直角,由222BC AB AC +=,得2211(1)2(1)a a-=++.解得 1a =-,不合题意.所以不存在。

16. (本小题12分)如图所示,a 是海面上一条南北方向的海防警戒线,在a 上点A 处有一个水声监测点,另两个监测点B ,C 分别在A 的正东方20 km 处和54 km 处。

某时刻,监测点B 收到发自静止目标P 的一个声波,8s 后监测点A ,20 s 后监测点C 相继收到这一信号。

在当时气象条件下,声波在水中的传播速度是1. 5 km/s 。

(1)(6分)设A 到P 的距离为x km ,用x 表示B,C 到P 的距离,并求x 值;(2)(6分)求静止目标P 到海防警戒线a 的距离(结果精确到0.01 km )。

解:依题意,PA -PB=1. 5 × 8=12 (km),PC -PB=1.5×20=30(km ).因此 PB =(x 一12)km ,PC=(18+x )km. 在△PAB 中,AB= 20 km ,22222220(12)332cos 22205PA AB PB x x x PAB PA AB x x+-+--+∠===⋅⋅同理,在△PAC 中,72cos 3xPAC x-∠= 由于cos cos PAB PAC ∠=∠ 即3327253x x x x +-=解得1327x =(km ). (2)作PD ⊥a,垂足为D. 在Rt △PDA 中,PD =PAcos ∠APD=PAcos ∠PAB = 132332332755x x x⨯++⋅= 17.71≈(km ). 答:静止目标P 到海防警戒线a 的距离约为17. 71 km.17.(本小题14分)已知AB 是半圆O 的直径,点C 在BA 的延长线上运动(点C 与点A 不重合),以OC 为直径的半圆M 与半圆O 交于点D ,∠DCB 的平分线与半圆M 交于点E 。

(1)(4分)求证:CD 是半圆O 的切线(图1);(2)(5分)作EF ⊥AB 于点F (图2),猜想EF 与已有的哪条线段的一半相等,并加以证明;(3)(5分)在上述条件下,过点E 作CB 的平行线交CD 于点N ,当NA 与半圆O 相切时(图3),求∠EOC 的正切值。

(1)证明:如图1,连结OD ,则OD 为半圆O 的半径 ∵OC 为半圆M 的直径 ∴∠CDO=90°∴CD 是半圆O 的切线。

(2)猜想:12EF OA =。

证法一:如图,连结OD 、OE ,延长OE 交CD 于点K ,作EG ⊥CD 于点G ,则EG//OD 。

∵CE 平分∠DCB ∴∠OCE=∠KCE ∵EF ⊥AB∴EG=EF∵OC 是半圆M 的直径,E 为半圆M 上的一点 ∴∠CEO=∠CEK=90° ∵CE 为公共边∴△COE ≌△CKE∴OE=KE ∵EG//OD∴DG=GK∴EF EG OD OA ===1212证法二:如图,以OC 为直径作⊙M ,延长EF 交⊙M 于点P ,连结OD 。

∵EF ⊥CO∴EF PF EP EO PO ==⋂=⋂12,∵CE 平分∠DCB∴∠DCE=∠ECO∴DE OEOD EP ⋂=⋂∴⋂=⋂∴OD=EP∴EF OD OA ==1212证法三:如图,连结OD 、ME ,OD 、ME 相交于点H ∵CE 平分∠DCB∴⋂=⋂OE DE∴ME ⊥OD ,OH =12OD ∵EF ⊥CO∴∠MFE=∠MHO=90°∵∠EMF=∠OMH ,ME=MO∴△MEF ≌△MOH∴EF=OH∴EF OD OA ==1212(3)解:如图3,延长OE 交CD 于点K 设OF=x ,EF=y ,则OA=2y∵NE//CB ,EF ⊥CB ,NA 切半圆O 于点A ∴四边形AFEN 是矩形∴NE AF OA OF y x ==-=-2 同(2)证法一,得E 是OK 的中点 ∴N 是CK 的中点∴==-CO NE y x 222()∴=-=-⊥⊥CF CO OF y x EF AB CE EO43 ,∴Rt △CEF ∽Rt △EOF∴EF CF OF 2=⋅,即y x y x 243=-()解得y x yx==31或当时,y x EOC EF OF y x=∠===33tan ,当时,点与点重合,不符合题意,故舍去yxC A =1 ∴tan ∠EOC=3。

相关文档
最新文档