Dijkstra最短路径算法的优化和改进
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
KeywordsThe shortest path;Dijkstra;Optimizationalgorithm
第
最短路径算法是计算机科学与地理信息科学等领域研究的热点,其算法有很多种,其中传统的Dijkstra算法一般用于计算一个源节点到所有其他节点的最小代价路径,并且能够适应网络拓扑的变化,性能稳定,因而可以在运输路线规划等领域都应用广泛 .
本科毕业设计(论文)
Dijkstra最短路径算法的优化和改进
摘
随着计算机和地理信息科学的发展,GIS(地理信息系统)的应用领域越来越广.最短路径分析是GIS地理网络分析功能中的一个关键性的问题.计算最短路径的经典算法之一就是Dijkstra算法,许多工程中解决最短路径问题都是采用这种算法.然而,传统的Dijkstra算法在求解节点间最短路径时,对已标识节点外的大量节点进行了计算,从而影响了算法的速度.
关键词最短路径;Dijkstra;优化算法
A百度文库stract
With the development of computerand geographicinformation science,the applications of GIS (Geographic Information System)are becoming moreand more widely.However,shortest path analysis is the key problem of network analyses,Dijkstra algorithm is a classic arithmetic for the shortest path.It is the academic foundation that many engineerings were solved in the shortest path isuse.When a shortest path between nodes is searched with Dijkstra algorithm,a lot of nodes away from lagged nodes are involved,so that the efficiency of Dijkstra algorithm is low.
该算法的主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍.本文在传统Dijkstra算法的基础上,对其进行了优化,此优化算法只对最短路径上节点的邻点做了一些处理,从而不涉及到其他的一些节点.提出的优化算法在更新最短路径值与选择最短路径值最小的节点时,仅仅涉及到节点的邻居集合及已标识集合中所有节点的邻居集合与已标识集合的差集,其运行时间取决于转接点的邻居集合的元素数量多少.通过减小算法中成功搜索的搜索范围和改进算法的存储结构这两个主要的研究方向使算法得到优化.因而,此优化算法在计算的节点数较传统算法大幅减少,提高了算法的速度.本文通过实验和实际应用对改进后的算法进行了简单的验证.之后将一些算法的改进和实际例子相结合,这样就能使文章中算法的优化更为理想.
Main features of the algorithm is the starting point as the center outward expansion layers until it extended to the end point. Dijkstra's algorithm is very representative of the shortest path algorithm, in many professional courses in the basic content as described in detail. The proposed algorithm updates the shortest path in the value of the minimum value of the shortest path to the node, only the set of neighbors of the node related to the identified set and a neighbor set of all nodes in the identified set with the set difference, its running time depends transfer the contact elements of the set of neighbors of quantity. Successful search algorithm by reducing the search range and improved algorithm storage structure of these two main research directions to optimize the algorithm.Therefore,the number of processed nodes is largely reduced in the optimization algorithm,and efficiency of the optimization algorithm is improved.The improved algorithm is proved to be correct and efficient by experiments and practical application.After some of the algorithm and the combination of practical examples, so you can make the article more ideal algorithm optimization.
第
最短路径算法是计算机科学与地理信息科学等领域研究的热点,其算法有很多种,其中传统的Dijkstra算法一般用于计算一个源节点到所有其他节点的最小代价路径,并且能够适应网络拓扑的变化,性能稳定,因而可以在运输路线规划等领域都应用广泛 .
本科毕业设计(论文)
Dijkstra最短路径算法的优化和改进
摘
随着计算机和地理信息科学的发展,GIS(地理信息系统)的应用领域越来越广.最短路径分析是GIS地理网络分析功能中的一个关键性的问题.计算最短路径的经典算法之一就是Dijkstra算法,许多工程中解决最短路径问题都是采用这种算法.然而,传统的Dijkstra算法在求解节点间最短路径时,对已标识节点外的大量节点进行了计算,从而影响了算法的速度.
关键词最短路径;Dijkstra;优化算法
A百度文库stract
With the development of computerand geographicinformation science,the applications of GIS (Geographic Information System)are becoming moreand more widely.However,shortest path analysis is the key problem of network analyses,Dijkstra algorithm is a classic arithmetic for the shortest path.It is the academic foundation that many engineerings were solved in the shortest path isuse.When a shortest path between nodes is searched with Dijkstra algorithm,a lot of nodes away from lagged nodes are involved,so that the efficiency of Dijkstra algorithm is low.
该算法的主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍.本文在传统Dijkstra算法的基础上,对其进行了优化,此优化算法只对最短路径上节点的邻点做了一些处理,从而不涉及到其他的一些节点.提出的优化算法在更新最短路径值与选择最短路径值最小的节点时,仅仅涉及到节点的邻居集合及已标识集合中所有节点的邻居集合与已标识集合的差集,其运行时间取决于转接点的邻居集合的元素数量多少.通过减小算法中成功搜索的搜索范围和改进算法的存储结构这两个主要的研究方向使算法得到优化.因而,此优化算法在计算的节点数较传统算法大幅减少,提高了算法的速度.本文通过实验和实际应用对改进后的算法进行了简单的验证.之后将一些算法的改进和实际例子相结合,这样就能使文章中算法的优化更为理想.
Main features of the algorithm is the starting point as the center outward expansion layers until it extended to the end point. Dijkstra's algorithm is very representative of the shortest path algorithm, in many professional courses in the basic content as described in detail. The proposed algorithm updates the shortest path in the value of the minimum value of the shortest path to the node, only the set of neighbors of the node related to the identified set and a neighbor set of all nodes in the identified set with the set difference, its running time depends transfer the contact elements of the set of neighbors of quantity. Successful search algorithm by reducing the search range and improved algorithm storage structure of these two main research directions to optimize the algorithm.Therefore,the number of processed nodes is largely reduced in the optimization algorithm,and efficiency of the optimization algorithm is improved.The improved algorithm is proved to be correct and efficient by experiments and practical application.After some of the algorithm and the combination of practical examples, so you can make the article more ideal algorithm optimization.