高中数学—命题和充要条件—学生版
第03讲 充分条件与必要条件(学生版)-2023年新高一(初升高)暑期数学衔接(新人教版)
第03讲充分条件与必要条件【学习目标】1.通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系2.通过对典型数学命题的梳理,理解充分条件的意义,理解判定定理与充分条件的关系3.通过对典型数学命题的梳理,理解充要条件的意义,理解数学定义与充要条件的关系【基础知识】一、“⇒”及“⇔”的含义“⇒”是推断符号,p⇒q即如果p成立,那么q一定成立,“⇔”表示“等价”,如“p⇔q”指的是“如果p,那么q”,同时有“如果q,那么p”,或者说“从p推出q”,同时可“从q 推出p”.二、充分条件与必要条件1.如果p⇒q,则p是q的充分条件,同时q是p的必要条件;2.如果p⇒q,但q⇏p,则p是q的充分不必要条件;3.如果p⇒q,且q⇒p,则p是q的充要条件;4.如果q⇒p,且p⇏q,则p是q的必要不充分条件;5.如果p⇏q,且q⇏p,则p是q的既不充分也不必要条件.6.充分条件与必要条件的理解充分条件:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.“有之必成立,无之未必不成立”.必要条件:必要就是必须,必不可少.“有之未必成立,无之必不成立”7.从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.三、判断充分条件、必要条件的注意点1.明确条件与结论.2.判断若p,则q 是否成立时注意利用等价命题.3.可以用反例说明由p 推不出q,但不能用特例说明由p 可以推出q.四、充要条件一定要分清谁是条件谁是结论,注意下面两种叙述方式的区别:1.p 是q 的充分条件;2.p 的充分条件是q .五、充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:1.把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.2.要注意区间端点值的检验.六、充要条件的证明策略1.要证明一个条件p 是否是q 的充要条件,需要从充分性和必要性两个方向进行,即证明两个命题“若p,则q”为真且“若q,则p”为真.2.在证明的过程中也可以转化为集合的思想来证明,证明p 与q 的解集是相同的,证明前必须分清楚充分性和必要性,即搞清楚由哪些条件推证到哪些结论.【基础知识】考点一:充分条件与必要条件的判断例1.(2020-2021学年广东省梅州市梅江区梅州中学高一上学期第一次段考)“三角形的某两条边相等”是“三角形为等边三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件考点二:与充分条件必要条件命题真假的判断例2.(多选)(2022学年广东省广州市越秀区高一上学期期末)下列四个命题中为真命题的是()A .“2x >”是“3x <”的既不充分也不必要条件B .“三角形为正三角形”是“三角形为等腰三角形”的必要不充分条件C .关于x 的方程()200++=≠ax bx c a 有实数根的充要条件是240b ac =-≥△D .若集合A B ⊆,则x A ∈是x B ∈的充分不必要条件考点三:根据充分条件与必要条件求参数范围例3.(2022学年上海市奉贤区致远高级中学高一上学期期中)设:13x α≤<,:x m β<,若α是β的充分条件,则实数m 的取值范围是_______.考点四:充分条件与必要条件的推理例4.(2022学年安徽省A10联盟高一上学期期中联考)已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,下列命题正确的是()A .r 是q 的必要不充分条件B .r 是s 的充要条件C .r 是s 的充分不必要条件D .q 是s 的充要条件【真题演练】1.(2020-2021学年重庆市青木关中学高一上学期12月月考)“260x x --=”是“3x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022学年安徽省蚌埠第三中学高一下学期开学测试)设P :3x <,q :13x -<<,则p 是q 成立的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3.(2022学年辽宁省抚顺市抚顺县高中高一上学期10月月考)下列说法正确的是()A .3x >是5x >的充分不必要条件B .1x ≠±是1x ≠的充要条件C .若q p ⇒,则p 是q 的充分条件D .一个四边形是矩形的充分条件是它是平行四边形4.(多选)(2022学年浙江省宁波市金兰教育合作组织高一上学期期中联考)已知集合{}3A x x =≤,集合{}1B x x m =≤+,能使A B ⊆成立的充分不必要条件有()A .0m >B .1m >C .3m >D .4m >5.(2022学年湖北省武汉市水果湖高中高一上学期10月月考)若“x k <或3x k >+”是“41x -<<”的必要不充分条件,则实数k 的值可以是()A .8-B .5-C .1D .46.(2022学年湖北省高一上学期期末调考)若命题p 是命题“:0q xy >”的充分不必要条件,则p 可以是___________.(写出满足题意的一个即可)7.(2022学年江西省丰城市第九中学高一上学期第一次月考)给出下列命题:①已知集合{240A xx =-<∣,且}N x ∈,则集合A 的真子集个数是4;②“1x =-”是“2560x x --=”的必要不充分条件;③“1a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件④设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件其中所有正确命题的序号是__________.8.(2022学年黑龙江省哈尔滨师范大学附属中学高一上学期期末)已知非空集合{}|1614P x a x a =-≤≤-,{}|25Q x x =-≤≤.(1)若3a =,求()P Q ⋂R ð;(2)若“x P ∈”是“x Q ∈”的充分不必要条件,求实数a 的取值范围.【过关检测】1.(2022学年湖南省长沙市望城区金海学校高一上学期期中)“2x =”是“240x ﹣=”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.使“0<x <4”成立的一个必要不充分条件是()A .x >0B .x <0或x >4C .0<x <3D .x <03.(2022学年湖南省益阳市箴言中学高一上学期10月月考)设,x y R ∈,则“1x ≠或1y ≠”是“2x y +≠”的()A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件4.(2022学年福建省福州市闽侯县一中学高一上学期月考)在△ABC 中,AB 2+BC 2=AC 2是△ABC 为直角三角形的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.(多选)(2020-2021学年湖北省十堰市城区普高协作体高一上学期期中)p 是q 的必要条件的是()A .:325,:235p x q x +>-->-B .:2,2,:p a b q a b><>C .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .:0p a ≠,q :关于x 的方程1ax =有唯一解6.(多选)设全集为U ,在下列选项中,是B A ⊆的充要条件的有()A .A B A = B .()U A B Ç=ÆðC .()()U U A B Í痧D .()U A B U È=ð7.(多选)已知p ,q 都是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,则()A .p 是q 的充分条件B .p 是s 的必要条件C .r 是q 的必要不充分条件D .s 是q 的充要条件8.下列命题:①“2x >且3y >”是“5x y +>”的充要条件;②当0a ≠时,“240b ac -<”是“方程20ax bx c ++=有解”的充要条件;③“1x =或2x =-”是“方程220x x +-=”的充要条件.其中正确的序号为______.9.已知集合{|1A x x =<-,或{}2}|23x B x a x a >=≤≤+,,若“x A ∈”是“x B ∈”的必要条件,则实数a 的取值范围是___________.10.(2022学年贵州省毕节市金沙县高一10月月考)已知集合{}13A x x =-<<,{}12B x x x x =<<,其中1x ,()212x x x <是关于x 的方程22210x x a --+=的两个不同的实数根.(1)是否存在实数a ,使得“x A ∈”是“x B ∈”的充要条件?若存在,求出a 的取值范围;若不存在,请说明理由.(2)若“x A ∈”是“x B ∈”的必要不充分条件,求a 的取值范围..。
命题及充分条件和必要条件
命题及其关系(学生版)高考明方向1.理解命题的概念,了解“若P,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系。
2.理解充分条件、必要条件与充要条件的含义。
知识点一命题及四种命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.注意:命题必须是陈述句,疑问句、祈使句、感叹句都不是命题。
2.四种命题及其关系(1)四种命题间的相互关系.(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性; 逆命题与否命题互为逆否命题。
②两个命题为互逆命题或互否命题,它们的真假性无关.注意: 1、一个命题不可能同时既是真命题又是假命题2、常见词语的否定原词语例1. 命题“若x, y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数变式训练1.下列命题中正确的是( )①"若a≠0,则ab≠0”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x- 312是有理数,则x是无理数”的逆否命题.A.①②③④B.①③④C.②③④D.①④例2.原命题为“若z1,z2互为共轭复数,则”,关于其逆命题,否命题,逆否命题的真假性的判断依次如下,正确的是()A.真,假,真B. 假,假,真C. 真,真,假D. 假,假,假变式训练2.已知,原命题是“若,则m,n中至少有一个不小于0”,那么原命题与其逆命题依次是()A:真命题、假命题B:假命题、真命题C:真命题、真命题D:假命题、假命题例3.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A. 若a+b+c≠3,则a2+b2+c2<3B. 若a+b+c=3,则a2+b2+c2<3C. 若a+b+c≠3,则a2+b2+c2≥3D. 若a2+b2+c2≥3,则a+b+c=3变式训练3.命题:“若xy=0,则x=0或y=0”的否定是:知识点二充分条件与必要条件1、充分条件与必要条件的概念(1)充分条件: 则p是q的充分条件即只要有条件p就能充分地保证结论q的成立,亦即要使q成立,有p成立就足够了,即有它即可。
专题02 常用逻辑用语(学生版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】一、充分条件、必要条件、充要条件1高中数学53个题型归纳与方法技巧总结篇专题02常用逻辑用语.定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件.2.从逻辑推理关系上看(1)若p q ⇒且q p ,则p 是q 的充分不必要条件;(2)若p q 且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价);(4)若p q 且q p ,则p 不是q 的充分条件,也不是q 的必要条件.对充分和必要条件的理解和判断,要搞清楚其定义的实质:p q ⇒,则p 是q 的充分条件,同时q 是p 的必要条件.所谓“充分”是指只要p 成立,q 就成立;所谓“必要”是指要使得p 成立,必须要q 成立(即如果q 不成立,则p 肯定不成立).二.全称量词与存在童词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题).三.含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ⌝为0x M ∃∈,0()p x ⌝.(2)存在量词命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝.注:全称、存在量词命题的否定是高考常见考点之一.【方法技巧与总结】1.从集合与集合之间的关系上看设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ;注:关于数集间的充分必要条件满足:“小⇒大”.(2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件;(3)若A B =,则p 与q 互为充要条件.2.常见的一些词语和它的否定词如下表原词语等于)(=大于)(>小于)(<是都是任意(所有)至多有一个至多有一个否定词语不等于)(≠小于等于)(≤大于等于)(≥不是不都是某个至少有两个一个都没有(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每一个元素x 证明其成立,要判断全称量词命题为假命题,只要能举出集合M 中的一个0x ,使得其不成立即可,这就是通常所说的举一个反例.(2)要判断一个存在量词命题为真命题,只要在限定集合M 中能找到一个0x 使之成立即可,否则这个存在量词命题就是假命题.【题型归纳目录】题型一:充分条件与必要条件的判断题型二:根据充分必要条件求参数的取值范围题型三:全称量词命题与存在量词命题的真假题型四:全称量词命题与存在量词命题的否定题型五:根据命题的真假求参数的取值范围【典例例题】题型一:充分条件与必要条件的判断例1.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例2.(2022·重庆·三模)已知0a >且1a ≠,“函数()x f x a =为增函数”是“函数()1a g x x -=在()0,∞+上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例3.(2022·湖北·模拟预测)在等比数列{}n a 中,已知20200a >,则“20212024a a >”是“20222023a a >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例4.(2022·山东·德州市教育科学研究院二模)已知m ,n 是两条不重合的直线,α是一个平面,n ⊂α,则“m α⊥”是“m n ⊥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例5.(2022·四川·宜宾市教科所三模(理))已知两条直线m ,n 和平面α,则m n ⊥的一个充分条件是()A .m α⊥且n α⊥B .m α∥且n ⊂αC .m α⊥且n ⊂αD .m α∥且n α∥(多选题)例6.(2022·山东临沂·二模)已知a ,b ∈R ,则使“1a b +>”成立的一个必要不充分条件是()A .221a b +>B .||||1a b +>C .221a b +>D .4110b a b++>【方法技巧与总结】1.要明确推出的含义,是p 成立q 一定成立才能叫推出而不是有可能成立.2.充分必要条件在面对集合问题时,一定是小集合推出大集合,而大集合推不出小集合.3.充分必要条件考察范围广,失分率高,一定要注意各个知识面的培养.题型二:根据充分必要条件求参数的取值范围例7.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________.例8.(2022·浙江·高三专题练习)若2()4x a -<成立的一个充分不必要条件是1102x+≤-,则实数a 的取值范围为()A .(,4]-∞B .[1,4]C .(1,4)D .(1,4]例9.(2022·山西晋中·二模(理))已知条件p :11x -<<,q :x m >,若p 是q 的充分不必要条件,则实数m 的取值范围是()A .[)1,-+∞B .(),1-∞-C .()1,0-D .(],1-∞-例10.(2022·河南平顶山·高三期末(文))若1102x+≤-是()24x a -<成立的一个充分不必要条件,则实数a 的取值范围为()A .(],4 -B .[]1,4C .()1,4D .(]1,4例11.(2022·全国·高三专题练习(文))若关于x 的不等式1x a -<成立的充分条件是04x <<,则实数a 的取值范围是()A .(-∞,1]B .(-∞,1)C .(3,+∞)D .[3,+∞)例12.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________.例13.(2022·重庆·高三阶段练习)若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.例14.(2022·全国·高三专题练习(文))已知集合233|1,,224A y y x x x ⎧⎫⎡⎤==-+∈⎨⎬⎢⎥⎣⎦⎩⎭,{}2|1B x x m =+≥.若“x A ∈”是“x B ∈”的充分条件,则实数m 的取值范围为________.例15.(2022·全国·高三专题练习)已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ;(2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.例16.(2022·天津·汉沽一中高三阶段练习)不等式5212xx ->+的解集是A ,关于x 的不等式22450x mx m --≤的解集是B .(1)若1m =,求A B ;(2)若A B B ⋃=,求实数m 的取值范围.(3)设:p 实数x 满足22430x ax a -+<,其中>0a ,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.若p 是q 的必要不充分条件,求实数a 的取值范围.例17.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知条件{}22:4410p A x x ax a =-+-≤∣,条件{}2:20q B xx x =--≤∣.U =R .(1)若1a =,求()U A B ⋂ .(2)若q 是p 的必要不充分条件,求a 的取值范围.【方法技巧与总结】1.集合中推出一定是小集合推大集合,注意包含关系.2.在充分必要条件求解参数取值范围时,要注意端点是否能取到问题,容易出错.题型三:全称量词命题与存在量词命题的真假例18.(2022·黑龙江齐齐哈尔·三模(理))已知01b a <<<,下列四个命题:①(0,)∀∈+∞x ,x x a b >,②(0,1)x ∀∈,log log a b x x >,③(0,1)x ∃∈,a b x x >,④(0,)x b ∃∈,log x a a x >.其中是真命题的有()A .①③B .②④C .①②D .③④例19.(2022·江西·二模(理))已知命题1p :存在00x >,使得0044+≤x x ,命题2p :对任意的x ∈R ,都有tan 2x =22tan 1tan xx-,命题3p :存在0x ∈R ,使得003sin 4cos 6+=x x ,其中正确命题的个数是()A .0B .1C .2D .3例20.(2022·河南·新乡县高中模拟预测(理))已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为()A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x >B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x >C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x >D .[],x a b ∀∈,()()f xg x >例21.(2022·浙江·高三专题练习)下列命题中,真命题为()A .存在0x R ∈,使得00x e ≤B .直线a b ⊥,a ⊂平面α,平面b αβ= ,则平面αβ⊥C .224sin (,)sin y x x k k Z xπ=+≠∈最小值为4D .1a >,1b >是1ab >成立的充分不必要条件(多选题)例22.(2022·全国·高三专题练习)下列命题中的真命题是()A .∀x ∈R ,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2例23.(2022·全国·高三专题练习)下列命题中正确的是_____(写出正确命题的序号)(1)[]0,x a b ∃∈,使()()00f x g x >,只需()()max min f x g x >;(2)[],x a b ∀∈,()()f x g x >恒成立,只需()()min 0f x g x ->⎡⎤⎣⎦;(3)[]1,x a b ∀∈,[]2,x c d ∈,()()12f x g x >成立,只需()()min max f x g x >;(4)[]1,x a b ∃∈,[]2,x c d ∈,()()12f x g x >,只需()()min min f x g x >.【方法技巧与总结】1.全称量词命题与存在量词命题的真假判断既要通过汉字意思,又要通过数学结论.2.全称量词命题和存在量词命题的真假性判断较为简单,注意细节即可.题型四:全称量词命题与存在量词命题的否定例24.(2022·四川成都·三模(理))命题“x ∀∈R ,e 20x +>”的否定是().A .0x ∃∈R ,0e 20x +≤B .x ∀∈R ,e 20x +≤C .0x ∃∈R ,0e 20x +>D .0x ∀∈R ,0e 20x +<例25.(2022·云南昆明·模拟预测(文))已知命题p :*N n ∀∈,22n n +≥,则p ⌝为()A .*N n ∀∉,22n n +<B .*N n ∀∈,22n n +<C .*0N n ∃∉,2002n n +<D .*0N n ∃∈,2002n n +<例26.(2022·江西赣州·二模(文))已知命题p :x ∀∈R ,sin cos x x +≥p ⌝为()A .x ∀∈R ,sin cos x x +<B .x ∃∉R ,sin cos x x +<C .x ∀∉R ,sin cos x x +<D .x ∃∈R ,sin cos x x +<例27.(2022·辽宁·建平县实验中学模拟预测)命题“()00,x ∃∈+∞,00ln 1x x ≥-”的否定是()A .()00,x ∃∈+∞,00ln 1x x <-B .()00,x ∃∉+∞,00ln 1x x ≥-C .()0,x ∀∈+∞,ln 1x x <-D .()0,x ∀∉+∞,ln 1x x ≥-例28.(2022·山东潍坊·二模)十七世纪,数学家费马提出猜想:“对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为()A .对任意正整数n ,关于x ,y ,z 的方程n n n x y z +=都没有正整数解B .对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解C .存在正整数2n ≤,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解D .存在正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解例29.(2022·全国·高三专题练习(文))已知命题p :存在一个无理数,它的平方是有理数,则p ⌝为()A .任意一个无理数,它的平方不是有理数B .存在一个无理数,它的平方不是有理数C .任意一个无理数,它的平方是有理数D .存在一个无理数,它的平方是无理数例30.(2022·山西晋中·模拟预测(理))命题p :0x ∀≥,222e 3x x -+≤,则¬p 为___________.【方法技巧与总结】1.全称量词命题与存在量词命题的否定是将条件中的全称量词和存在量词互换,结论变否定.1.全称量词命题和存在量词命题的否定要注意否定是全否,而不是半否.题型五:根据命题的真假求参数的取值范围例31.(2022·山东青岛·一模)若命题“R x ∀∈,210ax +≥”为真命题,则实数a 的取值范围为()A .0a >B .0a ≥C .0a ≤D .1a ≤例32.(2022·浙江·高三专题练习)若命题“存在R x ∈,使220x x m ++≤”是假命题,则实数m 的取值范围是()A .(],1-∞B .(),1-∞C .()1,+∞D .[)1,+∞例33.(2022·江苏·南京市宁海中学模拟预测)若命题“[]1,4x ∀∈时,2x m >”是假命题,则m 的取值范围()A .16m ≥B .m 1≥C .16m <D .1m <例34.(2022·黑龙江齐齐哈尔·二模(文))若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦ D .[)51,0,43⎛⎤- ⎥⎝⎦例35.(2022·全国·高三专题练习)若“[,34x ππ∀∈-,tan x m ≥”是真命题,则实数m 的最大值为___________.例36.(2022·全国·高三专题练习)已知定义在R 上的函数()h x 满足'2()()0h x h x +>且21(1)e h =,其中2x1()e h x >的解集为A .函数21()1x x f x x -+=-,()()1xg x a a =>,若1x A ∀∈,2x A ∃∈使得()()12f x g x =,则实数a 的取值范围是___________.例37.(2022·湖北·荆门市龙泉中学二模)若命题“0,,63x ππ⎡⎤∃∈⎢⎥⎣⎦0tan x m >”是假命题,则实数m 的取值范围是__________.例38.(2022·全国·高三专题练习)若“[]01,1x ∃∈-,020x a +->”为假命题,则实数a 的最小值为______.例39.(2022·全国·高三专题练习)在①x ∃∈R ,2220x ax a ++-=,②a ∃∈R ,使得区间()2,4A =,(),3B a a =满足A B =∅ 这两个条件中任选一个,补充在下面的横线上,并解答.已知命题p :[]1,2x ∀∈,20x a -≥,命题q :______,p ,q 都是真命题,求实数a 的取值范围.例40.(2022·全国·高三专题练习)若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),求实数a 的取值范围.【方法技巧与总结】1.在解决求参数的取值范围问题上,可以先令两个命题都为真命题,如果哪个是假命题,去求真命题的补级即可.2.全称量词命题和存在量词命题的求参数问题相对较难,要注重端点出点是否可以取到.【过关测试】一、单选题1.(2022·河北·模拟预测)已知2:10p x ax -+=无解,()2:()4q f x a x =-为增函数,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022·北京房山·二模)已知,αβ是两个不同的平面,直线l α⊄,且αβ⊥,那么“//l α”是“l β⊥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2022·江苏·华罗庚中学高三阶段练习)若1z ,2z 为复数,则“12z z -是纯虚数”是“1z ,2z 互为共轭复数”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.(2022·全国·高三专题练习)命题“12x ∀≤≤,220x a -≤”是真命题的一个必要不充分条件是()A .1a ≥B .3a ≥C .2a ≥D .4a ≤5.(2022·全国·高三专题练习)已知下列四个命题:正确的是()1p :00x ∃>,使得00ln 1x x >-;2p :R x ∀∈,都有210x x -+>;3p :00x ∃>,使得001ln1x x >-+;4p :()0,x ∀∈+∞,使得121log 2xx ⎛⎫> ⎪⎝⎭.A .2p ,4pB .1p ,4pC .2p ,3pD .1p ,3p 6.(2022·重庆南开中学模拟预测)命题“2x ∀≥,24x ≥”的否定为()A .02x ∃≥,204x <B .2x ∀≥,24x <C .02x ∃<,204x <D .2x ∀<,24x <7.(2022·江西景德镇·模拟预测(理))已知命题:函数32()(21)(0,0)f x x ax m a x m a m =++--->>,且关于x 的不等式|()|f x m <的解集恰为(0,1),则该命题成立的必要非充分条件为()A .m a ≥B .m a ≤C .2m a ≥D .2m a ≤8.(2022·全国·高三专题练习)定义{|,}A B x x A x B -=∈∉,设A 、B 、C 是某集合的三个子集,且满足()()A B B A C -⋃-⊆,则()()A C B B C ⊆-⋃-是A B C =∅ 的()A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件二、多选题9.(2022·广东茂名·模拟预测)下列四个命题中为真命题的是()A .“a b <”是“22ac bc <”的必要不充分条件B .设,A B 是两个集合,则“A B A = ”是“A B ⊆”的充要条件C .“0,0x x e ∀>>”的否定是“0,0x x e ∃≤≤”D .8名同学的数学竞赛成绩分别为:80,68,90,70,88,96,89,98,则该数学成绩的15%分位数为70(注:一般地,一组数据的第P 百分位数是这样一个值,它使得这组数据中至少有%P 的数据小于或者等于这个值,且至少有()100%P -的数据大于或者等于这个值.)10.(2022·全国·高三专题练习)设0a >,0b >,且a b ,则“2a b +>”的一个必要条件可以是()A .332a b +>B .222a b +>C .1ab >D .112a b+>11.(2022·辽宁实验中学模拟预测)已知x ,y 均为正实数,则下列各式可成为“x y <”的充要条件是()A .11x y>B .sin sin x y x y ->-C .cos cos x y x y -<-D .22e e x y x y -<-12.(2022·湖北·武汉市武钢三中高三阶段练习)下列命题正确的是()A .“关于x 的不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是14m >B .设,x y ∈R ,则“2x 且2y ”是“224x y + ”的必要不充分条件C .“1a >”是“11a<”的充分不必要条件D .命题“[]0,1,0x x a ∃∈+ ”是假命题的实数a 的取值范围为{0}aa >∣三、填空题13.(2022·河南·南阳中学高三阶段练习(文))若命题“20001,30x x ax a ∃>-++<”是假命题,则a 的取值范围是_______.14.(2022·浙江·高三学业考试)已知函数2()23=-+f x x x ,2()log g x x m =+,若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,则实数m 的取值范围为______.15.(2022·全国·模拟预测(理))已知函数()()2221f x x ax a a =-+-∈R ,则“方程()0f x =在区间(),0 -和()1,+∞上各有一个解”的一个充分不必要条件是a =______.(写出满足条件的一个值即可)16.(2022·全国·高三专题练习)已知():ln p f x x a x =-在[)2+∞,上单调递增,:q a m <.若p 是q 的充分不必要条件,则实数m 的取值范围为____________.四、解答题17.(2022·全国·高三专题练习)已知函数()f x =的定义域为集合A ,函数()g x =B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.18.(2022·全国·高三专题练习)已知集合11122x A x ⎧⎫-=-<⎨⎬⎩⎭,{}227100B x x ax a =-+<,a ∈R .(1)当0a >时,x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若R B A ⊆ ,求实数a 的取值范围.19.(2022·全国·高三专题练习)已知p :22114x y m m+=+-表示焦点在x 轴上的椭圆,q :2,10x R x mx ∃∈-+<,(1)若p 是真命题,求m 的取值范围;(2)若p ,q 都是真命题,求m 的取值范围.20.(2022·全国·高三专题练习)设:24p x ≤<,q :实数x 满足()222300x ax a a --<>.(1)若1a =,且,p q 都为真命题,求x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.21.(2022·全国·高三专题练习)已知集合{}2,1x A y y x ==≤,{}21,R B x a x a a =+≤≤-∈.求:(1)若A B =∅ ,求实数a 的取值范围.(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围22.(2022·全国·高三专题练习)已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.。
2充要条件学生版
命题、充要条件题型1 四种命题间关系1.命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是2指出下列四个命题的相互关系,(1)若)(x f 是正弦函数,则)(x f 是周期函数;(2)若)(x f 是周期函数,则)(x f 是正弦函数;(3)若)(x f 不是正弦函数,则)(x f 不是周期函数;(4)若)(x f 不是周期函数,则)(x f 不是正弦函数;题型2 全称量词与存在量词1.(2012天津卷理)命题“存在0x ∈R ,02x ≤0”的否定是 2. 已知命题p:∀x∈R,ax 2+2x+3>0,如果命题¬p 是真命题,那么实数a 的取值范围是题型3 充要条件的判断(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的_____ ____条件;(2)(4)(1)0x x -+≥是401x x -≥+的____ ______条件; (3)αβ=是tan tan αβ=的_____ _ __条件;(4)3x y +≠是1x ≠或2y ≠的___________________条件.(5)“18a =”是“对任意的正数x ,21a x x+≥”的______________条件. (6)“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0互相垂直”的 _________条件.(7)平面向量a 、b 都是非零向量,a ·b <0是a 与b 夹角为钝角的__ ______条件.(8)已知三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0,则l 1、l 2、l 3构不成三角形的充要条件是k ∈集合________.(9).已知p ,q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则p 是s 的_________条件.题型4 真假判断1.下列命题:①“若xy =1,则x ,y 互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“全等三角形是相似三角形的逆命题”,其中真命题是________.2.设有2012个命题p 1,p 2,…,p 2012满足:若命题p i 是真命题,则命题p i+4是真命题.已知p 1∧p 2是真命题,(p 1∨p 2)∧(p 3∨¬p 4)是假命题,则p 2012是________(填真或假)命题.3.下列命题中的真命题有①两直线平行的充要条件是两直线的斜率相等;②△ABC 中,AB →·BC →<0是△ABC 为钝角三角形的充要条件;③2b =a +c 是数列a 、b 、c 为等差数列的充要条件;④△ABC 中,tan A tan B >1是△ABC 为锐角三角形的充要条件.题型5 充要条件的证明与探索1已知20:100x p x x ⎧⎫+≥⎧⎪⎪⎨⎨⎬-≤⎩⎪⎪⎩⎭,:{11,0}q x m x m m -≤≤+>,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围 . 2.求方程0122=++x ax 至少有一个负实根的充要条件 .3.求证:关于x 的方程20ax bx c ++=有一个根为-1的充要条件是0a b c -+=.4.设数列12,,n a a a 中的每一项都不为0.证明,{}n a 为等差数列的充分必要条件是:对任何n N ∈,都有1223111111n n n n a a a a a a a a +++++=.。
高中数学充分条件、必要条件与命题的四种形式例题解析
§1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件1.当命题“如果p,则q”经过推理证明判定为真命题时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.这几种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.2.若p⇒q,但q⇏p,称p是q的充分不必要条件,若q⇒p,但p⇏q,称p是q的必要不充分条件.知识点二充要条件1.一般地,如果p⇒q,且q⇒p,就记作p⇔q,此时,我们说,p是q的充分且必要条件,简称充要条件.p是q的充要条件,又常说成q当且仅当p,或p与q等价.2.从集合的角度判断充分条件、必要条件和充要条件.若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件若A=B,则p,q互为充要条件若A⊈B且B⊈A,则p既不是q的充分条件,也不是q的必要条件其中p:A={x|p(x)成立},q:B={x|q(x)成立}.1.若p是q的充分条件,则p是唯一的.(×)2.“若p,则q”是真命题,而“若q,则p”是假命题,则p是q的充分不必要条件.(√) 3.q不是p的必要条件时,“p⇏q”成立.(√)4.若p是q的充要条件,则命题p和q是两个相互等价的命题.(√)5.若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题型一充分、必要、充要条件的判断例1下列各题中,p是q的什么条件?(指充分不必要、必要不充分、充要、既不充分也不必要条件)(1)p:x=1或x=2,q:x-1=x-1;(2)p:m>0,q:x2+x-m=0有实根;(3)p:四边形的对角线相等,q:四边形是平行四边形.考点充要条件的概念及判断题点充要条件的判断解(1)因为x=1或x=2⇒x-1=x-1,x-1=x-1⇒x=1或x=2,所以p是q的充要条件.(2)因为m>0⇒方程x2+x-m=0的判别式Δ=1+4m>0,即方程有实根,方程x2+x-m=0有实根,即Δ=1+4m≥0⇏m>0,所以p是q的充分不必要条件.(3)p是q的既不充分也不必要条件.反思感悟充分条件、必要条件的两种常用的判断方法(1)定义法:①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件;③尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p的必要条件;②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同时q也不是p的必要条件.跟踪训练1下列各题中,试分别指出p是q的什么条件.(1)p :两个三角形相似,q :两个三角形全等; (2)p :f (x )=x ,q :f (x )在(-∞,+∞)上为增函数; (3)p :A ⊆B ,q :A ∩B =A ; (4)p :a >b ,q :ac >bc . 考点 充要条件的概念及判断 题点 充要条件的判断解 (1)∵两个三角形相似⇏两个三角形全等,但两个三角形全等⇒两个三角形相似, ∴p 是q 的必要不充分条件.(2)∵f (x )=x ⇒f (x )在(-∞,+∞)上为增函数,但f (x )在(-∞,+∞)上为增函数⇏f (x )=x ,∴p 是q 的充分不必要条件.(3)∵p ⇒q ,且q ⇒p ,∴p 是q 的充要条件.(4)∵p ⇏q ,且q ⇏p ,∴p 是q 的既不充分也不必要条件.题型二 充分条件、必要条件、充要条件的应用命题角度1 由充分条件、必要条件求参数范围例2 已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件,即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{m |0<m ≤3}. 引申探究1.若本例中“p 是q 的必要不充分条件”改为“p 是q 的充分不必要条件”,其他条件不变,求实数m 的取值范围.解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的充分不必要条件,设p 代表的集合为A ,q 代表的集合为B ,所以A B .所以⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.解不等式组得m >9或m ≥9, 所以m ≥9,即实数m 的取值范围是[9,+∞).2.若本例中p ,q 不变,是否存在实数m 使p 是q 的充要条件?若存在,求出m 的值;若不存在,说明理由.解 因为p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0).若p 是q 的充要条件,则⎩⎪⎨⎪⎧-2=1-m ,10=1+m ,m 不存在.反思感悟 由条件关系求参数的取值(范围)的步骤 (1)根据条件关系建立条件构成的集合之间的关系. (2)根据集合端点或数形结合列方程或不等式(组)求解.跟踪训练2 (1)“不等式(a +x )(1+x )<0成立”的一个充分不必要条件是“-2<x <-1”,则实数a 的取值范围是________. 考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 (2,+∞)解析 不等式变形为(x +1)(x +a )<0, 因为当-2<x <-1时不等式成立, 所以不等式的解集是-a <x <-1. 由题意有(-2,-1)(-a ,-1), 所以-2>-a ,即a >2.(2)已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 [-1,5]解析 因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P ,所以⎩⎪⎨⎪⎧ a -4≤1,a +4≥3,即⎩⎪⎨⎪⎧a ≤5,a ≥-1,所以-1≤a ≤5.命题角度2 探求充要条件例3 求关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立的充要条件. 考点 充要条件的概念及判断 题点 寻求充要条件解 由题意可知,关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立,等价于对于方程ax 2-ax +1=0中,⎩⎨⎧a >0,Δ<0⇔0<a <4.反思感悟 求一个问题的充要条件,就是利用等价转化的思想,使得转化前后的两个命题所对应的解集是两个相同的集合,这就要求我们转化的时候思维要缜密.跟踪训练3 直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是m =________. 考点 充要条件的概念及判断 题点 寻求充要条件 答案 -4或0解析 由题意知,直线与圆相切等价于圆心(1,1)到直线x +y +m =0的距离等于半径2, 即|2+m |2=2,得m =-4或0.充要条件的证明典例 求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. 证明 充分性(由ac <0推证方程有一正根和一负根),∵ac <0,∴一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac >0, ∴原方程一定有两不等实根,不妨设为x 1,x 2,则x 1x 2=ca <0,∴原方程的两根异号,即一元二次方程ax 2+bx +c =0有一正根和一负根. 必要性(由方程有一正根和一负根推证ac <0), ∵一元二次方程ax 2+bx +c =0有一正根和一负根, 不妨设为x 1,x 2,∴由根与系数的关系得x 1x 2=ca <0,即ac <0,此时Δ=b 2-4ac >0,满足原方程有两个不等实根.综上可知,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.[素养评析] (1)一般地,证明“p 成立的充要条件为q ”时,在证充分性时应以q 为“已知条件”,p 是该步中要证明的“结论”,即q ⇒p ;证明必要性时则是以p 为“已知条件”,q 为该步中要证明的“结论”,即p ⇒q .(2)通过论证数学命题,学会有逻辑地思考问题,探索和表述论证过程,能很好的提升学生的逻辑思维品质.1.“-2<x <1”是“x >1或x <-1”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充要条件 答案 C解析 ∵-2<x <1⇏x >1或x <-1,且x >1或x <-1⇏-2<x <1,∴“-2<x <1”是“x >1或x <-1”的既不充分也不必要条件.2.设命题p :x 2-3x +2<0,q :x -1x -2≤0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 命题p :1<x <2;命题q :1≤x <2,故p 是q 的充分不必要条件. 3.“θ=0”是“sin θ=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由于当“θ=0”时,一定有“sin θ=0”成立,反之不成立,所以“θ=0”是“sin θ=0”的充分不必要条件.4.记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________. 答案 (-∞,-3]解析 由于A ={x |x 2+x -6<0}={x |-3<x <2},B ={x |y =lg(x -a )}={x |x >a },而“x ∈A ”是“x ∈B ”的充分条件,则有A ⊆B ,则有a ≤-3.5.“a =0”是“直线l 1:x -2ay -1=0与l 2:2x -2ay -1=0平行”的________条件. 答案 充要解析 (1)∵a =0,∴l 1:x -1=0,l 2:2x -1=0, ∴l 1∥l 2,即a =0⇒l 1∥l 2. (2)若l 1∥l 2,当a ≠0时, l 1:y =12a x -12a ,l 2:y =1a x -12a .令12a =1a,方程无解. 当a =0时,l 1:x -1=0,l 2:2x -1=0,显然l 1∥l 2. ∴a =0是直线l 1与l 2平行的充要条件.充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,常采用如下方法:(1)定义法:分清条件p 和结论q ,然后判断“p ⇒q ”及“q ⇒p ”的真假,根据定义下结论.(2)等价法:将命题转化为另一个与之等价的又便于判断真假的命题.(3)集合法:写出集合A={x|p(x)}及集合B={x|q(x)},利用集合之间的包含关系加以判断.一、选择题1.“ab ≠0”是“直线ax +by +c =0与两坐标轴都相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 ab ≠0,即a ≠0且b ≠0,此时直线ax +by +c =0与两坐标轴都相交;又当ax +by +c =0与两坐标轴都相交时,a ≠0且b ≠0.2.下列“若p ,则q ”形式的命题中,p 是q 的充分条件的命题个数为( ) ①若f (x )是周期函数,则f (x )=sin x ; ②若x >5,则x >2; ③若x 2-9=0,则x =3. A .0 B .1 C .2 D .3 答案 B解析 ①中,周期函数还有很多,如y =cos x ,所以①中p 不是q 的充分条件;很明显②中p 是q 的充分条件;③中,当x 2-9=0时,x =3或x =-3,所以③中p 不是q 的充分条件.所以p 是q 的充分条件的命题的个数为1,故选B.3.已知向量a ,b 为非零向量,则“a ⊥b ”是“|a +b |=|a -b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 |a +b |2=|a -b |2⇔a 2+b 2+2a ·b =a 2+b 2-2a ·b ⇔a ·b =0.4.已知圆O :x 2+y 2=1,直线l :ax +by +c =0,则a 2+b 2=c 2是圆O 与直线l 相切的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 由直线与圆相切得|c |a 2+b 2=1,即a 2+b 2=c 2;a 2+b 2=c 2时也有|c |a 2+b 2=1成立,即直线与圆相切.5.若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当a >0且b 2-4ac <0时,对任意x ∈R ,ax 2+bx +c >0成立,即充分性成立.反之,则不一定成立.如当a =0,b =0,且c >0时,对任意x ∈R ,ax 2+bx +c >0成立.综上,“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的充分不必要条件.6.设函数f (x )=|log 2x |,则f (x )在区间(m,2m +1)(m >0)内不是单调函数的充要条件是( ) A .0<m <12B .0<m <1 C.12<m <1 D .m >1答案 B解析 f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1.f (x )的图象在(0,1)内单调递减, 在(1,+∞)内单调递增.f (x )在(m,2m +1)(m >0)上不是单调函数等价于⎩⎪⎨⎪⎧m <1,2m +1>1⇔0<m <1. 7.已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A ,B ,C 三点共线的充要条件是( ) A .λ1=λ2=-1 B .λ1=λ2=1 C .λ1λ2=1 D .λ1λ2=-1答案 C解析 依题意,知A ,B ,C 三点共线⇔AB →=λAC →⇔λ1a +b =λa +λλ2b ⇔⎩⎪⎨⎪⎧λ1=λ,λλ2=1,即λ1λ2=1.故选C.8.设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别是集合M 和N ,那么“a 1a 2=b 1b 2=c 1c 2”是“M =N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a 1a 2=b 1b 2=c 1c 2<0,则M ≠N , 即a 1a 2=b 1b 2=c 1c 2⇏M =N ; 反之,若M =N =∅,即两个一元二次不等式的解集为空集时,只要求判别式Δ1<0,Δ2<0(a 1<0,a 2<0),而与系数之比无关.二、填空题9.设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由于方程有整数根,由判别式Δ=16-4n ≥0.得1≤n ≤4,逐个分析,当n =1,2时,方程没有整数解;而当n =3时,方程有正整数解1,3;当n =4时,方程有正整数解2.故n =3或4.10.设p :1≤x <4,q :x <m ,若p 是q 的充分条件,则实数m 的取值范围为________. 答案 [4,+∞)解析 据题意知,p ⇒q ,则m ≥4.11.给出下列三个命题:①“a >b ”是“3a >3b ”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件.其中真命题的序号为________.答案 ③解析 ①∵函数y =3x 是R 上的增函数,∴“a >b ”是“3a >3b ”的充要条件,故①错误;②∵2π>π2,cos 2π>cos π2,∴α>β⇏cos α<cos β;∵cos π<cos 2π,π<2π,∴cos α<cos β⇏α>β.∴“α>β”是“cos α<cos β”的既不充分也不必要条件,故②错误;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件,正确.三、解答题12.已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0},若p 是q 的充分条件,求实数a 的取值范围.解 化简B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1}; ②当a <13时,B ={x |3a +1≤x ≤2}. 因为p 是q 的充分条件且A 为非空集合,所以A ⊆B ,于是有⎩⎪⎨⎪⎧ a ≥13,a 2+1≤3a +1,2a ≥2,或⎩⎪⎨⎪⎧ a <13,a 2+1≤2,2a ≥3a +1,解得1≤a ≤3或a =-1.综上,a 的取值范围是{a |1≤a ≤3或a =-1}.13.设a ,b ,c 是△ABC 的三个内角A ,B ,C 所对的边.求证:a 2=b (b +c )的充要条件是A =2B .证明 充分性:∵A =2B ,∴A -B =B ,则sin(A -B )=sin B ,则sin A cos B -cos A sin B =sinB ,结合正弦、余弦定理得a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc=b ,化简整理得a 2=b (b +c ); 必要性:由余弦定理a 2=b 2+c 2-2bc cos A ,且a 2=b (b +c ),得b 2+bc =b 2+c 2-2bc cos A ,∴1+2cos A =c b =sin C sin B, 即sin B +2sin B cos A =sin C =sin(A +B )=sin A cos B +cos A sin B ,∴sin B =sin A cos B -cos A sin B =sin(A -B ),由于A ,B 均为三角形的内角,故必有B =A -B ,即A =2B . 综上,知a 2=b (b +c )的充要条件是A =2B .14.已知p :x 2+2x -3>0,q :x >a (a 为实数).若綈q 的一个充分不必要条件是綈p ,则实数a 的取值范围是________.答案 [1,+∞)解析 将x 2+2x -3>0化为(x -1)(x +3)>0,所以p :x >1或x <-3,所以綈p :-3≤x ≤1.又綈q :x ≤a ,且綈q 的一个充分不必要条件是綈p ,所以a ≥1.15.设x ,y ∈R ,求证:|x +y |=|x |+|y |成立的充要条件是xy ≥0.证明 充分性:如果xy ≥0,则有xy =0和xy >0两种情况,当xy =0时,不妨设x =0,得|x+y|=|y|,|x|+|y|=|y|,∴等式成立.当xy>0,即x>0,y>0或x<0,y<0时,又当x>0,y>0时,|x+y|=x+y,|x|+|y|=x+y,∴等式成立.当x<0,y<0时,|x+y|=-(x+y),|x|+|y|=-x-y=-(x+y),∴等式成立.总之,当xy≥0时,|x+y|=|x|+|y|成立.必要性:若|x+y|=|x|+|y|且x,y∈R,得|x+y|2=(|x|+|y|)2,即x2+2xy+y2=x2+y2+2|x|·|y|,∴|xy|=xy,∴xy≥0.综上可知,xy≥0是等式|x+y|=|x|+|y|成立的充要条件。
初升高数学暑假衔接(人教版)高一预习1.4 充分条件与必要条件(学生版)
1.4充分条件与必要条件【知识梳理】知识点一充分条件与必要条件“若p ,则q ”为真命题“若p ,则q ”为假命题推出关系p ⇒q p ⇏q条件关系p 是q 的充分条件q 是p 的必要条件p 不是q 的充分条件q 不是p 的必要条件定理关系判定定理给出了相应数学结论成立的充分条件性质定理给出了相应数学结论成立的必要条件知识点二充要条件一般地,如果p ⇒q ,且q ⇒p ,那么称p 是q 的充分必要条件,简称充要条件,记作p ⇔q .【基础自测】1.设R x ∈,则“05x <<”是“23x -<”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.设集合{}1A x x =>-,{}1B x x =≥,则“x A ∈且x B ∈/”成立的充要条件是()A .11x -<≤B .1x ≤C .1x >-D .11x -<<3.已知2{|}10P x x =<<-,11{|}Q x m x m =-<<+,若P 是Q 的必要条件,则实数m 的取值范围是()A .19m -<≤B .19m -≤≤C .1m ≤-D .9m ≥4.若“x >1”是“x >a ”的充分条件,则a 的取值范围是________.5.m =1是函数y =245m m x -+为二次函数的________条件.【例题详解】一、充分、必要、充要条件的判断例1(1)已知a 、b 都是实数,则“0a b >>”是“||||a b >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2)“20x x -=”是“1x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)对任意实数a ,b ,c ,下列命题中真命题是()A .“a b =”是“ac bc =”的充要条件B .“32a +是无理数”是“a 是无理数”的充要条件C .“22a b >”是“33a b >”的充分条件D .“5a <”是“3a <”的充分条件跟踪训练1(1)“x ,y 为无理数”是“xy 为无理数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(多选)下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是()A .若22x y >,则x y>B .若5x >,则10x >C .若ac bc =,则a b =D .若2121x y +=+,则x y=(3)已知,,a b c ∈R ,则“22ac bc >”是“a b >”的______条件.(填“充要”、“充分非必要”、“必要非充分”或“既非充分又非必要”)二、充要条件的证明例2求证:=1x 是一元二次方程20ax bx c ++=的一个根的充要条件是()00a b c a ++=≠.跟踪训练2求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.三、充分条件与必要条件的应用例3(1)若不等式11a x a -+<<+的一个充分条件为01x <<,则实数a 的取值范围是()A .0a >B .0a ≥C .1a >D .1a ≥(2)若“11x -<<”是“11x m -<-<”的充要条件,则实数m 的取值是_________.(3)设全集U =R ,集合{}15A x x =≤<,非空集合{}212B x x a =≤≤+,其中R a ∈.若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围.跟踪训练3(1)已知:12,:x x m αβ-<<,若α是β的充分条件,则实数m 的取值范围为__________.(2)已知条件p :260x x +-=,条件q :10+=mx ,且q 是p 的充分不必要条件,求m 的值.(3)已知集合{|2A x x =≤或5}x >,{|21}B x m x m =-<<+.(i)若B =∅,求实数m 的取值范围;(ii)已知命题:p x A ∈,命题:q x B ∈,若p 是q 的必要不充分条件,求实数m 的取值范围.【课堂巩固】1.已知集合{}A x =,{}2B x=,则“1x =”是“A B =”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件2.已知“p :一元二次方程20x bx c ++=有一正根和一负根;q :0c <.”则p 是q 的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.明——罗贯中《三国演义》第49回“欲破曹公,宜用火攻;万事倶备,只欠东风”,比喻一切都准备好了,只差最后一个重要的条件.你认为“东风”是“赤壁之战东吴打败曹操”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若x a =是03x <<的充分不必要条件,则实数a 可以是()A .0B .1C .2D .35.(多选)下列说法正确的是()A .a P Q ∈⋃是a P ∈的必要不充分条件B .QC P C U U ⊆(U 是全集)是P Q ⊆的充分不必要条件C .a b <是22a b <的充分不必要条件D .a b <是33a b <的充要条件6.已知p 是r 的充分非必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 的一个______条件是q .7.若“0x =”是“x m <”的充分条件,则实数m 的取值范围是___________.8.已知:3,:x a x αβ>≤,如果αβ⇒,那么a 的取值范围是_____.9.求证:方程220x kx ++=与220x x k ++=有一个公共实数根的充要条件是3k =-.10.设全集U =R ,集合{}14A x x =≤<,{}23B x a x a =≤<-.(1)若2a =-,求B A ⋂,U B A⋂ð(2)若x B x A ∈∈是成立的充分条件,求实数a 的取值范围.11.已知集合{}121,P x a x a a =+≤≤+∈R ,{}25Q x x =-≤≤.(1)若3a =,求()P Q ⋂R ð;(2)若“x P ∈”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.12.求关于x 的方程ax 2+2x +1=0至少有一个负的实数根的充要条件.【课时作业】1.“1x >”是“11x <”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件2.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”.其名篇“但使龙城飞将在,不教胡马度阴山”(人在阵地在,人不在阵地在不在不知道),由此推断,胡马度过阴山是龙城飞将不在的什么条件?()A .充分条件B .必要条件C .充要条件D .既不充分也不必要3.已知a ,b 都是自然数,则“a b +是偶数”是“a ,b 都是偶数”的()条件A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要4.方程2210ax x ++=至少有一个负实根的充要条件是()A .01a <≤B .1a <C .1a ≤D .01a <≤或a<05.一元二次方程2210ax x ++=,(0a ≠)有一个正根和一个负根的充分而不必要条件是()A .a<0B .0a >C .1a <-D .1a >6.(多选)在下列所示电路图中,下列说法正确的是()A .如图①所示,开关1L 闭合是灯泡M 亮的充分不必要条件B .如图②所示,开关1L 闭合是灯泡M 亮的必要不充分条件C .如图③所示,开关1L 闭合是灯泡M 亮的充要条件D .如图④所示,开关1L 闭合是灯泡M 亮的必要不充分条件7.(多选)下列各选项中,p 是q 的充要条件的是()A .p :2m <-或6m >,q :方程230x mx m +++=有两个不同的实数根B .p :30x -=,q :()()230x x --=C .p :两个三角形相似,q :两个三角形全等D .p :A B A = ,q :A B⊆8.“集合A B =”是“集合A B ⊆”的______条件.9.已知21x a ≥-是3x ≥的充分条件,则实数a 的取值范围是__________.10.下列命题中所有真命题的序号是__________①“a b >”是“22a b >”的充分条件;②“||||a b >”是“22a b >”的必要条件;③“a b >”是“a c b c +>+”的必要条件.11.若“m a >”是3的必要不充分条件,则实数a 能取的最大整数为_______________.12.已知ABC 的三条边为,,a b c ,求证:ABC 是等边三角形的充要条件是222a b c ab ac bc ++=++.13.已知{|1A x x =≤-或1}x ≥,{|21}B x a x a =<<+(B 为非空集合),记:p x A ∈,:q x B ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.14.已知集合{}{}222|560,|2(1)30A x x x B x x m x m =+-==+++-=(1)若0,m =写出A B ⋃的所有子集(2)若“”x A ∈是“”x B ∈的必要条件,求实数m 的取值范围.15.已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题:p x A ∈,命题:q x B ∈,若p 是q 成立的充分不必要条件,求实数m 的取值范围.。
【高中数学】命题及其关系、充分条件与必要条件
命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.考点一四种命题及其真假判断[典例](2019·菏泽模拟)有以下命题:①“若xy =1,则x ,y 互为倒数”的逆命题;②“面积相等的两个三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中真命题是()A .①②B .②③C .④D .①②③[解析]①原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ⊆A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确.[答案]D [题组训练]1.(2019·长春质监)命题“若x 2<1,则-1<x <1”的逆否命题是()A .若x 2≥1,则x ≥1或x ≤-1B .若-1<x <1,则x 2<1C .若x >1或x <-1,则x 2>1D .若x ≥1或x ≤-1,则x 2≥1解析:选D命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若非q ,则非p ”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”.2.已知集合P |x =k +12,k ∈Z|x =k2,k ∈Zx ∈P ,则x ∈Q”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数为()A .0B .1C .2D .4解析:选C 因为P =|x =k +12,k ∈Z=|x =2k +12,k ∈Z ,Q =|x =k2,k ∈Z 所以P Q ,所以原命题“x ∈P ,则x ∈Q”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题,则原命题的否命题为假命题,所以真命题的个数为2.考点二充分、必要条件的判断[典例](1)(2019·湖北八校联考)若a ,b ,c ,d ∈R ,则“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·天津高考)设x ∈R ,则“|x -12|<12”是“x 3<1”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(3)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析](1)定义法当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不成等差数列;而当a ,b ,c ,d 依次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的必要不充分条件,故选B.(2)集合法由|x -12|<12,得0<x <1,则0<x 3<1,即“|x -12|<12”⇒“x 3<1”;由x 3<1,得x <1,当x ≤0时,|x -12|≥12,即“x 3<1”“|x -12|<12”.所以“|x -12|<12”是“x 3<1”的充分而不必要条件.(3)等价转化法因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以非p :x +y =-2,非q :x =-1且y =-1,因为非q⇒非p但非p非q,所以非q是非p的充分不必要条件,即p是q的充分不必要条件.[答案](1)B(2)A(3)A[提醒]判断条件之间的关系要注意条件之间关系的方向,要注意“A是B的充分不必要条件”与“A的充分不必要条件是B”的区别,要正确理解“p的一个充分不必要条件是q”的含义.[题组训练]1.[集合法]已知x∈R,则“x<1”是“x2<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B若x2<1,则-1<x<1,∵(-∞,1)⊇(-1,1),∴“x<1”是“x2<1”的必要不充分条件.2.[定义法](2018·南昌调研)已知m,n为两个非零向量,则“m·n<0”是“m与n的夹角为钝角”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B设m,n的夹角为θ,若m,n的夹角为钝角,则π2<θ<π,则cosθ<0,则m·n<0成立;当θ=π时,m·n=-|m|·|n|<0成立,但m,n的夹角不为钝角.故“m·n<0”是“m与n的夹角为钝角”的必要不充分条件.3.[等价转化法]“xy≠1”是“x≠1或y≠1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A设p:xy≠1,q:x≠1或y≠1,则非p:xy=1,非q:x=1且y=1.可知非q⇒非p,非p非q,即非q是非p的充分不必要条件.故p是q的充分不必要条件,即“xy≠1”是“x≠1或y≠1”的充分不必要条件.考点三根据充分、必要条件求参数的范围[典例]已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x ∈S的必要条件,则m的取值范围是________.[解析]由x2-8x-20≤0,得-2≤x≤10,所以P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.-m≤1+m,-m≥-2,+m≤10,所以0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].[答案][0,3][变透练清]1.[变结论]若本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件.解:若x∈P是x∈S的充要条件,则P=S,所以{1-m=-2,1+m=10,解得{m=3,m=9,即不存在实数m,使x∈P是x∈S的充要条件.2.(变条件)若本例将条件“若x∈P是x∈S的必要条件”变为“若非P是非S的必要不充分条件”,其他条件不变,求实数m的取值范围.解:由例题知P={x|-2≤x≤10},∵非P是非S的必要不充分条件,∴S是P的必要不充分条件,∴P⇒S且S P.∴[-2,10][1-m,1+m].-m≤-2,+m>10-m<-2,+m≥10.∴m≥9,即m的取值范围是[9,+∞).[课时跟踪检测]1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.2.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.3.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假解析:选B当z1,z2互为共轭复数时,设z1=a+b i(a,b∈R),则z2=a-b i,则|z1|=|z2|=a2+b2,所以原命题为真,故其逆否命题为真.取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,所以其逆命题为假,故其否命题也为假.4.(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.5.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③解析:选A本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.6.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的() A.充分而不必要条件B.必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b .因为a ,b 均为单位向量,所以a 2=b 2=1,所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10,能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件.7.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选C设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以BA .于是“x ≠y ”是“cosx ≠cos y ”的必要不充分条件.8.(2019·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是()A .m >14B .0<m <1C .m >0D .m >1解析:选C若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.9.在△ABC 中,“A =B ”是“tan A =tan B ”的________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z.∵0<A <π,0<B <π,∴A =B ,故“A =B ”是“tan A =tan B ”的充要条件.答案:充要10.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:311.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3.又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围为[3,8).答案:[3,8)12.(2019·齐鲁名校调研)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.以上说法正确的是________(填序号).解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y=π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.。
02 四种条件问题(学生版)
专题02 四种条件问题【高考真题】1.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在N 0,当n >N 0时,a n >0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2.(2022·浙江)设x ∈R ,则“sin x =1”是“cos x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【知识总结】1.四种条件的定义充分不条必要件:p ⇒q 且q ⇏p ,p 叫做q 的充分不必要条件;必要不充分条件:p ⇏q 且q ⇒p ,p 叫做q 的必要不充分条件;充要条件:p ⇔q ,p 叫做q 的充要条件;既不充分也不必要条件:p ⇏q 且q ⇏p ,p 叫做q 的既不充分也不必要条件.2.充分条件与必要条件的三种判定方法(1)定义法:若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.命题p :x ∈A ,命题q :x ∈B ,若A ⊂≠B ,则p 是q 的充分不必要条件;若A ⊃≠B ,则p 是q 的必要不充分条件;若A =B ,则p 是q 的充要条件;若A ⊈B 且A ⊉B ,则p 是q 的既不充分也不必要条件.若A =B ,则p 是q 的充要条件.(3)等价法:根据一个命题与其逆否命题的等价性,进行判断,适用于条件和结论带有否定性词语的命题.【同类问题】1.“a >b ”是“ac 2>bc 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.使-2<x <2成立的一个充分条件是( )A .x <2B .0<x <2C .-2≤x ≤2D .x >03.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.“a >2,b >2”是“a +b >4,ab >4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.使得“2x >4x ”成立的一个充分条件是________.6.已知p :⎝⎛⎭⎫12x <1,q :log 2x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.a >b +1是2a >2b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.设a ,b ∈R ,p :log 2(a -1)+log 2(b -1)>0,q :1a +1b<1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.(多选)下列四个条件中,能成为x >y 的充分不必要条件的是( )A .xc 2>yc 2B .1x <1y<0 C .|x |>|y | D .ln x >ln y 10.(多选)(2022·南京调研)下列说法正确的是( )A .“ac =bc ”是“a =b ”的充分不必要条件B .“1a >1b”是“a <b ”的既不充分也不必要条件 C .若“x ∈A ”是“x ∈B ”的充分条件,则A ⊆BD .“a >b >0”是“a n >b n (n ∈N ,n ≥2)”的充要条件11.已知p :∀x ∈R ,mx 2-2mx +1>0,q :指数函数f (x )=m x (m >0,且m ≠1)为减函数,则p 是q 的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件12.已知集合M =[-1,1],那么“a ≥-23”是“∃x ∈M ,4x -2x +1-a ≤0”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充要条件13.(2021·北京)设函数f (x )的定义域为[0,1],则“函数f (x )在[0,1]上单调递增”是“函数f (x )在[0,1]上的最大值为f (1)”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件14.(多选)已知a ∈R ,则使命题“∀x ∈⎝⎛⎭⎫π2,π,x 2-sin x -a ≥0”为真命题的一个充分不必要条件是( )A .a <1B .a ≤2C .a <π2-44D .a ≤π2-4415.(多选)已知两条直线l ,m 及三个平面α,β,γ,则α⊥β的充分条件是( )A .l ⊂α,l ⊥βB .l ⊥α,m ⊥β,l ⊥mC .α⊥γ,β∥γD .l ⊂α,m ⊂β,l ⊥m16.已知m ,n 是平面α内的两条相交直线,且直线l ⊥n ,则“l ⊥m ”是“l ⊥α”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件17.在空间中,设m ,n 是两条直线,α,β表示两个平面,如果m ⊂α,α∥β,那么“m ⊥n ”是“n ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18.(2021·浙江)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件19.若a,b为非零向量,则“a⊥b”是“(a+b)2=a2+b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件20.(2021·全国甲)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件21.若等差数列{a n}的前n项和为S n,则“S2 020>0,S2 021<0”是“a1 010a1 011<0”的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件22.在△ABC中,“AB2+BC2=AC2”是“△ABC为直角三角形”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件23.(2020·北京)已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ”是“sin α=sin β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件24.在△ABC中,“A>B”是“cos A<cos B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件25.直线y=kx+1与圆x2+y2=a2(a>0)有公共点的充要条件是________.26.设p:ln(2x-1)≤0,q:(x-a)[x-(a+1)]≤0,若q是p的必要不充分条件,则实数a 的取值范围是________.27.若关于x的不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是() A.(-∞,1]B.(-∞,1)C.(3,+∞)D.[3,+∞) 28.已知p:|x-1|≤2,q:x2-2x+1-a2≥0(a>0),若p是q的必要不充分条件,则实数a的取值范围是________.29.已知p:x≥a,q:|x+2a|<3,且p是q的必要不充分条件,则实数a的取值范围是()A.(-∞,-1]B.(-∞,-1)C.[1,+∞)D.(1,+∞)30.已知p:实数m满足3a<m<4a(a>0),q:方程x2m-1+y22-m=1表示焦点在y轴上的椭圆,若p是q的充分条件,则a的取值范围是________.。
高中数学第一章集合与逻辑1-2常用逻辑用语1-2-2充分条件和必要条件学生用书湘教版必修第一册
1.2.2 充分条件和必要条件教材要点要点一 充分条件与必要条件足够了;q 是p 的必要条件,所谓“必要”,即q 是p 成立的必不可少的条件,缺其不可.要点二 充要条件如果既有p ⇒q ,又有q ⇒p ,就记作________.即p 既是q 的充分条件,又是q 的必要条件,此时我们称p 是q 的充分必要条件,简称充要条件.换句话说,如果一个命题和它的________都成立,则此命题的条件和结论互为充分必要条件.状元随笔 对于充要条件,要熟悉它的同义语“p 是q 的充要条件”可以说成“p 与q 是等价的”“q 成立当且仅当p 成立”“q 成立必须且只需p 成立”.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,只是说法不同.( )(2)p 是q 的必要条件的含义是:如果p 不成立,则q 一定不成立.( ) (3)p 是q 的充分条件只反映了p ⇒q ,与q 能否推出p 没有任何关系.( ) (4)若p 是q 的充要条件,q 是r 的充要条件,则p 是r 的充要条件.( )2.“x=1”是“x2-2x+1=0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.“x>0”是“x>1”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.△ABC是锐角三角形是∠ABC为锐角的________条件.题型1 充分条件、必要条件的判断例1 下列各题中,p是q的什么条件?(1)p:a+b=0,q:a2+b2=0;(2)p:四边形的对角线相等,q:四边形是矩形;(3)p:平行四边形,q:正方形;(4)p:m<-1,q:x2-x-m=0无实根.方法归纳充分条件、必要条件判断方法(1)定义法①分清命题的条件和结论:分清哪个是条件,哪个是结论.②找推式:判断“p⇒q”及“q⇒p”的真假.③根据推式及条件得出结论.(2)集合法:写出集合A={x|p(x)}及B={x|q(x)},利用集合间的包含关系进行判断.(3)特殊值法:对于选择题,可以取一些特殊值或特殊情况,用来说明由条件(结论)不能推出结论(条件),但是这种方法不适用于证明题.跟踪训练1 (1)祖暅原理:”幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的原理,意思是两个等高的几何体,若在同高处的截面积恒相等,则体积相等.设A,B为两个等高的几何体,p:A,B的体积相等.q:A,B在同高处的截面积恒相等.根据祖暅原理可知,q是p的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(多选)设x∈R,则使x>3.14成立的一个充分条件是( )A.x>3.5B.x<3C.x>4D.x<4题型2 充要条件的判断例2 (1)(多选)下列结论中,正确的有( )A.“x2>4”是“x3<-8”的必要不充分条件B.在△ABC中,“AB2+AC2=BC2”是“△ABC为直角三角形”的充要条件C.若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件D.x,y均为奇数是x+y为偶数的必要不充分条件(2)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么:①s是q的什么条件?②r是q的什么条件?③p是q的什么条件?方法归纳判断充分条件、必要条件及充要条件的四种方法(1)定义法:直接判断“若p,则q”以及“若q,则p”的真假.(2)集合法:利用集合的包含关系判断.(3)等价法:利用p⇔q与q⇔p的等价关系,对于条件和结论是否定形式的命题,一般运用等价法.(4)传递法:充分条件和必要条件具有传递性,即由p1⇒p2⇒…⇒p n,可得p1⇒p n;充要条件也有传递性.跟踪训练2 (1)a,b中至少有一个不为零的充要条件是( )A.ab=0B.ab>0C.a2+b2=0D.a2+b2>0(2)如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么( )A.丙是甲的充分不必要条件B.丙是甲的必要不充分条件C.丙是甲的充要条件D.丙是甲的既不充分又不必要条件题型3 充分条件、必要条件和充要条件的证明例3 求证:关于x的方程ax2+bx+c=0(a≠0)有一正根和一负根的充要条件是ac<0.方法归纳充要条件的证明思路(1)根据充要条件的定义,证明充要条件时要从充分性和必要性两个方面分别证明.一般地,证明“p成立的充要条件为q”;①充分性:把q当作已知条件,结合命题的前提条件,推出p;②必要性:把p当作已知条件,结合命题的前提条件,推出q.解题的关键是分清哪个是条件,哪个是结论,然后确定推出方向,至于先证明充分性还是先证明必要性则无硬性要求.(2)在证明过程中,若能保证每一步推理都有等价性(⇔),也可以直接证明充要性.跟踪训练3 求证:关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c =0.题型4 充分条件、必要条件和充要条件的应用例4 设p:|4x-1|≤1,q:a≤x≤a+1,若q是p的必要不充分条件,求实数a的取值范围.变式探究设p:|4x-1|≤1,q:a≤x≤a+1,若q是p的充分不必要条件,求实数a 的取值范围.方法归纳根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.跟踪训练4 集合A={y|y=x2−32x+1,34≤x≤2,},B={x|x+m2≥1},若“x∈A”是“x∈B”的充分不必要条件,求实数m的取值范围.易错辨析混淆条件与结论致误例5 使不等式0<x<2成立的一个充分但不必要条件是( )A.0<x<1B.-13<x<1C.-1<x<2D.0<x<2解析:设命题p所对应的集合为A,命题q所对应的集合为B,则“p成立的充分不必要条件是q”⇔B A,所以不等式0<x<2成立的充分不必要条件对应的集合是集合{x|0<x<2}的真子集,根据选项,只有A符合要求,故选A.答案:A易错警示课堂十分钟1.命题:p:(a+b)·(a-b)=0,q:a=b,则p是q的( )A.充分条件B.必要条件C.充要条件D.既不是充分条件也不是必要条件>1”的( )2.已知x∈R,则“x<2”是“2xA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(多选)下列说法中正确的是( )A.“m是有理数”是“m是实数”的充分条件B.“x∈A∩B”是“x∈A”的必要条件C.“x2-2x-3=0”是“x=3”的必要条件D.“x>3”是“x2>4”的充分条件4.函数y=x2-2x-a的图象与x轴无交点的充要条件是________.5.若“x>m”是“x>3或x<1”的充分条件但不是必要条件,求m的取值范围.1.2.2 充分条件和必要条件新知初探·课前预习要点一p ⇒q p ⇒q 充分条件 充分条件 必要条件 必要条件要点二p ⇔q 逆命题[基础自测]1.答案:(1)√ (2)√ (3)√ (4)√2.解析:x =1时,x 2-2x +1=0成立,故是充分的,又当x 2-2x +1=0时,即(x -1)2=0,x =1故是必要的,因此是充要条件.答案:A3.解析:∵x >0 D ⇒/x >1但x >1⇒x >0.∴“x >0”是“x >1”的必要不充分条件.故选B.答案:B4.解析:∵△ABC 是锐角三角形说明△ABC 的三个内角都是锐角.∴△ABC 是锐角三角形⇒∠ABC 为锐角,反之不一定.答案:充分不必要题型探究·课堂解透例1 解析:(1)∵a +b =0⇒a 2+b 2=0;a 2+b 2=0⇒a +b =0,∴p 是q 的必要不充分条件.(2)∵四边形的对角线相等⇒四边形是矩形;四边形是矩形⇒四边形的对角线相等,∴p 是q 的必要不充分条件.(3)由图可知BA ,所以p 是q 的必要不充分条件.(4)若方程x 2-x -m =0无实根,则Δ=1+4m <0,即m <-14.∵m <-1⇒m <-14,m <-14D ⇒/m <-1,∴p 是q 的充分不必要条件.跟踪训练1 解析:(1)设A 为正方体,其棱长为2,体积为8,B 为长方体,底面为边长为1的正方形,高为8,显然A,B在等高处的截面面积不相等,所以q是p的不必要条件;当A,B在同高处的截面积恒相等时,根据祖暅原理有A,B的体积相等,所以充分性成立,因此q是p的充分不必要条件.故选A.(2)∵x>3.5⇒x>3.14,x>4⇒x>3.14.∴x>3.14成立的一个充分条件是x>3.5或x>4.故选AC.答案:(1)A (2)AC例2 解析:(1)A中,x2>4⇔x<-2或x>2D⇒/x3<-8,但x3<-8⇒x2>4.A正确;B中,AB2+AC2=BC2⇒△ABC为直角三角形,反之不一定,B不正确;C中,a2+b2≠0⇔a,b不全为0,C正确;D中,x,y均为奇数⇒x+y为偶数,反之不一定,D不正确.故选AC.(2)①∵q是r的必要条件,∴r⇒q.∵s是r的充分条件,∴s⇒r,∴s⇒r⇒q,又∵q是s的充分条件,∴q⇒s.∴s是q的充要条件.②由r⇒q,q⇒s⇒r,知r是q的充要条件.③∵p是r的必要条件,∴r⇒p,∴q⇒r⇒p.∴p是q的必要条件.答案:(1)AC (2)见解析跟踪训练2 解析:(1)a2+b2>0,则a,b不同时为零;a,b中至少有一个不为零,则a2+b2>0.故选D.(2)如图所示,∵甲是乙的必要条件,∴乙⇒甲.又∵丙是乙的充分条件,但不是乙的必要条件,∴丙⇒乙,但乙⇒丙.综上,有丙⇒乙⇒甲,甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件.故选A.答案:(1)D (2)A<0,例3 证明:充分性:由ac<0可得b2-4ac>0及x1·x2=ca∴方程ax2+bx+c=0,有两不相等的实根,且两根异号,即方程ax2+bx+c=0有一正根和一负根.<0,必要性:由于方程ax2+bx+c=0,有一正根和一负根,∴Δ=b2-4ac>0,x1·x2=ca∴ac<0.综上可知,关于x的方程ax2+bx+c=0(a≠0)有一正根和一负根的充要条件是ac<0.跟踪训练3 证明:设p :a +b +c =0;q :关于x 的方程ax 2+bx +c =0有一个根为1, (1)充分性(p ⇒q ):因为a +b +c =0, 所以c =-a -b ,代入方程ax 2+bx +c =0中, 得ax 2+bx -a -b =0,即(x -1)(ax +a +b )=0. 所以方程ax 2+bx +c =0有一个根为1. (2)必要性(q ⇒p ):因为方程ax 2+bx +c =0有一个根为1, 所以x =1满足方程ax 2+bx +c =0. 所以有a ×12+b ×1+c =0,即a +b +c =0.故关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0.例4 解析:由|4x -1|≤1得-1≤4x -1≤1,故0≤x ≤12,由q 是p 的必要不充分条件,即p ⇒q ,q ⇒p ,即{x|0≤x ≤12}{x |a ≤x ≤a +1}.∴{a ≤0,a +1≥12,且“=”不能同时成立, 解得-12≤a ≤0,故实数a 的取值范围是{a|−12≤a ≤0}.变式探究 解析:∵q 是p 的充分不必要条件, ∴q ⇒p ,p ⇒q ,∴{x |a ≤x ≤a +1}{x|0≤x ≤12}, ∴{a ≥0a +1≤12,且“=”不能同时成立,∴此不等式组无解. 故实数a 的取值范围是∅.跟踪训练4 解析:A ={y|y =x 2 −32x +1,34≤x ≤2} ={y|716≤y ≤2},B ={x |x +m 2≥1}={x |x ≥1-m 2},∵“x ∈A ”是“x ∈B ”的充分不必要条件, ∴AB ,∴1-m 2≤716.解得m ≥34或m ≤-34.故m 的取值范围为m ≤-34或m ≥34.11 [课堂十分钟]1.解析:由命题p :(a +b )·(a -b )=0,得:|a |=|b |,推不出a =b ,由a =b ,能推出|a |=|b |,故p 是q 的必要条件.答案:B2.解析:当x =-1时,“x <2”成立,但2x <0 ,故“2x <1”,故“x <2”不是“2x >1”的充分条件,“2x >1”等价于x−2x<0⇔0<x <2,即2x >1能推出x <2, ∴“x <2”是“2x >1”的必要条件, 故“x <2”是“2x >1”的必要不充分条件,故选B.答案:B3.解析:A 正确,因为“m 是有理数”⇒“m 是实数”,所以“m 是有理数”是“m 是实数”的充分条件;B 不正确,因为“x ∈A ” “x ∈A ∩B ”,所以“x ∈A ∩B ”不是“x ∈A ”的必要条件;C 正确,由于“x =3”⇒“x 2-2x -3=0”,故“x 2-2x -3=0”是“x =3”的必要条件;D 正确,由于“x >3”⇒“x 2>4”,所以“x >3”是“x 2>4”的充分条件.故选ACD.答案:ACD4.解析:Δ=4+4a <0,∴a <-1.答案:a <-15.解析:由已知条件,如{x |x >m }{x |x >3或x <1}.∴m ≥3.∴m 的取值范围是[3,+∞).。
高中数学命题及其关系_充分条件与必要条件
3.反证法证明命题的一般步骤 (1)否定结论,(2)从假设出发,经过推理论证得出矛盾,(3)断定
假设错误,肯定结论成立. 反证法属于间接证法,当证明一个结论成立,已知条件较少,或
结论的情况较多,或结论是以否定形式出现,如某些结论中 含有“至多”、“至少”、“惟一”、“不可能”、“不都” 等指示性词语时往往考虑采用反证法证明结论成立.
四种命题的结构不明致误
【典例2】 写出命题“若a,b都是偶数,则a+b是偶数”的逆 命题,否命题,逆否命题,并判断它们的真假.
[剖析] 解本题易出现的错误有两个:一是对一个命题的逆命 题、否命题、逆否命题的结构认识模糊出错;二是在否定一 个结论时出错,如对“a,b都是偶数”的否定应该是“a,b 不都是偶数”,而不应该是“a,b都是奇数”.
[正解] 逆命题:“若a+b是偶数,则a,b都是偶数.”它是假命 题;
否命题:“若a,b不都是偶数,则a+b不是偶数.”它是假命题; 逆否命题:“若a+b不是偶数,则a,b不都是偶数.”它是真命题.
[评析]四种命题的结构与等价关系
如果原命题是“若A,则B”,则这个命题的逆命题是“若B,则 A”,否命题是“若¬A,则¬B”,逆否命题是“若¬B,则¬A”. 这里面有两组等价的命题,即“原命题和它的逆否命题等 价,否命题与逆命题等价”.在解答由一个命题写出该命题 的其他形式的命题时,一定要明确四种命题的结构以及它 们之间的等价关系.
x2
x2
1,
2,
m m
2, 3
1,
m
2;
又≥0,即: m2 4m 12≥0;解之得m 6或m≤ 2;
2023年高考数学总复习第一章 集合与常用逻辑用语 第2节:命题及其关系(学生版)
2023年高考数学总复习第一章集合与常用逻辑用语第2节命题及其关系、充分条件与必要条件考试要求 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件与充要条件的含义.1.命题可以判断真假、用文字或符号表述的语句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒/pp是q的必要不充分条件p⇒/q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒/q且q⇒/p1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.区别A是B的充分不必要条件(A⇒B且B⇒/A),与A的充分不必要条件是B(B⇒A 且A⇒/B)两者的不同.3.充要关系与集合的子集之间的关系,设A={x|p(x)},B={x|q(x)},(1)若A⊆B,则p是q的充分条件,q是p的必要条件.(2)若A B,则p是q的充分不必要条件,q是p的必要不充分条件.(3)若A=B,则p是q的充要条件.4.p是q的充分不必要条件,等价于非q是非p的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.()(2)当q是p的必要条件时,p是q的充分条件.()(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.()(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()2.(2021·浙江卷)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(2021·全国甲卷)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件4.(易错题)命题“若a2+b2=0,则a=0且b=0”的逆否命题是________________.5.(易错题)若“x2-x-6>0”是“x>a”的必要不充分条件,则a的最小值为________.6.已知命题“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数为________.考点一命题及其关系1.已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列说法正确的是()A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”D.逆否命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”2.给出以下命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③若ab是正整数,则a,b都是正整数;④若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递减.其中为真命题的是________(写出所有真命题的序号).3.能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________________.考点二充分条件与必要条件的判定例1(1)(2020·浙江卷)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2020·北京卷)已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ”是“sinα=sinβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件训练1(1)(2022·长春质检)已知m,n是平面α内两条不同的直线,则“直线l⊥m 且l⊥n”是“l⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)“a>2,b>2”是“a+b>4,ab>4”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点三充分、必要条件的应用例2(经典母题)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求实数m的取值范围.迁移设p:P={x|x2-8x-20≤0},q:非空集合S={x|1-m≤x≤1+m},且非p 是非q的必要不充分条件,求实数m的取值范围.训练2(1)使2x≥1成立的一个充分不必要条件是()A.1<x<3B.0<x<2C.x<2D.0<x≤2(2)若关于x的不等式|x-1|<a成立的充分不必要条件是0<x<4,则实数a的取值范围是________.1.设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2021·全国百校联考)已知命题p:“任意a>0,且a≠1,函数y=1+log a(x-1)的图像过点P”的逆否命题为真,则P点坐标为()A.(2,1)B.(1,1)C.(1,2)D.(2,2)3.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是“若a<1,则a2≥1”D.命题p的逆否命题是“若a2≥1,则a<1”4.王昌龄的《从军行》中的两句诗为“黄沙百战穿金甲,不破楼兰终不还”,从中可知“攻破楼兰”是“返回家乡”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.命题若“x2+y2=0,则x=y=0”的否命题为()A.若x2+y2=0,则x,y中至少有一个不为0B.若x2+y2≠0,则x,y中至少有一个不为0C.若x2+y2≠0,则x,y都不为0D.若x2+y2=0,则x,y都不为06.(2022·郑州质检)对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.47.(2021·贵阳模拟)设函数f(x)=e x2-3x,则使f(x)<1成立的一个充分不必要条件是()A.0<x<1B.0<x<4C.0<x<3D.3<x<48.已知命题p:x2+2x-3>0;命题q:x>a,且非q的一个充分不必要条件是非p,则a的取值范围是()A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]9.设a,b是两个平面向量,则“a=b”是“|a|=|b|”的________条件.10.(2021·河南名校联考)设命题p:x>4;命题q:x2-5x+4≥0,那么p是q的________________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).11.已知不等式|x-m|<1成立的一个充分不必要条件是13<x<12,则m的取值范围是________.12.(2022·西安调研)已知p(x):x2+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围为______.13.(2021·景德镇模拟)对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(2020·上海卷)p:存在a∈R且a≠0,对任意的x∈R,均有f(x+a)<f(x)+f(a)恒成立.已知q1:f(x)单调递减,且f(x)>0恒成立;q2:f(x)单调递增,存在x0<0使得f(x0)=0.则下列说法正确的是()A.q1,q2都是p的充分条件B.只有q1是p的充分条件C.只有q2是p的充分条件D.q1,q2都不是p的充分条件15.能说明“若a>b,则1a <1b”为假命题的一组a,b的值依次为________.16.已知集合A={y|y=x2-3x+1,0≤x≤2},B={x|x+m2≥2},p:x∈A,q:x∈B,2p是q的充分条件,则实数m的取值范围是________________.。
充分条件与必要条件学生版
第3课 充分条件与必要条件A 闭合是灯泡B 亮的必要但不充分条件的线路图是( )2.(2012青州质检)若不等式11a x a -<<+成立的充分条件是04x <<,则实数a的取值范围是( )A .[)3,+∞B .(],3-∞C .[)1,+∞ D.(],1-∞3.(2012茂名二模)在ABC ∆中,“sin 2A >”是“3A π>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.如果对于任意实数x ,[]x 表示不超过x 的最大整数.例如[3.27]3=,[0.6]0=.那么“[][]x y =”是“1x y -<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知函数221, 1,()1, 1,x ax x f x ax x x ⎧++≥⎪=⎨++<⎪⎩ 则“20a -≤≤”是“()f x 在R 上单调递增”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2012福建高考)下列命题中,真命题是( )A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0a b +=的充要条件是1a b= D .1,1a b >>是1ab >的充分条件7.探求关于x 的方程22120x mx m ++-=两根都大于2的充要条件.8.(2012日照质检)设命题p :实数x 满足22430x ax a -+<,其中0a ≠,命题q :实数x 满足2260280x x x x ⎧--≤⎪⎨+->⎪⎩. (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.。
高中数学《命题及其关系充分条件与必要条件》教案苏教版选修
高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标:1. 让学生理解充分条件和必要条件的概念,掌握判断充分条件和必要条件的方法。
2. 培养学生运用充分条件和必要条件分析问题、解决问题的能力。
3. 帮助学生建立充分条件和必要条件之间的联系,理解它们在数学论证中的应用。
二、教学内容:1. 充分条件和必要条件的定义。
2. 判断充分条件和必要条件的方法。
3. 充分条件和必要条件与数学论证的关系。
三、教学重点与难点:重点:充分条件和必要条件的定义及判断方法。
难点:充分条件和必要条件在数学论证中的应用。
四、教学过程:1. 导入:通过生活实例引入充分条件和必要条件的概念。
2. 新课讲解:讲解充分条件和必要条件的定义,举例说明判断方法。
3. 课堂练习:让学生运用充分条件和必要条件判断给出的命题。
4. 案例分析:分析充分条件和必要条件在数学论证中的应用。
5. 总结提升:总结本节课的主要内容,强调充分条件和必要条件的重要性。
五、课后作业:1. 复习本节课的内容,理解充分条件和必要条件的概念及判断方法。
2. 完成课后练习题,巩固所学知识。
3. 思考充分条件和必要条件在实际问题中的应用,准备下一节课的分享。
六、教学策略:1. 采用问题驱动的教学方法,引导学生通过实例发现充分条件和必要条件的规律。
2. 利用逻辑推理和反证法,让学生在实践中掌握充分条件和必要条件的判断方法。
3. 设计具有针对性的练习题,及时巩固所学知识,提高学生的应用能力。
4. 组织小组讨论,鼓励学生分享自己的思路和经验,培养学生的合作意识。
七、教学准备:1. 准备相关的生活实例和数学案例,用于引导学生理解和应用充分条件和必要条件。
2. 设计课后练习题,包括基础题和拓展题,以满足不同层次学生的学习需求。
3. 准备教学PPT,用于辅助讲解和展示教学内容。
八、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现。
1.4充分条件与必要条件学案学生版
第一章集合与常用逻辑用语1.4 充分条件与必要条件【学习目标】1.结合具体实例,理解充分条件、必要条件的意义.(数学抽象)2.理解充分不必要条件、必要不充分条件和充要条件的意义.(数学抽象)3.掌握充分不必要条件、必要不充分条件和充要条件的判定方法.(逻辑推理)4.通过理解充分不必要条件、必要不充分条件和充要条件的概念,培养学生分析、判断和归纳的逻辑思维能力.(数学抽象)【使用说明及学法指导】1.预学指导:精读教材的内容,完成预学案,找出自己的疑惑;2.探究指导:小组成员依次发表观点,有组织,有记录,有展示,有点评;3.展示指导:规范审题,规范书写,规范步骤,规范运算;4.检测指导:课堂上定时训练,展示答案;5.总结指导:回扣学习目标,总结本节内容.【预学案】知识点1 充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系__________p q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件思考思考2:性质定理与必要条件有什么关系?知识点2 充要条件1.定义:若p⇒q且q⇒p,则记作_______,此时p是q的充分必要条件,简称___________. 2.条件与结论的等价性:如果p是q的_________,那么q也是p的_________.3.概括:如果_______,那么p与q互为__________.思考:命题按条件和结论的充分性、必要性可分哪几类?预学自测:1.思维辨析(对的打“√”,错的打“×”)(1)“x=3”是“x2=9”的必要条件.( )(2)“x>0”是“x>1”的充分条件.( )(3)如果p是q的充分条件,则p是唯一的.( )2.x,y∈R,下列各式中哪个是“xy≠0”的必要条件( )A.x+y=0 B.x2+y2>0C.x-y=0 D.x3+y3≠03.在平面内,下列是“四边形是矩形”的充分条件的是( )A.四边形是平行四边形且对角线相等 B.四边形两组对边相等C.四边形的对角线互相平分 D.四边形的对角线垂直4.“x=0”是“x2=0”的( )A.充分条件 B.必要条件C.既不是充分条件也不是必要条件 D.既是充分条件又是必要条件5.设p:x<3,q:-1<x<3,则p是q的( )A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选一个合适的填空.(1)“x2-1=0”是“|x|-1=0”的________________.(2)“x<5”是“x<3”的________________.【我的疑惑】_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________【探究案】探究一:充分条件和必要条件例1 (1)设x∈R,则使x>3.14成立的一个充分条件是( )A.x>3 B.x<3 C.x>4 D.x<4(2)使|x|=x成立的一个必要条件是( )A.x<0 B.x≥0或x≤-1 C.x>0 D.x≤-1(3)下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件?哪些命题中的q是p的必要条件?①若a∈Q,则a∈R;②若a<b,则ab<1;③若x>1,则x2>1;④p:-2≤x≤5,q:-1≤x≤5;⑤p:a是自然数,q:a是正整数;⑥p:三角形是等边三角形,q:三角形是等腰三角形.【对点练习】❶下列“若p,则q”形式的命题中,哪些命题中p是q的充分条件?(1)若x2=y2,则x=y;(2)若4x2-mx+9是完全平方式,则m=12.(3)若a是无理数,则a是无限小数.(4)若(x-1)2+(y-2)2=0,则(x-1)(y-2)=0.探究二:充分条件、必要条件及充要条件的判断例1 (1)对于任意的x,y∈R,“xy=0”是“x2+y2=0”的( )A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件(2)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件(3)设A,B是两个集合,则“A∩B=A”是“A⊆B”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【对点练习】❶设A、B为两个互不相同的集合.命题p:x∈(A∩B);命题q:x∈A或x∈B.则p是q的_________条件.( )A.充分必要B.充分不必要C.必要不充分D.既不充分又不必要探究三:充要条件的证明例2 设x,y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.【对点练习】❷证明:△ABC是等边三角形的充要条件是a2+b2+c2=ab+ac+bc,这里a,b,c 是△ABC的三条边.探究四、根据充分条件、必要条件求参数的取值范围例3 已知p:-4<x-a<4,q:(x-2)(x-3)<0,且q是p的充分条件,则实数a的取值范围为( ) A.(-1,6) B.[-1,6]C.(-∞,-1)∪(6,+∞) D.(-∞,-1]∪[6,+∞)【对点练习】❸设p:实数x满足x2-4ax+3a2<0,a∈R;q:实数x满足x2-x-6≤0或x2+2x -8>0.若a<0且p是q的充分不必要条件,求实数a的取值范围.【检测案】1.命题p:(a+b)(a-b)=0,q:a=b,则p是q的( )A.充分条件 B.必要条件C.既是充分条件也是必要条件 D.既不是充分条件也不是必要条件2.“a+b>2c”的一个充分不必要条件是( )A.a>c或b>c B.a>c或b<c C.a>c且b<c D.a>c且b>c3.若“x<a”是“x≥3或x≤-1”的充分不必要条件,则a的取值范围是( )A.a≥3 B.a≤-1 C.-1≤a≤3 D.a≤34.下列各题中,哪些p是q的充要条件?(1)p:三角形为等腰三角形,q:三角形存在两角相等;(2)p:⊙O内两条弦相等,q:⊙O内两条弦所对的圆周角相等;(3)p:A∩B为空集,q:A与B之一为空集.【课堂小结】。
学生版第一章第二节命题及其关系、充分条件与必要条件 (经典练习及答案详解)
课时作业A组——基础对点练1.(2017·高考天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数3.已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是() A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤06.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.38.(2018·石家庄模拟)已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(2018·武汉市模拟)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是+a2n<0”的()“对任意的正整数n,a2n-1A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.(2018·南昌市模拟)a2+b2=1是a sin θ+b cos θ≤1恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(2018·洛阳统考)已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B ={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的__________条件.14.“x>1”是“”的__________条件.15.命题“若x>1,则x>0”的否命题是__________.16.如果“x2>1”是“x<a”的必要不充分条件,则a的最大值为__________.B组——能力提升练1.(2018·湖南十校联考)已知数列{a n}的前n项和S n=Aq n+B(q≠0),则“A=-B”是“数列{a n}是等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知函数f(x)=3ln(x+x2+1)+a(7x+7-x),x∈R,则“a=0”是“函数f(x)为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.若a ,b 为正实数,且a ≠1,b ≠1,则“a >b >1”是“log a 2<log b 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知数列{a n }的前n 项和为S n ,则“a 3>0”是“数列{S n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.“a ≤-2”是“函数f (x )=|x -a |在[-1,+∞)上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件9.(2016·高考四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件10.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的序号是__________.13.已知m∈R,“函数y=2x+m-1有零点”是“函数y=log m x在(0,+∞)上为减函数”的__________条件.14.(2018·江西九校联考)下列判断错误的是__________.①若p∧q为假命题,则p,q至少有一个为假命题②命题“∀x∈R,x3-x2-1≤0”的否定是“∃x0∈R,x30-x20-1>0”③“若a∥c且b∥c,则a∥b”是真命题④“若am2<bm2,则a<b”的否命题是假命题15.下列四个结论中正确的个数是__________.①“x2+x-2>0”是“x>1”的充分不必要条件;②命题:“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”;③“若x=π4,则tan x=1”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.。
初升高数学暑假衔接(人教版)第04讲 充分条件与必要条件(学生版)
第04讲充分条件与必要条件1.理解充分条件、必要条件的概念,理解充要条件的意义;2.了解充分条件与判定定理、必要条件与性质定理的关系;3.能通过充分性、必要性解决简单的问题;4.能对充分条件进行证明。
一、命题定义与表示1、命题的定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫命题.判断为真的语句是真命题,判断为假的语句是假命题.2、命题的表示:命题表示为“若p ,则q ”时,p 是命题的条件,q 是命题的结论.二、充分条件条件与必要条件1、充分条件与必要条件定义(1)一般地,“若p ,则q ”为真命题,是指由条件p 通过推理可以得出结论q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说,p 是q 的充分条件,q 是p 的必要条件。
(2)如果“若p ,则q ”为假命题,那么由条件p 不能推出结论q ,记作p q ¿.这时,我们就说,p 不是q 的充分条件,q 不是p 的必要条件。
2、充分条件与必要条件的关系p 是q 的充分条件反映了p q ⇒,而q 是p 的必要条件也反映了p q ⇒,所以p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,只是说法不同。
而p 是q 的充分条件只反映了p q ⇒,与q 能否推出p 没有任何关系。
三、充要条件1、充要条件的定义如果“若p ,则q ”和它的逆命题“若q ,则p ”均为真命题,即既有p q ⇒,又有q p ⇒,就记作p q ⇔。
此时,p 既是q 的充分条件,也是q 的必要条件,我们说p 是q 的充分必要条件,简称充要条件。
2、充要条件的含义若p 是q 的充要条件,则q 也是p 的充要条件,虽然本质上是一样的,但在说法上还是不同的,因为这两个命题的条件与结论不同。
3、充要条件的等价说法:p 是q 的充要条件又常说成是q 成立当且仅当p 成立,或p 与q 等价。
四、充分、必要、充要条件的证明1、证明“充分不必要条件”“必要不充分条件”,一般先证明一个方面,然后验证另一个方面不成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题和充要条件知识梳理 一、命题的概念1、一般地,我们把可以判断真假的语句叫做命题。
2、命题通常用陈述句表示,正确的命题叫做真命题,错误的命题叫做假命题。
3、一般地,如果命题α成立可以推出命题β也成立,那么就说由可以推出,记作βα⇒。
相反的,如果成立不能推出成立,那么就说由不可以推出,记作αβ。
4、如果,并且αβ⇒,那么就说与等价,记作βα⇔。
二、四种命题形式1、一个数学命题用条件,结论表示就是“如果α,那么”,把结论与条件交换,就得到一个新命题“如果 ,那么”,我们把这个命题叫做原命题的逆命题。
2、如果一个命题的条件与结论分别是另一个命题的条件与结论的否定,我们把这两个命题叫做互否命题。
如果其中一个叫做原命题,那么另外一个叫做原命题的否命题。
3、命题、的否定分别记作α、β。
4、如果把原命题“如果,那么”结论的否定作条件,把条件的否定作结论,那么就可以得到一个新命题,我们将它叫做原命题的逆否命题。
5、四种命题形式及其相互关系:6、常见结论的否定形式:(拓展内容)三、充要条件1、充分条件与必要条件:一般地,用α、β分别表示两个命题,如果成立,可以推出也成立,即,那么叫做的充分条件。
叫做的必要条件。
2、充要条件:如果既有,又有,即有βα⇔,那么既是的充分条件又是的必要条件,这时我们就说是的充要条件。
例题解析一、有关命题的概念【例1】判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由. (1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.【例3】下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( )A .0个B .1个C .2个D .3个【例4】下列判断中正确的是 ( ).A. “12是偶数且是18的约数”是真命题B. “方程210x x ++=没有实数根”是假命题C. “存在实数x ,使得23x +≤且216x >”是真命题D. “三角形的三个内角的和大于或等于120︒”是假命题【例5】对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个【巩固训练】1、判断命题真假:如果2a <,那么2a < ( )2、若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是__________3、已知,A B 是两个集合,下列四个命题:①B ,A x A x B ⇔∈∉不包含于对任意有②B A A B ⇔⋂=∅不包含于③B A A ⇔不包含于不包含B ④B ,A x A x B ⇔∈∉不包含于存在,其中真命题的序号是4、下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为( )A .0个B .1个C .2个D .3个二、命题的四种形式及其关系【例6】命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例7】有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是_______【例8】写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.【例9】写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. ⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例10】已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程24(2)10x m x +-+=无实根;若p 与q 中有且仅有一个为真命题,求实数m 的取值范围.【巩固训练】1、有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题; 其中真命题的个数为( ) A .1 B .2 C .3 D .42、原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个. A .0 B .1 C .2 D .43、命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥4、有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =I ,则A B ⊆”的逆否命题. 其中是真命题的是 (填上你认为正确的命题的序号).5.原命题的否命题是“三条边相等的三角形是等边三角形”,原命题的逆命题是三、有关等价命题【例12】与命题“,,不全是负数”等价的命题是( ) A 、,,中至少有一个是正数 B 、,,全不是负数C 、,,中只有一个是负数D 、,,中至少有一个是非负数 【例13】与“一元二次方程有一正根、一负根”等价的命题是( D )A 、B 、C 、D 、【例14】命题:已知a ,b 为实数,若20x ax b ++≤有非空解集,则240a b -≥。
写出该命题的逆命题,否命题,逆否命题,并判断这些命题的真假?【例15】下列命题改写成“若p ,则q ”的形式,并写出它的逆命题、否命题和逆否命题,并判断它们的真假. (1)方程2560x x -+=的解是3x =;(2),,,a b c d 是实数,,a b c d ==,可以得到a c b d +=+; (3)对顶角相等.【巩固训练】1、下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题; ③“x >2”是“1x <12”的充分不必要条件;④一个命题的否命题为真,则它的逆命题一定为真. 其中说法不正确的序号是________.2、,,中至少有一个是非负实数的等价命题是( )A 、,,中全不是负数B 、,,中只有一个是负数C 、,,中至少有一个是正数D 、,,不全是负数3、设a,b 两个实数,能推出“a,b 中至少有一个大于1”的条件是( ) (A) a+b>1 (B) a+b=2 (C) ab>1 (D) a+b>2四、充要条件的判定【例16】对任意实数a 、b 、c ,在下列命题中,真命题是( )A .“ac bc >”是“a b >”的必要条件B .“ac bc =”是“a b =”的必要条件C .“ac bc >”是“a b >”的充分条件D .“ac bc =”是“a b =”的充分条件【例17】若“a b c d ⇒>≥”和“a b e f <⇒≤”都是真命题,其逆命题都是假命题,则“c d ≤”是“e f ≤”的( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分也非必要条件【例18】已知命题p :40k -<<;命题q :函数21y kx kx =--的值恒为负.则命题p 是命题q 成立的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件【例19】已知集合{|35}M x x x =<>或,{|()(8)0}P x x a x =--≤.(1)求实数a 的取值范围,使它成为{|58}M P x x =<≤I 的充要条件;(2)求实数a 的一个值,使它成为{|58}M P x x =<≤I 的一个充分但不必要条件; (3)求实数a 的取值范围,使它成为{|58}M P x x =<≤I 的一个必要但不充分条件.【巩固训练】1、0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件2、若:A a R ∈,1a <, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3、已知a b c d ,,,为实数,且c d >.则“a b >”是“a c b d ->-”的( ) A . 充分而不必要条件 B . 必要而不充分条件 C .充要条件 D . 既不充分也不必要条件五、充分条件、必要条件、充要条件的求解与证明【例20】已知条件p :|1|2x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围可以是( )A .1a ≥B .1a ≤C .1a ≥-D .3a -≤【例21】给出以下四个条件:①0ab >;②0a >或0b >;③2a b +>;④0a >且0b >.其中可以作为“若,R a b ∈,则0a b +>”的一个充分而不必要条件的是________.【例22】已知不等式||1x m -<成立的充分不必要条件是1132x <<,则m 的取值范围是 ( )A.41{|}32m m -≤≤B.1{|}2m m <C. 14{|}23m m -≤≤D. 4{|}3m m ≥【例23】已知命题p :1123x --≤;q :22210(0)x x m m -+->≤,若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围.【例24】已知0a >,函数2()f x ax bx =-,⑴当0b >时,若对任意R x ∈都有()1f x ≤,证明:a ≤⑵当1b >时,证明:对任意[01]x ∈,,()1f x ≤的充要条件是1b a -≤≤ ⑶当01b <≤时,讨论对任意[01]x ∈,,都有()1f x ≤的充要条件.【巩固训练】1、可以作为“若R a b ∈,,则0a b +>”的一个充分而不必要条件的是( ) A .0ab > B .0a >或0b > C .0a >且0b > D .1ab >2、设αβ,是方程20x ax b -+=的两个实根,试分析21a b >>,是两根αβ,均大于1的什么条件?3、求证:关于x 的方程220x ax b ++=有实数根,且两根均小于2的一个充分条件是2a ≥且||4b ≤.反思总结命题和充要条件是高中数学的重要内容,在高考中占有很高的地位.历年高考命题中,充分条件和必要条件已经成了高考考查的一个热点,虽然这一部分在课本中只占一小节内容,定义也很简单,但它涉及的知识面很广,几乎渗透了高中数学的每一个角落;充要条件是数学中极其重要的一个概念,有关充要条件问题的求解是解题的一个难点,解这类问题需熟练掌握条件的概念,理解其含义,结合题设条件正确地分清条件与结论.在高考数学卷中,判断充要条件的问题常出现在选择题中,一般会与函数、不等式、立体几何等知识结合起来进行考查.课后练习一、填空题:1、设12:,A x x 是方程200()ax bx c a ++=≠的两实数根;12:bB x x a+=-,则A 是B 的_____________条件。