ICEM CFD动网格学习

合集下载

ICEM-CFD-网格编辑实用教程

ICEM-CFD-网格编辑实用教程

• 显示泄漏路径
Make Consistent: – 使体网格与面网格一致(点对点) – 使用Remesh修复曲面然后升级四面体网格.
– 许多网格编辑命令 (合并, 分割, 等.) 自动使体网格保持一 致
2018/8/19
ICEMCFD/AI*Environment 5.0
17
网格修复
Merge Nodes:合并节点
2018/8/19
ICEMCFD/AI*Environment 5.0
10
网格平滑
热键: Ctrl-q
• 自动改进网格单元的质量 – 四面体, 金字塔, 棱柱体体网格, 三角形和四边形面网 格可以被光滑 – 这个光滑器对六面体网格效率很低, 但是在编辑工具 条中专用于六面体网格的光滑器
– 移动网格点改进单元质量

每种网格质量结果采用自己的计算方法.
– 例如, Quality, 缺省采用 circum-sphere raQuality =
Rinside/Routside (Rinside/Routside )ideal
注意: 多数标准的结果正则化; 1.0 看作是理想的结果
2018/8/19
ICEMCFD/AI*Environment 5.0
13
Mesh Repair
修复工具:
– Build Mesh Topology • 基于公差及单元间角度设置网格投影 • 投影输入的网格到几何 – Re-mesh: • 从选定单元的边界生成 – Re-mesh Bad Elements: – Find/Close Holes:
热键: Ctrl-m
2018/8/19
ICEMCFD/AI*Environment 5.0

ICEMCFD基础教程

ICEMCFD基础教程

ICEMCFD基础教程ICEMCFD是一款用于计算流体力学(CFD)建模和网格生成的软件。

它是一种强大的工具,可以帮助工程师们构建复杂的模型、生成高质量网格以及预处理CFD求解器所需的输入文件。

本文将为您提供一份ICEMCFD的基础教程,帮助您快速上手使用该软件。

首先,我们需要了解ICEMCFD的基本界面和常用工具。

打开ICEMCFD 后,您将看到一个由不同工具栏、菜单和视图窗口组成的界面。

菜单栏提供了各种命令和选项,工具栏可快速访问常用工具,视图窗口用于显示模型、网格和结果。

在学习ICEMCFD之前,建议先熟悉软件的界面和各种工具。

然后,我们将学习如何进行网格划分。

在CFD模拟中,网格的质量对结果的准确性和收敛性有重要影响。

ICEMCFD提供了多种网格划分算法和优化工具,可帮助您生成高质量的网格。

您可以使用“划分”菜单中的“体格网划分”选项对几何模型进行三维网格划分。

您可以选择划分算法、设置网格大小和边界条件等。

在划分完成后,您可以使用“检查网格”工具检查网格的质量,并进行必要的优化。

最后,我们将学习如何导出网格并准备CFD求解器所需的输入文件。

完成网格划分后,您可以使用“文件”菜单中的“导出”选项导出网格。

ICEM CFD支持多种网格格式,如ANSYS Fluent、OpenFOAM和CFX等。

选择适当的网格格式并指定输出文件路径后,即可导出网格。

您还可以使用“准备”菜单中的“CFD 前处理”选项设置物理属性、边界条件和初始条件等,并生成CFD求解器所需的输入文件。

本文只介绍了ICEMCFD的基础教程,您还可以进一步探索该软件的高级功能和应用。

ICEMCFD非常灵活和强大,适用于各种工程领域的CFD建模和网格生成。

通过深入学习和实践,您可以熟练使用ICEMCFD并在工程实践中取得优秀的结果。

ansys icem cfd网格划分技术实例详解纪

ansys icem cfd网格划分技术实例详解纪

ansys icem cfd网格划分技术实
例详解纪
ANSYS ICEM CFD网格划分技术实例详解纪:
1、首先,选择你要建立的几何图形,如某个物体的外形、内部结构等;
2、选择网格划分的方法,可以使用Tetrahedron、Hexahedron、Prism等划分方法;
3、设定网格划分的精度,即划分后各三角形面或者正方体面的边长,一般可以根据不同类型的流动情况来调整精度;
4、确定各个区域的网格密度,一般需要在边界层提高网格数量,以更好地模拟流体的运动情况;
5、检查网格的质量,消除网格中的闭合面,以保证网格的准确性;
6、计算流场,对网格进行求解,并作图显示。

ICEM网格划法的学习总结

ICEM网格划法的学习总结

ICEM网格划法的学习总结第一篇:ICEM网格划法的学习总结1、ICEM学习ICEM的模型树按照几何、块、网格,局部坐标和part几部分来显示。

在几何中点线面与块中的点线面叫法不同。

如下图所示:Body 在非结构化网格生成过程中,用于定义封闭的面构成的体,定义不同区域的网格。

Part是对几何与块的详细定义。

Part中既可以包含几何,又可以包含块。

可以点、线面、块、网格,但是一条线只存在于一个part中。

网格单元类型:1.网格生成方法:1、AutoBlock2、Patch Dependent3、Patch Independent4.Shrinkwrap壳、面生成网格的过程:2.Tolerance与颜色问题:导入ICEM中的模型首先要进行模型修复。

导入到ICEM中的几何模型要可能会出现三种颜色curve,红颜色的正常,黄色的为不连续的,蓝色的为重复的。

黄色的是单个面的边界(二维),红色的是两个面的交界线,蓝色的是三个/三个以上面相交的交线。

(出现蓝线是没有问题的,表明这个线是两个面以上的共线,只要不出现黄线就可以,黄线表示这儿有裂缝。

)黄线表示出现了洞,可能是面丢失了,造成蓝线的原因是有面体重叠了,你得删除多余的面体。

黄色的线表有孔或缝隙。

绿色的线直接删除。

白色的边和顶点:这些边位于不同的材料体间,它们和被关联的顶点将被映射到这些材料体中最贴近的CAD表面,而且这些边上的顶点只能在表面内移动。

蓝色的边和顶点:这些边位于体内部。

它们的顶点也是蓝色的,可以在选择之前沿边拖拽。

绿色的边和顶点:这些边和关联的顶点是映射到曲线的,这些顶点只能在它所映射的曲线上移动。

红色的顶点:这些顶点是映射到指定的点的。

导入的模型必须是封闭的面,线是红色的。

自动生成翼型的网格。

3.equivalence 将同一空间位置的重复节点消除(通常,消除ID 好较大的节点,保留ID好较小的节点),只保留一个节点,一般与“Verify”配合使用,这种方法可通过任何FEM定义(单元的相关定义、MPC等式、载荷、边界条件等)、几何定义和组等实现。

ANSYS ICEM-CFD网格划分学习

ANSYS ICEM-CFD网格划分学习

关键:统一索引
y/ j
索引
空间
索引 空间
x/i
结构网格的索引与合并
ICEM中 块的合并
Autodyn中 网格的合并
结构网格的索引与合并
索引空间
结构网格的索引与合并
详细步骤
1.准备几何模型(.X_T,.dwg等),建立工 作文件夹(路径及文件名全英文)。
2.启动软件,定位工作路径(File-Change )。 Working Directory
ANSYS ICEM CFD
网格划分 for Autodyn
1.简介 2.非结构网格 3.结构网格
简介
丰富的几何接口;Solidworks, AutoCAD, ProE, UG……
能输出网格到100多个求解器;
功能强大,能输出结构和非结构网格;
主窗口
修非构 网
改结造 格
几构块 修
何网
只适用于几何相关 Pactch depen层数
非结构体网格
设定线面网格参数值;
定义体区域(Geomerty-Creat Body-Material Point,选体上
两点,使其中心在体中);
生成网格,检查质量,修补网格;
Tetra/MixedRobust (Octree)
实体 Geometry
(主要操作对象)
|(辅助操作对象)
自上而下:块的雕刻
构造方法 自下而上:块的累加 综合运用
块:劈分/合并;删除;拉伸| 旋转;对称;平移
实体:简化
O grid;C grid; L grid
点:劈分/合并;移动;关联| 增加辅助点
线:造型;关联 面:劈分/合并;
Compute Mesh-Surface Mesh Only(可更

ICEM_CFD_网格划分入门

ICEM_CFD_网格划分入门

WorkBench ICEM CFD 网格划分入门【1 】111AnsysWB里集成了一个异常重要的对象:ICEM CFD.它是一个建模.划分网格的集成对象,功效异常壮大.我也只是蜻蜓点水的用了几回,感到确切异常棒,以前碰到庞杂的模子,用过几个划分网格的对象.但这是我认为最便利和最具效力的.网格划分很大程度上影响着后续的仿真剖析——信任列位都有所领会.而ICEM CFD特殊长于划分六面体网格,信任无论是构造或流体(当然铁别是流体),都邑得益于它的威力.ICEM CFD建模的才能不敢奉承,但划分网格确切有其独到之处.教程开端前,作一个简略的道理介绍,方面没有应用过ICEM CFD的同伙懂得重要的义务:111如下图:1:白色的物体是我们须要划分网格的,但是它异常不规矩.2:这时刻你必定想:怎么这个不规矩呢,如果它是一个方朴直正的外形多好(例如红色的谁人外形)01111于是有了如许一种思惟:1:对于异型,我们用一种规矩外形去描写它.2:或者说:假如目标外形异常庞杂,我们就用许多规矩的,简略的外形单元合成在一路,去描写它.之后,将网格划分的设置,做到规矩外形上.最后,这些规矩,经由过程最初的“描写”关系,主动的“映射”到本来的庞杂外形上——问题就得到懂得决ICEM CFD恰是应用了这种思惟.如下是一个三通管,在ProE里做得02在ProE里面直接启动WB进入WB后,选择如下图:03111如下:1:代表工作空间里的实体2:代表某实体的子实体,可以掌握它们的开关状况3:掌握显示的地方04下面须要创建一个Body实体这个实体代表了真实的物体.这个真实的物体的外形由我们导入的外形来界说.——我们导入的外形其实不是真实的实体.这个概念要清楚.但是往后根本上不会对这个真实的实体作什么操纵.这种处理方法主如果为工作空间内有多个物体的时刻预备的.051:点击“创建Body”2.3:点选这两个点4:于是创建出一个叫“Body”的实体操纵中,左键选择,中键确认,右键完成并退出——相似的操纵办法许多地方用到,要多演习,往后就不特殊说清楚明了06下面须要创建我们最须要的器械:谁人“规矩的外形”ICEM CFD里,这个实体叫 Block可以如下方法创建之:07留意到我们如今多了一个黑框,怎么样,够规矩吧?呵呵,开个打趣.还必须对这个黑框进行须要的“裁剪”之后才干用来“描写”我们的目标实体0809修剪Block实体的第一步是一个益智的工作:我们无妨简略绘制一下计谋:因为我们的现实物体像一个变形的“T”形,是以,无妨就用“T”来变形.最后要保存的部分用圆圈暗示,不要得部分用“X”.如下图:10如图:1:选择“Split”对象2:应用默认的第一个办法3:选择“选线”按钮4:在Block的黑线上选择,并“切”出一条黑线.5.6.7.8.9:以此类推.11最后的成果应当相似下图121:选择“Delete Block”2:选择“选择B lock”按钮3:删除不须要的部分.13得到相似的图形:14开端调节点的地位:1:选择“Move 极点”2:选择默认办法3:选择“多选”——填补一个,我们一向应用Y向视图!5:将Y固定掉落4:选择“选择点对象”6:之后调节Block的极点,到相似下图的地位15留意到在每个Pip的弯处,Block与Pip不克不及很好的贴合,这是因为我们的Block照样光滑.是以,须要持续“Split”现有的Block,并持续调节Block的极点.办法就是反复上面的步调,这里就不罗嗦了.细分和调节后的图形相似下图,当然寻求完美的同伙还可以持续细分——不过须要掌控一个度的问题,因为细分得太多,也就掉去“用简略描写庞杂”这个动身点了.16下面要做的是从Block到Pip的“对应关系指定”工作.——尽管现有已经有了描写Pip的Block,但一些细节的地方,须要手工指定它们的对应关系,在庞杂模子中尤为如斯.因为尽管软件有很大程度的智能,但它毕竟无法完整的主动的剖析出我们须要的对应关系来.关于指定“对应关系”的演习,最好请同伙们按照ICEM CFD 自带的教程来做几回.特殊是调节Block的极点技能,和往后流体盘算的网格质量有很大关系,不熟习的同伙须要补补课了.如下图:我们须要将Block上的这四个边同Pip三通处的衔接部分“绑定”在一路.相当于告知软件:“往后这四条边就代表了这两条圆弧哦!”17办法如下:1:选择“Associate”2:选择“Edge to Curve”——Edge是Block上的,Curve是Pip 上的3:选择Edges——留意这时必须要多选.4:再选择“Curve”——这时刻也要多选5:中键确认后,留意到已经制订了对应关系的边变成绿色.18下一步就可以应用主动指定的功效了:1:选择“Associate”2:选择主动捕获3:肯定4:留意到如今Block已经“完美”的包裹住Pip19别的,要将三个管口的Block的Edge和Pip的Curve“指定”对应关系,办法就和上面指定衔接处的时刻一样.请大家自行操纵了.20之后,就可以设定Mesh的参数了.1:打开实体参数设定窗口2:MaxSize设置为5——偏向对了今后往后可以调节到更小.3:HeightRetio设置为0.64:确认21激活适才的设置,为Pre-Mesh做预备1:选择“Pre-Mesh 参数”2:默认更新所有设置3:确认22预览Mesh:1:设置为实体状况2:显示设置的推举选项,同伙们可以自行调节3:成果应当和右图相似23关怀一下Mesh质量:1:打开Mesh质量检讨2:选择“Angle”——有许多种评价网格质量的办法,我比较爱好这个3:右键点选不睬想的部分4:选择“Show”5:这些单元格是今朝的设置情形下,不太幻想的地方24有许多种办法改良单元格的质量比方我在Bolock上,响应的地方添加了一条线,调节的地位后,从新应用一次“主动包裹”——办法同前面的讲述再次更新Pre-Mesh参数后,审查质量,适才的不良已经清除.25重要提醒:1:在制造Block的时刻,Block极点的地位,Bolock细分的后果,都可以在如许的轮回操纵中得到直不雅的成果.2:划分网格,我小我认为无外乎两步:一个清楚的思绪,和不竭的优化.前者须要见多识广,后者须要耐烦细心.假如是做构造剖析,在这一步可以打住了,直接生成最终的单元格文件即可;但做流体的同伙还须要持续:做流体的鸿沟层.1:创见O型格也是一种Split2:选择创建O型格3:选择所有的格体4:选择出.进口(不须要O型构造的面)26不雅察个中一个口:1:绿色的线是本来Block的Edge(因为我们本来制订了它和Pip上物理启齿的对应关系所以变成了绿色)2:小一点的黑色线,代表了往后的O型格体——ICEM CFD创建O型格的工作仍是在Block上开展的.27在O型格上设置鸿沟层的参数1:打开参数设置2:设置“线参数”3:选择一条衔接O型和边沿的联线4:往后鸿沟层为六层,是以格点为75:接近外缘的厚度暂定为0.2——往后可以调剂6:选择“复制参数”的功效7:将这个设置复制到所有相似的线上个中MeshLaw设置很有意思,同往后的求解器,液体属性等均有关系.有兴致的同伙本身去研讨了.我选择的是“Exponential1”28留意到此时O型到边沿的距离,就是我们方才设置了曾数等信息的那条黑线,还比较长是以,做如下修正:1:选择修正Block1.5:选择修正边长2:选择须要修正的边3:输入距离(留意“绝对距离”和“相对距离”的不同)29可以从新勾选“Pre-Mesh”留意到如今已经有O型构造了.30后续的工作中: 1:可以在“Pre-Mesh”上右键,选择“转换为非构造化网格”2:可以应用菜单项,输入须要后续剖析的软件的对应格局.3132结论:1:Ansys 的WB,对ICEM CFD的集成今朝(至少我应用的版本),其实不完美.譬如ZCCBEST同伙提出的若何保持参数化的问题,我也不知道是否能实现.但我想第一,ICEM CFD是异常棒的Mesh对象,重要照样用在庞杂模子的Mesh上,并且着重于Mesh本身.举例说,我用Maya制造的庞杂模子,也可以在ICEM CFD中进行网格划分,并且生成的BLOCK文件可以被单独的保管下来,往后假如修正不大,则直接挪用BLOCK文件,反复应用之即可(当然一般要做一些小的修正).第二:今天或许不克不及实现某些我们愿望的功效,并不是明天不成.我想来论坛的同伙更多的是抱着进修的目标,所以请临时把软件的瑕疵放一放,而不竭地,毫无偏看法去进步本身第三:从Ansys近两年的成长看,我信任我们期望的那些宜用功效,肯定会被完美.比方就我知道的:Ansys正在斟酌将Ansoft,Fluent等才收购的重量级软件也集成到WB中来.是以,我建议大家,在“幻想状况”到来前,不竭地进修进修再进修,从而争夺领先一步,步步领先!2:回想我所发的几个教程,其实很大程度上是想为同伙们抛砖引玉,引诱不熟习仿真软件的同伙懂得这个范畴——毕竟我们在这方面也太落伍了,许多行业根本没有这种意思.同伙们或许为不合的公司打工,但往后的临盆,何尝不都是用的我们中国人的资本.能勤俭点是一点,于公于私都不无大利——至少我们要知道可以怎么样将这些器械用于我们的设计吧.是以我真心的建议大家配合扶植这个板块,忘我的交换日常的心得,真正达到配合进步的目标.唉,不当心写多了.忘却了“少说多做”的原则,但想到确切是发自肺腑的文字,不忍删除,就以之与同伙们共勉吧——好累,抽根烟先!。

ICEM CFD 软件资料集锦之划分网格篇

ICEM CFD 软件资料集锦之划分网格篇

,重合的面在输出时会自动消失,建议分块划分网格,单独
输出,然后在fluent里头组合!
Q11.ICEM画网格的时候,进行几何修复时候,Tolerance的值 应该怎么选取呀?
A:tolerance代表容差,就是说小于这个值的点、线、面等将
新生成为一个。一般的话,按照默认设置已经足够了,但对
一些细小的几何结构,应尽量设置的小一些。
对整个模型创建block块然后切分block切分好后进行关联将你需要划分三角形网格的地方的块删除用premesh查看四边形划分情况如果觉得稀疏可以通过调节边节点数来加密网格确定无误后导入四边形网格到此时结构网格划分完成
ICEM CFD 软件资料集锦之划 分网格篇
更新时间:-31
问答: Q1.ICEM CFD划分旋流器,混合网格:关于旋流器,旋 流器有下半部分圆锥和圆柱体,以及插入圆柱体部分的 小圆柱体组成,要求是下半部分圆锥和圆柱体作为整体 化为非结构化网格,插入圆柱体部分的小圆柱体画成结 构化网格,怎么处理?还请指教,不胜感激
负,求大神解答
A:假如来流为从左到右,那么左边的面为进口,为正;右边 出口为负;
Q9.我做的水轮机结构比较复杂,结构网格画不好,非 结构网格画好了,刚开始没有设置近壁面网格,书上说 近壁面网格如果没有,对结果会有影响,可是加了以后
质量变得很差。所以对于非结构网格大家都是怎么画的
呀?谢谢!
A:ICEM中,非结构网格划分中,自带有边界层网格添加
Q2.怎样使用icem给闭式和半开式叶轮划分结构化网格?其划分 的思路和方法步骤是怎样的?还有在划分结构化网格时对半 开式叶轮叶顶间隙应该怎么处理?
A:大致思路:创建Block(块)-切分Block-删除多余的Block关联曲线与点-预览网格效果-增加节点加密网格-导入结构网 格。但是对于拥有像叶片这样不规则曲面的叶轮,建议采用

ICEM_CFD网格设置参数

ICEM_CFD网格设置参数

ICEM_CFD网格设置参数一般来说,线和边单位参数设置,Height、Height Ratio和层数是常用的3个参数。

如果只设置了层数而没有设置高度和高度比的话,高度会视同等于最大单元尺寸,高度比视同为1.- E" Y: [9 ~. h" u2 R& k* C1 m(1)Maximum size最大单元尺寸,真实值是该值与总体单元缩放因子的乘积。

如果采用Curvature/Proximity Based Refinement or Maximum Deviation也可以突破这个限制(2)Height5 ^, q% U/ x& [指定垂直表面或者曲线的第一层单元的高度,对于体单元,这个参数能够影响六面体和菱柱的初始网格高度。

对于Patch Dependent 面网格,使用于曲线时,这个值能够影响沿着曲线的四边形网格的初始高度。

例如,可以用于指定沿着螺栓孔一周的四面形网格的初始高度。

. [5 m+ ^' y/ s9 k8 u(3)Height Ratio( [2 U/ X& e* D9 L8 J从面第一层单元开始的扩大率,这个值乘以前一层网格的高度来决定下一层网格高度。

默认值为1.5,可以从1.0~3调整。

如果值小于1.0,将会取其倒数,如果值大于3,将会忽略该设置直接采用默认值。

当用于曲线时,能影响Patch Dependent meshing,当定义了初始高度和层数后,它决定了下一层四面体单元的生长率。

当采用Adapt Mesh Interior设置后,它会影响从曲线尺寸到面尺寸过渡的快慢。

(4)Num Layers从面或者曲线开始增长的层数(5)Tetra width9 E; H4 x; P& \4 X创建指定数目的三角形层,这些层单元尺寸由最大尺寸指定。

(6)Tetra size ratio控制三角形单元的生长率,用于三角形网格。

ICEM网格划法的学习总结

ICEM网格划法的学习总结

1、ICEM学习ICEM的模型树按照几何、块、网格,局部坐标和part几部分来显示。

在几何中点线面与块中的点线面叫法不同。

如下图所示:Body 在非结构化网格生成过程中,用于定义封闭的面构成的体,定义不同区域的网格。

Part是对几何与块的详细定义。

Part中既可以包含几何,又可以包含块。

可以点、线面、块、网格,但是一条线只存在于一个part中。

网格单元类型:1.网格生成方法:1、AutoBlock2、Patch Dependent3、Patch Independent4.Shrinkwrap壳、面生成网格的过程:2.Tolerance与颜色问题:导入ICEM中的模型首先要进行模型修复。

导入到ICEM中的几何模型要可能会出现三种颜色curve,红颜色的正常,黄色的为不连续的,蓝色的为重复的。

黄色的是单个面的边界(二维),红色的是两个面的交界线,蓝色的是三个/三个以上面相交的交线。

(出现蓝线是没有问题的,表明这个线是两个面以上的共线,只要不出现黄线就可以,黄线表示这儿有裂缝。

)黄线表示出现了洞,可能是面丢失了,造成蓝线的原因是有面体重叠了,你得删除多余的面体。

黄色的线表有孔或缝隙。

绿色的线直接删除。

白色的边和顶点:这些边位于不同的材料体间,它们和被关联的顶点将被映射到这些材料体中最贴近的CAD 表面,而且这些边上的顶点只能在表面内移动。

蓝色的边和顶点:这些边位于体内部。

它们的顶点也是蓝色的,可以在选择之前沿边拖拽。

绿色的边和顶点:这些边和关联的顶点是映射到曲线的,这些顶点只能在它所映射的曲线上移动。

红色的顶点:这些顶点是映射到指定的点的。

导入的模型必须是封闭的面,线是红色的。

自动生成翼型的网格。

3.equivalence将同一空间位置的重复节点消除(通常,消除ID好较大的节点,保留ID好较小的节点),只保留一个节点,一般与“Verify”配合使用,这种方法可通过任何FEM定义(单元的相关定义、MPC等式、载荷、边界条件等)、几何定义和组等实现。

ICEM_CFD_网格划分入门

ICEM_CFD_网格划分入门

WorkBench ICEM CFD 网格划分入门111AnsysWB里集成了一个非常重要的工具:ICEM CFD。

它是一个建模、划分网格的集成工具,功能非常强大。

我也只是蜻蜓点水的用了几次,感觉确实非常棒,以前遇到复杂的模型,用过几个划分网格的工具。

但这是我觉得最方便和最具效率的。

网格划分很大程度上影响着后续的仿真分析——相信各位都有所体会。

而ICEM CFD特别长于划分六面体网格,相信无论是结构或流体(当然铁别是流体),都会得益于它的威力。

ICEM CFD建模的能力不敢恭维,但划分网格确实有其独到之处。

教程开始前,作一个简单的原理介绍,方面没有使用过ICEM CFD的朋友理解主要的任务:111如下图:1:白色的物体是我们需要划分网格的,但是它非常不规则。

2:这时候你一定想:怎么这个不规则呢,要是它是一个方方正正的形状多好(例如红色的那个形状)01111于是有了这样一种思想:1:对于异型,我们用一种规则形状去描述它。

2:或者说:如果目标形状非常复杂,我们就用很多规则的,简单的形状单元合成在一起,去描述它。

之后,将网格划分的设置,做到规则形状上。

最后,这些规则,通过最初的“描述”关系,自动的“映射”到原先的复杂形状上——问题就得到了解决!!!ICEM CFD正是使用了这种思想。

如下是一个三通管,在ProE里做得02在ProE里面直接启动WB进入WB后,选择如下图:03111如下:1:代表工作空间里的实体2:代表某实体的子实体,可以控制它们的开关状态3:控制显示的地方04下面需要创建一个Body实体这个实体代表了真实的物体。

这个真实的物体的外形由我们导入的外形来定义。

——我们导入的外形并不是真实的实体。

这个概念要清楚。

但是今后基本上不会对这个真实的实体作什么操作。

这种处理方式主要是为工作空间内有多个物体的时候准备的。

051:点击“创建Body”2、3:点选这两个点4:于是创建出一个叫“Body”的实体操作中,左键选择,中键确认,右键完成并退出——类似的操作方法很多地方用到,要多练习,今后就不特别说明了06下面需要创建我们最需要的东西:那个“规则的形状”ICEM CFD里,这个实体叫 Block可以如下方式创建之:07注意到我们现在多了一个黑框,怎么样,够规则吧?呵呵,开个玩笑。

CFD高级网格工具ICEM-CFD培训

CFD高级网格工具ICEM-CFD培训

ANSYS 单元形状检查 (ESCHECK) “正交质量” 选项
Mesh Editing
改善的功能 ►劈分棱柱体网格( Prism) ►缝合边( Edges) ►网格报告 (Min angle, Element types) ►标记内部单元
►仅对此选项有效“Only
Volume Elements”
►创建网格拓扑 ►缺省的柱状图设置 ►对二次质量标准的诊断 ►多线程并行光顺 ►稳健性的提高
独立于几何
几何
“块”
向几何投影
块内生成纯 笛卡尔网格
投影后的网格
块划分方法 – 自顶向下/自底向上
“自顶向下” 拓扑创建
• 用户将是雕塑家而不是砖瓦匠 • 一步创建高级拓扑结构(O-grid)
O-grid
“自底向上” 拓扑创建
• 创建块过程将是像砖瓦匠一样逐层创建
– 创建块 – 拉伸面 – 复制拓扑
– Laplace, Thomas Middlecoff, Sorenson, etc.
网格编辑
– 合并网格
• 自动对四面体-六面体网格一致合并 • 在界面生成金字塔单元 • 对网格生成能够优化“混合处理”
网格编辑
增加的功能 ► 合并四面体和混合网格 ► 质量检查
► ►
Workbench Orthogonal
• 选项的综合列表
Tri Quad Tet All Types …
to to to to
Quad Tri Hex Tet
网格编辑
– 局部细化和粗化
• 总是映射到真实CAD的表达上 • 网格粗化以减少四面体模型尺寸
网格编辑
– 强大的表面及体网格的光滑处理
• 节点的移动限制到相连的几何体上 • 多种椭圆光滑程序

计算流体力学ICEM CFD 网格生成基础教程

计算流体力学ICEM CFD 网格生成基础教程

第一章介绍ICEM CFD 工程Tutorials目录中每个工程是一个次级子目录。

每个工程的目录下有下列子目录:import, parts, domains, mesh, 和transfer。

他们分别代表:• import/: 要导入到ICEMCFD中的集合模型交换文件,比如igs,STL等;• parts/: CAD模型• domains/: 非结构六面体网格文件(hex.unstruct), 结构六面体网格分区文件(domain.n), 非结构四面体网格文件(cut_domain.1)• mesh/: 边界条件文件(family_boco, boco),结构网格的拓扑定义文件(family_topo, topo_mulcad_out), 和Tetin几何文件(tetin1).• transfer/: 求解器输入文件(star.elem), 用于Mom3d.的分析数据mesh目录中Tetin文件代表将要划分网格的几何体。

包含B-spline曲面定义和曲线信息,以及分组定义Replay 文件是六面体网格划分的分块的脚本鼠标和键盘操作鼠标或键盘操作功能鼠标左键点击和拖动旋转模型鼠标中键点击和拖动平移模型鼠标右键点击和上下拖动缩放模型鼠标右键点击和左右拖动绕屏幕Z轴旋转模型F9 按住F9,然后点击任意鼠标键进行操作的时候进行模型运动F10 按F10 紧急图象Reset第二章ICEM CFD Mesh Editor界面The Mesh Editor, 创建修改网格的集成环境,包含三个窗口• The ICEM CFD 主窗口• 显示窗口• The ICEM CFD 消息窗口主窗口主窗口中除了图形显示区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output. The File MenuThe File menu 包含• Open, Save, Save as, Close, Quit, Project dir, Tetin file,Domain file, B.C file, Import geo, Export geo, Options, Utilities,Scripting, Annotations, Import mesh, DDN part.The Geometry MenuThe Geometry menu 模型修补和编辑,边界条件的设置,调用ICEM CFD DDN。

ICEMCFD网格划分经验总结

ICEMCFD网格划分经验总结

ICEMCFD网格划分经验总结
ICEM CFD网格划分经验总结
1当流域是由一些体通过交界面连接时,每对交界面中的两个面网格单元数应该基本相等,在ICEM中生成网格时,你所定义的每个面的网格单元数都会在命令框显示出来,你只需要通过观看两个交界面的网格数,就可以保证满足这个条件。

当交界面两边网格数相差太大时,需要重新调整网格尺度,满足此条件。

2网格质量不好时,可以通过光顺网格来使网格矢量得到进一步的提高,光顺的迭代步数可以稍微提高一些。

3当加了边界层网格时,网格质量一般会下降,边界层网格只在你比较关注标准壁面函数时有用,即y+值,这个只和第一层网格有关,如果对壁面没有太大要求,可以不加边界层,这样就可以通过去掉边界层改善网格质量。

4网格质量检查的时候如果有少量网格质量比较低,可以通过调整不好的网格节点,操作步骤为选中质量不好的网格,其会在图中高亮显示,然后选Edit Mesh > Move nodes,然后选中三角形节点,调整网格尽量为等边三角形,然后显示网格,再进行光顺,即可改善网格质量。

如果还不行,可以通过将局部网格不好的地方的网格最大尺度变小,即在定义Prism layer设置中,将Max size调下即可。

5 ICEM网格质量提高方法:
检查网格时,需要检测的网格类型:
TETRA_4:四面体网格单元
TRI_3:三角形网格单元
PENTA_6:三棱柱网格单元
第一步:生成边界层后将边界层网格(三棱柱体网格和四边形面网格)固定,然后对其余的网格光顺。

第二步:对所有的网格进行光顺处理。

这样可以稍微改善一下网格质量。

ICEM网格划法的学习总结

ICEM网格划法的学习总结

1、ICEM学习ICEM的模型树按照几何、块、网格,局部坐标和part几部分来显示。

在几何中点线面与块中的点线面叫法不同。

如下图所示:Body 在非结构化网格生成过程中,用于定义封闭的面构成的体,定义不同区域的网格。

Part是对几何与块的详细定义。

Part中既可以包含几何,又可以包含块。

可以点、线面、块、网格,但是一条线只存在于一个part中。

网格单元类型:1.网格生成方法:1、AutoBlock2、Patch Dependent3、Patch Independent4.Shrinkwrap壳、面生成网格的过程:2.Tolerance与颜色问题:导入ICEM中的模型首先要进行模型修复。

导入到ICEM中的几何模型要可能会出现三种颜色curve,红颜色的正常,黄色的为不连续的,蓝色的为重复的。

黄色的是单个面的边界(二维),红色的是两个面的交界线,蓝色的是三个/三个以上面相交的交线。

(出现蓝线是没有问题的,表明这个线是两个面以上的共线,只要不出现黄线就可以,黄线表示这儿有裂缝。

)黄线表示出现了洞,可能是面丢失了,造成蓝线的原因是有面体重叠了,你得删除多余的面体。

黄色的线表有孔或缝隙。

绿色的线直接删除。

白色的边和顶点:这些边位于不同的材料体间,它们和被关联的顶点将被映射到这些材料体中最贴近的CAD 表面,而且这些边上的顶点只能在表面内移动。

蓝色的边和顶点:这些边位于体内部。

它们的顶点也是蓝色的,可以在选择之前沿边拖拽。

绿色的边和顶点:这些边和关联的顶点是映射到曲线的,这些顶点只能在它所映射的曲线上移动。

红色的顶点:这些顶点是映射到指定的点的。

导入的模型必须是封闭的面,线是红色的。

自动生成翼型的网格。

3.equivalence将同一空间位置的重复节点消除(通常,消除ID好较大的节点,保留ID好较小的节点),只保留一个节点,一般与“Verify”配合使用,这种方法可通过任何FEM定义(单元的相关定义、MPC等式、载荷、边界条件等)、几何定义和组等实现。

ICEM_CFD_网格划分入门

ICEM_CFD_网格划分入门

WorkBench ICEM CFD 网格区分初教之阳早格格创做111AnsysWB里集成了一个非常要害的工具:ICEM CFD.它是一个建模、区分网格的集成工具,功能非常强盛.尔也不过蜻蜓面火的用了频频,感觉真真非常棒,往日逢到搀纯的模型,用过几个区分网格的工具.然而那是尔感触最便当战最具效用的.网格区分很大程度上做用着后绝的仿真分解——疑赖诸位皆有所体验.而ICEM CFD特天少于区分六里体网格,疑赖无论是结构大概流体(天然铁别是流体),皆市得益于它的能力.ICEM CFD建模的本收不敢阿谀,然而区分网格真真有其独到之处.教程开初前,做一个简朴的本理介绍,圆里不使用过ICEM CFD的伙伴明黑主要的任务:111如下图:1:红色的物体是咱们需要区分网格的,然而是它非常不准则.2:那时间您一定念:怎么那个不准则呢,假如它是一个圆圆正正的形状多佳(比圆红色的那个形状)01111于是有了那样一种思维:1:对付于同型,咱们用一种准则形状去形貌它.2:大概者道:如果目标形状非常搀纯,咱们便用很多准则的,简朴的形状单元合成正在所有,去形貌它.之后,将网格区分的树立,搞到准则形状上.末尾,那些准则,通过最初的“形貌”闭系,自动的“映射”到本先的搀纯形状上——问题便得到了办理!!!ICEM CFD正是使用了那种思维.如下是一个三通管,正在ProE里搞得02正在ProE内里间接开用WB加进WB后,采用如下图:03111如下:1:代表处事空间里的真体2:代表某真体的子真体,不妨统造它们的开闭状态3:统造隐现的场合04底下需要创造一个Body真体那个真体代表了真正在的物体.那个真正在的物体的形状由咱们导进的形状去定义.——咱们导进的形状本去不是真正在的真体.那个观念要收会.然而是以后基础上不会对付那个真正在的真体做什么支配.那种处理办法主假如为处事空间内有多个物体的时间准备的.051:面打“创造Body”2、3:面选那二个面4:于是创造出一个喊“Body”的真体支配中,左键采用,中键确认,左键完毕并退出——类似的支配要收很多场合用到,要多训练,以后便不特天证明黑06底下需要创造咱们最需要的物品:那个“准则的形状”ICEM CFD里,那个真体喊 Block不妨如下办法创造之:07注意到咱们当前多了一个乌框,怎么样,够准则吧?呵呵,开个玩笑.还必须对付那个乌框举止需要的“裁剪”之后才搞用去“形貌”咱们的目标真体0809建剪Block真体的第一步是一个益智的处事:咱们无妨简朴画造一下战术:果为咱们的本量物体像一个变形的“T”形,果此,无妨便用“T”去变形.末尾要死存的部分用圆圈表示,不要得部分用“X”.如下图:10如图:1:采用“Split”工具2:使用默认的第一个要收3:采用“选线”按钮4:正在Block的乌线上采用,并“切”出一条乌线.5、6、7、8、9:以此类推.11末尾的截止该当类似下图121:采用“Delete Block”2:采用“采用Block”按钮3:简略不需要的部分.13得到类似的图形:14开初安排面的位子:1:采用“Move 顶面”2:采用默认要收3:采用“多选”——补充一个,咱们背去使用Y背视图!5:将Y牢固掉4:采用“采用面工具”6:之后安排Block的顶面,到类似下图的位子15注意到正在每个Pip的直处,Block与Pip不克不迭很佳的揭合,那是果为咱们的Block仍旧细糙.果此,需要继承“Split”现有的Block,并继承安排Block 的顶面.要收便是沉复上头的步调,那里便不罗嗦了.细分战安排后的图形类似下图,天然探供完好的伙伴还不妨继承细分——不过需要掌控一个度的问题,果为细分得太多,也便得去“用简朴形貌搀纯”那个出收面了.16底下要搞的是从Block到Pip的“对付应闭系指定”处事.——纵然现有已经有了形貌Pip的Block,然而一些细节的场合,需要脚工指定它们的对付应闭系,正在搀纯模型中尤为如许.果为纵然硬件有很大程度的智能,然而它到底无法真足的自动的分解出咱们需要的对付应闭系去.闭于指定“对付应闭系”的训练,最佳请伙伴们依照ICEM CFD 自戴的教程去搞频频.特天是安排Block的顶面本收,战以后流体估计的网格品量有很大闭系,不认识的伙伴需要补补课了.如下图:咱们需要将Block上的那四个边共Pip三通处的对接部分“绑定”正在所有.相称于报告硬件:“以后那四条边便代表了那二条圆弧哦!”17要收如下:1:采用“Associate”2:采用“Edge to Curve”——Edge是Block上的,Curve是Pip上的3:采用Edges——注意那时必须要多选.4:再采用“Curve”——那时间也要多选5:中键确认后,注意到已经造定了对付应闭系的边形成绿色.18下一步便不妨使用自动指定的功能了:1:采用“Associate”2:采用自动捕获3:决定4:注意到当前Block已经“完好”的包裹住Pip19其余,要将三个管心的Block的Edge战Pip的Curve“指定”对付应闭系,要收便战上头指定对接处的时间一般.请大家自止支配了.20之后,便不妨设定Mesh的参数了.1:挨开真体参数设定窗心2:MaxSize树立为5——目标对付了以去以后不妨安排到更小.3:HeightRetio树立为0.64:确认21激活刚刚才的树立,为Pre-Mesh搞准备1:采用“Pre-Mesh 参数”2:默认革新所有树立3:确认22预览Mesh:1:树立为真体状态2:隐现树立的推荐选项,伙伴们不妨自止安排3:截止该当战左图类似23闭心一下Mesh品量:1:挨开Mesh品量查看2:采用“Angle”——有很多种评介网格品量的要收,尔比较喜欢那个3:左键面选不睬念的部分4:采用“Show”5:那些单元格是姑且的树立情况下,不太理念的场合24有很多种要收革新单元格的品量比圆尔正在Bolock上,相映的场合增加了一条线,安排的位子后,从新使用一次“自动包裹”——要收共前里的道述再次革新Pre-Mesh参数后,检察品量,刚刚才的不良已经与消.25要害提示:1:正在创造Block的时间,Block顶面的位子,Bolock细分的效验,皆不妨正在那样的循环支配中得到曲瞅的截止.2:区分网格,尔部分感触无中乎二步:一个浑晰的思路,战不竭的劣化.前者需要睹多识广,后者需要耐性留神.如果是搞结构分解,正在那一步不妨挨住了,间接死成最后的单元格文献即可;然而搞流体的伙伴还需要继承:搞流体的鸿沟层.1:创睹O型格也是一种Split2:采用创造O型格3:采用所有的格体4:采用出、出心(不需要O型结构的里)26瞅察其中一个心:1:绿色的线是本先Block的Edge(果为咱们本先造定了它战Pip上物理开心的对付应闭系所以形成了绿色)2:小一面的乌色线,代表了以后的O型格体!!!——ICEM CFD创造O型格的处事仍是正在Block上开展的.27正在O型格上树立鸿沟层的参数1:挨开参数树立2:树立“线参数”3:采用一条对接O型战边沿的联线4:以后鸿沟层为六层,果此格面为75:靠拢中缘的薄度久定为0.2——以后不妨安排6:采用“复造参数”的功能7:将那个树立复造到所有类似的线上其中MeshLaw树立很蓄意义,共以后的供解器,液体属性等均有闭系.有兴趣的伙伴自己去钻研了.尔采用的是“Exponential1”28注意到此时O型到边沿的距离,便是咱们刚刚刚刚树立了曾数等疑息的那条乌线,还比较少果此,搞如下建改:1:采用建改Block1.5:采用建改边少2:采用需要建改的边3:输进距离(注意“千万于距离”战“相对付距离”的不共)29不妨从新勾选“Pre-Mesh”注意到当前已经有O型结构了.30后绝的处事中:1:不妨正在“Pre-Mesh”上左键,采用“变换为非结构化网格”2:不妨使用菜单项,输进需要后绝分解的硬件的对付应要收.3132论断:1:Ansys 的WB,对付ICEM CFD的集成姑且(起码尔使用的版本),本去不完好.譬如ZCCBEST伙伴提出的怎么样脆持参数化的问题,尔也不相识是可能真止.然而尔念第一,ICEM CFD利害常棒的Mesh工具,主要仍旧用正在搀纯模型的Mesh上,而且偏偏沉于Mesh自己.举例道,尔用Maya创造的搀纯模型,也不妨正在ICEM CFD中举止网格区分,而且死成的BLOCK文献不妨被单独的死存下去,以后如果建改不大,则间接调用BLOCK文献,沉复利用之即可(天然普遍要搞一些小的建改).第二:即日大概许不克不迭真止某些咱们憧憬的功能,并不是来日诰日不可.尔念去论坛的伙伴更多的是抱着教习的脚段,所以请姑且把硬件的瑕疵搁一搁,而不竭天,毫无偏偏睹天去普及自己第三:从Ansys近二年的死少瞅,尔疑赖咱们憧憬的那些宜用功能,肯定会被完备.比便当尔相识的:Ansys正正在思量将Ansoft,Fluent等才支买的沉量级硬件也集成到WB中去.果此,尔提议大家,正在“理念状态”到去前,不竭天教习教习再教习,进而争与超过一步,步步超过!2:回瞅尔所收的几个教程,本去很大程度上是念为伙伴们举一反三,带收不认识仿真硬件的伙伴相识那个范围——到底咱们正在那圆里也太降后了,很多止业基础不那种意义.伙伴们大概许为分歧的公司挨工,然而以后的死产,何尝不皆是用的咱们华夏人的资材.能俭朴面是一面,于公于公皆不无大利——起码咱们要相识不妨怎么样将那些物品用于咱们的安排吧.果此尔忠心的提议大家共共建造那个板块,无公的接流凡是的心得,真真达到共共普及的脚段.唉,不留神写多了.记记了“少道多搞”的准则,然而料到真真是收自肺腑的笔墨,不忍简略,便以之与伙伴们共勉吧!!!——佳乏,抽根烟先!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FLUENT动网格教程该专题主要包括以下的主要内容:§一、动网格的相关知识介绍;§二、以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程;§三、与动网格应用有关的参考文献;§四、使用动网格进行计算的一些例子。

§一、动网格的相关知识介绍有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。

1、简介动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。

边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。

网格的更新过程由FLUE NT 根据每个迭代步中边界的变化情况自动完成。

在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。

可以用边界型函数或者UDF定义边界的运动方式。

FLUENT 要求将运动的描述定义在网格面或网格区域上。

如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。

那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。

不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。

注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C语言编程基础。

2、动网格更新方法动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamic layering)局部重划模型(local remeshing)1)弹簧近似光滑模型原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法:(1)移动为单方向。

(2)移动方向垂直于边界。

如果两个条件不满足,可能使网格畸变率增大。

另外,在系统缺省设置中,只有四面体网格(三维)和三角形网格(二维)可以使用弹簧光顺法,如果想在其他网格类型中激活该模型,需要在dynamic-mesh-menu 下使用文字命令spring-on-all-shape s?,然后激活该选项即可。

2)动态分层模型动态分层模型的应用有如下限制:(1)与运动边界相邻的网格必须为楔形或者六面体(二维四边形)网格。

(2)在滑动网格交界面以外的区域,网格必须被单面网格区域包围。

(3)如果网格周围区域中有双侧壁面区域,则必须首先将壁面和阴影区分割开,再用滑动交界面将二者耦合起来。

(4)如果动态网格附近包含周期性区域,则只能用FLUENT 的串行版求解,但是如果周期性区域被设置为周期性非正则交界面,则可以用FLUENT 的并行版求解。

如果移动边界为内部边界,则边界两侧的网格都将作为动态层参与计算。

如果在壁面上只有一部分是运动边界,其他部分保持静止,则只需在运动边界上应用动网格技术,但是动网格区与静止网格区之间应该用滑动网格交界面进行连接。

3——局部网格重划模型需要注意的是,局部网格重划模型仅能用于四面体网格和三角形网格。

在定义了动边界面以后,如果在动边界面附近同时定义了局部重划模型,则动边界上的表面网格必须满足下列条件:(1)需要进行局部调整的表面网格是三角形(三维)或直线(二维)。

(2)将被重新划分的面网格单元必须紧邻动网格节点。

(3)表面网格单元必须处于同一个面上并构成一个循环。

(4)被调整单元不能是对称面(线)或正则周期性边界的一部分。

动网格的实现在FLUENT 中是由系统自动完成的。

如果在计算中设置了动边界,则F LUENT 会根据动边界附近的网格类型,自动选择动网格计算模型。

如果动边界附近采用的是四面体网格(三维)或三角形网格(二维),则FLUENT 会自动选择弹簧光顺模型和局部重划模型对网格进行调整。

如果是棱柱型网格,则会自动选择动态层模型进行网格调整。

在静止网格区域则不进行网格调整。

动网格问题中对于固体运动的描述,是以固体相对于重心的线速度和角速度为基本参数加以定义的。

既可以用型函数定义固体的线速度和角速度,也可以用UDF 来定义这两个参数。

同时需要定义的是固体在初始时刻的位置。

注:这一小节主要讲述了动网格的更新方法,最好能掌握,尤其是各种方法的适用范围,通常来讲,在一个case中,我们使用的更新方法都是根据网格类型以及和要实现的运动来选择的,很多时候都是几种更新方法搭配起来使用的。

总结一下:使用弹簧近似光滑法网格拓扑始终不变,无需插值,保证了计算精度。

但弹簧近似光滑法不适用于大变形情况,当计算区域变形较大时,变形后的网格会产生较大的倾斜变形,从而使网格质量变差,严重影响计算精度。

动态分层法在生成网格方面具有快速的优势,同时它的应用也受到了一些限制。

它要求运动边界附近的网格为六面体或楔形,这对于复杂外形的流场区域是不适合的。

使用局部网格重划法要求网格为三角形(二维)或四面体(三维),这对于适应复杂外形是有好处的,局部网格重划法只会对运动边界附近区域的网格起作用。

3、动网格问题的建立设置动网格问题的步骤中需要注意的如下:在Solver(求解器)面板中选择非定常流(unsteady)计算;设定边界条件,即设定壁面运动速度;激活动网格模型,并设定相应参数;指定移动网格区域的运动参数;保存算例文件和数据文件;预览动网格设置,菜单操作为:Solve -> Mesh Motion...;应用自动保存功能保存计算结果,在动网格计算中,因为每个计算步中网格信息都会改变,而网格信息是储存在算例文件中的,所以必须同时保存算例文件和数据文件;如果想建立网格运动的动画过程,可以在Solution Animation(计算结果动画)面板中进行相关设置。

注:在这一步中,需要提醒一下,使用动网格进行正式计算之前,最好养成预览动网格更新的习惯;就是在正式计算前,浏览一下动网格的更新情况,这样可以避免在计算过程中出现动网格更新本身的问题。

在预览更新时,很多人都说会出现负体积的警告,更新不成功,出现这样的问题时,最好先把时间步长改的更小点儿试试,一般来讲,排除UDF本身的原因,出现更新出错的原因都与时间步长有关,这需要结合所使用的更新方法多琢磨。

4、设定动网格参数为了使用动网格模型,需要在dynamic mesh(动网格)面板中激活Dynamic M esh(动网格)选项。

如果计算的是活塞运动,则同时激活In-Cylinder(活塞)选项。

然后选择动网格模型,并设置相关参数。

1)选择网格更新模型在Mesh Methods(网格划分方法)下面选择Smothing(弹簧光顺模型),Laye ring(动态层模型)和(或)Remshing(局部网格重划模型)。

2)设置弹簧光顺参数激活弹簧光顺模型,相关参数设置位于Smoothing(光顺)标签下,可以设置的参数包括Spring Constant Factor(弹簧弹性系数)、Boundary Node Relaxation(边界点松弛因子)、Convergence Tolerance(收敛判据)和Number of Iterations(迭代次数)。

弹簧弹性系数应该在0 到1 之间变化,弹性系数等于0 时,弹簧系统没有耗散过程,在图中算例中,靠近壁面的网格没有被改变,而是保持了原来的网格形状和密度;在弹性系数等于1 时,弹簧系统的耗散过程与缺省设置相同,从图中可以发现壁面发生变形,壁面附近网格因为过度加密而质量下降。

因此在实际计算中应该在0 到1 之间选择一个适当的值。

边界点松弛因子用于控制动边界上网格点的移动。

当这个值为零时,边界节点不发生移动;在这个值为1 时,则边界节点的移动计算中不采用松弛格式。

在大多数情况下,这个值应该取为0 到1 之间的一个值,以保证边界节点以合适的移动量发生移动。

收敛判据就是网格节点移动计算中,迭代计算的判据。

迭代次数是指网格节点移动计算的最大迭代次数。

3)动态分层在Layering(动态分层)标签下,可以设置与动态层模型相关的参数。

通过设定C onstant Height(常值高度)与Constant Ratio(常值比例)可以确定分解网格的两种方法。

Split Factor(分割因子)和Collapse Factor(合并因子)则分别为上面介绍的alpha_s和alpha_c。

4)局部网格重新划分网格在Remeshing(重划网格)标签下,设置与局部重划模型相关的参数。

可以设置的参数包括Maximum Cell Skewness(最大畸变率)、Maximum Cell Volume(最大网格体积)和Minimum Cell Volume(最大网格体积),其含义如前所述,主要用于确定哪些网格需要被重新划分。

在缺省设置中,如果重新划分的网格优于原网格,则用新网格代替旧网格;否则,将保持原网格划分不变。

如果无论如何都要采用新网格的话,则可以在Options(选项)下面选择Must Improve Skewness(必须改善畸变率)选项。

如果Options(选项)下面的Size Function(尺寸函数)被激活,则还可以用网格尺寸分布函数标志需要重新划分的网格。

假设在某点附近的理想网格尺寸为L,而某个网格的尺寸为L',如果:L不属于[0.8*gamma*L,1.25*gamma*L]则网格被标志为需要重新划分的网格,并在随后的计算中被重新划分。

式中的ga mma用下面的公式计算:当alpha>0时,gamma=1+alpha*d_b^(1+2*beta)当alpha<0时,gamma=1+alpha*d_b^[(1-beta)^-1]式中d_b为网格到壁面边界的最小距离,alpha和beta就是需要设置的Size Fun ction Variation(尺寸函数增量)和Size Function Rate(尺寸函数变化率)。

以上两式中,alpha以边界网格尺寸为基准控制内部网格的大小,alpha等于0.5表示内部网格的尺寸至少是边界网格的1.5倍,alpha等于-0.5表示内部网格的尺寸等于边界网格的0.5倍,如果alpha等于0则表示内部网格与边界网格大小相同;bata 的取值在-1到1之间,用于控制网格从边界到内部区域的变化速率。

Beta取正值表示网格变化速率较慢取负值则表示变化速率较快,取0 则表示网格从边界到内部区域呈线性变化。

另外一个选项Size Function Resolution(尺寸函数分辨率)用于定义尺寸分布函数对网格大小的分辨率,其参照值是最小网格尺寸。

相关文档
最新文档