2018年高考数学(理)二轮练习:大题规范练1 “17题~19题+二选一”46分练

合集下载

2018全国高考数学二试题及答案(理科)

2018全国高考数学二试题及答案(理科)

的素数中,随机选取连个不同的数,其和等于 30 的概率是( )
A. 1 12
【答案】C
B. 1 14
C. 1 15
D. 1 18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1, AA1 3 ,则异面直线 AD1 与 DB1 所成角的余弦值为( )
A. 1 5
【答案】C
为了预测该地区 2018 年的环境基础设施投资额, 建立了 y 与时间变量 t 的两 个线性回归模型.根据 2000 年至 2016 年的数据(时间 变量 t 的值依次为1, 2, ,17 )建立模型①:y 30.4 13.5t ;根据 2010 年至 2016
年的数据(时间变量 t 的值依次为1, 2, ,7 )建立模型②: y 99 17.5t . (1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 【解析】(1)由题意可知,用模型①预测 2018 年投资额为
(2)若 f (x) 在 (0, ) 只有一个零点,求 a .
【解析】(1)当 a 1时,f (x) ex x2 ,则 f x() e x2x .令 h(x) f (x) ex 2x ,
由 h(x) ex 2 知 h(x) 在 (0, ln 2) 上单调递减,在 (ln 2, ) 上单调递增.从而 h(x) f (x) h(ln 2) f (ln 2) 2 2ln 2 0 ,所以 f (x) 在 (0, ) 上单调递增.
S3 3a1 3d 21 3d 15 解得 d 2 .所以 an 7 2(n 1) 2n 9 . (2)由(1)可知 Sn n2 8n (n 4)2 16 .由二次函数性质可知当 n 4 时,Sn 取 得最小值 16 . 18.(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位:亿 元)的折线图.

2018年高考数学(理)二轮练习:大题规范练5 “17题~19题+二选一”46分练

2018年高考数学(理)二轮练习:大题规范练5 “17题~19题+二选一”46分练

大题规范练(五) “17题~19题+二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.如图8,已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C =120°.图8(1)若c =1,求△ABC 面积的最大值; (2)若a =2b ,求tan A .【导学号:07804237】[解] (1)由余弦定理得a 2+b 2-2ab cos 120°=1,a 2+b 2+ab =1≥2ab +ab =3ab ,当且仅当a =b 时取等号,解得ab ≤13,故S △ABC =12ab sin C =34ab ≤312,即△ABC 面积的最大值为312.(2)∵a =2b ,∴由正弦定理得sin A =2sin B , 又C =120°, ∴A +B =60°,∴sin A =2sin(60°-A )=3cos A -sin A , ∴3cos A =2sin A ,∴tan A =32. 18.某仪器经过检验合格才能出厂,初检合格率为34:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为45.每台仪器各项费用如表:项目 生产成本 检验费/次 调试费 出厂价 金额(元)1 0001002003 000(1)(2)求生产一台仪器所获得的利润为1 600元的概率(注:利润=出厂价-生产成本-检验费-调试费);(3)假设每台仪器是否合格相互独立,记X 为生产两台仪器所获得的利润,求X 的分布列和数学期望.[解] (1)记每台仪器不能出厂为事件A ,则P (A )=⎝ ⎛⎭⎪⎫1-34⎝ ⎛⎭⎪⎫1-45=120,所以每台仪器能出厂的概率P (A )=1-120=1920.(2)生产一台仪器利润为1 600的概率P =⎝ ⎛⎭⎪⎫1-34×45=15.(3)X 可取3 800,3 500,3 200,500,200,-2 800.P (X =3 800)=34×34=916,P (X =3 500)=C 12×15×34=310,P (X =3 200)=⎝ ⎛⎭⎪⎫152=125,P (X =500)=C 12×34×⎝ ⎛⎭⎪⎫14×15=340,P (X =200)=C 12×15×⎝ ⎛⎭⎪⎫14×15=150,P (X =-2 800)=⎝ ⎛⎭⎪⎫14×152=1400. X 的分布列为:X 3 800 3 500 3 200 500 200 -2 800 P916 310125 340 1501400 E (X )=3 800×916+3 500×10+3 200×25+500×40+200×50+(-2 800)×1400=3 350. 19.如图9,在底面为直角梯形的四棱锥P ­ABCD 中,AD ∥BC ,∠ABC =90°,AC 与BD 相交于点E ,PA ⊥平面ABCD ,PA =4,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面PAC ;图9(2)求二面角A ­PC ­D 的余弦值.[解] (1)证明:∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴BD ⊥PA . 又tan∠ABD =AD AB =33,tan∠BAC =BCAB= 3. ∴∠ABD =30°,∠BAC =60°, ∴∠AEB =90°,即BD ⊥AC . 又PA ∩AC =A ,∴BD ⊥平面PAC .(2)建立如图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,4),CD →=(-23,-4,0),PD →=(0,2,-4),BD →=(-23,2,0),设平面PCD 的法向量为n =(x ,y,1), 则CD →·n =0,PD →·n =0,∴⎩⎨⎧-23x -4y =02y -4=0,解得⎩⎪⎨⎪⎧x =-433y =2,∴n =⎝ ⎛⎭⎪⎫-433,2,1.由(1)知平面PAC 的一个法向量为m =BD →=(-23,2,0),∴cos〈m ,n 〉=m·n |m |·|n |=39331,即二面角A ­PC ­D 的余弦值为39331. (请在第22~23题中选一题作答,如果多做,则按照所做第一题计分) 22.选修4­4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3t ,y =t(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,与直角坐标系xOy 取相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ2=cos 2θ+sin θ(ρ≥0).(1)若直线l 与曲线C 交于A ,B 两点,求线段AB 的长度;(2)若M ,N 是曲线C 上两点,且OM ⊥ON ,求线段MN 长度的最大值. [解] (1)由题意知,直线l 的普通方程为y =33x ,则其极坐标方程为θ=π6或θ=7π6,不妨设A ⎝⎛⎭⎪⎫ρ1,π6,B ⎝ ⎛⎭⎪⎫ρ2,7π6,把θ=π6代入ρ2=cos 2θ+sin θ,得ρ21=⎝ ⎛⎭⎪⎫322+12=54,所以|OA |=52;把θ=7π6代入ρ2=cos 2θ+sin θ,得ρ22=⎝ ⎛⎭⎪⎫-322-12=14,所以|OB |=12,所以线段AB 的长度为52+12=5+12. (2)设M (ρ3,α),N ⎝ ⎛⎭⎪⎫ρ4,α+π2,则|OM |2=cos 2α+sin α,|ON |2=cos 2⎝ ⎛⎭⎪⎫α+π2+sin ⎝⎛⎭⎪⎫α+π2=sin 2α+cos α,所以|MN |2=|OM |2+|ON |2=cos 2α+sin α+sin 2α+cos α=1+2sin ⎝ ⎛⎭⎪⎫α+π4,故当α=π4时,|MN |取得最大值1+ 2.23.选修4­5:不等式选讲已知f (x )=2|x +1|-x 的最小值为b . (1)求b ;(2)已知a ≥b ,求证:2a -b +a 2-b ≥a .[解] (1)f (x )=2|x +1|-x =⎩⎪⎨⎪⎧x +2,x ≥-1,-3x -2,x <-1,所以b =f (x )min =f (-1)=1. (2)证明:由(1)知b =1, 设a =1+m (m ≥0),则 2a -b +a 2-b =2a -1+a 2-1 =21+m -1+1+m2-1=1+2m +m 2+2m ≥1+m =a .。

2018全国Ⅱ理科数学高考真题(附标准答案)

2018全国Ⅱ理科数学高考真题(附标准答案)

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i12i+=-( )A.43i 55-- B.43i 55-+ C.34i 55-- D.34i 55-+ 2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为( ) A.9 B .8 C.5 D .43.函数2e e ()x xf x x --=的图象大致为( )4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( )A.4 B .3 C.2 D .05.双曲线22221(0,0)x y a b a b-=>>3则其渐近线方程为( )A.2y x = B .3y x = C.2y = D .3y = 6.在ABC △中,5cos2C 1BC =,5AC =,则AB =( )A.4230C 29D.257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入( )A .1i i =+B .2i i =+开始0,0N T ==S N T =-S 输出1i =100i <1N N i=+11T T i =++结束是否C.3i i =+ D.4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .112 B .114 C.115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为( )A.15B10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B.π2C.3π4D.π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=( )A .50- B.0 C.2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23B .12C .13D.14二、填空题:本题共4小题,每小题5分,共20分。

2018年高考数学(理)二轮练习:大题规范练3 “17题~19题+二选一”46分练

2018年高考数学(理)二轮练习:大题规范练3 “17题~19题+二选一”46分练

大题规范练(三) “17题~19题+二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且满足a =3b cos C .(1)求tan C tan B的值;(2)若a =3,tan A =3,求△ABC 的面积.[解] (1)由正弦定理a sin A =b sin B =csin C=2R 及a =3b cos C 可得2R sin A =3×2R sin B cosC ,即sin A =3sin B cos C .∵A +B +C =π,∴sin A =sin(B +C )=3sin B cos C , ∴sin B cos C +cos B sin C =3sin B cos C ,∴cos B sin C =2sin B cos C ,∴cos B sin C sin B cos C =2,故tan Ctan B =2.(2)法一:(直接法)由A +B +C =π,得tan(B +C )=tan(π-A )=-3, 即tan B +tan C1-tan B ·tan C=-3,将tan C =2tan B 代入得3tan B 1-2tan 2B =-3,解得tan B =1或tan B =-12.根据tan C =2tan B ,得tan C ,tan B 同号, 又tan C ,tan B 同时为负数不合题意, ∴tan B =1,tan C =2, ∴sin B =22,sin C =255,sin A =31010, 由正弦定理可得331010=b22,∴b =5,∴S △ABC =12ab sin C =12×3×5×255=3.法二:(整体代入法)由A +B +C =π,得tan(B +C )=tan(π-A )=-3, 即tan B +tan C1-tan B ·tan C=-3,将tan C =2tan B 代入得3tan B1-2tan 2B=-3,解得tan B =1或tan B =-12.根据tan C =2tan B 得tan C ,tan B 同号,又tan C ,tan B同时为负数不合题意, ∴tan B =1,tan C =2.又∵a =3b cos C =3,∴b cos C =1,∴ab cos C =3, ∴ab cos C tan C =6, ∴S △ABC =12ab sin C =12×6=3.18.如图6,在四棱锥S ­ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.图6(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.【导学号:07804233】[解] (1)证明:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C ­xyz ,则D (1,0,0),A (2,2,0),B (0,2,0).设S (x ,y ,z ),则x >0,y >0,z >0,且AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ). 由|AS →|=|BS →|,得x -22+y -22+z 2=x 2+y -22+z 2,解得x =1.由|DS →|=1,得y 2+z 2=1. ① 由|BS →|=2,得y 2+z 2-4y +1=0. ②由①②,解得y =12,z =32.∴S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,∴DS →·AS →=0,DS →·BS →=0,∴DS ⊥AS ,DS ⊥BS , ∴SD ⊥平面SAB .(2)设平面SBC 的法向量为n =(x 1,y 1,z 1), 则n ⊥BS →,n ⊥CB →,∴n ·BS →=0,n ·CB →=0. 又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),∴⎩⎪⎨⎪⎧x 1-32y 1+32z 1=02y 1=0,取z 1=2,得n =(-3,0,2). ∵AB →=(-2,0,0),∴cos〈AB →,n 〉=AB →·n |AB →||n |=-2×-37×2=217.故AB 与平面SBC 所成角的正弦值为217. 19.春节期间,甲、乙等六人在微信群中玩抢红包游戏,六人轮流发红包,每次10元,分4个红包,每个红包分别为1元、2元、3元、4元,每人每次最多抢一个红包,且每次红包全被抢完.统计五轮(30次)的结果,甲、乙所抢红包的情况如下:1元 2元 3元 4元 甲抢的次数 6 3 4 7 乙抢的次数9664(1)(2)将频率视为概率,甲在接下来的一轮抢红包游戏中,没有抢到红包的次数为X ,求X 的分布列和数学期望.[解] (1)甲所抢红包金额的平均数为x 甲=6+2×3+3×4+4×730=2615,乙所抢红包金额的平均数为x 乙=9+2×6+3×6+4×430=116,由于116>2615,所以乙的手气更好.(2)由题意,X 的所有可能取值为0,1,2,3,4,5,6.从30次统计结果看,甲抢到红包的频率为6+3+4+730=23,甲没有抢到红包的频率为1-23=13,且每次抢红包相互独立,故X ~B ⎝ ⎛⎭⎪⎫6,13.P (X =0)=⎝ ⎛⎭⎪⎫236=64729,P (X =1)=C 16⎝ ⎛⎭⎪⎫235⎝ ⎛⎭⎪⎫13=64243,P (X =2)=C 26⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫132=80243,P (X =3)=C 36⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫133=160729,P (X =4)=C 46⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫134=20243,P (X =5)=C 56⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫135=4243,P (X =6)=C 66⎝ ⎛⎭⎪⎫136=1729. 所以X 的分布列为E (X )=6×3=2.(请在第22~23题中选一题作答,如果多做,则按照所做第一题计分) 22.选修4­4:坐标系与参数方程在直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(其中φ为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ(tan α·cos θ-sinθ)=1(α是常数,0<α<π,且α≠π2),点A ,B (A 在x 轴的下方)是曲线C 1与C 2的两个不同交点.(1)求曲线C 1的普通方程和C 2的直角坐标方程; (2)求|AB |的最大值及此时点B 的坐标.[解] (1)∵⎩⎪⎨⎪⎧x =2cos φy =sin φ(其中φ为参数),∴曲线C 1的普通方程为x 24+y 2=1.由⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,得曲线C 2的直角坐标方程为y =tan α·x -1.(2)由(1)得曲线C 2的参数方程为⎩⎪⎨⎪⎧x =t cos αy =-1+t sin α(t 为参数).设A (t 1cos α,-1+t 1sin α),B (t 2cos α,-1+t 2sin α),将⎩⎪⎨⎪⎧x =t cos αy =-1+t sin α,代入x 24+y 2=1,整理得t 2(1+3sin 2α)-8t sin α=0,∴t 1=0,t 2=8sin α1+3sin 2α, ∴|AB |=|t 1-t 2|=8|sin α|1+3sin 2α=83|sin α|+1|sin α|≤823=433(当且仅当sin α=33时取等号), 当sin α=33时,∵0<α<π,且α≠π2,∴cos α=±63, ∴B ⎝ ⎛⎭⎪⎫±423,13, ∴|AB |的最大值为433,此时点B 的坐标为⎝ ⎛⎭⎪⎫±423,13.23.选修4­5:不等式选讲已知函数f (x )=|x +1|+m |x -1|(m ∈R ). (1)当m =2时,求不等式f (x )<4的解集; (2)当m <0时,f (x )≥2m 恒成立,求m 的最小值.【导学号:07804234】[解] (1)当m =2时,f (x )=|x +1|+2|x -1|=⎩⎪⎨⎪⎧1-3x ,x <-1,3-x ,-1≤x ≤1,3x -1,x >1.由f (x )的单调性及f ⎝ ⎛⎭⎪⎫53=f (-1)=4, 得f (x )<4的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <53. (2)由f (x )≥2m ,得|x +1|≥m (2-|x -1|), 因为m <0,所以-1m|x +1|≥|x -1|-2,在同一直角坐标系中画出y =|x -1|-2及y =-1m|x +1|的图象,如图所示,根据图象可得-1m≥1,所以-1≤m <0,故m 的最小值为-1.。

2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i+=-A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>则其渐近线方程为 A.y = B.y = C.y = D.y x =6.在ABC△中,cos2C 1BC =,5AC =,则AB = A.B.CD.7.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018届高考数学(理)二轮专题复习:1-7 Word版含答案.doc

2018届高考数学(理)二轮专题复习:1-7 Word版含答案.doc

小题提速练(七)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,A ={x ∈N |2x (x -4)<1},B ={x ∈N |y =ln(2-x )},则图中阴影部分表示的集合的子集个数为( )A .1B .2C .3D .4解析:选D.由韦恩图知阴影部分表示的是A ∩(∁U B ),∵A ={x ∈N |2x (x -4)<1}={1,2,3},B ={x ∈N |y =ln(2-x )}={0,1},∴阴影部分对应的集合是A ∩(∁U B )={2,3},则图中阴影部分表示的集合的子集个数为22=4.2.若复数a +3i1+2i(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-6B .-2C .4D .6 解析:选A.∵a +3i 1+2i =a +-+-=a ++-2a5为纯虚数,∴⎩⎪⎨⎪⎧a +6=0,3-2a ≠0,解得a =-6.3.给出命题p :若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β;命题q :向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为λ∈⎝ ⎛⎭⎪⎫-12,+∞.关于以上两个命题,下列结论中正确的是( ) A .命题“p ∨q ”为假 B .命题“p ∧q ”为真 C .命题“p ∨﹁q ”为假D .命题“p ∧﹁q ”为真解析:选A.命题p :若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β或相交,因此是假命题;命题q :向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为⎩⎪⎨⎪⎧a·b <0,且不异向共线,-2λ-1<0,解得λ>-12,由-λ+2=0,解得λ=2,此时a 与b 异向共线,因此向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为λ∈⎝ ⎛⎭⎪⎫-12,+∞且λ≠2,因此是假命题. 4.一个空间几何体的三视图如图所示,则该几何体的外接球的表面积为()A .24πB .6πC .4πD .2π解析:选B.几何体为三棱锥,可以将其补形为一个棱长为2的正方体,该正方体的外接球和几何体的外接球为同一个,故2R =22+22,R =62,所以外接球的表面积为4πR 2=6π. 5.下面图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,图2是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )7 8 9 10 116 9 1 3 6 72 9 4 1 58 6 3 1 4图1图2A .6B .10C .91D .92解析:选B.由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图可知:数学成绩大于等于90的人数为10,因此输出结果为10.6.已知正数x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,则z =4-x·⎝ ⎛⎭⎪⎫12y的最小值为( )A .1 B.14 32 C.116D.132解析:选C.根据约束条件画出可行域,把z =4-x ·⎝ ⎛⎭⎪⎫12y化成z =2-2x -y,直线z 1=-2x -y 过点A (1,2)时,z 1最小值是-4,∴z =2-2x -y的最小值是2-4=116.7.已知函数y =A cos ⎝ ⎛⎭⎪⎫π2x +φ(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为()A. 3B. 2 C .1D .2解析:选A.过Q ,P 分别作x 轴的垂线于B ,C ,∵函数的周期T =2ππ2=4,∴MN =2,CN =1,∵∠PMQ =90°,∴PQ =2MN =4,即PN =2,即PC =PN 2-NC 2=4-1=3,∴A = 3.8.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100D .10200解析:选B.由题意可得a n =n 2cos(n π)+(n +1)2cos[(n +1)π]=(-1)n -1(2n +1),所以a 1+a 2+a 3+…+a 100=3-5+7-9+11-…+199-201=50×(-2)=-100.9.函数f (x )是定义域为R 的奇函数,且x ≤0时,f (x )=2x-12x +a ,则函数f (x )的零点个数是( )A .1B .2C .3D .4解析:选C.∵函数f (x )是定义域为R 的奇函数, ∴f (0)=0,又∵x ≤0时,f (x )=2x-12x +a ,∴f (0)=20+a =0,解得a =-1,故x ≤0时,f (x )=2x -12x -1,令f (x )=2x -12x -1=0,解得x =-1或x =0,故f (-1)=0,则f (1)=0,综上所述,函数f (x )的零点个数是3个.10.设A 1,A 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右顶点,若双曲线上存在点M 使得两直线斜率kMA 1·kMA 2<2,则双曲线C 的离心率的取值范围为( )A .(0,3)B .(1,3)C .(3,+∞)D .(0,3)解析:选B.由题意可得A 1(-a,0),A 2(a,0),设M (m ,n ),可得m 2a 2-n 2b 2=1,即n 2m 2-a 2=b 2a 2,由题意k MA 1·k MA 2<2,即为n -0m +a ·n -0m -a <2,即有b 2a 2<2,即b 2<2a 2,c 2-a 2<2a 2,即c 2<3a 2,c <3a ,即有e =ca<3,由e >1,可得1<e < 3.11.已知△ABC 外接圆O 的半径为1,且OA →·OB →=-12,∠C =π3,从圆O 内随机取一个点M ,若点M 取自△ABC 内的概率恰为334π,则△ABC 的形状为( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析:选B.∵OA →·OB →=-12,圆的半径为1,∴cos∠AOB =-12,又0<∠AOB <π,故∠AOB =2π3,又△AOB 为等腰三角形,故AB =3,从圆O 内随机取一个点,取自△ABC 内的概率为334π,即S △ABC S 圆=334π,∴S △ABC =334,设BC =a ,AC =b ,∵C =π3,∴12ab sin C =334,得ab =3①,由AB 2=a 2+b 2-2ab cos C =3,得a 2+b 2-ab =3,a 2+b 2=6②,联立①②解得a =b =3,∴△ABC 为等边三角形.12.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f ′(x )>f (x )成立,则( ) A .3f (ln 2)>2f (ln 3) B .3f (ln 2)=2f (ln 3) C .3f (ln 2)<2f (ln 3)D .3f (ln 2)与2f (ln 3)的大小不确定 解析:选C.令g (x )=f xe x ,则g ′(x )=f x x-f xxe2x=f x -f xex,因为对任意x ∈R 都有f ′(x )>f (x ),所以g ′(x )>0,即g (x )在R 上单调递增,又ln 2<ln 3,所以g (ln 2)<g (ln 3),即feln 2<feln 3,所以f2<f3,即3f (ln 2)<2f (ln 3),故选C.二、填空题(本题共4小题,每小题5分;共20分)13.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =________.解析:因为点P (2,2)满足圆(x -1)2+y 2=5的方程,所以P 在圆上,又过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,所以切点与圆心连线与直线ax -y +1=0平行,所以直线ax -y +1=0的斜率为a =2-02-1=2.答案:214.在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点.若AB =AD ,则△ADC 的周长的最大值为________.解析:∵AB =AD ,B =π3,∴△ABD 为正三角形,∵∠DAC =π3-C ,∠ADC =2π3,在△ADC 中,根据正弦定理可得ADsin C =43sin 2π3=DCsin ⎝ ⎛⎭⎪⎫π3-C , ∴AD =8sin C ,DC =8sin ⎝ ⎛⎭⎪⎫π3-C ,∴△ADC 的周长为AD +DC +AC =8sin C +8sin ⎝ ⎛⎭⎪⎫π3-C +43=8⎝ ⎛⎭⎪⎫12sin C +32cos C +43=8sin ⎝ ⎛⎭⎪⎫C +π3+43,∵∠ADC =2π3,∴0<C <π3,∴π3<C +π3<2π3,∴当C +π3=π2,即C =π6时,sin ⎝ ⎛⎭⎪⎫C +π3的最大值为1,则△ADC 的周长最大值为8+4 3.答案:8+4 315.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为________.解析:由椭圆C :x 24+y 23=1可得a 2=4,b 2=3,c =a 2-b 2=1,可得F 1(-1,0),F 2(1,0),由AF 2⊥F 1F 2,令x =1,可得y =±3·1-14=±32,可设A ⎝ ⎛⎭⎪⎫1,32,设P (m ,n ),则m 24+n 23=1,又-3≤n ≤3,则F 1P →·F 2A →=(m +1,n )·⎝ ⎛⎭⎪⎫0,32=32n ≤332,可得F 1P →·F 2A →的最大值为332.答案:33216.定义在R 上的函数,对任意实数都有f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,且f (1)=2,记a n =f (n )(n ∈N *),则a 2018=________.解析:∵f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,∴f (x +1)+2≤f (x +3)≤f (x )+3,∴f (x +1)≤f (x )+1,∵f (x +1)+1≥f (x +2)≥f (x )+2,∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,∴f (x +1)-f (x )=1,∴{a n }是以f (1)为首项,公差为1的等差数列. ∴a 2018=f (2018)=f (1)+(2018-1)×1=2019. 答案:2019。

2018年高考数学(理)二轮练习:大题规范练2 “17题~19题+二选一”46分练

2018年高考数学(理)二轮练习:大题规范练2 “17题~19题+二选一”46分练

大题规范练(二) “17题~19题+二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.如图4,已知点O 为△ABC 的外心,∠BAC ,∠ABC ,∠ACB 的对边分别为a ,b ,c ,且2OA →+3OB →+4OC →=0.图4(1)求cos∠BOC 的值;(2)若△ABC 的面积为15,求b 2+c 2-a 2的值.【导学号:07804231】[解] (1)设△ABC 外接圆的半径为R ,由2OA →+3OB →+4OC →=0得3OB →+4OC →=-2OA →, 两边平方得9R 2+16R 2+24R 2cos∠BOC =4R 2, 所以cos∠BOC =-21R 224R 2=-78.(2)由题意可知∠BOC =2∠BAC ,∠BAC ∈⎝⎛⎭⎪⎫0,π2,cos∠BOC =cos 2∠BAC =2cos 2∠BAC -1=-78,从而cos∠BAC =14, 所以sin∠BAC =1-cos 2∠BAC =154, △ABC 的面积S =12bc sin∠BAC =158bc =15,故bc =8,从而b 2+c 2-a 2=2bc cos∠BAC =2×8×14=4.18.某项科研活动共进行了5次试验,其数据如下表所示:特征量 第1次 第2次 第3次 第4次 第5次x 555 559 551 563 552 y601605597599598(1)从特征量y 600的概率; (2)求特征量y 关于x 的线性回归方程y ^=b ^x +a ^,并预测当特征量x 为570时特征量y 的值.(附:回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b ^x )[解] (1)记“至少有一个大于600”为事件A , 则P (A )=1-C 23C 25=710.(2)由题中表格可知,x =555+559+551+563+5525=556,y =601+605+597+599+5985=600.∴b ^=-1×1+3×5+-5×-3+7×-1+-4×-2-12+32+-52+72+-42=30100=0.3, a ^=y -b ^x =600-0.3×556=433.2,∴线性回归方程为y ^=0.3x +433.2.当x =570时,y ^=0.3×570+433.2=604.2, 故特征量x 为570时,特征量y 的估计值为604.2.19.在平面四边形ACBD (如图5(1))中,△ABC 与△ABD 均为直角三角形且有公共斜边AB ,设AB=2,∠BAD =30°,∠BAC =45°,将△ABC 沿AB 折起,构成如图5(2)所示的三棱锥C ′­ABD ,且使C ′D = 2.图5(1) 图5(2)(1)求证:平面C ′AB ⊥平面DAB ; (2)求二面角A ­C ′D ­B 的余弦值.[解] (1)证明:取AB 的中点O ,连接C ′O ,DO , 在Rt△AC ′B ,Rt△ADB 中,AB =2,C ′O =DO =1. 又∵C ′D =2,∴C ′O 2+DO 2=C ′D 2,即C ′O ⊥OD .又∵C ′O ⊥AB ,AB ∩OD =O ,AB ,OD ⊂平面ABD ,∴C ′O ⊥平面ABD .又∵C ′O ⊂平面ABC ′,∴平面C ′AB ⊥平面DAB .(2)以O 为原点,AB ,OC ′所在的直线分别为y 轴,z 轴,建立如图所示的空间直角坐标系.则A (0,-1,0),B (0,1,0),C ′(0,0,1),D ⎝⎛⎭⎪⎫32,12,0, ∴AC ′→=(0,1,1),BC ′→=(0,-1,1),C ′D →=⎝ ⎛⎭⎪⎫32,12,-1.设平面AC ′D 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1⊥AC ′→,n 1⊥C ′D →,即⎩⎪⎨⎪⎧n 1·AC ′→=0,n 1·C ′D →=0,⎩⎪⎨⎪⎧ y 1+z 1=0,32x 1+12y 1-z 1=0,令z 1=1,则y 1=-1,x 1=3,∴n 1=(3,-1,1).设平面BC ′D 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2⊥BC ′→,n 2⊥C ′D →,即⎩⎪⎨⎪⎧n 2·BC ′→=0,n 2·C ′D →=0,⎩⎪⎨⎪⎧-y 2+z 2=0,32x 2+12y 2-z 2=0,令z 2=1,则y 2=1, x 2=33, ∴n 2=⎝⎛⎭⎪⎫33,1,1, ∴cos〈n 1,n 2〉=3×33+-1×1+1×13+1+1×13+1+1=15×73=10535, 二面角A ­C ′D ­B 的余弦值为-10535. (请在第22~23题中选一题作答,如果多做,则按照所做第一题计分)22.选修4-4:标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎪⎨⎪⎧x =2+t cos αy =t sin α(t 为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+2ρ2sin 2θ=12,且直线l 与曲线C 交于P ,Q 两点.(1)求曲线C 的直角坐标方程及直线l 恒过的定点A 的坐标; (2)在(1)的条件下,若|AP ||AQ |=6,求直线l 的普通方程. [解] (1)∵x =ρcos θ,y =ρsin θ,∴C :x 2+2y 2=12. 直线l 恒过的定点为A (2,0).(2)把直线l 的方程代入曲线C 的直角坐标方程中得: (sin 2α+1)t 2+4(cos α)t -8=0.由t 的几何意义知|AP |=|t 1|,|AQ |=|t 2|.∵点A 在椭圆内,这个方程必有两个实根,∴t 1t 2=-8sin 2α+1,∵|AP ||AQ |=|t 1t 2|=6, 即81+sin 2α=6,∴sin 2α=13,∵α∈(0,π), ∴sin α=33,cos α=±63, ∴直线l 的斜率k =±22, 因此,直线l 的方程为y =22(x -2)或y =-22(x -2). 23.选修4­5:不等式选讲已知函数f (x )=|x -3|+|x +m |(x ∈R ). (1)当m =1时,求不等式f (x )≥6的解集;(2)若不等式f (x )≤5的解集不是空集,求参数m 的取值范围.【导学号:07804232】[解] (1)当m =1时,f (x )≥6等价于⎩⎪⎨⎪⎧x ≤-1-x +1-x -3≥6,或⎩⎪⎨⎪⎧-1<x <3x +1-x -3≥6,或⎩⎪⎨⎪⎧x ≥3x +1+x -3≥6,解得x ≤-2或x ≥4,所以不等式f (x )≥6的解集为{x |x ≤-2或x ≥4}. (2)法一:化简f (x )得,当-m ≤3时,f (x )=⎩⎪⎨⎪⎧-2x +3-m ,x ≤-m m +3,-m <x <32x +m -3,x ≥3,当-m >3时,f (x )=⎩⎪⎨⎪⎧-2x +3-m ,x ≤3-3-m ,3<x <-m ,2x +m -3,x ≥-m根据题意得:⎩⎪⎨⎪⎧-m ≤3m +3≤5,即-3≤m ≤2,或⎩⎪⎨⎪⎧-m >3-m -3≤5,即-8≤m <-3,∴参数m 的取值范围为{m |-8≤m ≤2}.法二:∵|x -3|+|x +m |≥|(x -3)-(x +m )|=|m +3|, ∴f (x )min =|3+m |, ∴|m +3|≤5, ∴-8≤m ≤2,∴参数m 的取值范围为{m |-8≤m ≤2}.。

普通高等学校2018届高三招生全国统一考试模拟(二)数学(理)试题 Word版含答案

普通高等学校2018届高三招生全国统一考试模拟(二)数学(理)试题 Word版含答案

2018年普通高等学校招生全国统一考试模拟试题理数(二)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,复数()12ai a R i +∈-为纯虚数,则a 的值为 A .2- B .12- C .2 D .122.已知集合{}{}()22log 3,450,R A x x B x x x A C B =<=-->⋂=则 A .[-1,8)B.(]05, C .[-1,5) D .(0,8)3.已知n S 是各项均为正数的等比数列{}n a 前n 项和,7153564,20a a a a S =+==,则A .31B .63C .16D .1274.设向量)()(,,3,1,//a b x c b c a b b ==-=-,若,则与的夹角为 A .30° B .60° C .120° D .150°5.大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形ABCD 截某圆锥得到椭圆Γ,且Γ与矩形ABCD 的四边相切.设椭圆Γ在平面直角坐标系中的方程为()222210x y a b a b +=>>,测得Γ的离心率为2,则椭圆Γ的方程为 A .221164x y += B .2214x y +=C .2216416x y += D .22154x y += 6.已知某服装厂生产某种品牌的衣服,销售量()q x (单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为()1260,020,190180,x x q x x ⎧<≤⎪+=⎨⎪-<≤⎩则当该服装厂所获效益最大时A .20B .60C .80D .407.已知,x y 满足不等式组240,20,130,x y x y z x y y +-≥⎧⎪--≤=+-⎨⎪-≤⎩则的最小值为A.2B.C. D.1 8.已知函数()2110sin 10sin ,,22f x x x x m π⎡⎤=---∈-⎢⎥⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦,则实数m 的取A .,03π⎡⎤-⎢⎥⎣⎦B .,06π⎡⎤-⎢⎥⎣⎦C .,36ππ⎡⎤-⎢⎥⎣⎦D .,63ππ⎡⎤-⎢⎥⎣⎦ 9.已知()2112n x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为42-,则n = A.10 B.8 C.12 D.1110.某几何体的三视图如图所示,则该几何体的表面积为A .30π+B .803π+ C. 923π+ D .763π+ 11.已知双曲线()2222:10,0x y a b a bΓ-=>>的左、右焦点分别为12,F F ,点P 是双曲线Γ右支上一点,且212PF F F ⊥,过点P 作1F P 的垂线交x 轴于点A ,且22PM MF = ,若PA的中点E 在1F M 的延长线上,则双曲线Γ的离心率是A .3B .2+C .1D .4+12.已知函数()()()222f x x x x mx n =+++,且对任意实数x ,均有()()33f x f x -+=--,若方程()f x a =有且只有4个实根,则实数a 的取值范围为A .()16,9-B .(]16,9-C .(]16,0-D .(]16,5--第Ⅱ卷本卷包括必考题和选考题两部分。

高考理科数学二轮复习练习:大题规范练1“17题~19题+二选一”46分练

高考理科数学二轮复习练习:大题规范练1“17题~19题+二选一”46分练

大题规范练(一)“17题~19题+二选一”46分练(时间:45 分钟分值:46 分)解答题(本大题共 4 小题,共46 分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知正项等差数列{ a n} 的前n项和为S n,且知足a1+a5=2a723,S7=63.(1)求数列{a n} 的通项公式a n;(2)若数列{b n}知足b1=a1 且b n+1-b n=a n+1,求数列1b n的前n项和T n.【导学号:07804229】[解] (1)法一:(等差数列的基本量)设正项等差数列{a n} 的首项为a1,公差为d,易知a n>0,2a1+a1+4d=1+2d7 a则2,7a1+21d=63a=31解得,d 2=∴a n=2n+1.22法二:(等差数列的性质)∵{ a n} 是等差数列且a1+a5=3,∴2a3=a7 272 a3,又a n>0,∴a3=7.∵S7=a1+a72=7a4=63,∴a4=9,∴d=a4-a3=2,∴a n=a3+( n-3)d=2n+1.+1-b n=a n+1 且a n=2n+1,(2)∵b n∴b n+1-b n=2n+3,当n≥2时,b n=( b n-b n -1-b n-2)+⋯+(b2-b1)+b1=(2 n+1)+(2n-1)+⋯+5+3=-1)+(b nn(n+2),当n=1时,b1=3知足上式,故b n=n( n+2).1 1 ∴=b nn n+=121 1-n n+2.1 ∴T n=+b11+⋯+b21+b n-1-11b n1=2 1-13+1 1-2 4+1-315+⋯+1-n-11n+1+1n-1n+212=1+12-1 1-n+1 n+23 =-42n+3n+n+.18.如图1,已知直角梯形ABCD 中,AB=AD=12CD=2,AB∥DC,AB⊥AD,E为C D 的中点,沿AE 把△DAE 折起到△PAE 的地点(D 折后变成P),使得PB=2,如图2.(1)求证:平面PAE⊥平面ABCE;(2)求直线P B 和平面PCE 所成角的正弦值.[解] (1)证明:如图(1),取AE 的中点O,连结PO,OB,BE.因为在平面图形中,如题图(图1),连结BD,BE,易知四边形ABED为正方形,图(1)因此在立体图形中,△PAE,△BAE为等腰直角三角形,因此PO⊥AE,OB⊥AE,PO=OB=2,因为PB=2,因此PO2+OB2=PB2,因此PO⊥OB,又AE∩OB=O,因此PO⊥平面ABCE,因为PO? 平面PAE,因此平面PAE⊥平面ABCE .(2)由(1)知,OB,OE,OP 两两垂直,以O为坐标原点,以OB,OE,OP 所在直线分别为x轴、y轴、z轴成立空间直角坐标系,如图(2),则O(0,0,0),P(0,0,2),B( 2,0,0),E(0,→→→=( 2,0,-2),EP=(0,-2,2),EC=( 2,2,0).2,0),C( 2,2 2,0),PB图(2)设平面PCE 的法向量为n=(x,y,z),→n·EP则→=0,=0,n·EC 即-2y+2z=0,2x+2y=0,令x=1,得y=-1,z=-1,故平面PCE 的一个法向量为n=(1,-1,-1).→因此cos〈PB,n〉=→PB·n 2 2==→2 3|PB| ·|n|6,36因此直线P B 和平面PCE 所成角的正弦值为.319.某学校为鼓舞家校互动,与某手机通信商合作,为教师办理流量套餐.为认识该校教师手机流量使用状况,经过抽样,获得100 位教师近 2 年每人手机月均匀使用流量L(单位:M) 的数据,其频次散布直方图以下:图3若将每位教师的手机月均匀使用流量分别视为其手机月使用流量,并将频次视为概率,回答以下问题.(1)从该校教师中随机抽取 3 人,求这3人中至多有 1 人手机月使用流量不超出300 M 的概率;(2)现该通信商推出三款流量套餐,详情以下:套餐名称月套餐费/元月套餐流量/MA 20 300B 30 500C 38 700这三款套餐都有以下附带条款:套餐费月初一次性收取,手机使用流量一旦高出套餐流量,系统就自动帮用户充值200 M 流量,资费20 元;假如又高出充值流量,系统就再次自动帮用户充值200 M 流量,资费20 元,以此类推,假如当月流量有节余,系统将自动清零,无法转入次月使用.学校欲订购此中一款流量套餐,为教师支付月套餐费,并肩负系统自动充值的流量资费的75%,其他部分由教师个人肩负,问学校正购哪一款套餐最经济?说明原因.[解] (1)记“从该校随机抽取 1 位教师,该教师手机月使用流量不超出300 M ”为事件 D.依题意,P(D )=(0.000 8+0.002 2) ×100=0.3.X~这3 人中手机月使用流量不超出300 M 的人数为X,则中随机抽取 3 人,设从该校教师B(3,0.3),中随机抽取 3 人,至多有 1 人手机月使用流量不超出300 M 的概率为P(X=校教师因此从该0 03+C31×0.3 ×(1-0.3)2=0.343+0.441=0.784.0)+P(X=1)=C3×0.3 ×(1-0.3)(2)依题意,从该校随机抽取 1 位教师,该教师手机月使用流量L∈(300,500] 的概率为(0.002 5(0.000 8+0.000 2) ×100=0.1.+0.003 5) ×100=0.6,L∈(500,700] 的概率为X1 元,则X1 的全部可能取值为当学校正购A 套餐时,设为学校为1位教师肩负的月花费20,35,50,且P(X1=20)=0.3,P(X1=35)=0.6,P( X1=50)=0.1,因此X1 的散布列为X1 20 35 50P 0.3 0.6 0.1因此E(X1)=20×0.3+35×0.6+50×0.1=32(元).费X2元,则X2的全部可能取值为30,45,肩负的月花为当学校正购B 套餐时,设学校为1位教师且P(X2=30)=0.3+0.6=0.9,P(X2=45)=0.1,因此X2 的散布列为X2 30 45P 0.9 0.1因此E(X2)=30×0.9+45×0.1=31.5(元).为费X3 元,则X3 的全部可能取值为38,当学校正购C 套餐时,设学校为1位教师肩负的月花且P(X3=38)=1,因此E(X3)=38×1=38(元).因为E(X2)<E(X1)<E(X3),.济因此学校正购B 套餐最经(请在第22~23题中选一题作答,假如多做,则依据所做第一题计分)22.选修4-4:坐标系与参数方程在极坐标方程为ρ系中,圆C的极坐标2=4ρ(cos θ+sin θ)-3.若以极点O为原点,极轴所在成立平面直角坐标系.为x轴直线【导学号:07804230】(1)求圆C的参数方程;(2)在直角坐标系中,点P(x,y)是圆C上的动点,试求x+2y 的最大值,并求出此时点P 的.直角坐标2=4ρ(cos θ+sin θ)-3,[解] (1)因为ρ因此x2+y2-4x-4y+3=0,即(x-2)2+(y-2)2=5为方程,圆C 的直角坐标(θ为参数).x=2+5cos θy=2+5sin θC的参数方程为因此圆2+y2-4x-4y+3=0,整理得5y2+4(1-t)y+t2 (2)法一:设x+2y=t,得x=t-2y,代入x-4t+3=0 (*) ,则对于y 的方程必有实数根.因此Δ=16(1-t)2-20(t2-4t+3) ≥0,化简得t2-12t+11≤0,解得1≤t≤ 1 1,即x+2y 的最大值为11.将t=11 代入方程(*) 得y2-8y+16=0,解得y=4,代入x+2y=11,得x=3,故x+2y 的最大值为11时,点P 的直角坐标为(3,4).法二:由(1)可设点P(2+5cos θ,2+5sin θ),则x+2y=6+5cos θ+2 5sin θ=6+55 2 55 cos θ+ 5 sin θ,设s in α=5 2 5,则c os α=,因此x+2y=6+5sin(θ+α),5 5当sin(θ+α)=1时,(x+2y)max=11,π此时,θ+α=+2kπ,k∈Z,即θ=2 π-α+2kπk(∈Z),2因此sin θ=cos α=2 55,cos θ=sin α=5,故点P 的直角坐标为(3,4).523.选修4-5:不等式选讲已知函数f(x)=|x-2|+2,g(x)=m|x|(m∈R).(1)解对于x 的不等式f( x)>5;(2)若不等式f(x) ≥g(x)对随意x∈R恒成立,求m 的取值范围.[解] (1)由f(x)>5,得|x-2|>3,∴x-2<-3 或x-2>3,解得x<-1 或x>5.故原不等式的解集为{ x|x<-1 或x>5} .(2)由f(x) ≥g(x),得|x-2|+2≥m|x|对随意x∈R恒成立,当x=0时,不等式|x-2|+2≥0恒成立,|x-2|+2当x≠0时,问题等价于m≤对随意非零实数恒成立,|x||x-2|+2 |x-2+2|∵=1,∴m≤1,即m 的取值范围是(-∞,1].≥|x| |x|。

2018年四川省宜宾市高考数学二诊试卷(理科)

2018年四川省宜宾市高考数学二诊试卷(理科)

2018年四川省宜宾市高考数学二诊试卷(理科)副标题一、选择题(本大题共12小题,共60.0分)1.若集合A={x∈N|x<6},B={x|x2-8x+15<0},则A∩B等于()A. {x|3<x<5}B. {4}C. {3,4}D. {3,4,5}2.已知i是虚数单位,复数(1+2i)2的共轭复数虚部为()A. 4iB. 3C. 4D. -43.如图的平面图形由16个全部是边长为1且有一个内角为60°的菱形组成,,()C. 8D. 74.某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小组积分的方差为()A. 0.5B. 0.75C. 1D. 1.255.某几何体的三视图如图所示,则此几何体的表面积是()A.B.C.D. 24+46.设a=b=c=log a,b,c的大小顺序是()A. b<a<cB. c<a<bC. b<c<aD. c<b<a7.执行如图所示的程序框图,则输出的S的值为()8.在各项均不为零的等差数列{a n}中,若a n+1-a n2+a n-1=0(n≥2),则S2n-1-4n=()A. -2B. 0C. 1D. 29.cosα+2sinα=()A. -1B. 1C.D. 1或10.某班级需要把6名同学安排到周一、周二、周三这三天值日,每天安排2名同学,已知甲不能安排到周一,乙和丙不能安排到同一天,则安排方案的种数为()A. 24B. 36C. 48D. 7211.已知双曲线x2-y2=4上存在两点M,N关于直线y=2x-m对称,且线段MN的中点在抛物线y2=16x上,则实数m的值为()A. 0或-16B. 0或16C. 16D. -1612.设x=1是函数f(x)=a n+1x3-a n x2-a n+2x+1(n∈N+)的极值点,数列{a n},a1=1,a2=2,b n=log2a2n,若[x]表示不超过x的最大整数,则…()A. 1008B. 1009C. 2017D. 2018二、填空题(本大题共4小题,共20.0分)13.设x,y z=y+x,则z的最大值为______.14.已知正三棱锥P-ABC的侧面都是直角三角形,PA=3,顶点P在底面ABC内的射影为点Q,则点Q到正三棱锥P-ABC的侧面的距离为______.15.若动点P在直线a:x-2y-2=0上,动点Q在直线b:x-2y-6=0上,记线段PQ的中点为M(x0,y0),且(x0-2)2+(y0+1)2≤5,则x02+y02的取值范围为______.16.已知函数f(x)g(x)=kx2+be x(k≠0)的图象与曲线y=f(x)有且仅有一个公共点,则k的取值范围为______.三、解答题(本大题共7小题,共82.0分)17.如图,在△ABC中,tan A=7,∠ABC的平分线BD交AC于点D,设∠CBD=θ,其中θ是直线2x-4y+5=0的倾斜角.(1)求C的大小;(2)若f(x)=sin C sin x-2cos C sin f(x)的最小值及取得最小值时的x的值.18.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这组数据中选取组数据求线性回归方程,再用剩下的2组数据进行检验.(1)若选取的3组数据恰好是连续ξ天的数据(ξ=0表示数据来自互不相邻的三天),求ξ的分布列及期望;(2)根据12月2日至4日数据,求出发芽数y关于温差x由所求得线性回归方程得到的估计数据与剩下的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?19.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABCAA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC(2)求直线BC1与平面A1AB所成角的正弦值.20.在直角坐标系xoy中,已知点F1(-1,0),F2(1,0),动点P.(1)求动点P的轨迹C的方程;(2)若分别过点(-1,0)、(1,0),作两条平行直线m,n,设m,n与轨迹C 的上半部分分别交于A、B两点,求四边形面积的最大值.21.已知f(x)=ln x+mx(m∈R).(1)求f(x)的单调区间;(2)若m=e(其中e为自然对数的底数),且f(x)≤ax-b22.在平面直角坐标系xOy中,椭圆Cφ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+ρsinθ=1(1)求椭圆C的极坐标方程和直线l的参数方程;(2)若点P的极坐标为(1l与椭圆C交于A,B两点,求|PA|+|PB|的值.23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10-|x-3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(-2n)≥16.答案和解析1.【答案】B【解析】解:∵集合A={x∈N|x<6}={0,1,2,3,4,5},B={x|x2-8x+15<0}={|3<x<5}∴A∩B={4}.故选:B.根据所给的两个集合,整理两个集合,写出两个集合的最简形式,再求出两个集合的交集.本题考查集合的表示方法,两个集合的交集的定义和求法.化简A、B两个集合,是解题的关键.2.【答案】D【解析】解:∵(1+2i)2=-3+4i,∴复数(1+2i)2的共轭复数为-3-4i,其虚部为-4.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】A【解析】解:如右图(•=3×2×1×故选:A.运用向量的平行四边形法则和向量数量积的定义和性质,主要是向量的平方即为模的平方,计算可得所求值.本题考查向量的平行四边形法则和向量数量积的定义和性质,考查运算能力,属于基础题.4.【答案】C【解析】解:根据题意,四个参赛小队的得分为11.5,13.5,13.5,11.5;计算平均数(11.5+13.5+13.5+11.5)=12.5,方差为s2[(11.5-12.5)2+(13.5-12.5)2+(13.5-12.5)2+(11.5-12.5)2]=1.故选:C.根据题意知四个参赛小队的得分,计算平均数与方差的值.本题考查了平均数与方差的计算问题,是基础题.5.【答案】B【解析】解:由三视图可知此几何体为一个三棱锥,其直观图如图:侧棱PA⊥平面ABC,△ABC为等腰直角三角形,且∠B=90°,PA=4,AB=BC=3,∵PA⊥平面ABC,∴BC⊥PA,又BC⊥AC,PA∩AC=A,∴∴此几何体的表面积为故选:B.由三视图画出几何体的直观图,确定几何体的线面关系和数量关系,由椎体的体积公式求出此几何体的体积;由线面垂直的判定定理和定义证明侧面均为直角三角形,由三角形的面积公式求出三棱锥的表面积.本题考查三视图求几何体的体积以及表面积,以及线面垂直的定义和判定定理,由三视图正确复原几何体是解题的关键,考查空间想象能力.6.【答案】D【解析】解:a=b=1>c=log则c<b<a.故选:D.利用指数函数与对数函数的单调性即可得出.本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.7.【答案】A【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.【解答】解:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量,=1+++…+故选:A.8.【答案】A【解析】解:设公差为d,则a n+1=a n+d,a n-1=a n-d,由a n+1-a n2+a n-1=0(n≥2)可得2a n-a n2=0,解得a n=2(零解舍去),故S2n-1-4n=2×(2n-1)-4n=-2,故选:A.由等差数列的性质可得a n+1+a n-1=2a n,结合已知,可求出a n,又因为s2n-1=(2n-1)a n,故本题可解.本题考查了等差数列的前n项和公式与等差数列性质的综合应用,是高考重点考查的内容.9.【答案】B【解析】【分析】由题意利用三角恒等变换求得,再利用三角恒等变换化简要求的式子,求得cosα+2sinα的值.本题主要考查三角恒等变换,二倍角公式,属于中档题.【解答】∴,则,故选B.10.【答案】C【解析】解:根据题意,分2种情况讨论:①、甲、乙、丙三人分在不同的三天值班,甲可以分在周二、周三,有2种安排方法,将乙、丙全排列,分在其他2天,有A22=2种安排方法,剩余的3人,全排列,安排在周一、周二、周三这三天,有A33=6种安排方法,则此时有2×2×6=24种安排方法;②,甲和乙、丙中的1人,安排在同一天值班,在乙、丙中选出1人,和甲一起分在周二、周三值班,有2×2=4种情况,剩余4人,平均分成2组42=3种分组方法,再将2组全排列,对应剩下的2天值班,有A22=2种安排方法,则此时有4×3×2=24种安排方法;则有24+24=48种不同的安排方案,故选:C.根据题意,分2种情况讨论:①、甲、乙、丙三人分在不同的三天值班,②,甲和乙、丙中的1人,安排在同一天值班,分别求出每种情况下的安排方法数目,由加法原理,计算可得答案.本题考查排列组合的综合应用,注意有限制条件的排列组合问题的处理方法,有限制条件需要首先安排的原则11.【答案】B【解析】解:∵M,N关于直线y=2x-m对称,∴MN垂直直线y=2x-m,MN的斜率设MN中点P(x0,2x0-m)在y=2x-m上,且在MN上,设直线MN:,∵P在MN上,∴2x00+t,∴0-m,由,与双曲线x2-y2=4联立,消去y可得:3x2+4tx-4t2-16=0,△=16t2-4×3(-4t2-16)=64t2+192>0恒成立,∴M x+N x,∴x0,∴,解得,∴MN中点P,)∵MN的中点在抛物线y2=16x上,2,∴m=0或m=16,故选:B.根据双曲线x2-y2=4上存在两点M,N关于直线y=2x-m对称,运用中点坐标公式和两直线垂直的条件:斜率之积为-1,联立直线方程和双曲线的方程,运用韦达定理,求出MN中点P,),利用MN的中点在抛物线y2=16x 上,即可求得实数m的值.本题考查直线与双曲线的位置关系,考查对称性,考查抛物线的标准方程,解题的关键是确定MN中点P的坐标.12.【答案】A【解析】解:函数f(x)=a n+1x3-a n x2-a n+2x+1(n∈N+)的导数为f′(x)=3a n+1x2-2a n x-a n+2,由x=1是f(x)=a n+1x3-a n x2-a n+2x的极值点,可得f′(1)=0,即3a n+1-2a n-a n+2=0,即有2(a n+1-a n)=a n+2-a n+1,设c n=a n+1-a n,可得2c n=c n+1,可得数列{c n}为首项为1,公比为2的等比数列,即有c n=2n-1,则a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+1+2+…+=2n-2n-1,则b n=log2a2n=2n-1,=2018×=2018×(=1009×(则.故选:A.求得f(x)的导数,可得f′(1)=0,即3a n+1-2a n-a n+2=0,结合构造等比数列,以及等比数列的定义和通项公式,对数的运算性质,再由数列的求和方法:裂项相消求和,即可得到所求值.本题考查导数的运用:求极值点,考查数列恒等式的运用,以及等比数列的通项公式和求和公式,数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.13.【解析】解:作出不等式组对应的平面区域如图:由z=y+x得y=-x+z,平移直线y=-x+z,由图象可知当直线y=-x+z经过点B时,直线y=-x+z的截距最大,此时z最大,即B此时故答案为作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.14.【答案】1【解析】解:∵正三棱锥P-ABC的侧面都是直角三角形,PA=3,顶点P在底面ABC内的射影为点Q,∴以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,Q(1,1,2),平面PBC(1,0,0),∴点Q到正三棱锥P-ABC的侧面的距离:.故答案为:1.以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出点Q到正三棱锥P-ABC的侧面的距离.本题考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15.【答案】16]【解析】解:∵动点P在直线a:x-2y-2=0上,动点Q在直线b:x-2y-6=0上,直线a:x-2y-2=0与直线b:x-2y-6=0互相平行动点P在直线a上,动点Q在直线b上,∴PQ的中点M在与a、b平行,且到a、b距离相等的直线上,设该直线为l,方程为x-2y+m=0,m=-4,可得直线l方程为x-2y-4=0,∵线段PQ的中点为M(x0,y0),且(x0-2)2+(y0+1)2≤5,∴点M在圆C:(x-2)2+(y+1)2=5内部或在圆C上,∴设直线l交圆C于A、B,可得点M在线段AB上运动.2,x2+y2的代表的几何意义为线段上的点到原点的距离的平方,故原点到直线AB的距离的平方为最小值,∴x02OA为最大值.联(4,0),B(0,-2),当M与A重合时,x02+y02的最大值为42+02=16.故x02+y02的取值范围是16].故答案为:16].根据题意判断出点M的轨迹,利用点到直线的距离求得最小值,进而联立直线和圆的方程求得B的坐标,进而求得最大值.本题主要考查了直线与圆的方程的综合运用,考查直角方程、圆、点到直线距离公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16.【答案】(0,1)∪(1,+∞)【解析】解:∵g(x)=kx2+be x(k≠0)为偶函数,∴b=0,∴g(x)=kx2,令f(x)=g(x)得:令h(x)则h′(x)0,所以h(x)在(0,1)和(1,+∞)上单调递减,由洛必达法则(x),又因为h(x)>0(x),∵k=h(x)只有一解,∴k的范围是:(0,1)∪(1,+∞).故答案为:(0,1)∪(1,+∞).令f(x)=g(x)可得单调性和极值,从而求出k的范围.本题考查了函数单调性判断与值域计算,属于中档题.17.【答案】解:(1)由题可知:∠CBD=θ,其中θ是直线2x-4y+5=0的倾斜角.可得∵∠ABC的平分线BD交AC于点D,可得tan∠ABC由tan A=7,那么tan C=-tan(B+A),∵0<C<π.∴C(2)由(1)可知C可得f(x)=sin C sin x-2cos C sin xx x(x,∵x∴x∴所以当x+=即当x=0或x=f(x)取得最小值为sin.【解析】(1)设∠CBD=θ,其中θ是直线2x-4y+5=0的倾斜角.可得∠ABC的平分线BD交AC于点D,可得tan∠tanA=7,那么tanC=-tan (B+A)可得C的大小;(2)根据f(x)=sinCsinx-2cosCsin1)可知C,带入,化简,x层函数范围,即可得f(x)的最小值及取得最小值时的x的值.本题考查三角函数的化简,二倍角公式和三角函数有界性,考查转化思想以及计算能力.18.【答案】解:(1)由题意知,ξ=0,2,3;则P(ξ=0)P(ξ=3)∴P(ξ=2)=1-P(ξ=0)-P(ξ=3)=,数学期望为E+2×+3×;(2×(11+13+12)=12,(25+30+26)=27,x i y i=-1×(-2)+1×3+0×(-1)=5,(-1)2+12+02=2,-=27-×12=-3,∴y关于x的线性回归方程为-3;当x=10时,y10-3=22,且|22-23|<2,当x=8时,y×8-3=17,且|17-16|<2;∴所求得线性回归方程是可靠的.【解析】本题考查了线性回归方程与离散型随机变量的分布列问题,是中档题.(1)由题意知ξ的可能取值,计算对应的概率值,写出ξ的分布列,求出期望值;(2)由题意计归系数,写出线性回归方程,利用方程验证所求得线性回归方程是否可靠.19.【答案】(1)证明:因为A1A=A1C,且O为AC的中点,所以A1O⊥AC.(1分)又由题意:平面AA1C1C⊥平面ABC,交线为AC,且A1O⊂平面AA1C1C,所以A1O⊥平面ABC.…………(6分)(条件不全扣2分)(2)解:如图,以O为原点,OB,OC,OA1所在直线分别为轴建立空间直角坐标系,AA1=A1C=AC=2,AB=BC,C1(0,2A(0,-1,0),A1(0,0,B(1,0,0)…………(7分)8分)设平面A1AB的一个法向量为=(x,y,z),令y=1,得x=-1,z(-1,1,…………(10分)所以…………(11分)因为直线与平面所成角和向量n与所成锐角互余,所以12分)【解析】(1)通过证明A1O⊥AC,结合侧面AA1C1C⊥底面ABC,即可推出结果.(2)此小题由于直线A1C与平面A1AB所成角不易作出,再由第(1)问的结论可以联想到借助于空间直角坐标系,设定参数,转的角去解决本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.20.【答案】解:(1)设点P(x,y),由点F1(-1,0),F2(1,0).动点P满足:..由椭圆定义可知点P的轨迹是以点(1,0),(-1,0)为焦点,长轴长为4的椭圆,.(2)设直线m:x=ty-1,它与轨迹C的另一个交点为D.|AF1|+|BF2|)•dd|dx=ty-1与C联立,消去x,得(3t2+4)y2-6ty-9=0,△>0,|AD又到的距离为d,令m,=,∵y=3m在[1,+∞)上单调递增∴当m=1即t=03,所以四边形面积的最大值为 3.【解析】(1)设点P(x,y),由点F1(-1,0),F2(1,0).动点P满.根据题意的定义即可得出.(2)设直线m:x=ty-1,它与轨迹C的另一个交点为D.由椭圆的对称性知:|AF1|+|BF2|)x=ty-1与C联立,消去x,得(3t2+4)y2-6ty-9=0,△>0,为d=函数的单调性即可得出.本本题考查了椭圆与圆的标准方程及其性质、点到直线的距离公式、一元二次方程的根与系数的关系、弦长公式、函数的单调性,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)由f(x)=ln x+mx,得f′(x)m…………(1分)(ⅰ)当m≥0时,f′(x)>0恒成立,f(x)在(0,+∞)上单调递增;…………(2分)(ⅱ)当m<0时,解f′(x)=0,得x当x∈(0,f′(x)<0,f(x)单调递增,当x∈(,+∞)时,f′(x)>0,f(x)单调递减.…………(4分)(2)当m=e时,f(x)=ln x+ex,令g(x)=ln x+9e-a)x+b,则g′(x)(e-a),…………(5分)由(1)可知,当a≤e时,f(x)在(0,+∞)上单调递增,不合题意;当a>e时,f(x)在(0+∞)上单调递减,当x f(x)取得最大值.…………(6分)所以f(≤0恒成立,即+(e-a)×b≤0,整理得ln(a-e)-b+1≥0,即b≤ln(a-e)+1,令h(a)=h′(a)8分)令H(a)=e-(a-e)ln(a-e),H′(a)=-ln(a-e)-1,解H′(a)=0,得a=e当a∈(e,e H′(a)>0,H(a)单调递增;当a∈(e+∞)时,H′(a)<0,H(a)单调递减;当a=e时H(a)取得最大值为H(e=e10分)因为当a→e时,H(a)>0,(根据洛必达法则可证),然而H(2e)=0,∴当a∈(e,2e)时,H(a)>0恒成立,当a∈(2e,+∞)时,H(a)<0恒成立,所以h(a)在(e,2e)上单调递增,在(2e,+∞)上单调递减,即函数h(a)的最大值为h(2e)…………(12分)【解析】(1)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;(2)求出函数的导h(a)单调性求出其最大值即可.本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.【答案】解:(1)将椭圆Cφ为参数),消去参数可得椭圆C,得:2ρ2cos2θ+3ρ2sin2θ=6.化简得椭圆C的极坐标方程为2ρ2+ρ2sin2θ-6=0.ρcosθ+ρsinθ=1可得直线l的方程为x+y-1=0.故直线l t为参数)(2)设A、B对应的参数分别为t1,t2,将直线l(t为参数),又P的极坐标为(1,),在直线l上,所以:|PA|+|PB|=|t1-t2|=【解析】(1)直接把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用方程组,整理成一元二次方程根和系数的关系求出结果.本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用.23.【答案】解:(1)解得或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mnm+2n≥8,时取等号.∴f(m)+f(-2n)=|2m+1|+|-4n+1|≥|(2m+1)-(-4n+1)|=|2m+4n|=2(m+2n)≥16,∴f(m)+f(-2n)≥16.【解析】(1)通过讨论x的范围,得到关于x的不等式组,解出即可;(2)求出m+2n≥8,求出f(m)+f(-2n)的最小值即可.本题考查了解绝对值不等式以及绝对值不等式的性质,考查分类讨论思想,转化思想,是一道中档题.第21页,共21页。

2018届苏教版(文科数学) 大题规范练4 “17题~19题+二选一”46分练 (1) 单元测试

2018届苏教版(文科数学)       大题规范练4  “17题~19题+二选一”46分练 (1)  单元测试

大题规范练(四) “17题~19题+二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知数列{a n }中,a 1=511,4a n =a n -1-3(n ≥2).(1)求证:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和S n .【导学号:07804235】[解] (1)证明:由已知得,a n =14a n -1-34(n ≥2), ∴a n +1=14(a n -1+1),又a 1+1=512,∴数列{a n +1}是以512为首项,14为公比的等比数列. ∴a n +1=512×⎝ ⎛⎭⎪⎫14n -1=211-2n,a n =211-2n-1.(2)b n =|log 2(a n +1)|=|11-2n |,设数列{11-2n }的前n 项和为T n ,则T n =10n -n 2, 当n ≤5时,S n =T n =10n -n 2; 当n ≥6时,S n =2S 5-T n =n 2-10n +50.所以S n =⎩⎨⎧10n -n 2,n ≤5n 2-10n +50,n ≥6.18.如图7所示,四棱锥P -ABCD 的底面ABCD 为矩形,AB =22,BC =2,点P 在底面上的射影在AC 上,E 是AB 的中点.图7(1)证明:DE ⊥平面P AC ;(2)若P A =PC ,且P A 与平面PBD 所成的角的正弦值为63,求二面角D -P A -B 的余弦值.[解] (1)证明:在矩形ABCD 中,AB ∶BC =2∶1,且E 是AB 的中点, ∴tan ∠ADE =tan ∠CAB =12,∴∠ADE =∠CAB . ∵∠CAB +∠DAC =90°,∴∠ADE +∠DAC =90°,即AC ⊥DE .由点P 在底面ABCD 上的射影在AC 上,可知平面P AC ⊥平面ABCD ,且交线为AC ,∴DE ⊥平面P AC . (2)记AC 与BD 的交点为O ,∵P A =PC ,且O 是AC 的中点,∴PO ⊥AC . ∵平面P AC ⊥平面ABCD ,∴PO ⊥平面ABCD .取BC 的中点F ,连接OE ,OF ,∵底面ABCD 为矩形, ∴OE ⊥OF .以O 为坐标原点,分别以OE ,OF ,OP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (1,-2,0),B (1,2,0),D (-1,-2,0). 设P (0,0,a ), 则AP→=(-1,2,a ). 设平面PBD 的法向量为c =(x 1,y 1,z 1), 又DB→=(2,22,0),OP →=(0,0,a ), 则有⎩⎪⎨⎪⎧c ·DB →=0,c ·OP →=0⇒⎩⎨⎧2x 1+22y 1=0,az 1=0, 令x 1=2,得y 1=-1,∴平面PBD 的一个法向量为c =(2,-1,0).由|c ·AP →||c ||AP→|=63,得a =1.设平面P AD 的法向量为m =(x 2,y 2,z 2),又AD →=(-2,0,0),AP →=(-1,2,1),则有⎩⎪⎨⎪⎧m ·AD →=0,m ·AP →=0⇒⎩⎨⎧-2x 2=0,-x 2+2y 2+z 2=0,令y 2=1,得z 2=-2,∴m =(0,1,-2). 设平面P AB 的法向量为n =(x 3,y 3,z 3), 又AB→=(0,22,0),AP →=(-1,2,1),则有⎩⎪⎨⎪⎧n ·AB →=0,n ·AP →=0⇒⎩⎨⎧22y 3=0,-x 3+2y 3+z 3=0,令x 3=1,得z 3=1,∴n =(1,0,1). ∴cos 〈m ,n 〉=m·n|m ||n |=-23×2=-33,∴二面角D -P A -B 的余弦值为-33.19.近年 我国电子商务行业迎 发展的新机遇.2016年“618”期间,某购物平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(1)请完成关于商品和服务评价的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量X .①求对商品和服务全为好评的次数X 的分布列; ②求X 的数学期望和方差. 附:临界值表K 2的观测值k =(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d ).关于商品和服务评价的2×2列联表:[解] (1)k =200150×50×120×80≈11.111>10.828,故能在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关.(2)①每次购物时,对商品和服务全为好评的概率为25,且X 取值可以是0,1,2,3.其中P (X =0)=⎝ ⎛⎭⎪⎫353=27125;P (X =1)=C 13⎝ ⎛⎭⎪⎫25⎝ ⎛⎭⎪⎫352=54125;P (X =2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫35=36125;P (X =3)=C 33⎝ ⎛⎭⎪⎫253⎝ ⎛⎭⎪⎫350=8125. 所以X 的分布列为②由于X ~B ⎝ ⎛⎭⎪⎫3,25,则E (X )=3×25=65,D (X )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.(请在第22~23题中选一题作答,如果多做,则按照所做第一题计分) 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos ty =3+2sin t (t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+π4=- 2.(1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.【导学号:07804236】[解] (1)由⎩⎨⎧x =-5+2cos ty =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos ⎝ ⎛⎭⎪⎫θ+π4=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝ ⎛⎭⎪⎫2,π2, 设点P 的坐标为(-5+2cos t,3+2sin t ),则点P 到直线l 的距离为 d =|-5+2cos t -3-2sin t +2|2=⎪⎪⎪⎪⎪⎪-6+2cos ⎝ ⎛⎭⎪⎫t +π42.所以d min =42=22,又|AB |=2 2. 所以△P AB 面积的最小值是S =12×22×22=4. 23.选修4-5:不等式选讲已知函数f (x )=|x -2|.(1)解不等式:f (x )+f (x +1)≤2;(2)若a <0,求证:f (ax )-af (x )≥f (2a ).[解] (1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|. 因此只要解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1; 当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2; 当x >2时,原不等式等价于2x -3≤2,即2<x ≤52.综上,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤52. (2)证明:由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ), 所以f (ax )-af (x )≥f (2a )成立.。

[配套K12]2018版高考数学二轮复习 大题规范练2“17题~19题”+“二选一”46分练 文

[配套K12]2018版高考数学二轮复习 大题规范练2“17题~19题”+“二选一”46分练 文

大题规范练(二) “17题~19题”+“二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知A ,B ,C ,D 为同一平面上的四个点,且满足AB =2,BC =CD =DA =1,设∠BAD =θ,△ABD 的面积为S ,△BCD 的面积为T . (1)当θ=60°时,求T 的值; (2)当S =T 时,求cos θ的值.【导学号:04024217】解:(1)在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD cos θ=22+12-2×2×1×12=3.在△BCD 中,由余弦定理得 cos ∠BCD =BC 2+CD 2-BD 22BC ·CD =12+12-32×1×1=-12.因为∠BCD ∈(0°,180°),所以∠BCD =120°, 所以T =12BC ·CD sin ∠BCD =12×1×1×32=34.(2)因为BD 2=AB 2+AD 2-2AB ·AD cos θ=5-4cos θ,所以cos ∠BCD =BC 2+CD 2-BD 22BC ·CD =4cos θ-32.易得S =12AD ·AB sin ∠BAD =sin θ,T =12BC ·CD sin ∠BCD =12sin ∠BCD .因为S =T ,所以sin θ=12sin ∠BCD .所以4sin 2θ=sin 2∠BCD =1-cos 2∠BCD =1-⎝ ⎛⎭⎪⎫4cos θ-322,所以cos θ=78.18.某商场举行购物抽奖活动,抽奖箱中放有编号分别为1,2,3,4,5的五个小球,小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽取小球的编号为3,则获得奖金100元;若抽取小球的编号为偶数,则获得奖金50元;若抽取的小球是其余编号,则不中奖.现某顾客有放回地抽奖两次. (1)求该顾客两次抽奖后都没有中奖的概率;(2)求该顾客两次抽奖后获得奖金之和为100元的概率.【导学号:04024218】解:(1)该顾客有放回地抽奖两次,其结果的所有情况如下表:奖的概率为425.(2)两次抽奖获得奖金之和为100元的情况有:①第一次获奖100元,第二次没有中奖,其结果有(3,1),(3,5),故其概率P 1=225; ②两次均获奖50元,其结果有(2,2),(2,4),(4,2),(4,4),故其概率P 2=425;③第一次没有中奖,第二次获奖100元,其结果有(1,3),(5,3),故其概率P 3=225. 所以所求概率P =P 1+P 2+P 3=825.19.如图1所示,在四棱锥P ­ABCD 中,底面ABCD 是正方形,PD ⊥平面ABCD ,点E 是线段BD 的中点,点F 是线段PD 上的动点.图1(1)求证:CE ⊥BF ;(2)若AB =2,PD =3,当三棱锥P ­BCF 的体积等于43时,试判断点F 在线段PD 上的位置,并说明理由.【导学号:04024219】解:(1)证明:因为PD ⊥平面ABCD ,且CE ⊂平面ABCD ,所以PD ⊥CE . 又因为底面ABCD 是正方形,且点E 是线段BD 的中点,所以CE ⊥BD .因为BD ∩PD =D ,所以CE ⊥平面PBD , 而BF ⊂平面PBD ,所以CE ⊥BF .(2)点F 为线段PD 上靠近D 点的三等分点. 理由如下:由(1)可知,CE ⊥平面PBF .又因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD ⊥BD . 设PF =x .由AB =2得BD =22,CE =2,所以V 三棱锥P ­BCF =V 三棱锥C ­BPF =13×12×PF ×BD ×CE =16×22×2x =2x3.由已知得2x 3=43,所以x =2.因为PD =3,所以点F 为线段PD 上靠近D 点的三等分点.(请在第22、23题中选一题作答,如果多做,则按所做第一题计分)22.【选修4-4:坐标系与参数方程】极坐标系与直角坐标系xOy 有相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4,曲线C 2的极坐标方程为ρsin θ=a (a >0),射线θ=φ,θ=φ+π4,θ=φ-π4,θ=π2+φ分别与曲线C 1交于点A ,B ,C ,D (均异于极点O ).(1)若曲线C 1关于曲线C 2对称,求a 的值,并求曲线C 1和C 2的直角坐标方程; (2)求|OA |·|OC |+|OB |·|OD |的值.【导学号:04024220】解:(1)由ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4得ρ2=22ρsin ⎝ ⎛⎭⎪⎫θ+π4,由互化公式得x 2+y 2=2x +2y ,即曲线C 1的直角坐标方程为(x -1)2+(y -1)2=2. 由互化公式得曲线C 2的直角坐标方程为y =a . 因为曲线C 1关于曲线C 2对称, 所以a =1,所以曲线C 2的直角坐标方程为y =1. (2)易知|OA |=22sin ⎝ ⎛⎭⎪⎫φ+π4, |OB |=22sin ⎝ ⎛⎭⎪⎫φ+π2=22cos φ,|OC |=22sin φ,|OD |=22sin ⎝ ⎛⎭⎪⎫φ+3π4=22cos ⎝⎛⎭⎪⎫φ+π4,于是可得|OA |·|OC |+|OB |·|OD |=4 2.23.【选修4-5:不等式选讲】设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.【导学号:04024221】解:(1)当a =1时,f (x )≥3x +2可化为|x -1|≥2, 由此可得x ≥3或x ≤-1,故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得,|x -a |+3x ≤0,此不等式可化为⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.因为a >0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-a2, 由题意可得-a2=-1,所以a =2.。

2018年高考数学二模试卷(理科)带答案精讲

2018年高考数学二模试卷(理科)带答案精讲

2018年高考数学二模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若集合,则m的取范围值为()A.(2,+∞)B.(﹣∞,﹣1)C.﹣1或2 D.2或2.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.103.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.24.(5分)若满足条件的△ABC有两个,那么a的取值范围是()A.(1,)B.() C.D.(1,2)5.(5分)复数2+i与复数在复平面上的对应点分别是A、B,则∠AOB等于()A.B.C.D.6.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.17.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带数字“6”或“8”的一律作为“金兔卡”,享受一定优惠政策,则这组号码中“金兔卡”的个数为()A.2000 B.4096 C.5904 D.83208.(5分)有三个命题①函数f(x)=lnx+x﹣2的图象与x轴有2个交点;②函数的反函数是y=(x﹣1)2(x≥﹣1);③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③9.(5分)若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原点,则△OAB的重心、内心、外心、垂心的轨迹不可能是()A.点B.线段C.圆弧D.抛物线的一部分10.(5分)已知点G是△ABC的重心,点P是△GBC内一点,若的取值范围是()A. B. C. D.(1,2)二、填空题(共5小题,每小题5分,满分25分)11.(5分)二项式(﹣2x2)9展开式中,除常数项外,各项系数的和为.12.(5分)边长是的正三角形ABC内接于体积是的球O,则球面上的点到平面ABC的最大距离为.13.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.14.(5分)已知过椭圆的右焦点F斜率是1的直线交椭圆于A、B两点,若,则椭圆的离心率是.15.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为;②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为.三、解答题(共6小题,满分75分)16.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.17.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)若要从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若男生学生考前心理状态好的概率为0.6,女学生考前心理状态好的概率为0.5,ξ表示抽取的5名学生中考前心理状态好的人数,求P(ξ=1)及Eξ.18.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.19.(12分)已知{a n}是正数组成的数列,其前n项和2S n=a n2+a n(n∈N*),数列{b n}满足,.(I)求数列{a n},{b n}的通项公式;(II)若c n=a n b n(n∈N*),数列{c n}的前n项和.20.(13分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.21.(14分)已知函数f(x)=ax+lnx,a∈R.(I)当a=﹣1时,求f(x)的最大值;(II)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平等;(III)当时,设正项数列{a n}满足:a n=f'(a n)(n∈N*),若数列{a2n}是递+1减数列,求a1的取值范围.参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)若集合,则m的取范围值为()A.(2,+∞)B.(﹣∞,﹣1)C.﹣1或2 D.2或【分析】根据集合,解得A={2},在根据B=(1,m),A⊆B,即2必须要在(1,m)中,得到m≥2即可求解【解答】解:∵解得:x=2,x=﹣1(舍)∴A={2}∵B=(1,m),A⊆B∴m>2故选A【点评】本题以集合为依托,考查了解物理方程以及集合关系中的参数取值问题,属于基础题.2.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.10【分析】由a4=9,a6=11利用等差数列的性质可得a1+a9=a4+a6=20,代入等差数列的前n项和公式可求.【解答】解:∵a4=9,a6=11由等差数列的性质可得a1+a9=a4+a6=20故选B【点评】本题主要考查了等差数列的性质若m+n=p+q,则a m+a n=a p+a q和数列的求和.解题的关键是利用了等差数列的性质:利用性质可以简化运算,减少计算量.3.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.2【分析】由已知中在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,我们出该组的频率,进而根据样本容量为100,求出这一组的频数.【解答】解:∵样本的频率分布直方图中,共有5个长方形,又∵中间一个小长方形的面积等于其它4个小长方形的面积和的,则该长方形对应的频率为0.2又∵样本容量为100,∴该组的频数为100×0.2=20故选C【点评】本题考查的知识点是频率分布直方图,其中根据各组中频率之比等于面积之比,求出该组数据的频率是解答本题的关键.4.(5分)若满足条件的△ABC有两个,那么a的取值范围是()A.(1,)B.() C.D.(1,2)【分析】由已知条件C的度数,AB及BC的值,根据正弦定理用a表示出sinA,由C的度数及正弦函数的图象可知满足题意△ABC有两个A的范围,然后根据A 的范围,利用特殊角的三角函数值即可求出sinA的范围,进而求出a的取值范围.【解答】解:由正弦定理得:=,即=,变形得:sinA=,由题意得:当A∈(60°,120°)时,满足条件的△ABC有两个,所以<<1,解得:<a<2,则a的取值范围是(,2).故选C【点评】此题考查了正弦定理及特殊角的三角函数值.要求学生掌握正弦函数的图象与性质,牢记特殊角的三角函数值以及灵活运用三角形的内角和定理这个隐含条件.5.(5分)复数2+i与复数在复平面上的对应点分别是A、B,则∠AOB等于()A.B.C.D.【分析】利用复数的几何意义:复数与复平面内的点一一对应,写出A,B的坐标;利用正切坐标公式求出角∠XOA,∠XOB,写最后利用和角公式求出∠AOB.【解答】解:∵点A、B对应的复数分别是2+i与复数,则=∴A(2,1),B(,﹣),∴tan∠XOA=,tan∠XOB=,∴tan∠AOB=tan(∠XOA+∠XOB)==1,则∠AOB等于故选B.【点评】本题考查复数的几何意义,复数与复平面内的点一一对应.解答的关键是利用正切的和角公式.6.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.1【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的线段的长度问题,注意最后要平方.【解答】解:先根据约束条件画出可行域,z=x2+y2,表示可行域内点到原点距离OP的平方,点P到直线3x+4y﹣4=0的距离是点P到区域内的最小值,d=,∴z=x2+y2的最小值为故选B.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.7.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带数字“6”或“8”的一律作为“金兔卡”,享受一定优惠政策,则这组号码中“金兔卡”的个数为()A.2000 B.4096 C.5904 D.8320【分析】由题意知凡卡号的后四位不带数字“6”或“8”的一律不能作为“金兔卡”,后四位没有6和8,后四位中的每一个组成数字只能从另外8个中选,每一位有8种选法,根据分步计数原理得到结果,用总数减去不合题意的即可.【解答】解:∵凡卡号的后四位带数字“6”或“8”的一律作为“金兔卡”,∴凡卡号的后四位不带数字“6”或“8”的一律不能作为“金兔卡”,后四位没有6和8,∴后四位中的每一个组成数字只能从另外8个中选,根据分步计数原理知共有8×8×8×8=4096,∴符合条件的有10000﹣4096=5904,故选C.【点评】本题考查分步计数原理的应用,考查带有约束条件的数字问题,这种题目若是从正面来做包括的情况比较多,可以选择从反面来解决.8.(5分)有三个命题①函数f(x)=lnx+x﹣2的图象与x轴有2个交点;②函数的反函数是y=(x﹣1)2(x≥﹣1);③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③【分析】对于①,考查f(x)的单调性即可;对于②,欲求原函数y=﹣1(x ≥0)的反函数,即从原函数式中反解出x,后再进行x,y互换,即得反函数的解析式.对于③,考查函数f(x)的奇偶性即可.【解答】解:对于①,考察f(x)的单调性,lnx和x﹣2在(0,+∞)上是增函数,故f(x)=lnx+x﹣2在(0,+∞)上是增函数,图象与x轴最多有1个交点,故错.对于②,∵y=﹣1(x≥0),∴x=(y+1)2(y≥﹣1),∴x,y互换,得y=(x+1)2(x≥﹣1).故错.对于③,考察函数f(x)的奇偶性,化简得y=是偶函数,图象关于y轴对称,故对.故选C.【点评】本小题主要考查函数单调性的应用、函数奇偶性的应用、反函数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.9.(5分)若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原点,则△OAB的重心、内心、外心、垂心的轨迹不可能是()A.点B.线段C.圆弧D.抛物线的一部分【分析】本题是个选择题,利用排除法解决.首先由△OAB的重心,排除C;再利用△OAB的内心,排除B;最后利用△OAB的垂心,排除A;即可得出正确选项.【解答】解:设重心为G,AB中点为C,连接OC.则OG=OC (这是一个重心的基本结论).而OC=AB=定值,所以G轨迹圆弧.排除C;内心一定是平分90度的那条角平分线上,轨迹是线段.排除B;外心是三角形外接圆圆心,对于这个直角三角形,AB中点C就是三角形外接圆圆心,OC是定值,所以轨迹圆弧,排除C;垂心是原点O,定点,排除A故选D.【点评】本题考查三角形的重心、内心、外心、垂心、以及轨迹的求法.解选择题时可利用排除法.10.(5分)已知点G是△ABC的重心,点P是△GBC内一点,若的取值范围是()A. B. C. D.(1,2)【分析】由点P是△GBC内一点,则λ+μ≤1,当且仅当点P在线段BC上时,λ+μ最大等于1;当P和G重合时,λ+μ最小,此时,=,λ=μ=,λ+μ=.【解答】解:∵点P是△GBC内一点,则λ+μ<1,当且仅当点P在线段BC上时,λ+μ最大等于1,当P和G重合时,λ+μ最小,此时,==×()=,∴λ=μ=,λ+μ=.故<λ+μ<1,故选:B.【点评】本题考查三角形的重心的性质,两个向量的加减法的法则,以及其几何意义,属于基础题.二、填空题(共5小题,每小题5分,满分25分)11.(5分)二项式(﹣2x2)9展开式中,除常数项外,各项系数的和为671.【分析】利用二项展开式的通项公式求出通项令x的指数为0得到常数项;令二项式中x为1求出各项系数和,从而解决问题.【解答】解:二项式展开式的通项令3r﹣9=0得r=3故展开式的常数项为﹣C93×23=﹣672.令二项式中的x=1得到系数之和为:(1﹣2)9=﹣1除常数项外,各项系数的和为:671.故答案为671.【点评】本题涉及的考点:(1)二项式定理及通项公式;(2)二项式系数与系数,解答时注意二项式系数与系数的区别.12.(5分)边长是的正三角形ABC内接于体积是的球O,则球面上的点到平面ABC的最大距离为.【分析】由已知中,边长是的正三角形ABC内接于体积是的球O,我们易求出△ABC的外接圆半径及球的半径,进而求出球心距,由于球面上的点到平面ABC的最大距离为球半径加球心距,代入即可得到答案.【解答】解:边长是的正三角形ABC的外接圆半径r=.球O的半径R=.∴球心O到平面ABC的距离d==.∴球面上的点到平面ABC的最大距离为R+d=.故答案为:.【点评】本题考查的知识点是点、面之间的距离,其中根据球的几何特征分析出球面上的点到平面ABC的最大距离为球半径加球心距,是解答本题的关键.13.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.【分析】求出函数的单调增区间,通过子集关系,确定实数φ的取值范围.【解答】解:函数,由2kπ﹣πφ≤2kπ,可得6kπ﹣3π﹣3φ≤x≤6kπ﹣3φ,由题意在区间(﹣π,π)上单调递增,所以6kπ﹣3π﹣3φ≤﹣π 且π≤6kπ﹣3φ,因为0<φ<2π,所以k=1,实数φ的取值范围为;故答案为:【点评】本题是基础题,考查三角函数的单调性的应用,子集关系的理解,考查计算能力.14.(5分)已知过椭圆的右焦点F斜率是1的直线交椭圆于A、B两点,若,则椭圆的离心率是.【分析】设出A、B两点的坐标,A(m,m﹣c),B(n,n﹣c),由得m+2n=3c ①,再根据椭圆的第二定义,=2=,可得2n﹣m=②,由①②解得m 和n的值,再代入椭圆的第二定义,e===,解方程求得e的值.【解答】解:右焦点F(c,0),直线的方程为y﹣0=x﹣c.设A(m,m﹣c),B(n,n﹣c),由得(c﹣m,c﹣m)=2 (n﹣c,n﹣c),∴c﹣m=2(n﹣c),m+2n=3c ①.再根据椭圆的第二定义,=2=,∴2n﹣m=②,由①②解得m=,n=.据椭圆的第二定义,e=====,∴3e3﹣3e﹣e2+=0,(e2﹣1)•(3e﹣)=0.∵0<e<1,∴e=,故椭圆的离心率是,故答案为.【点评】本题考查椭圆的定义、椭圆的标准方程,以及椭圆的简单性质的应用.15.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为(,+∞);②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为不存在.【分析】①先对函数配方,求出其对称轴,判断出其在给定区间上的单调性进而求出函数值的范围,即可求出实数m的取值范围;②先利用单调性分别求出两个函数的值域,再比较即可求出实数a的取值范围.【解答】解:因为f(x)==,(2,+∞),f(x)>f(2)=;g(x)=a x,(a>1,x>2).g(x)>g(2)=a2.①∵∃x0∈(2,+∞),使f(x0)=m成立,∴m;②∵∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),∴⇒a不存在.故答案为:(,+∞):不存在.【点评】本题主要考查函数恒成立问题以及借助于单调性研究函数的值域,是对基础知识的综合考查,属于中档题目.三、解答题(共6小题,满分75分)16.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.【分析】(I)先假设两个向量平行,利用平行向量的坐标表示,列出方程并用倍角和两角和正弦公式进行化简,求出一个角的正弦值,根据正弦值的范围推出矛盾,即证出假设不成立;(II)利用向量数量积的坐标表示列出式子,并用倍角和两角和正弦公式进行化简,由条件和已知角的范围进行求值.【解答】解:(I)假设∥,则2cosx(cosx+sinx)﹣sinx(cosx﹣sinx)=0,1+cosxsinx+cos2x=0,即1+sin2x+=0,∴sin(2x+)=﹣3,解得sin(2x+)=﹣<﹣1,故不存在这种角满足条件,故假设不成立,即与不可能平行.(II)由题意得,•=(cosx+sinx)(cosx﹣sinx)+2cosxsinx=cos2x+sin2x=sin (2x+)=1,∵x∈[﹣π,0],∴﹣2π≤2x≤0,即≤,∴=﹣或,解得x=或0,故x的值为:或0.【点评】本题考查了向量共线和数量积的坐标运算,主要利用了三角恒等变换的公式进行化简,对于存在性的题目一般是先假设成立,根据题意列出式子,再通过运算后推出矛盾,是向量和三角函数相结合的题目.17.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)若要从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若男生学生考前心理状态好的概率为0.6,女学生考前心理状态好的概率为0.5,ξ表示抽取的5名学生中考前心理状态好的人数,求P(ξ=1)及Eξ.【分析】(I)根据分层抽样的定义知:在自己班上的学生中抽取5人中有3男2女,“至少选取1个男生”的对立面是“全为女生”则所求的概率为:1﹣“全为女生”的概率(II)P(ξ=1)表示抽取的5名学生中考前心理状态好的人数为男生1人和女生1人ξ表示抽取的5名学生中考前心理状态好的人数可表示为:用ξ1表示3个男生中考前心理状态好的人数,ξ2表示2个女生考前心理状态好的人数,则ξ1~B(3,0.6),ξ2~B(2,0.5)根据Eξ=Eξ1+Eξ2即可运算【解答】解:(I)男生被抽取人数为3人,女生被抽取人数为2人选取的两名学生都是女生的概率P=∴所求的概率为:1﹣P=(II)P(ξ=1)=C31×0.6×0.42×0.52+C21×0.43×0.52=0.104用ξ1表示3个男生中考前心理状态好的人数,ξ2表示2个女生考前心理状态好的人数,则ξ1~B(3,0.6),ξ2~B(2,0.5),∴Eξ1=3×0.6=1.8,Eξ2=2×0.5=1,∴Eξ=Eξ1+Eξ2=2.8【点评】本题考查了等可能事件的概率,离散型随机变量的期望,特别是二项分布的期望与方差也是高考中常考的内容之一.18.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.【分析】(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC与F,连接EF,我们可得∠EFH即为二面角E﹣AC﹣B的补角,解三角形EFH后,即可求出二面角E﹣AC﹣B的正切值;(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离,利用等体积法,我们根据=,即可求出直线A 1C1到平面EAC的距离.【解答】解:(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC 与F,连接EF,则EF在平面ABCD内的射影为HF,由三垂线定理得EF⊥AC,,∴∠EFH即为二面角E﹣AC﹣B的补角∵EH=a,HF=BD=∴∠tan∠EFH===2∴二面角E﹣AC﹣B的正切值为﹣2…6分(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离d,…8分∵=•d=∴S△EAC∵EF====•AC•EF=•a•=∴S△EAC而=••a=∴•d=•a∴d=∴直线A1C1到平面EAC的距离【点评】本题考查的知识点是二面角的平面角及求法,点到平面的距离,其中(I)的关键是得到∠EFH即为二面角E﹣AC﹣B的补角,(II)中求点到面的距离时,等体积法是最常用的方法.19.(12分)已知{a n}是正数组成的数列,其前n项和2S n=a n2+a n(n∈N*),数列{b n}满足,.(I)求数列{a n},{b n}的通项公式;(II)若c n=a n b n(n∈N*),数列{c n}的前n项和.【分析】(I)由题设知a1=1,a n=S n﹣S n﹣1=,a n2﹣a n﹣12﹣a n﹣a n﹣1=0,故(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,由此能导出a n=n.于是b n+1=b n+3n,b n+1﹣b n=3n,由此能求出b n.(II),,由错位相减法能求出,由此能得到==.【解答】解:(I),∴a1=1,n≥2时,a n=S n﹣S n﹣1=,∴a n2﹣a n﹣12﹣an﹣a n﹣1=0,(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∴a n﹣a n﹣1=1.∴数列{a n}是首项为1,公差为1的等差数列,∴a n=n.于是b n+1=b n+3n,∴b n+1﹣b n=3n,b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=.(II),∴,,∴==,,∴==.【点评】第(I)题考查数列通项公式的求法,解题时要注意迭代法的合理运用;第(II)题考查前n项和的计算和极限在数列中的运用,解题时要认真审题,仔细解答,注意数列性质的合理运用.20.(13分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.【分析】(I)由点C到定点M的距离等于到定直线l的距离与抛物线的定义可得点C的轨迹为抛物线所以曲线E的方程为x2=4y.(II)由题得直线AB的方程是x﹣2y+12=0联立抛物线的方程解得A(6,9)和B(﹣4,4),进而直线NA的方程为,由A,B两点的坐标得到线段AB中垂线方程为,可求N点的坐标,进而求出圆N的方程.(III)设A,B两点的坐标,由题意得过点A的切线方程为又Q(a,﹣1),可得x12﹣2ax1﹣4=0同理得x22﹣2ax2﹣4=0所以x1+x2=2a,x1x2=﹣4.所以直线AB的方程为所以t=﹣1.根据向量的运算得=0.【解答】【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是,即x﹣2y+12=0.由及知,得A(6,9)和B(﹣4,4)由x2=4y得,.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为,即.①线段AB的中点坐标为,线段AB中垂线方程为,即.②由①、②解得.于是,圆C的方程为,即.(Ⅲ)设,,Q(a,1).过点A的切线方程为,即x12﹣2ax1﹣4=0.同理可得x22﹣2ax2﹣4=0,所以x1+x2=2a,x1x2=﹣4.又=,所以直线AB的方程为,即,亦即,所以t=1.而,,所以==.【点评】本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,这也是高考常考的知识点.21.(14分)已知函数f(x)=ax+lnx,a∈R.(I)当a=﹣1时,求f(x)的最大值;(II)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平等;(III)当时,设正项数列{a n}满足:a n=f'(a n)(n∈N*),若数列{a2n}是递+1减数列,求a1的取值范围.【分析】(I)求出函数的导函数判断出其大于零得到函数在区间[1,e]上为增函数,所以f(1)为最小值,f(e)为最大值,求出即可;(II)直线P1P2的斜率k由P1,P2两点坐标可表示为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号;可得+<﹣1,整理可得<,同理,由,得;所以P1P2的斜率,在x∈(x1,x2)上,有,可得结论.【解答】解:(Ⅰ)当a=﹣1时,f(x)=﹣x+lnx,.对于x∈(0,1),有f'(x)>0,∴f(x)在区间(0,1]上为增函数,对于x∈(1,+∞),有f'(x)<0,∴f(x)在区间(1,+∞)上为减函数,.∴f max(x)=f(1)=﹣1;(II)直线P1P2的斜率为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号,∴,同理,由,可得;故P1P2的斜率,又在x∈(x1,x2)上,,所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行;(III)f(x)=,f′(x)=,∴a n+1=+,a3=,a4==<a2⇒2a22﹣3a2﹣2>0,⇒(2a2+1)(a2﹣1)>0⇒a2>2⇒⇒0<a1<2,下面我们证明:当0<a1<2时,a2n+2<a2n,且a2n>2(n∈N+)事实上,当n=1时,0<a1<2⇒a2=,a4﹣a2=⇒a4<a2,结论成立.若当n=k时结论成立,即a2k+2<a2k,且a2k>2,则a2k+2=⇒a2k+4=,a2k+4﹣a2k+2=⇒a2k+4<a2k+2,由上述证明可知,a1的取值范围是(0,2).【点评】本题综合考查了利用导数研究曲线上过某点的切线方程,利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值问题,也考查了利用函数证明不等式的问题,以及利用数学归纳法证明数列不等式,考查运算能力和分析解决问题能力,属难题.。

2019年高考数学(理)二轮复习练习:大题规范练1 “17题~19题+二选一”46分练 Word版含答案 (29)

2019年高考数学(理)二轮复习练习:大题规范练1 “17题~19题+二选一”46分练 Word版含答案 (29)

小题提速练(四) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |3≤3x ≤27,x ∈N *},B ={x |log 2x >1},则A ∩B =( )A .{1,2,3}B .(2,3]C .{3}D .[2,3]C [∵3≤3x≤27,即31≤3x≤33,∴1≤x ≤3,又x ∈N *,∴A ={1,2,3},∵log 2x >1,即log 2x >log 22,∴x >2,∴B ={x |x >2},∴A ∩B ={3},选C.] 2.已知复数z =15i 3+4i,则z 的虚部为( )【导学号:07804211】A .-95iB .95iC .-95D .95D [z =15i 3+4i =15i 3-4i 3+4i 3-4i =1525(4+3i)=125+95i ,故选D.]3.设D 是△ABC 所在平面内一点,AB →=2DC →,则( )A.BD →=AC →-32AB →B .BD →=32AC →-AB →C.BD →=12AC →-AB →D .BD →=AC →-12AB →A [BD →=BC →+CD →=BC →-DC →=AC →-AB →-12AB →=AC →-32AB →,选A.]4.(2017·湖南三模)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,712B .⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎭⎪⎫12,1 C [根据题意,学生发球次数为1即一次发球成功的概率为p ,即P (X =1)=p ,发球次数为2即二次发球成功的概率P (X =2)=p (1-p ), 发球次数为3的概率P (X =3)=(1-p )2, 则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75, 解得,p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12,故选C.]5.已知点F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1→·NF 1→>0,则该双曲线的离心率e 的取值范围是( ) A .(2,2+1) B .(1,2+1) C .(1,3)D .(3,+∞)B [设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,得到y =±b 2a ,不妨设M ⎝ ⎛⎭⎪⎫c ,b 2a ,N ⎝ ⎛⎭⎪⎫c ,-b 2a ,则MF 1→·NF 1→=⎝⎛⎭⎪⎫-2c ,-b 2a ·⎝ ⎛⎭⎪⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+2,故选B.]6.函数y =f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图9所示,关于函数y =f (x )(x ∈R ),有下列命题:图9①y =f (x )的图象关于直线x =π6对称;②y =f (x )的图象可由y =2sin 2x 的图象向右平移π6个单位长度得到;③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称; ④y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增.其中正确命题的个数是( )A .1B .2C .3D .4C [依题意可得T =2×⎝⎛⎭⎪⎫11π12-5π12=π,故T =2πω=π,解得ω=2,所以f (x )=2sin(2x+φ),由f (x )=2sin(2x +φ)的图象经过点⎝⎛⎭⎪⎫5π12,2可得2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2,即sin ⎝ ⎛⎭⎪⎫56π+φ=1,又-π2<φ<π2,故φ=-π3,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以①不对;y =2sin 2x 的图象向右平移π6个单位长度得到y =2sin2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3的图象,②正确;因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以③正确;由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,取k =0,得-π12≤x ≤5π12,即y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增,④正确,故选C.] 7.某几何体的三视图如图10所示,则该几何体的体积为( )【导学号:07804212】图10A.17π6B .17π3C .5πD .13π6A [由三视图可知,该几何体是半个圆锥,一个圆柱,一个半球的组合体, 其体积为16π+2π+23π=176π.选A.]8.执行如图11所示的程序框图,输出的结果为( )图11A .-1B .1 C.12D .2C [n =12,i =1进入循环,n =1-2=-1,i =2;n =1-(-1)=2,i =3;n =1-12=12,i=4,…,所以n 对应的数字呈现周期性的特点,周期为3,因为2 017=3×672+1,所以当i =2 017时,n =12,故选C.]9.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0ax -y +3≥0y ≥0,且z =y -x 的最小值为-6,则a 的值为( )A .-1B .1C .-12D .12C [作出不等式组表示的可行域如图中阴影部分所示,当a >0时,易知z =y -x 无最小值,故a <0,目标函数所在直线过可行域内点A 时,z 有最小值,联立⎩⎪⎨⎪⎧y =0ax -y +3=0,解得A ⎝ ⎛⎭⎪⎫-3a ,0,z min =0+3a=-6,解得a =-12,故选C.]10.(数学文化题)今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( ) A .12日 B .16日 C .8日D .9日D [由题易知良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n +1952,二马相逢时所走路程之和为2×1 125=2 250,所以n a 1+a n2+n b 1+b n2=2 250,即n+13n +2+n ⎝⎛⎭⎪⎫97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.]11.设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2与直线y =3的交点的横坐标构成以π为公差的等差数列,且x =π6是f (x )图象的一条对称轴,则下列区间中是函数f (x )的单调递减区间的是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B .⎣⎢⎡⎦⎥⎤-4π3,-5π6C.⎣⎢⎡⎦⎥⎤2π3,7π6D .⎣⎢⎡⎦⎥⎤-5π6,-π3D [由题意得A =3,T =π,∴ω=2.∴f (x )=3sin(2x +φ),又f ⎝ ⎛⎭⎪⎫π6=3或f ⎝ ⎛⎭⎪⎫π6=-3,∴2×π6+φ=k π+π2,k ∈Z ,φ=π6+k π,k ∈Z ,又|φ|<π2,∴φ=π6,∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6.令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,故当k =-1时,f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-5π6,-π3,故选D.]12.已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A.40π3 B .4030π27C.32030π27D .20πB [设△A 1B 1C 1的外心为O 1,△ABC 的外心为O 2,连接O 1O 2,O 2B ,OB ,如图所示.由题意可得外接球的球心O 为O 1O 2的中点.在△ABC 中,由余弦定理可得BC 2=AB 2+AC 2-2AB ×AC cos∠BAC =32+12-2×3×1×cos 60°=7, 所以BC =7.由正弦定理可得△ABC 外接圆的直径2r =2O 2B =BC sin 60°=273,所以r =73=213. 而球心O 到截面ABC 的距离d =OO 2=12AA 1=1,设直三棱柱ABC ­A 1B 1C 1的外接球半径为R ,由球的截面性质可得R 2=d 2+r 2=12+⎝ ⎛⎭⎪⎫2132=103,故R =303,所以该三棱柱的外接球的体积为V =4π3R 3=4030π27.故选B.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )=ln x ,g (x )=x 2+mx (m ∈R ),若函数f (x )的图象在点(1,f (1))处的切线与函数g (x )的图象相切,则m 的值为________.[解析] 易知f (1)=0,f ′(x )=1x,从而得到f ′(1)=1,函数f (x )的图象在点(1,f (1))处的切线方程为y =x -1.法一:(应用导数的几何意义求解)设直线y =x -1与g (x )=x 2+mx (m ∈R )的图象相切于点P (x 0,y 0),从而可得g ′(x 0)=1,g (x 0)=x 0-1.又g ′(x )=2x +m ,因此有⎩⎪⎨⎪⎧gx 0=2x 0+m =1x 20+mx 0=x 0-1,得x 2=1,解得⎩⎪⎨⎪⎧x 0=1m =-1或⎩⎪⎨⎪⎧x 0=-1m =3.法二:(应用直线与二次函数的相切求解)联立⎩⎪⎨⎪⎧y =x -1y =x 2+mx ,得x 2+(m -1)x +1=0,所以Δ=(m -1)2-4=0,解得m =-1或m =3. [答案] -1或314.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有________种.【导学号:07804213】[解析] 3所学校依次选医生、护士,不同的分配方法共有C 13C 26C 12C 24=540种. [答案] 54015.已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.[解析] 法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my -1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4).⎩⎪⎨⎪⎧x =my -1x 22+y 2=1⇒(m 2+2)y 2-2my -1=0⇒y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2. ∴|PQ |=1+m 2|y 3-y 4|=22m 2+1m 2+2.故|PQ |2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2. [答案] 2 216.设函数f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x )=f (x +4),且当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫12x-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是________. [解析] 设x ∈[0,2],则-x ∈[-2,0],∴f (-x )=⎝ ⎛⎭⎪⎫12-x-1=2x-1,∵f (x )是定义在R 上的偶函数,∴f (x )=f (-x )=2x-1.∵对任意x ∈R ,都有f (x )=f (x +4), ∴当x ∈[2,4]时,(x -4)∈[-2,0],∴f (x )=f (x -4)=⎝ ⎛⎭⎪⎫12x -4-1; 当x ∈[4,6]时,(x -4)∈[0,2], ∴f (x )=f (x -4)=2x -4-1.∵在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根, ∴函数y =f (x )的图象与函数y =log a (x +2)的图象在区间(-2,6]内恰有3个不同的交点,作出两个函数的图象如图所示,易知⎩⎪⎨⎪⎧log a +>3log a+<3,解得223<a <2,即34<a <2,因此所求a 的取值范围是(34,2).[答案] (34,2)。

2018年高考理科数学全国卷II及答案

2018年高考理科数学全国卷II及答案

2018年普通高等学校招生全国统一考试理科数学(II)一、选择题:本题共12小题,每小题5分,共60分. 1.=-+i i2121 ( ) .A i 5354--.B i 5354+-.C i 5453--.D i 5453+-2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 ( ).A 9.B 8.C 5.D 43.函数()2e e x xf x x --=的图像大致为 ( )4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( ).A 4.B 3.C 2.D 05.双曲线22221(0,0)x y a b a b-=>>3( ).A x y 2±=.B x y 3±= .C x y 22±= .D x y 23±=6.在ABC △中,5cos2C =1BC =,5AC =,则AB = ( ) .A 24.B 30 .C 29 .D 527.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入( ) .A 1+=i i .B 2+=i i .C 3+=i i .D 4+=i i8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ( ) .A 121.B 141.C 151.D 1819.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为( ).A 51.B 65.C 55.D 2210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( ).A 4π.B 2π.C 43π.D π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则( )(1)(2)(3)(50)f f f f ++++=….A 50-.B 0.C 2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ).A 23.B 12.C 13.D 14二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大题规范练(一) “17题~19题+二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知正项等差数列{a n }的前n 项和为S n ,且满足a 1+a 5=27a 23,S 7=63.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }满足b 1=a 1且b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .【导学号:07804229】[解] (1)法一:(等差数列的基本量)设正项等差数列{a n }的首项为a 1,公差为d ,易知a n >0,则⎩⎪⎨⎪⎧a 1+a 1+4d =27a 1+2d 27a 1+21d =63,解得⎩⎪⎨⎪⎧a 1=3d =2,∴a n =2n +1.法二:(等差数列的性质)∵{a n }是等差数列且a 1+a 5=27a 23,∴2a 3=27a 23,又a n >0,∴a 3=7. ∵S 7=7a 1+a 72=7a 4=63,∴a 4=9,∴d =a 4-a 3=2,∴a n =a 3+(n -3)d =2n +1. (2)∵b n +1-b n =a n +1且a n =2n +1, ∴b n +1-b n =2n +3,当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=(2n +1)+(2n -1)+…+5+3=n (n +2),当n =1时,b 1=3满足上式,故b n =n (n +2). ∴1b n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =1b 1+1b 2+…+1b n -1+1b n=12⎣⎢⎡⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32n +1n +2. 18.如图1,已知直角梯形ABCD 中,AB =AD =12CD =2,AB ∥DC ,AB ⊥AD ,E 为CD 的中点,沿AE把△DAE 折起到△PAE 的位置(D 折后变为P ),使得PB =2,如图2.(1)求证:平面PAE ⊥平面ABCE ;(2)求直线PB 和平面PCE 所成角的正弦值.[解] (1)证明:如图(1),取AE 的中点O ,连接PO ,OB ,BE .由于在平面图形中,如题图(图1),连接BD ,BE ,易知四边形ABED 为正方形,图(1)所以在立体图形中,△PAE ,△BAE 为等腰直角三角形,所以PO ⊥AE ,OB ⊥AE ,PO =OB =2, 因为PB =2,所以PO 2+OB 2=PB 2,所以PO ⊥OB , 又AE ∩OB =O ,所以PO ⊥平面ABCE ,因为PO ⊂平面PAE ,所以平面PAE ⊥平面ABCE .(2)由(1)知,OB ,OE ,OP 两两垂直,以O 为坐标原点,以OB ,OE ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图(2),则O (0,0,0),P (0,0,2),B (2,0,0),E (0,2,0),C (2,22,0),PB →=(2,0,-2),EP →=(0,-2,2),EC →=(2,2,0).图(2)设平面PCE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EP →=0,n ·EC →=0,即⎩⎨⎧-2y +2z =0,2x +2y =0,令x =1,得y =-1,z =-1,故平面PCE 的一个法向量为n =(1,-1,-1). 所以cos 〈PB →,n 〉=PB →·n |PB →|·|n |=2223=63,所以直线PB 和平面PCE 所成角的正弦值为63. 19.某学校为鼓励家校互动,与某手机通讯商合作,为教师办理流量套餐.为了解该校教师手机流量使用情况,通过抽样,得到100位教师近2年每人手机月平均使用流量L (单位:M)的数据,其频率分布直方图如下:图3若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率视为概率,回答以下问题.(1)从该校教师中随机抽取3人,求这3人中至多有1人手机月使用流量不超过300 M 的概率;(2)现该通讯商推出三款流量套餐,详情如下:套餐名称 月套餐费/元 月套餐流量/MA 20 300B 30 500 C38700系统就自动帮用户充值200 M 流量,资费20元;如果又超出充值流量,系统就再次自动帮用户充值200 M 流量,资费20元,以此类推,如果当月流量有剩余,系统将自动清零,无法转入次月使用.学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的75%,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.[解](1)记“从该校随机抽取1位教师,该教师手机月使用流量不超过300 M”为事件D.依题意,P(D)=(0.000 8+0.002 2)×100=0.3.从该校教师中随机抽取3人,设这3人中手机月使用流量不超过300 M的人数为X,则X~B(3,0.3),所以从该校教师中随机抽取3人,至多有1人手机月使用流量不超过300 M的概率为P(X=0)+P(X=1)=C03×0.30×(1-0.3)3+C13×0.3×(1-0.3)2=0.343+0.441=0.784.(2)依题意,从该校随机抽取1位教师,该教师手机月使用流量L∈(300,500]的概率为(0.0025+0.003 5)×100=0.6,L∈(500,700]的概率为(0.000 8+0.000 2)×100=0.1.当学校订购A套餐时,设学校为1位教师承担的月费用为X1元,则X1的所有可能取值为20,35,50,且P(X1=20)=0.3,P(X1=35)=0.6,P(X1=50)=0.1,所以X1的分布列为所以E(X1)当学校订购B套餐时,设学校为1位教师承担的月费用为X2元,则X2的所有可能取值为30,45,且P(X2=30)=0.3+0.6=0.9,P(X2=45)=0.1,所以X2的分布列为所以E(X2)=30×0.9+45×0.1=当学校订购C套餐时,设学校为1位教师承担的月费用为X3元,则X3的所有可能取值为38,且P(X3=38)=1,所以E(X3)=38×1=38(元).因为E(X2)<E(X1)<E(X3),所以学校订购B套餐最经济.(请在第22~23题中选一题作答,如果多做,则按照所做第一题计分)22.选修4­4:坐标系与参数方程在极坐标系中,圆C的极坐标方程为ρ2=4ρ(cos θ+sin θ)-3.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.【导学号:07804230】(1)求圆C的参数方程;(2)在直角坐标系中,点P(x,y)是圆C上的动点,试求x+2y的最大值,并求出此时点P的直角坐标.[解] (1)因为ρ2=4ρ(cos θ+sin θ)-3, 所以x 2+y 2-4x -4y +3=0,即(x -2)2+(y -2)2=5为圆C 的直角坐标方程, 所以圆C 的参数方程为⎩⎨⎧x =2+5cos θy =2+5sin θ(θ为参数).(2)法一:设x +2y =t ,得x =t -2y ,代入x 2+y 2-4x -4y +3=0,整理得5y 2+4(1-t )y +t 2-4t +3=0 (*),则关于y 的方程必有实数根.所以Δ=16(1-t )2-20(t 2-4t +3)≥0,化简得t 2-12t +11≤0, 解得1≤t ≤11,即x +2y 的最大值为11.将t =11代入方程(*)得y 2-8y +16=0,解得y =4,代入x +2y =11,得x =3, 故x +2y 的最大值为11时,点P 的直角坐标为(3,4). 法二:由(1)可设点P (2+5cos θ,2+5sin θ), 则x +2y =6+5cos θ+25sin θ=6+5⎝ ⎛⎭⎪⎫55cos θ+255sin θ,设sin α=55,则cos α=255,所以x +2y =6+5sin(θ+α), 当sin(θ+α)=1时,(x +2y )max =11,此时,θ+α=π2+2k π,k ∈Z ,即θ=π2-α+2k π(k ∈Z ),所以sin θ=cos α=255,cos θ=sin α=55,故点P 的直角坐标为(3,4).23.选修4­5:不等式选讲已知函数f (x )=|x -2|+2,g (x )=m |x |(m ∈R ). (1)解关于x 的不等式f (x )>5;(2)若不等式f (x )≥g (x )对任意x ∈R 恒成立,求m 的取值范围. [解] (1)由f (x )>5,得|x -2|>3, ∴x -2<-3或x -2>3, 解得x <-1或x >5.故原不等式的解集为{x |x <-1或x >5}.(2)由f (x )≥g (x ),得|x -2|+2≥m |x |对任意x ∈R 恒成立, 当x =0时,不等式|x -2|+2≥0恒成立, 当x ≠0时,问题等价于m ≤|x -2|+2|x |对任意非零实数恒成立,∵|x -2|+2|x |≥|x -2+2||x |=1,∴m ≤1,即m 的取值范围是(-∞,1].。

相关文档
最新文档