大学物理下第15章量子物理

合集下载

大学物理(15.2.2)--光电效应光的波粒二象性

大学物理(15.2.2)--光电效应光的波粒二象性

第十五单元 量子物理第十五单元 量子物理 Quantum PhysicsQuantum Physics第二讲 光电效应Photoelectric Effect光的波粒二象性Wave-particle Dualism爱因斯坦: Einstein 现代时空的创始人 二十世纪的哥白尼爱因斯坦20世纪最伟大的物理学家之一,1879年3月14日出生于德国乌尔姆。

1905年,爱因斯坦在科学史上创造了史无前例的奇迹。

这一年的3月到9月半年中,发表了 6篇论文,在物理学 3个领域作出了具有划时代意义的贡献 — 创建了光量子理论、狭义相对论和分子运动论。

爱因斯坦在1915年到1917年的3年中,还在 3个不同领域做出了历史性的杰出贡献 — 建成了广义相对论、辐射量子理论和现代一、光电效应的实验规律1、光电效应光的照射下,金属及其化合物中的电子逸出金属表面的现象。

2、实验装置在一个真空管内,装有阴极 K和阳极 A,当单色光通过石英窗口射到 K上时,金属板便释放光电子。

如果在 K、A 两端加上电势差U,则光电子飞向阳极,金属GAKV这些逸出的电子被称为:光电子光电子运动形成的电流被称为:光电流光束射到金属表面使电子从金属中脱出的现象称为光电效应。

光强较强光强较弱频率相同饱和光电流饱和光电流说明被光照射的电极上,单位时间内释出的光电子数与入射光的强度成正比。

遏止(截止)电势差 U o 光电子的最大初动能:2max21m k m E v = 1) 在入射光频率不变时,饱和光电流强度 i s 与入射光强 I 成正比;3、实验规律i 0Ui s 2i s 1I1I 2光强I 2>I1-U ooeU =3、实验规律2) 光电子的最大初动能随入射光的频率线性增加,与光强无关;νU o ∝νU o (ν)CsNa Caom k eU m E ==2max 21v νU E o k ∝∝max 遏止电势差与入射光的频率成线性关系,与光强无关;3、实验规律3) 只有当入射光频率ν 大于一定的频率 ν 0 时, 才会产生光电效应;ν0称为截止频率或红限频率 Cut off Frequency4) 光电效应是瞬时发生的,驰豫时间不超过10-9s二、经典物理学所遇到的困难按照光的经典电磁理论:3、电子积累能量需要一段时间,光电效应不可能瞬时发生。

大学物理课件-量子力学

大学物理课件-量子力学

(2)
1 2
(
x,
t
)e
i
px
dx
▲ 態疊加原理是粒子波動性體現,是量子力
學基本原理之一。
薛定諤
Erwin Schrodinger 奧地利人 1887-1961
創立量子力學
獲1933年諾貝爾 物理學獎
19.3
問題 提出
經薛典定粒諤子方程(SFchrodddt2r2inger equation)
三、波函數的要求 波函數的有限性: 根據波函數統計解釋,在空間任何有限體積
元中找到粒子的概率必須為有限值。
波函數的歸一性: 根據波函數統計解釋,在空間各點的概率總
和必須為1。 r, t 2 d 1
注意:若
2
A(r ) d A

1 A
A
(r )
2
d
1
1 ——歸一化因數
A
波函數的單值性:
其狀態用 2( x) 描述, 電子的概率分佈為P2 |Ψ2|2
雙縫 齊開時,電子可通過上縫也可通過下縫
通過上、下縫各有一定的概率
總的概率幅為 Ψ12 Ψ1 Ψ2
Ψ12 Ψ1 Ψ2
P12 |Ψ12 |2 |Ψ1 Ψ2 |2 |Ψ1|2 |Ψ2|2 P1 P2
即使只有一個電子,當雙縫齊開時,
▲ 在空間的某一點波函數模的平方和該點找到 粒子的幾率成正比。 波動性:某處明亮則某處光強大, 即 I 大 粒子性:某處明亮則某處光子多, 即 N大
光子數 N I A2
I大,光子出現概率大; I小,光子出現概率小。
2.數學表示 t 時刻,在
r
端點處單位體積中發現一個粒子
的概率,稱為概率密度。即
Ae

爱因斯坦光量子理论

爱因斯坦光量子理论


o
U0 ( 一定) U AK
伏安曲线
大学物理 第三次修订本
3
第15章 量子物理基础
(2)截止频率 对一定金属,只有入射光 的频率大于某一频率ν0时, 电子才能从该金属 表面逸出,这个频率叫 (红限)。
如果入射光的频率小于截止频率则无论入 射光强度多大,都没有光电子逸出。
大学物理 第三次修订本
第15章 量子物理基础
15.2 光电效应 爱因斯坦光量子理论
一、光电效应的实验规律
金属及其化合物在光照射下发射电子的现 象称为光电效应。逸出的电子为光电子,所测 电流为光电流。
光电效应现象是德国物理学家赫兹于1887 年研究电磁波的性质时偶然发现的。
当时赫兹只是注意到用紫外线照射在放电 电极上时,放电比较容易发生,却不知道这一 现象产生的原因。
大学物理 第三次修订本
9
第15章 量子物理基础
2.光电效应方程
按照光子假说, 并根据能量守恒定律, 当金 属中一个电子从入射光中吸收一个光子后,获 得能量 hv ,如果hv 大于该金属的电子逸出功 A ,这个电子就能从金属中逸出,并且有
h

A
1 2
mvm 2
—— 爱因斯坦光电效应方程
式中
1 2
大学物理 第三次修订本
13
第15章 量子物理基础
由爱因斯坦方程
h

A
1 2
mvm 2
利用
1 2
mvm 2

eU a
爱因斯坦方程写成 h A eUa
两边取微分,得 Ua h
e
通过计算可得 h 6.191034 J s
此值与公认值 h 6.62607551034 J s 较接近。

量子物理学的诞生波函数一维定态薛定谔方程

量子物理学的诞生波函数一维定态薛定谔方程

V(x)∞ ∞
束缚于金属内的自由电子只 能在金属内运动,而不能逃逸出 金属表面,可以近似地认为金属 内的自由电子在一维无限深势阱 内运动。
o
ax
势能曲线
10
大学物理 第三次修订本
第15章 量子物理基础
薛定谔方程
d2Ψ x
dx2
2mE 2
Ψ
x
0
,0 xa
令 k
2mE 2

d
2Ψ x
dx2
k

x
0
方程通解
个空间内连续。
5
大学物理 第三次修订本
第15章 量子物理基础
二、薛定谔方程
1926年薛定谔提出了适用于低速情况下的, 描述微 观粒子在外力场中运动的微分方程,称为薛定谔方程。
2m
2 x2
2 y 2
2 z 2
V
r, t
Ψ
r,
t
i
Ψ r,t
t
其中,V = V ( r, t ) 是粒子的势能。
薛定谔方程是量子力学的基本方程,是关于r 和 t 的线性偏微分方程。
7
大学物理 第三次修订本
第15章 量子物理基础
在微观粒子的各种定态问题中,将势能函数 V ( r ) 的具体形式
如,氢原子中的电子 一维线性谐振子
V r 1 e2
4π0 r
V x 1 m 2x2
2
代入薛定谔方程, 可以求得定态波函数, 同时也就
确定了概率密度的分布以及能量和角动量等。
8
大学物理 第三次修订本
而成的驻波。
波长n满足条件
a n , n 1, 2,
2
Ψn (x)
n 3 Ψn 2

大学物理15 量子物理基础1

大学物理15 量子物理基础1

m
o
0.1A
(2) 若使其质量为m=0.1g的小球以与粒子相同的 速率运动,求其波长
若 m=0.1g 的小球速率 vm v
vm
v
q BR m
则 :m
h m vm
h m
1 v
h m
m q BR
h q BR
m m
6.64 10 27 0.1 10 3
6.641034
m
px x h
考虑到在两个一级极小值之外还有电子出现,
运动,则其波长为多少? (粒子质量为ma =6.64ⅹ10-27kg)(05.08…)
解:
(1)
求粒子德布罗意波长 h h
p m v
先求:m v ?
而:q vB
m
v2 R
m v q BR
h m v
h q BR
6.63 10 34 1.601019 0.025 0.083102
1.001011
( x,t ) 0 区别于经典波动
(
x,
t)
e i 2
0
(t x
)
自由粒子沿x方向运动时对应的单色平面波波函数
设运动的实物粒子的能量为E、动量为 p,与之相 关联的频率为 、波长为,将德布罗意关系式代入:
考虑到自由粒子沿三维方向的传播
式中的 、E 和 p 体现了微观粒子的波粒二象性
2、概率密度——波函数的统计解释 根据玻恩对德布罗意波的统计解释,物质波波
p mv h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
h h h
p mv m0v
1
v2 c2
如果v c,则 h
m0v

大学物理 量子物理基础知识点总结

大学物理  量子物理基础知识点总结

大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。

(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。

4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。

5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。

(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。

(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。

大学物理讲稿(第15章量子力学基础)

大学物理讲稿(第15章量子力学基础)

第15章 量子力学基础人们用经典物理解释黑体辐射、光电效应、氢原子光谱等实验规律时,遇到了不可克服的困难.经过不断的探索和研究,终于突破了经典物理的传统观念,建立起量子理论.量子理论和相对论是现代物理学的两大支柱.量子理论的诞生,对研究原子、电子、质子、光子等微观粒子的运动规律提供了正确的导向.从此使物理学发生了一次历史性的飞跃,促进了原子能、激光、超导、半导体等众多新技术的生产和发展.本章前部分,分别介绍黑体辐射、光电效应、氢原子光谱等实验规律以及为解释这些实验规律而提出的量子假设,即早期的量子论.本章的后部分简要介绍量子力学的基本概念及原理,并通过几个具体事例的讨论说明量子力学处理问题的一般方法.§15.1 黑体辐射与普朗克的量子假设一、黑体辐射的基本规律1 热辐射组成物体的分子中都包含着带电粒子,当分子作热运动时物体将会向外辐射电磁波,由于这种电磁波辐射与物体的温度有关,故称其为热辐射.实验表明,热辐射能谱是连续谱,发射的能量及其按波长的分布是随物体的温度而变化的.随着温度的升高,不仅辐射能在增大,而且辐射能的波长范围向短波区移动.物体在辐射电磁波的同时,也吸收投射到物体表面的电磁波.理论和实验表明,物体的辐射本领越大,其吸收本领也越大,反之亦然.当辐射和吸收达到平衡时,物体的温度不再变化而处于热平衡状态,这时的热辐射称为平衡热辐射.为描述物体热辐射能按波长的分布规律,引入单色辐射出射度(简称单色辐出度)这一物理量,其定义为:物体单位表面积在单位时间内发射的、波长在λ+λ→λd 范围内的辐射能dM λ与波长间隔d λ的比值,用M λ(T)表示,即λ=λλd dM T M )( (15.1) 而辐出度定义为⎰∞λλ=0d T M T M )()( (15.2) 2 黑体辐射的基本规律投射到物体表面的电磁波,可能被物体吸收,也可能被物体反射和透射.能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为绝对黑体,简称黑体.绝对黑体是一种理想模型,实验室中用不透明材料制成带有小孔的空腔物体可近似看作黑体.图15.1为用实验方法测得的黑体单色辐出度M B λ (T)按波长和温度分布的曲线.关于黑体辐射,有两个基本定律:一个是斯特藩—玻耳兹曼定律(M B (T )=σT 4 ,即黑体的辐出度与其热力学温度的四次方成正比 ,其中σ=5.6705×10-8 W•m -2 • K -4 称为斯特藩—玻耳兹曼常数);另一个是维恩位移定律(λm T=b,即黑体单色辐出度的最大值对应的波长λm 与其绝对温度T 成反比,其中b=2.8978×10-3m •K 为与温度无关的常数).这两个定律在现代科学技术中有广泛的应用.通常用于测量高温物体(如冶炼炉、钢水、太阳或其他发光体等)温度的光测高温法就是在这两个定律的基础上建立起来的,同时,这两个定律也是遥感技术和红外跟踪技术的理论依据.从理论上导出绝对黑体单色辐出度与波长和温度的函数关系,即M Bλ=f(λ, T) ,是19世纪末期理论物理学面临的重大课题.维恩(W.Wien,1864—1928年)假定带电谐振子的能量按频率的分布类似于麦克斯韦速率分布率,然后用经典统计物理学方法导出了黑体辐射的下述公式T c B e c T M λ-λλ=/)(251 (15.3) 其中 和 是两个由实验确定的参数.上式称为维恩公式.维恩公式只是在短波波段与实验曲线相符,而在长波波段明显偏离实验曲线,如图15.2所示.瑞利(J.W.S.Rayleigh,1842—1919年)和金斯(J.H.Jeans,1877—1946年)根据经典电动力学和经典统计物理学导出了另一个力图反映绝对黑体单色辐出度与波长和温度关系的函数 42λπ=λckT T M B )( (15.4) 式中c 是真空中的光速,k 是玻耳兹曼常数.上式称为瑞利—金斯公式.该公式在长波波段与实验相符,但在短波波段与实验曲线有明显差异,如图15.2所示.这在物理学史上曾称为“紫外灾难”.234167895οοοοοοοοοοοοοο瑞利—金斯线 维恩线 普朗克线 能量密度 m/μ波长图15.2二、普朗克的量子假设1900年普朗克(M.Planck,1858—1947年)在综合了维恩公式和瑞利—金斯公式各自的成功之处以后,得到黑体的单色辐出度为)()(/11252-λπ=λλkT hc B e hc T M (15.5) 这就是普朗克公式,式中h 为普朗克常数,1986年的推荐值为 h=6.6260755×10-34 J ·s.普朗克公式与实验结果的惊人符合预示了其中包含着深刻的物理思想.普朗克指出,如果作下述假定,就可以从理论上导出他的黑体辐射公式:物体若发射或吸收频率为ν的电磁辐射,只能以ε=hν为单位进行,这个最小能量单位就是能量子,物体所发射或吸收的电磁辐射能量总是这个能量子的整数倍,即),,,(Λ321=ν=ε=n nh n E (15.6)普朗克的能量子思想是与经典物理学理论不相容的,也正是这一新思想,使物理学发生了划时代的变化,宣告了量子物理的诞生.普朗克也因此荣获1918年的诺贝尔物理学奖.作业(P224):23§15.2 光电效应与爱因斯坦的光量子假设普朗克的量子假设提出后的最初几年中,并未受到人们的重视,甚至普朗克本人也总是试图回到经典物理的轨道上去.最早认识普朗克假设重要意义的是爱因斯坦,他在1905年发展了普朗克的思想,提出了光子假设,成功的解释了光电效应的实验规律.一、光电效应的实验规律金属在光的照射下,有电子从表面逸出,这种现象称为光电效应.光电效应中逸出金属表面的电子称为光电子.光电子在电场的作用下所形成的电流叫光电流.研究光电效应的实验装置如图15.3所示.在一个抽空的玻璃泡内装有金属电极K(阴极)和A(阳极),当用适当频率的光从石英窗口射入照在阴极K 上时,便有光电子自其表面逸出,经电场加速后为阳极A 所吸收,形成光电流.改变电位差U AK ,测得光电流 i ,可得光电效应的伏安特性曲线,如图15.4所示.实验研究表明,光电效应有如下规律:1)阴极K 在单位时间内所发射的光电子数与照射光的强度成正比.从图15.4可以看出,光电流i 开始时随 增大而增大,而后就趋于一个饱和值 ,它与单位时间内从阴极K 发射的光子数成正比.所以单位时间内从阴极K 发射的光电子数与照射光强成正比.2)存在截止频率.实验表明,对一定的金属阴极,当照射光频率小于某个最小值i s 时,不管光强多大,都没有光电子逸出,这个最小频率v 0称为该种金属的光电效应截止频率,也叫红限,对应的波长0λ称为截止波长.每一种金属都有自己的红限.3)光电子的初动能与照射光的强度无关,而与其频率成线性关系.在保持光照射不变的情况下,改变电位差U AK ,发现当U AK =0时,仍有光电流.这显然是因为光电子逸出时就具有一定的初动能.改变电位差极性,使U AK <0 ,当反向电位差增大到一定值时,光电流才降为零,如图15.4所示.此时反向电位差的绝对值称为遏止电压,用U a 表示.不难看出,遏止电压与光电子的初动能间有如下关系a eU m =υ2021 (15.7) 式中m 和e 分别是电子的静质量和电量, 0υ是光电子逸出金属表面的最大速率. 实验还表明,遏止电压U a 与光强I 无关,而与照射光的频率v 成线性关系,即 0V K U a -ν= (15.8)式中K 和V 0都是正值,其中K 为普适恒量,对一切金属材料都是相同的,而V 0=Kv 0对同一种金属为一恒量,但对于不同的金属具有不同的数值.将式(15.8)代入式(15.7)得 )(002021ν-ν=-ν=υeK eV eK m (15.9) 上式表明,光电子的初动能与入射光的频率成线性关系,与入射光强无关.4)光电子是即时发射的,滞后时间不超过10-9s.实验表明,只要入射光的频率大于该金属的红限,当光照射这种金属表面时,几乎立即产生光电子,而无论光强多大.二、爱因斯坦光子假设和光电效应方程对于上述实验事实,经典物理学理论无法解释.按照光的波动理论,光波的能量由光强决定,在光照射下,束缚在金属内的“自由电子”将从入射光波中吸收能量而逸出表面,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能与光强无关;另外,如果光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应该存在红限,而且,光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需要的时间就越长,这都与光电效应的实验事实相矛盾.由此可见,光的波动理论无法解释光电效应的实验规律.为了克服光的波动理论所遇到的困难,从理论上解释光电效应,爱因斯坦发展了普朗克能量子的假设,于1905年提出了如下的光子假设:一束光就是一束以光速运动的粒子流,这些粒子称为光量子(简称光子);频率为v 的光子所具有的能量为hv ,它不能再分割,而只能整个的被吸收或产生出来.按照光子理论,当频率为v 的光照射金属表面时,金属中的电子将吸收光子,获得 的能量,此能量的一部分用于电子逸出金属表面所需要的功(此功称为逸出功A);另一部分则转变为逸出电子的初动能.据能量守恒定律有(15.10) 这就是爱因斯坦的光电效应方程.)(002021ν-ν=-ν=υ↓eK eV eK m 比较 00eK νeV A eK,h === (15.11)由实验可测量K 和V 0,算出普朗克常数h 和逸出功A,进而还可求出金属的红限v 0.按照光子理论,照射光的光强就是单位时间到达被照物单位垂直表面积的能量,它是由单位时间到达单位垂直面积的光子数N 决定的.因此光强越大,光子数越多,逸出的光电子数就越多.所以饱和光电流与光强成正比;由于每一个电子从光波中得到的能量只与单个光子的能量hv 有关,所以光电子的初动能与入射光的频率成线性关系,与光强无关.当光子的能量hv 小于逸出功A,即入射光的频率v 小于红限v 0时,电子就不能从金属表面逸出;另外,光子与电子作用时,光子一次性将能量 全部传给电子,因而不需要时间积累,即光电效应是瞬时的.这样光子理论便成功地解释了光电效应的实验规律,爱因斯坦也因此获得1921年的诺贝尔物理学奖.例题15.1 用波长为400nm 的紫光去照射某种金属,观察到光电效应,同时测得遏止电压为1.24V ,试求该金属的红限和逸出功.解:由光电效应方程得逸出功为1.87eV J 102.9919=⨯=-=-=-020eU λc h m υ21h νA 根据红限与逸出功的关系,得红限为Hz 1051410626610992143419⨯=⨯⨯==--...h A ν0 三、光(电磁波)的波粒二象性一个理论若被实验证实,它必定具有一定的正确性.光子论被黑体辐射、光电效应以及其他实验所证实,说明它具有一定的正确性.而早已被大量实验证实了的光的波动论以及其他经典物理理论的正确性,也是无可非议的.因此,在对光的本性的解释上,不应该在光子论和波动论之间进行取舍,而应该把它们同样地看作是光的本性的不同侧面的描述.这就是说,光具有波和粒子这两方面的特性,这称为光的波粒二象性.既是粒子,也是波,这在人们的经典观念中是很难接受的.实际上,光已不是经典意义下的波,也不是经典意义下的粒子,而是波和粒子的统一.光是由具有一定能量、动量和质量的粒子组成的,在它们运动的过程中,在空间某处发现它们的几率却遵从波动的规律.描述光的粒子特征的能量与描述其波动特征的频率之间的关系为(15.12)由狭义相对论能量—动量关系并考虑光子的静质量为零得光子动量与波长的关系为====Ph Pc/h c E/h c νc λ (15.13) 它们通过普朗克常数紧密联系起来.通过质能关系还可得光子的质量为c P ch c E m 22=ν==作业(P224):26§15.3 氢原子光谱与玻尔的量子论经典物理学不仅在说明电磁辐射与物质相互作用方面遇到了如前所述的困难,而且在说明原子光谱的线状结构及原子本身的稳定性方面也遇到了不可克服的困难.丹麦物理学家玻尔发展了普朗克的量子假设和爱因斯坦的光子假设等,创立了关于氢原子结构的半经典量子理论,相当成功的说明了氢原子光谱的实验规律.一、氢原子光谱的实验规律实验发现,各种元素的原子光谱都由分立的谱线所组成,并且谱线的分布具有确定的规律.氢原子是最简单的原子,其光谱也是最简单的.对氢原子光谱的研究是进一步学习原子、分子光谱的基础,而后者在研究原子、分子结构及物质分析等方面有重要的意义.在可见光范围内容易观察到氢原子光谱的四条谱线,这四条谱线分别用H α、H β、H γ和H δ表示,如图15.5所示.1885年巴耳末(J.JBalmer,1825—1898)发现可以用简单的整数关系表示这四条谱线的波长6543,,,=-=n ,2n n B λ222(15.14) 式中B 是常数,其值等于364.57nm.后来实验上还观察到相当于n 为其他正整数的谱线,这些谱线连同上面的四条谱线,统称为氢原子的巴耳末系.光谱学上经常用波数 表示光谱线,它被定义为波长的倒数,即λ=ν1~(15.15) 引入波数后,式(15.14)可改写为Λ,,,),(~54312122=-=n n R ν (15.16) 式中172m 100967761B 2R -⨯==./,称为里德伯(J.R.Rydberg,1854—1919)常数.在氢原子光谱中,除了可见光范围的巴耳末线系以外,在紫外区、红外区和远红外区分别有赖曼(T.Lyman)系、帕邢(F.Paschen)系、布拉开(F.S.Brackett)系和普丰德(A.H.Pfund)系.这些线系中谱线的波数也都可以用与式(15.16)相似的形式表示.将其综合起来可表为)(~2211n k R T(n)T(k)νkn -=-= (15.17) 式中k 和n 取一系列有顺序的正整数,k 取1、2、3、4、5分别对应于赖曼线系、巴耳末线系、帕邢线系、布拉开线系和普丰德线系;一旦k 值取定后,n 将从k+1 开始取k+1, k+2, k+3等分别代表同一线系中的不同谱线. T(n)=R/n 2称为氢的光谱项.式(15.17)称为里德伯—里兹并合原理.实验表明,并合原理不仅适用于氢原子光谱,也适用于其他元素的原子光谱,只是光谱项的表示式要复杂一些.并合原理所表示的原子光谱的规律性,是原子结构性质的反映,但经典物理学理论无法予以解释.按照原子的有核模型,根据经典电磁理论,绕核运动的电子将辐射与其运动频率相同的电磁波,因而原子系统的能量将逐渐减少.随着能量的减少,电子运动轨道半径将不断减小;与此同时,电子运动的频率(因而辐射频率)将连续增大.因此原子光谱应是连续的带状光谱,并且最终电子将落到原子核上,因此不可能存在稳定的原子.这些结论显然与实验事实相矛盾,从而表明依据经典理论无法说明原子光谱规律等.二、玻尔的量子论玻尔(N.H.D.Bohr,1885—1962)把卢瑟福关于原子的有核模型、普朗克量子假设、里德伯—里兹并合原理等结合起来,于1913年创立了氢原子结构的半经典量子理论,使人们对于原子结构的认识向前推进了一大步.玻尔理论的基本假设是1)原子只能处在一系列具有不连续能量的稳定状态,简称定态,相应于定态,核外电子在一系列不连续的稳定圆轨道上运动,但并不辐射电磁波;2)作定态轨道运动的电子的角动量L 的数值只能是)/(π2h η的整数倍,即(15.18)这称为角动量量子化条件,n 称为主量子数,m 是电子的质量;3)当原子从一个能量为E k 的定态跃迁到另一个能量为E n 的定态时,会发射或吸收一个频率为v kn 的光子(15.19) 上式称为辐射频率公式, v kn >0表示向外辐射光子, v kn <0表示吸收光子.玻尔还认为,电子在半径为r 的定态圆轨道上以速率υ绕核作圆周运动时,向心力就是库仑力,因而有2202re πεr υm ⋅=41 (15.20) 由式(15.18)和式(15.20)消去υ,即可得原子处于第n 个定态时电子轨道半径为),,,()Λ321(1===n r n πme h εn r 22202n (15.21)对应于n=1的轨道半径r 1是氢原子的最小轨道半径,称为玻尔半径,常用a 0表示,其值为m 10291772495111-⨯===.2200πme h εr a (15.22) 这个数值与用其他方法得到的数值相符合.氢原子的能量应等于电子的动能与势能之和,即re πεr e πεm υE 20202⋅-=⋅-=814121 处在量子数为n 的定态时,能量为),,,()(Λ321n 81812n n =-=⋅-=220420h εme n r e πεE (15.23)由此可见,由于电子轨道角动量不能连续变化,氢原子的能量也只能取一系列不连续的值,这称为能量量子化,这种量子化的能量值称为原子的能级.式(15.23)是氢原子能级公式.通常氢原子处于能量最低的状态,这个状态称为基态,对应于主量子数n=1, E 1=-13.6 eV . n>1的各个稳定状态的能量均大于基态的能量,称为激发态,或受激态.处于激发态的原子会自动地跃迁到能量较低的激发态或基态,同时释放出一个能量等于两个状态能量差的光子,这就是原子发光的原理.随着量子数n 的增大,能量E n 也增大,能量间隔减小. 当n →∞时,rn →∞, E n →0 ,能级趋于连续,原子趋于电离. E > 0时,原子处于电离状态,能量可连续变化.图15.6和图15.7分别是氢原子处于各定态的电子轨道图和氢原子的能级图.使原子或分子电离所需要的能量称为电离能.根据玻尔理论算出的氢原子基态能量值与实验测得的氢原子基态电离能值13.6eV 相符.下面用玻尔理论来研究氢原子光谱的规律.按照玻尔假设,当原子从较高能态E n 向较低能态E k (n>k)跃迁时,发射一个光子,其频率和波数为1n =2n =3n =4n =1r r =14r r =19r r =116r r =赖曼系巴耳末系帕邢系 图15.6 氢原子定态的轨道图hE E νk n nk -= (15.24) )~k n nk nk nk E E hcc νλν-===(11 (15.25) 将能量表示式(15.23)代入即可得氢原子光谱的波数公式)()(~k n nk c h εme ν0nk >-=22324118 (15.26) 显然式(15.26)与氢原子光谱的经验公式(15.17)是一致的,同时可得里德伯常数的理论值为173204m 10097373118-⨯=ε=.ch me R H 理论 (15.27) 这也与实验值符合得很好.这表示玻尔理论在解释氢原子光谱的规律性方面是十分成功的,同时也说明这个理论在一定程度上反映了原子内部的运动规律.三、玻尔理论的缺陷和意义玻尔的半经典量子理论在说明光谱线规律方面取得了前所未有的成功.但是它也有很大的局限性,如只能计算氢原子和类氢离子的光谱线,对其他稍微复杂的原子就无能为力了;另外,它完全没有涉及谱线强度、宽度及偏振性等.从理论体系上讲,这个理论的根本问题在于它以经典理论为基础,但又生硬的加上与经典理论不相容的若干重要假设,如定态不辐射和量子化条件等,因此它远不是一个完善的理论.但是玻尔的理论第一次使光谱实验得到了理论上的说明,第一次指出经典理论不能完全适用于原子内部运动过程,揭示出微观体系特有的量子化规律.因此它是原子物理发展史上一个重要的里程碑,对于以后建立量子力学理论起到了巨大的推动作用.另外,玻尔理论在一些基本概念上,如“定态”、“能级”、“能级跃迁决定辐射频率”等在量子力学中仍是非常重要的基本概念,虽然另有一些概念,如轨道等已被证实对微观粒子不再适用.作业(P224):27§15.4 微观粒子的波—粒二象性 不确定关系一、微观粒子的波—粒二象性1923~1924年间,德布罗意仔细地分析了光的微粒说和波动说的历史,深入的研究了光子假设.他认为,19世纪以来,在光的研究中人们只重视了光的波动性,而忽视了它的粒子性.但在实物粒子的研究中却又发生了相反的情况,只重视实物粒子的粒子性,而忽略了它的波动性.在这种思想的支配下,德布罗意大胆的提出了物质的波—粒二象性假设.他认为,质量为m,速度为υ的自由粒子,一方面可用能量E 和动量p 来描述它的粒子性;另一方面还可用频率v 和波长λ来描述它的波动性.它们之间的关系与光的波—粒二相性所描述的关系一样,即h/p λE/h,ν== (15.28)式(15.28)叫德布罗意公式.这种和实物粒子相联系的波称为德布罗意波,或叫物质波.德布罗意因这一开创性工作而获得了1929年的诺贝尔物理学奖.由于自由粒子的能量和动量均为常量,所以与自由粒子相联系的波的频率和波长均不变,这说明与自由粒子相联系的德布罗意波可用平面波描述.对于静质量为m 0,速度为υ的实物粒子,其德布罗意波长为220/c υυm h p h λ-==1 (15.30) 德布罗意关于物质波的假设,1927年首先由戴维孙(C.J.Davisson,1881—1958)和革末(L.H.Germer,1896—1971)通过电子衍射实验所证实.戴维孙和革末作电子束在晶体表面散射实验时,观察到了和X 射线在晶体表面衍射相似的电子衍射现象,从而证实了电子具有波动性.当时的实验中,采用50KV 的电压加速电子,波长约为0.005nm.由于波长非常短,实验难度很高,因此这一实验是极其卓越的.后来证实了不仅电子具有波动性,其他微观粒子,如原子、质子和中子等也都具有波动性.微观粒子的波动性在现代科学技术上已得到广泛的应用,利用电子的波动性,已制造出了高分辨率的电子显微镜;利用中子的波动性,制成了中子摄谱仪.既然微观粒子具有波动性,原子中绕核运动的电子无疑也具有波动性.不过处于原子定态中的电子的波动形式,与戴维孙和革末实验中由小孔衍射的电子束的波动形式是不同的,后者可认为是行波,而前者则应看为驻波.处于定态中的电子形成驻波的情形,与端点固定的振动弦线形成驻波的情形是相似的.原子中电子驻波可如图15.8形象地表示.由图可见,当电子波在离开原子核为r 的圆周上形成驻波时,圆周长必定等于电子波长的整数倍,即),,,(Λ3212==n n λπr (15.31)利用德布罗意关系便可得电子的轨道角动量应满足下面的关系),,,(Λη3212====n n λh πλn rP L (15.32) 这正是玻尔作为假设引入的量子化条件,在这里,考虑了微观粒子的波动性就自然的得出了量子化条件.例题15.2 计算经过电势差U=150V 和U=104V 加速的电子的德布罗意波长(在U<104V 时,可不考虑相对论效应).解:忽略相对论效应,经过电势差U 加速后,电子的动能和速率分别为202,21m eU eU υm =υ= 式中m 0为电子的静止质量.利用德布罗意关系可得德布罗意波长nm 11.225m 1102512121000UU U e m h υm h λ=⨯=⋅==-. 式中U 的单位是伏特. 1nm 0150V U 11.=λ→=,0.0123nm V 10U 242=λ→=由此可见,在这样的电压下,电子的德布罗意波长与X 射线的波长相近。

大学物理15量子力学基础4

大学物理15量子力学基础4


l 0 ml 0 l 1
1 ms± 1个值 2 1 1 ml { 0 3个值 ms± 2 1
n=1 的电子,最多有 2 个 n=2 的电子,最多有 8 个
5个值 ms± 1 n=3 的电子,最多有 18 个 l 2 ml 0 2 1 2 n=n 的电子,最多有 ? 个 l n 1 ml { (2l+1)个值 ms± 1 2
―You are both young enough to allow yourselves some foolishness!‖
总结前面的讨论: 原子中电子的状态应由四个量子数来决定
me 4 1 En 2 2 2 8 0 h n
n
——主量子数
L l ( l 1)
LZ m
l 0, 1, 2, 3, 4, 5 s, p, d , f , g, h
44
3)电子的波函数和几率分布: 2 me r 2 d ( r 2 dR ) e2 )R R (E 2 dr dr 4 o r sin d (sin d ) sin2 m2 d d
1
LS
51 自旋角动量无经典对应,是一种相对论效应。
但是,经典物理学无法理解电子有内部结构。 自旋运动是一种内部“固有的”运动, 其本质目前还不清楚。
(用陀螺运动图象正象轨道运动图象一样 是借用了宏观图象,是很不确切的)
关于 乌伦贝克、哥德斯密特。 (泡利、洛仑兹 等的反对) (埃伦菲斯特的支持)
l l
电子自旋波函数 53
s
七、原子中电子壳层结构
在多电子的原子中四个量子数如何确定? 1.泡利不相容原理: 在原子系统内不可能有两个或两个以上的 电子具有相同的状态. 即:电子不可能有完全相同的四个量子数.

15 量子物理基础—康普顿效应及光子理论的解释

15 量子物理基础—康普顿效应及光子理论的解释

4.5 1023 kgms 1
h/

tan (h ) /( h 0 ) 0
0.20 arctan 42.3 0.22
视为黑体,则 1)太阳表面的温度; 2)太阳的辐射功率; 3)由于热辐射而使太阳质量耗损1%经历的时间。 (已知太阳半径 RS=6.96×108m, 质量Ms=2 ×1030kg)
解:
1)根据维恩位移定律 mT b
T
b m

2.897103 m K 49010 9 m
5.9 103 K
大学物理 第三次修订本
15
第15章 量子物理基础
实验规律
(1) 对于原子量较小的散射物质,康普顿散射 较强,反之较弱。 (2)波长的改变量 -0 随散射角θ的增加而增加。
(3)对不同的散射物质,只要在同一个散射角下, 波长的改变量 - 0 都相同。
大学物理 第三次修订本
16
第15章 量子物理基础
(3)电子的初速度
19
第15章 量子物理基础 例2 钾的光电效应红限为0= 6.210-7m。求(1)电子 的逸出功;(2)在波长为3.0 10-7m的紫外线照射下, 遏止电压为多少?(3)电子的初速度为多少? 解 (1)逸出功
2eU a 2 1.6 10 2.14 vm ms 1 8.67 105 ms 1 11 m 9.11031 大学物理 第三次修订本
0.01M s c 11 t 10 年 P
大学物理 第三次修订本
5
2
第15章 量子物理基础 1、光电效应的实验
饱和电流∝光强度I
存在截止频率: > 0
瞬时性
1 2 mVm ekν eU 0 最大初动能与入射频率成线性关系: 2

罗益民大学物理之15量子物理基础gPPT课件

罗益民大学物理之15量子物理基础gPPT课件
1927 年汤姆逊(G·P·Thomson)以600伏慢电子 (=0.5Å)射向铝箔,也得到了像X射线衍射一 样的衍射,再次发现了电子的波动性。
1937年戴维逊与GP汤姆逊共获当年诺贝尔奖 (G·P·Thomson为电子发现人J·J·Thmson的儿子)
1937诺贝尔物理学奖
C.J.戴维孙 通过实验发现晶体 对电子的衍射作用
1929诺贝尔物理学奖
L.V.德布罗意 电子波动性的理论 研究
2. 对物质波的描述
德布罗意提出了物质波的假设: 一切实物粒子(如电子、质子、中子)都与光子
一样, 具有波粒二象性。 运动的实物粒子的能量E、动量p与它相关联的
波的频率 和波长之间满足如下关系:
Em2ch
p m h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
练习:设光子与电子的德布罗意波长均为λ,
试比较其动量和能量大小是否相同。
h
p光
pe
h
p光 pe

E光
h
hc
Ee mc2
mvc v
2
pc 2 v
c v
hc
c v E光
Ee E光
思考: E ehh u u ch c u cE 光
E eE 光 uc?
m0值:
U
或 12 .3 Å
U
当U=100伏
12.3 U
1.23Å
h 2em0U
二、德布罗意波的实验证明 1.戴维孙 —— 革末实验 1923年 : 用电子散射实验研究镍原子结构
1925年 : 偶然事件后实验曲线反常,出现若干 峰值, 当时未和衍射联系起来。 1926年: 了解德布罗意物质波假设

大学物理量子物理基础(stone)

大学物理量子物理基础(stone)

金属来说,只有当入射光的
频率大于某一频率υo时,电 子才能从金属表面逸出,电 路中才有光电流,这个频率 υo叫做截止频率——红限.
0
Ua
红限频率
(3).线性关系:用不同频率的光照射金属K的表面时, 只要入射光的频率大于截止频率,遏止电势差与入射 光频率具有线性关系,即最大初动能与入射光的频率 成正比而与入射光的光强无关.
普朗克(Max Karl Ernst Ludwig Planck, 1858―1947)
德国物理学家,量子物理学的开创者 和奠基人。 普朗克的伟大成就,就是创立了量子理论, 1900年12月14日他在德国物理学会上,宣 读了以《关于正常光谱中能量分布定律的 理论》为题的论文,提出了能量的量子化 假设,并导出了黑体辐射的能量分布公式。 这是物理学史上的一次巨大变革。从此结 束了经典物理学一统天下的局面。劳厄称 这一天为“量子论的诞生日”。
1918年普朗克由于创立了量子理论而获 得了诺贝尔奖金。
1.普朗克公式
2hc2 1
M (T) 5
hc
e kT 1
2.普朗克假说
•谐振子的能量可取值只能是某一最小能量单元ε 的整 数倍,即:E=nε , n=1,2,3,....ε叫能量子,n为量子数, 它只取正整数—能量量子化. •对于频率为υ的谐振子,最小能量为:ε=hυ 其中h=6.62610-34 J·s为普朗克常数 结论:谐振子吸收或辐射的能量只能是ε=hυ的整数倍.
里兹组合原理:任一条谱线的波数都等于该元素所固有 的许多光谱项中的两项之差,这是里兹在1908年发现的.
~ 1 T( k ) T( n )
T(k) R k2
T (n)
R n2
R=1.096776 107m1

大学物理二习题库1

大学物理二习题库1

⼤学物理⼆习题库1第15章量⼦物理⼀、选择题1. 关于普朗克量⼦假说,下列表述正确的是 [ ] (A) 空腔振⼦的能量是⾮量⼦化的(B) 振⼦发射或吸收能量是量⼦化的 (C) 辐射的能量等于振⼦的能量 (D) 各振⼦具有相同的能量 2. 关于光电效应, 下列说法中正确的是[ ] (A) 任何波长的可见光照射到任何⾦属表⾯都能产⽣光电效应(B) 对同⼀⾦属如有光电⼦产⽣, 则⼊射光的频率不同光电⼦的初动能不同 (C) 对同⼀⾦属由于⼊射光的波长不同, 则单位体积内产⽣的光电⼦数⽬不同 (D) 对同⼀⾦属若⼊射光的频率不变⽽强度增加⼀倍, 则饱和光电流减少⼀半 3. 当⼀束光照射某⾦属时,未出现光电效应.欲使该使⾦属产⽣光电效应, 则应 [ ] (A) 尽可能增⼤⼊射光强度(B) 尽可能延长照射时间 (C) 选⽤波长更短的⼊射光(D) 选⽤频率更⼩的⼊射光 4. ⽤相同的两束紫光分别照射到两种不同的⾦属表⾯上时, 产⽣光电效应, 则 [ ] (A) 这两束光⼦的能量不相同(B) 逸出电⼦的初动能不相同 (C) 在单位时间内逸出的电⼦数相同(D) 遏⽌电压相同5. 在光电效应中, 光电⼦的最⼤初动能与⼊射光的 [ ] (A) 频率成反⽐关系(B) 强度成反⽐关系 (C) 频率成线性关系 (D) 强度成线性关系6. 某⾦属⽤绿光照射时有光电⼦逸出; 若改⽤强度相同的紫光照射, 则逸出的光电⼦的数量[ ] (A) 增多,最⼤初动能减⼩(B) 减少,最⼤初动能增⼤ (C) 增多,最⼤初动能不变(D) 不变,最⼤初动能增⼤7. 钾⾦属表⾯被蓝光照射时有光电⼦逸出, 若增⼤蓝光光强, 则 [ ] (A) 单位时间内逸出的光电⼦数增加(B) 逸出的光电⼦动能增⼤ (C) 光电效应的红限频率增⾼(D) 发射光电⼦所需的时间增长8. 在光电效应实验中, 如果保持⼊射光的频率不变(超过红限)⽽增加光强, 则随之增加的是[ ] (A) 遏⽌电势差(B) 饱和光电流 (C) 光电⼦的最⼤初动能(D) 光电⼦的能量T15-1-5图9. 当单⾊光照射到⾦属表⾯产⽣光电效应时, 已知此⾦属的逸出电势为U 0, 则这种单⾊光的波长λ⾄少应为 [ ] (A) 0eU hc ≤λ (B) 0eU hc ≥λ (C) hceU 0≤λ(D) hceU 0≥λ10. 在光电效应实验中, 如果保持⼊射光的强度不变⽽增⼤⼊射光的频率, 则不可能增加的是[ ] (A) 遏⽌电压 (B) 饱和光电流(C) 光电⼦的最⼤初动能 (D) 光⼦的能量 11. 光电效应中的红限频率依赖于[ ] (A) ⼊射光的强度(B) ⼊射光的频率 (C) ⼊射光的颜⾊(D) ⾦属的逸出功12. ⽤波长为200nm 的紫外光照射⾦属表⾯时, 光电⼦的最⼤能量为1.0 eV .如果改⽤100nm 紫外光照射时, 光电⼦最⼤动能约为 [ ] (A) 0.5 eV (B) 2 eV (C) 4 eV (D) 以上均⾮ 13. 以下⼀些材料的功函数(逸出功)为: 铍 --- 3.9 eV , 钯 --- 5.0 eV , 钨 --- 4.5 eV , 铯 --- 1.9 eV现要制造能在可见光(频率范围为3.9?1014~ 7.5?1014 Hz)下⼯作的光电管, 在这些材料中应选[ ] (A) 钨(B) 钯(C) 铯 (D) 铍14. 以光电⼦的最⼤初动能221mv E =为纵坐标, ⼊射光⼦的频率ν为横坐标, 可测得E 、ν的关系是⼀直线.该直线的斜率以及该直线与横轴的截距分别是 [ ] (A) 红限频率ν 0和遏⽌电压U 0(B) 普朗克常数h 与红限频率ν0 (C) 普朗克常数h 与遏⽌电压U 0(D) 斜率⽆意义, 截距是红限频率ν015. ⽤频率为ν的单⾊光照射某种⾦属时, 逸出光电⼦的最⼤动能为E k ; 若改⽤频率为2ν的单⾊光照射此种⾦属时, 则逸出光电⼦的最⼤动能为: [ ] (A) 2E k(B) 2h ν - E k(C) h ν - E k(D) h ν + E k16. 关于光电效应,下列说法中唯⼀正确的是[ ] (A) ⾦属的逸出功越⼤, 产⽣光电⼦所需的时间越长 (B) ⾦属的逸出功越⼤, 光电效应的红限频率越⾼ (C) ⼊射光强度越⼤, 光电⼦的初动能越⼤ (D) ⼊射光强度越⼤, 遏⽌电压越⾼T 15-1-14图17. ⽤频率为ν1的单⾊光照射某⾦属时, 所获得的饱和光电流较⽤频率为ν2的单⾊光照射时所获得的饱和光电流⼤, 则ν1、ν2的数量关系是 [ ] (A) ν1>ν2(B) ν1 = ν2 (C) ν1<ν2(D) 难以判别的18. 当加在光电管两极的电压⾜够⾼时, 光电流会达到⼀个稳定值, 这个稳定值叫饱和电流.要使饱和电流增⼤, 需增⼤照射光的 [ ] (A) 波长(B) 强度(C) 频率(D) 照射时间19. ⽤强度为I 、波长为λ的X 射线(伦琴射线)分别照射Li(Z = 3)和Fe ( Z = 26). 若在同⼀散射⾓下测得康普顿散射的X 射线波长分别为λ Li 和λ Fe ( λ Li 、λ Fe >λ), 它们对应的强度分别为I Li 和I Fe ,则有关系 [ ] (A) λ Li > λ Fe , I Li < I Fe(B) λ Li = λ Fe , I Li = I Fe (C) λ Li = λ Fe , I Li > I Fe(D) λ Li < λ Fe , I Li > I Fe20. 在以下过程中, 可能观察到康普顿效应的过程是 [ ] (A) 电⼦穿过原⼦核(B) X 射线射⼊⽯墨 (C) 电⼦在介质中⾼速飞⾏(D) α粒⼦射⼊⾦属中21. 为了观察康普顿效应, ⼊射光可⽤[ ] (A) 可见光 (B) 红外光 (C) X 射线 (D) 宇宙射线22. 根据光⼦理论νh E =, λhp =.则光的速度为 [ ] (A)Ep (B)pE(C) Ep(D)22pE23. 在康普顿散射中, 若散射光⼦与原来⼊射光⼦⽅向成θ⾓, 当θ等于什么时, 散射光⼦的频率减少最多? [ ] (A) 0=θ(B) 2π=θ (C) π=θ (D) 4π=θ24. 康普顿散射实验中, 在与⼊射⽅向成120? ⾓的⽅向上散射光⼦的波长λ'与⼊射光波长之差为其中cm h e c =λ[ ] (A) Cλ5.1(B) C λ5.0(C) C λ5.1- (D) C λ0.225. 某⾦属产⽣光电效应的红限波长为λ0.今以波长为λ (λ<λ0)的单⾊光照射该⾦属, ⾦属释放出的电⼦(质量为m e )的动量⼤⼩为 [ ] (A)200m hc e ()λλλλ+ (B)200m hc e ()λλλλ-(C)20m hce λ(D) h / λU (A)U(B)U(C)U(D)26. ⽤X射线照射物质时,可以观察到康普顿效应,即在偏离⼊射光的各个⽅向上观察到散射光,这种散射光中[ ] (A) 只包含有与⼊射光波长相同的成分(B) 既有与⼊射光波长相同的成份,也有波长变长的成分,且波长的变化量只与散射光的⽅向有关,与散射物质⽆关(C) 既有与⼊射光波长相同的成分,也有波长变长的成分和波长变短的成分,波长的变化量既与散射⽅向有关,也与散射物质有关(D) 只包含着波长变化的成分,其波长的变化量只与散射物质有关,与散射⽅向⽆关27. 光电效应和康普顿散射都包含有电⼦与光⼦的相互作⽤, 下⾯表述中正确的是[ ] (A) 相互作⽤都是电⼦与光⼦的弹性碰撞(B) 前者是完全⾮弹性碰撞, 后者是弹性碰撞(C) 两者都是完全⾮弹性碰撞(D) 前者是弹性碰撞⽽后者是完全⾮弹性碰撞28. 光⼦与⾃由电⼦发⽣相互作⽤, 可能产⽣的结果是[ ] (A) 光电效应和康普顿效应均不可能发⽣(B) 电⼦可以完全吸收光⼦的能量成为光电⼦逸出, 因⽽未违反能量守恒定律(C) 电⼦不可能完全吸收光⼦的能量, ⽽是与光⼦弹性碰撞, 引起康普顿散射(D) 根椐两者碰撞夹⾓来决定是否完全吸收光⼦能量, 光电效应和康普顿效应均可能发⽣29. 光电效应和康普顿效应都包含电⼦与光⼦的相互作⽤,对此,在以下⼏种理解中,正确的是[ ] (A) 两种效应中电⼦与光⼦组成的系统都服从动量守恒和能量守恒定律(B) 两种效应都相当于电⼦与光⼦的弹性碰撞过程(C) 两种效应都属于电⼦吸收光⼦的过程(D) 光电效应是吸收光⼦的过程,⽽康普顿效应则是光⼦和电⼦的弹性碰撞过程30. 以⼀定频率的单⾊光照射在某种⾦属上,测出其光电流曲线在图中⽤实线表⽰.然后保持光的频率不变,增⼤照射光的强度,测出其光电流曲线在图中⽤虚线表⽰,满⾜题意的图是[ ]31. 氢原⼦赖曼系的极限波长接近于[已知波数1112λ=-R n(),R ≈1.097?107 m -1][ ] (A) 45.6 nm(B) 91.2 nm(C) 121.6 nm(D) 364.6 nm32. 氢原⼦光谱的赖曼系位于 [ ] (A) 远红外区(B) 红外区(C) 可见光区(D) 紫外区33. 氢原⼦分离光谱的最短波长为(分母数字的单位为eV) [ ] (A)2.10hc (B)6.13hc (C)2.27hc (D)4.3hc34. 根据玻尔氢原⼦理论,当⼤量氢原⼦处于n = 3的激发态时,原⼦跃迁将发出 [ ] (A) ⼀种波长的光(B) 两种波长的光 (C) 三种波长的光(D) 各种波长的光35. 设氢原⼦被激发后电⼦处在第四轨道(n = 4)上运动.则观测时间内最多能看到谱线的条数为[ ] (A) 2条 (B) 4条 (C) 6条 (D) 8条36. 下列哪⼀能量的光⼦能被处在n =2的能级的氢原⼦吸收? [ ] (A) 1.50 eV(B) 1.89 eV(C) 2.16 eV(D) 2.41 eV37. 在氢原⼦中, 电⼦从n = 2的轨道上电离时所需的最⼩能量是 [ ] (A) 3.4 eV(B) 13.6 eV(C) 10.2 eV(D) 6.8 eV38. 在氢原⼦中, 随着主量⼦数n 的增加, 电⼦的轨道半径将 [ ] (A) 等间距增⼤(B) 变⼩ (C) 不变(D)⾮等间距增⼤39. 按照玻尔理论, 电⼦绕核做圆周运动时,电⼦轨道⾓动量的可能值为 [ ] (A) nh(B)π2nh(C) nh π2(D) 任意值40. 根据玻尔理论, 氢原⼦系统的总能量就是 [ ] (A) 原⼦系统的静电势能之总和(B) 电⼦运动动能之总和(C) 电⼦的静电势能与运动动能之总和(D) 原⼦系统的静电势能与电⼦运动动能之总和41. 原⼦从能量为E m 的状态跃迁到能量为E n 的状态时, 发出的光⼦的能量为[ ] (A) hE E n m - (B) 22mE nE mn - (C) n m E E +(D) n m E E -T 15-1-41图mE nE42. 按照玻尔氢原⼦理论,下列说法中唯⼀错误的说法是[ ] (A) 氢原⼦的总能量为负, 说明电⼦被原⼦核所束缚(B) 当电⼦绕核作加速运动时,不会向外辐射电磁能量(C) 氢原⼦系统的总能量就是氢原⼦系统的静电势能之总和(D) 氢原⼦系统的静电势能为负是因为电势能参考点选在了⽆穷远处43. 玻尔的“定态”指的是[ ] (A) 相互之间不能发⽣跃迁的状态(B) 具有唯⼀能量值的状态(C) 在任何情况下都随时间变化的状态(D) ⼀系列不连续的、具有确定能量值的稳定状态44. 实物物质的波动性表现在⼀个衍射实验中, 最早的实验名称叫[ ] (A) 戴维逊-⾰末实验(B) 弗兰克-赫芝实验(C) 迈克尔逊-莫雷实验(D) 斯忒恩-盖拉赫实验45. 戴维孙----⾰末实验中, ⽤电⼦射向晶体镍的表⾯, 该实验⽤来[ ] (A) 测定电⼦的荷质⽐(B) 表明电⼦的波动性(C) 确定光电效应的真实性(D) 观察原⼦能级的不连续性46. 量⼦⼒学中对物质世界认识的⼀次重⼤突破是什么?[ ] (A) 场也是物质(B) 物质是⽆限可分的(C) 实物物质的波粒⼆象性(D) 构成物质的基元——原⼦是有结构的47. 有⼈否定物质的粒⼦性, 只承认其波动性. 他们认为⾃由粒⼦是⼀个定域波包.这种理论的局限性可⽤哪个实验来说明? [ ] (A) 光电效应(B) 康普顿散射(C) 戴维逊-⾰末实验(D) 弗兰克-赫芝实验48. 根据德布罗意假设[ ] (A) 粒⼦具有波动性(B) 辐射不具粒⼦性, 但具有波动性(C) 辐射具有粒⼦性, 但粒⼦绝不可能有波动性(D) 波长⾮常短的辐射具有粒⼦性, 但长波辐射却不然49. 当电⼦的德布罗意波波长与光⼦的波长相同时, 它们的[ ] (A) 能量相同(B) 动量相同(C) 能量和动量都相同(D) 能量和动量都不相同50. 根据德布罗意假设, 实物物质粒⼦性与波动性的联系是[ ] (A) 不确定关系(B) 薛定谔⽅程(C) 德布罗意公式(D) 粒⼦数守恒51. 氡原⼦核放出的动能为1MeV的粒⼦的德布罗意波波长约为[ ] (A) 10-12 cm (B) 10-14 cm (C) 10-11 cm (D) 10-13 cm52. 不确定关系指的是[ ] (A) 任何物理量都不确定(B) 任何物理量之间都不能同时确定(C) 某些物理量能不能同时确定, 这取决于这些物理量之间的关系(D) 只有动量与位置、时间与能量之间不能同时确定53. 如果已知? x = 0.1 nm , ? p x 为动量的x 分量, 则动量在y 分量的不确定量最⼩是 [ ] (A) ? p x (B) 3.3?10-12 ? p x(C) 10-10? p x (D) 所给条件不能确定 54. 波函数ψ (r、t )的物理意义可表述为[ ] (A) ψ (r 、t )为t 时刻粒⼦出现在r处的概率(B) ψ (r 、t )为t 时刻粒⼦出现在r处的概率密度(C) ψ (r 、t )⽆直接意义, |ψ (r 、t )|2意为t 时刻粒⼦出现在r 处的概率(D) |ψ (r 、t )|2为t 时刻粒⼦出现在r处的概率密度 55. 根据波函数的物理意义, 它必须满⾜的标准条件是 [ ] (A) 玻尔量⼦化条件 (B) 归⼀化条件(C) 单值、连续、有限条件 (D) 宇称守恒条件 56. 下列事实中, 说明微观粒⼦运动的状态只能⽤波函数来描述的是[ ] (A) 不确定关系 (B) 微观粒⼦体积较⼩(C) 微观粒⼦的运动速度较⼩ (D) 微观粒⼦⼀般运动速度较⼤ 57. 我们不能⽤经典⼒学来描述微观粒⼦, 这是因为[ ] (A) 微观粒⼦的速度很⼩ (B) 微观粒⼦位置不确定(C) 微观粒⼦动量不确定 (D) 微观粒⼦动量和位置不能同时确定58. 由量⼦⼒学可知, 在⼀维⽆限深⽅势阱中的粒⼦可以有若⼲能态.如果势阱两边之间的宽度缓慢地减少⾄某⼀宽度, 则 [ ] (A)每⼀能级的能量减⼩(B) 能级数将增加(C) 每个能级的能量保持不变(D) 相邻能级间的能量差增加59. 已知⼀粒⼦在宽度为2a 的⼀维⽆限深势阱中运动,其波函数为:,23cos 1)(a xa x πψ=(),a x a ≤≤- 则粒⼦在x a =56处出现的概率密度为 [ ] (A)12a(B)1a(C)12a(D)1a60. 由量⼦⼒学可知, 在⼀维⽆限深⽅势阱中的粒⼦可以有若⼲能态.粒⼦处于不同能级处,相邻能级之间的间隔[ ] (A) 随主量⼦数n 的增⼤⽽增⼤ (B) 随主量⼦数n 的增⼤⽽减⼩(C) 与主量⼦数n 2成正⽐ (D) 保持不变 61. 证明电⼦具有⾃旋的实验是[ ] (A) 康普顿散射实验(B) 斯特恩-盖拉赫实验 (C) 电⼦衍射实验 (D) 弗兰克-赫兹实验 62. 证明原⼦能级存在的实验是[ ] (A) 康普顿散射实验(B) 斯特恩-盖拉赫实验 (C) 电⼦衍射实验(D) 弗兰克-赫兹实验63. 原⼦内电⼦的量⼦态由n 、l 、m l 、m s 四个量⼦数表征.下列表述中错误的是 [ ] (A) 当n 、l 、m l ⼀定时, 量⼦态数为3(B) 当n 、l ⼀定时, 量⼦态数为2( 2 l +1)(C) 当n ⼀定时, 量⼦态数为2n 2(D) 当电⼦的状态确定后, n 、l 、m l 、m s 为定值 64. 对于下列四组量⼦数:① 21,0,2,3====s l m m l n② 21,1,3,3====s l m m l n③ 21,1,1,3-=-===s l m m l n ④ 21,0,2,3-====s l m m l n可以描述原⼦中电⼦状态的是 [ ] (A) 只有①和③(B) 只有②和④(C) 只有①、③和④(D) 只有②、③和④65. 对于氢原⼦中处于2p 状态的电⼦,描述其量⼦态的四个量⼦数(n 、l 、m l 、m s )可能的取值是 [ ] (A) )21,1,2,3(-(B) )21,0,0,2( (C) )21,1,1,2(--(D) )21,0,0,1(66. 在氢原⼦的L 壳层中,电⼦可能具有的量⼦数 (n 、l 、m l 、m s )是 [ ] (A) )21,0,0,1(-(B) )21,1,1,2(-(C) )21,1,0,2(-(D) )21,1,1,3(-67. 产⽣激光的必要条件是 [ ] (A) 相消⼲涉(B) 粒⼦数反转(C) 偏振(D) 光的衍射68. 激光的单⾊性之所以好, 是因为 [ ] (A) 原⼦发光的寿命较长(B) 发光原⼦的热运动较⼩ (C) 谐振腔的选频作⽤好(D) 原⼦光谱是线状光谱69. 通常所说的激光武器, 主要利⽤了激光的性质之⼀: [ ] (A) 单⾊性好(B) 能量集中(C) 相⼲性好(D) ⽅向性好70. 激光长距离测量是⾮常准确的, 这是利⽤了激光的性质之⼀: [ ] (A) 单⾊性好(B) 能量集中(C) ⽅向性好(D) 相⼲长度⼤71. 激光控制时钟可达到⼀百万年仅差1s 的精确度,这是因为激光的 [ ] (A) 单⾊性好(B) 能量集中(C) ⽅向性好(D) 相⼲性好72. 将波函数在空间各点的振幅同时增⼤D 倍,则粒⼦在空间的分布概率将 [ ] (A) 增⼤D 2倍(B) 增⼤2D 倍 (C) 增⼤D 倍 (D) 不变73. 设氢原⼦的动能等于氢原⼦处于温度为T 的热平衡状态时的平均动能,氢原⼦的质量为m ,那么此氢原⼦的德布罗意波长为[ ] (A) mkTh3=λ(B) mkTh 5=λ (C) hmkT 3=λ(D) hmkT 5=λ⼆、填空题1. 当波长为λ的单⾊光照射逸出功为A 的⾦属表⾯时, 若要产⽣光电效应, λ必须满⾜的条件是.2. 如果⼊射光的波长从400 nm 变到300 nm, 则从⾦属表⾯发射的光电⼦的遏⽌电压将增⼤ V .3. 设⽤频率为ν1和ν2的两种单⾊光先后照射同⼀种⾦属, 均能产⽣光电效应.已知⾦属的红线频率为ν0, 测得两次照射时的遏⽌电压∣U 2a ∣=2∣U 1a ∣, 则这两种单⾊光的频率关系为.4. 钨的红限频率为1.3?1015 Hz.⽤波长为180 nm 的紫外光照射时, 从其表⾯上逸出的电⼦能量为.5. 以波长为207.0=λµm 的紫外光照射⾦属钯表⾯产⽣光电效应,已知钯的红限频率1501021.1?=νHz ,则其遏⽌电压a U =V .(普朗克常量s J 1063.634??=-h ,基本电荷 19106.1-?=e C)6. 某光电管阴极对于λ = 491nm 的⼊射光, 发射光电⼦的遏⽌电压为0.71伏.当⼊射光的波长为_________ nm 时, 其遏⽌电压变为1.43伏.7. 钾的光电效应红限波长是λ0 = 6.25?10-5cm, 则钾中电⼦的逸出功是. 8. 波长为390 nm 的紫光照射到⼀块⾦属表⾯, 产⽣的光电⼦速度为6.2?105m.s -1, 光电⼦的动能为,该⾦属的逸出功为.9. 康普顿散射中, 当出射光⼦与⼊射光⼦⽅向成夹⾓θ= ______ 时, 光⼦的频率减少得最多; 当θ= ______时, 光⼦的频率保持不变.10. 如T15-2-10图所⽰,⼀频率为ν的⼊射光⼦与起始静⽌的⾃由电⼦发⽣碰撞和散射.如果散射光⼦的频率为ν',反冲电⼦的动量为p ,则在与⼊射光⼦平⾏的⽅向上的动量守恒定律的分量形式为 .反冲电⼦e T15-2-10图11. 光⼦A 的能量是光⼦B 的两倍, 那么光⼦A 的动量是光⼦B 的倍. 12. 波长为0.071 nm 的X 射线射到⽯墨上, 由公式cm h e )cos 1(θλ-=可知, 在与⼊射⽅向成45°⾓⽅向观察到的X 射线波长是.13. 在康普顿散射中, 如果反冲电⼦的速度为光速的60%, 则因散射使电⼦获得的能量是其静⽌能量的倍.14. 根据玻尔理论, 基态氢原⼦的电⼦轨道动量矩约为. 15. 根据玻尔理论, 氢原⼦在n = 5轨道上的动量矩与在第⼀激发态的轨道动量矩之⽐为.16. 根据玻尔量⼦理论, 氢原⼦中电⼦处于第⼀轨道上运动的速度与处在第三轨道上运动的速度⼤⼩之⽐为.17. 如果氢原⼦中质⼦与电⼦的电荷增加⼀倍, 则由n = 2的能级跃迁到n = 1的能级所产⽣的辐射光能量将增加的倍数为.18. 欲使氢原⼦能发射巴⽿末系中波长为6562.8 ?的谱线,最少要给基态氢原⼦提供_________________eV 的能量. (⾥德伯常量R =1.097×107 m -1 )19. 已知⽤光照办法可将氢原⼦基态的电⼦电离,可⽤的最长波长的光是 913 ?的紫外光,那么氢原⼦从各受激态跃迁⾄基态的赖曼系光谱的波长可表⽰为.20. 在氢原⼦光谱的巴⽿末线系中有⼀频率为Hz 1015.614?的谱线,它是氢原⼦从能级n E = eV 跃迁到能级k E = eV ⽽发出的.21. 氢原⼦基态的电离能是 eV .电离能为+0.85eV 的激发态氢原⼦,其电⼦处在n =的轨道上运动.22. 氢原⼦从能级为-0.85eV 的状态跃迁到能级为-3.4eV 的状态时, 所发射的光⼦能量是 eV , 它是电⼦从n = ________的能级到 n =________的能级的跃迁. 23. 氢原⼦的部分能级跃迁⽰意如T15-2-23图.在这些能级跃迁中,(1) 从 n = ______ 的能级跃迁到 n =______的能级时发射的光⼦的波长最短;(2) 从 n = ______的能级跃迁到 n = _______的能级时所发射的光⼦的频率最⼩.2=1=n 4=3=T 15-2-23图24. 处于基态的氢原⼦吸收了13.06eV 的能量后, 可激发到n =________的能级; 当它跃迁回到基态时, 可能辐射的光谱线有____________条.25. 静⽌质量为m e 的电⼦,经电势差为U 12的静电场加速后,若不考虑相对论效应,电⼦的德布罗意波长λ=________________________________.26. ⽤ 50 V 电压加速电⼦, 与之相应的德布罗意波波长约为. 27. 在300K 时达到热平衡的中⼦, 其德布罗意波波长近似为.28. ⼀质量为1.0?10-19 g 、以速度3.0?102m.s -1运动的粒⼦的德布罗意波波长最接近于.29. 令)/(c m h e c =λ(称为电⼦的康普顿波长,其中e m 为电⼦静⽌质量,c 为真空中光速,h 为普朗克常量).当电⼦的动能等于它的静⽌能量时,它的德布罗意波长是λ =________________λc .30. 在两个平均衰减寿命为10-10s 的能级间,跃迁原⼦所发射的光的频率差最⼩值接近于(⽤不确定关系?E ?? t ≥ 计算) .31. 已知中⼦的质量为1.67?10-27kg.假定⼀个中⼦沿x ⽅向以2000m.s -1的速度运动,速度的测量误差为0.01%, 则中⼦位置的不确定量最⼩为(⽤不确定关系x p x ≥ 计算) .32. 在电⼦单缝衍射实验中,若缝宽为a = 0.1 nm ,电⼦束垂直射在单缝⾯上,则衍射的电⼦横向动量的最⼩不确定量?p y=______________N ·s .33. ⼀电⼦在x x ?+处两个不可穿透的墙之间作⼀维运动.设nm 05.0=?x , 则电⼦基态能量⾄少是(⽤不确定关系x p x ≥计算) .34. 在宽度为0.1 nm 的⼀维⽆限深势阱中, 能级n = 2的电⼦的能量为.35. ⼀⾃由电⼦被限制在?x = 0.5 nm 的区域内运动, 电⼦第⼀激发态的能量是基态能量的倍.36. ⼀⾃由粒⼦被限制在x 和x + l 处两个不可穿透壁之间.按照量⼦⼒学, 处于最低能态的粒⼦在x ~ x + l /3区间出现的概率为[其波函数为)πsin(2)(x ln lx =ψ] .T 15-2-33图T 15-2-36图37. 1921年斯特恩和⾰拉赫在实验中发现:⼀束处于s 态的原⼦射线在⾮均匀磁场中分裂为两束.对于这种分裂⽤电⼦轨道运动的⾓动量空间取向量⼦化难于解释,只能⽤________________________________________________________来解释.38. 根据量⼦⼒学理论,氢原⼦中电⼦的动量矩为 )1(+=l l L ,当主量⼦数n =4时,电⼦动量矩的可能取值为__________________________________.39. 在主量⼦数n =2,⾃旋磁量⼦数21=s m 的量⼦态中,能够填充的最⼤电⼦数是_________________.40. 钴(Z = 27 )有两个电⼦在4s 态,没有其它n ≥4的电⼦,则在3d 态的电⼦可有____________个.41. 在均匀磁场B 内放置⼀极薄的⾦属⽚,其红限波长为λ0.今⽤单⾊光照射,发现有电⼦放出,有些放出的电⼦(质量为m ,电荷的绝对值为e )在垂直于磁场的平⾯内作半径为R 的圆周运动,那末此照射光光⼦的能量是 _________________.42. 若α粒⼦(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒⼦的德布罗意波长是_________________.43. 低速运动的质⼦和α粒⼦,若它们的德布罗意波长相同,则它们的动量之⽐p p :p α =______________;动能之⽐E p :E α =____________.44. 若⼀⽆线电接收机接收到频率为108 Hz 的电磁波的功率为1微⽡,则每秒接收到的光⼦数为__________________________.45. 在T15-2-45图⽰中, 被激发的氢原⼦跃迁到较低能级E k 时,可发出波长为λ1、λ2、λ3的辐射,其频率ν1、ν2和ν3满⾜关系式_____________;三个波长满⾜关系式__________________.46. 假定氢原⼦原是静⽌的,则氢原⼦从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度⼤约是__________________.(氢原⼦的质量m =1.67×10-27 kg)47. 激光全息照相技术主要是利⽤激光的优良特性.48. 若⽤加热⽅法使处于基态的氢原⼦⼤量激发,假定氢原⼦在碰撞过程中可交出其热运动动能的⼀半, 那么最少要使氢原⼦⽓体的温度升⾼________________K .三、计算题1. 在天⽂学中,常⽤斯忒藩-玻尔兹曼定律确定恒星的半径.已知某恒星到达地球的每单位⾯积上的辐射功率为28m W 102.1--??,恒星离地球距离为m 103.417?,表⾯温度为5200K.若恒星辐射与⿊体相似,求恒星的半径.2. 若将星球看成绝对⿊体,利⽤维恩位移律,通过测量λm 便可估计其表⾯温度.现测得太阳和北极星的λm 分别为510nm 和350nm ,试求它们的表⾯温度和⿊体辐射出射度.3. 在理想条件下,正常⼈的眼睛接收到550nm 的可见光时,只要每秒光⼦数达100个就会有光的感觉,试求与此相当的光功率.4. 频率为ν的⼀束光以⼊射⾓i 照射在平⾯镜上并完全反射,设光束单位体积中的光⼦数为n ,求: (1) 每⼀光⼦的能量、动量和质量;(2) 光束对平⾯镜的光压(压强). 5. 功率为P 的点光源,发出波长为λ的单⾊光,在距光源为d 处,每秒钟落在垂直于光线的单位⾯积上的光⼦数为多少?若λ =760nm ,则光⼦的质量为多少?(普朗克常量h =6.63×10-34 J ·s) 6. 计算以下问题(1)已知铂的逸出功为8eV ,现⽤300nm 的紫外光照射,能否产⽣光电效应?(2)若⽤波长为400nm 的紫光照射⾦属表⾯,产⽣的光电⼦的最⼤速度为15s m 105-??,求光电效应的红限频率.7. 已知铝的逸出功是4.2eV ,今⽤波长为200nm 的光照射铝表⾯,求: (1) 光电⼦的最⼤动能;(2) 截⽌电压; (3) 铝的红限波长. 8. 如T15-3-8图⽰, 某⾦属M 的红限波长为λ0 = 260nm.今⽤单⾊紫外线照射该⾦属, 发现有光电⼦逸出, 其中速度最⼤的光电⼦可以匀速直线地穿过相互垂直的均匀电场(场强13m V 105-??=E )和均匀磁场(磁感应强度为T 005.0=B )区域, 求:(1) 光电⼦的最⼤速度v ;(2) 单⾊紫外线的波长λ. 9. 波长为λ的单⾊光照射某种⾦属M 表⾯发⽣光电效应,发射的光电⼦(电量绝对值为e ,质量为m )经狭缝S 后垂直进⼊磁感应强度为B的均匀磁场(如T15-3-7图⽰),今已测出电⼦在该磁场中作圆周运动的最⼤半径为R .求(1) ⾦属材料的逸出功;(2) 遏⽌电势差.B10. ⼀共轴系统的横截⾯如T15-3-10图所⽰,外⾯为⽯英圆筒,内壁敷上内径r 2 =1.2 cm 的半透明的铝薄膜,长度为30 cm ;中间的圆柱形钠棒,半径r 1 = 0.6 cm ,长亦为30 cm ,整个系统置于真空中.今⽤波长λ =300nm 的单⾊光照射系统.已知钠的红限波长为m λ=540nm ,铝的红限波长为mλ'=296nm, 基本电荷e = 1.60×10-19 C ,普朗克常量 h = 6.63×10-34 J ·s ,真空电容率ε0=8.85×10-12 C 2·N -1·m -2, 忽略边缘效应,求平衡时钠棒所带的电荷.11. 设某⽓体的分⼦的平均平动动能与⼀波长为λ = 420nm 的光⼦的能量相等,求该⽓体的温度.(普朗克常量h =6.63×10-34 J ·s ,玻尔兹曼常量k =1.38×10-23 J ·K -1)12. 已知X 射线光⼦的能量为0.60MeV ,若在康普顿散射中散射光⼦的波长变化了30%,试求反冲电⼦的动能.13. 在⼀次康普顿散射实验中,若⽤波长λ0 = 1 ?的光⼦作为⼊射源,试问: (1) 散射⾓ 45=?的康普顿散射波长是多少? (2) 分配给这个反冲电⼦的动能有多⼤?14. ⼀个静⽌电⼦与⼀个能量为3100.4?eV 的光⼦碰撞后,它能获得的最⼤动能是多少?15. ⽤动量守恒定律和能量守恒定律证明:⼀个⾃由电⼦不能⼀次完全吸收⼀个光⼦. 16. 已知氢原⼦的巴⽿末系中波长最长的⼀条谱线的波长为nm 28.656,试由此计算帕邢系(由⾼能激发态跃迁到n =3的定态所发射的谱线构成的线系)中波长最长的⼀条谱线的波长.17. 实验发现, 基态氢原⼦可以吸收能量为12.75eV 的光⼦. (1) 试问氢原⼦吸收该光⼦后将被激发到哪个能级?(2) 受激发的氢原⼦向低能级跃迁时,可能发出哪⼏条谱线? 请画出能级图(定性),并将这些跃迁画在能级图上.18. 处于第⼀激发态的氢原⼦被外来单⾊光激发后, 发射的光谱中, 仅观察到三条巴⽿末系谱线.试求这三条光谱线中波长最长的那条谱线的波长以及外来光的频率.(⾥得伯恒量R = 1.097×107m -1)19. 求氢原⼦光谱赖曼系的最⼩波长和最⼤波长.20. ⼀个被冷却到⼏乎静⽌的氢原⼦, 从n =5的状态跃迁到基态时发出的光⼦的波长多⼤?氢原⼦反冲的速率多⼤?21. 设有某氢原⼦体系,氢原⼦都处于基态,⽤能量为12.9eV 的电⼦束去轰击,试问: (1) 氢原⼦可激发到的最⾼能态的主量⼦数n = ?(2) 该氢原⼦体系所能发射的谱线共有多少条?绘出能级跃迁⽰意图. (3) 其中有⼏条属于可见光?T15-3-10图铝膜22. 已知氢光谱的某⼀线系的极限波长为364.7nm ,其中有⼀谱线波长为656.5nm .试由玻尔氢原⼦理论,求与该波长相应的始态与终态能级的能量.23. 在⽤加热⽅式使基态原⼦激发的过程中,设⼀次碰撞,原⼦可交出其动能的⼀半.如果要使基态氢原⼦⼤量激发到第⼆激发态,试估算氢原⼦⽓体的温度⾄少应为多少?(玻尔兹曼常量k =1.38×10-23 J ·K -1)24. 求出实物粒⼦德布罗意波长与粒⼦动能E k 和静⽌质量m 0的关系,并得出E k << m 0c 2时, k 02/E m h ≈λ E k >> m 0c 2时, k /E hc ≈λ25. ⼀光⼦的波长与⼀电⼦的德布罗意波长皆为0.5nm ,此光⼦的动量0p 与电⼦的动量e p 之⽐为多少? 光⼦的动能E 0与电⼦的动量e E 之⽐为多少?26. α粒⼦在磁感应强度为B = 0.05 T 的均匀磁场中沿半径为R = 0.92 cm 的圆形轨道运动.(1) 试计算其德布罗意波长. (2) 若使质量m = 0.1 g 的⼩球以与α粒⼦相同的速率运动, 其波长为多少? (α粒⼦的质量m α=6.64×10-27kg ,普朗克常量h =6.63×10-34J ·s ,基本电荷e =1.60×10-19 C)27. 质量为m e 的电⼦被电势差U 12 = 100 kV 的电场加速,如果考虑相对论效应,试计算其德布罗意波的波长.若不⽤相对论计算,则相对误差是多少?(电⼦静⽌质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19C)28. 电视机显像管中电⼦的加速电压为9kV ,电⼦枪枪⼝直径取0.50mm ,枪⼝离荧光屏的距离为0.30m.求荧光屏上⼀个电⼦。

大学物理-15-1黑体辐射普朗克能量子假设 21页

大学物理-15-1黑体辐射普朗克能量子假设 21页

E1m 2A 21m (2π)2A 20.22 J 7
2
2
第十五章 量子物理
17
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
Enh n E 7.131029
h
基元能量 h3 .1 8 1 0 3J 1
(2) Enh
A22π2E m2 2πn2m h
6 000 K
3 000 K

1
m
000
/nm
2 000
第十五章 量子物理
8
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
2 维恩位移定律
mT b
峰值波长
M (T)/1 (10W 4 m 3)

1.0



0.5 6 000 K
常量 b2.89 18 3 0m K 3 000 K
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
一 黑体 黑体辐射
1 热辐射的基本概念
(1)单色辐射出射度 单位时间内从物
体单位表面积发出的频率在 附近单位频率
区间内的电磁波的能量.
M (T) 单位: Wm-2H-z1
M(T) 单位: Wm-3
第十五章 量子物理
2
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
0

1
m
000
/nm
2 000
第十五章 量子物理
9
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
例1(1)温度为 20 C 的黑体,其单色辐 出度的峰值所对应的波长是多少?(2)太阳的

大学物理学(下册)第15章 量子物理基础

大学物理学(下册)第15章 量子物理基础
2020/12/10
5、爱因斯坦的光子假说和光电效应方程
1).爱因斯坦光子假设 ①.光是一束以光速c运动的粒子流,这些粒子称为光子;
②.光子的能量: h
③.光的强度: SNh
2).爱因斯坦光电效应方程
爱因斯坦认为:在光电效应中,金属中的电子吸收
一个光子的能量h,一部分消耗在使金属中电子挣脱原子
2020/12/10
2. 普朗克理论与经典理论不同
经典理论的基本观点
普朗克能量子假设
(1)电磁波辐射来源于 带电粒子的振动,电磁波 频率与带电粒子振动频率 相同。 (2)振子辐射电磁波含 各种波长,是连续的,辐 射能量也是连续的。
对于频率为的振子,
振子辐射的能量不是 连续的,而是分立的, 它的取值是某一最小 能量 的整数倍
出的、在波长 附近单位波长间隔内的能量。称为单色辐
射出射度或单色辐出度。
M(T)
dM(T)
d
单位: W / m 3
2020/12/10
温度为 T 的物体,在单位时间内,从单位面积上所辐射
出的各种波长的电磁波的能量总和。称为辐射出射度或辐
出度。
M(T) 0M(T)d
单位: W / m 2
太阳和钨丝的单色 辐出度曲线
即:光电子的最大初动能与入射光的强度成正比关系,而 与光的频率无关。与实验结果不符。
2020/12/10
红限问题
按上述理论,无论何种频率的入射光,只要其强 度足够大,就能使电子具有足够的能量逸出金属,不 存在红限问题。与实验结果不符。
驰豫时间
按上述理论,如果入射光强很弱,则电子逸出金 属所需的能量,需要有一定的时间来积累。与实验结 果不符。
光的波动性用光波的波长 和频率 描述,光

大学物理学下册(赵近芳)第15章习题解答

大学物理学下册(赵近芳)第15章习题解答

1习 题1515.1选择题(1)用一定频率的单色光照射在某种金属上,测出其光电流I 与电势差U 的关系曲线如题16.1图中实线所示.然后在光强度I 不变的条件下增大照射光的频率,测出其光电流的曲线用虚线表示.符合题意的图是: [ ][答案:D 。

光强度I φ不变,光的频率v 增大,光子数(光子密度)N φ减少,则逸出光电子数 N e 减少,饱和光电流I e 减少;光的频率v 增大,由爱因斯坦光电效应方程21A 2m m hv υ=-知初动能增大,则遏止电压增加。

](2) 康普顿散射的主要特点是: [ ](A) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关.(B) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.(C) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关.(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关.[答案:D 。

](3)假定氢原子原是静止的,质量为1.67×10-27 kg ,则氢原子从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度大约是 [ ](A) 4 m/s . (B) 10 m/s . (C) 100 m/s . (D) 400 m/s .[答案:A 。

动量守恒 -m υ+h/λ34722711 6.62610 1.096108()13 1.67109H h R m υ--⨯⨯⨯=-=⨯⨯≈4m/s](4) 关于不确定关系2x p x ∆∆≥,有以下几种理解: (a ) 粒子的动量不可能确定.(b ) 粒子的坐标不可能确定.(c ) 粒子的动量和坐标不可能同时准确地确定.(d ) 不确定关系不仅适用于电子和光子,也适用于其它粒子.其中正确的是: [ ]O(A ) (B ) (C ) (D )题15.1图。

大学物理量子力学总结(范本)

大学物理量子力学总结(范本)

大学物理量子力学总结‎大学物理量子力学总‎结‎篇一:‎大学物理下必考15‎量子物理知识点总结‎15.1 量子‎物理学的诞生—普朗克‎量子假设一、‎黑体辐射物体由其温‎度所决定的电磁辐射称‎为热辐射。

物体辐射的‎本领越大,吸收的本领‎也越大,反之亦然。

能‎够全部吸收各种波长的‎辐射能而完全不发生反‎射和透射的物体称为黑‎体。

二、普朗‎克的量子假设:‎1. 组成腔壁的原‎子、分子可视为带电的‎一维线性谐振子,谐振‎子能够与周围的电磁场‎交换能量。

‎2. 每个谐振子的能‎量不是任意的数值, ‎频率为ν的谐振子,其‎能量只能为hν, 2‎hν, …分立值,‎其中n = 1,2‎,3…,h =‎6.626×10 ‎–。

3. ‎当谐振子从一个能量状‎态变化到另一个状态时‎,辐射和吸收的能量‎是hν的整数倍。

1‎5.2 光电效‎应爱因斯坦光量子理‎论一、光电效‎应的实验规律金属及‎其化合物在光照射下发‎射电子的现象称为光电‎效应。

逸出的电子为光‎电子,所测电流为光电‎流。

截止频率:‎对一定金属,只有‎入射光的频率大于某一‎频率ν0时, 电子才‎能从该金属表面逸出,‎这个频率叫红限。

遏‎制电压:当外‎加电压为零时,光电‎流不为零。

因为从阴‎极发出的光电子具有一‎定的初动能,它可以克‎服减速电场而到达阳极‎。

当外加电压反向并达‎到一定值时,光电流为‎零,此时电压称为遏制‎电压。

1 mvm2‎?eU2二‎、爱因斯坦光子假说和‎光电效应方程‎1. 光子假说一束‎光是一束以光速运动的‎粒子流,这些粒子称为‎光子;频率为v 的‎每一个光子所具有的能‎量为??h?, 它不‎能再分割,只能整个地‎被吸收或产生出来。

‎2. 光电效‎应方程根据能量守恒‎定律, 当金属中一个‎电子从入射光中吸收一‎个光子后,获得能量h‎v,如果hv 大于‎该金属的电子逸出功A‎,这个电子就能从金‎属中逸出,并且有 1‎上式为爱因斯坦光电‎效应方程,式中mvm‎2为光电子的最大初动‎能。

大学物理课本答案习题 第十五章习题解答

大学物理课本答案习题 第十五章习题解答

习题十五15-1 某物体辐射频率为146.010Hz ⨯的黄光,问这种辐射的能量子的能量是多大? 解: 根据普朗克能量子公式有:-3414196.6310 6.010 4.010(J)h εν-==⨯⨯⨯=⨯15-2 假设把白炽灯中的钨丝看做黑体,其点亮时的温度为K 2900. 求:(1) 电磁辐射中单色辐出度的极大值对应的波长; (2) 据此分析白炽灯发光效率低的原因. 解 (1)由维恩位移定律,得-3-72.89810=9.9910(m)=999(nm)2900b T λ⨯==⨯(2)因为电磁辐射中单色辐出度的极大值对应的波长在红外区域,所以白炽灯的发光效率较低。

15-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105km ,太阳到地球的距离r =1.496×108km )。

解: 由 40T M σ=太阳的辐射总功率为2428482002644 5.671060004(6.9610)4.4710(W)S S S P M R T R πσππ-===⨯⨯⨯⨯⨯=⨯地球接受到的功率为62226221117 6.3710() 4.4710()422 1.496102.0010(W)S E E E S P R P R P d d ππ⨯===⨯⨯⨯=⨯ 把地球看作黑体,则 24244E E E E E R T R M P πσπ==290(K)E T ===15-4 一波长nm 2001=λ的紫外光源和一波长nm 7002=λ的红外光源,两者的功率都是400W 。

问:(1)哪个光源单位时间内产生的光子多?(2)单位时间内产生的光子数等于多少? 解: (1)光子的能量λνchh E ==设光源单位时间内产生的光子数为n ,则光源的功率hcw n nhcnE w λλ===, 可见w 相同时,λ越大,n 越大,而12λλ>,所以红外光源产生的光子数多。

大学物理下册目录

大学物理下册目录
第九章振动第十四章相对论下册目录第十章波动第十一章光学第十二章气体动理论第十三章热力学基础第十五章量子物理物理学第五版97电磁振荡95简谐运动的合成94简谐运动的能量93单摆和复摆91简谐运动振幅周期和频率相位92旋转矢量第九章振动106多普勒效应107平面电磁波105驻波104惠更斯原理波的衍射和干涉103波的能量能流密度101机械波的几个概念102平面简谐波的波函数第十章波动111相干光115迈克尔孙干涉仪时间相干性114劈尖牛顿环113光程薄膜干涉112杨氏双缝干涉劳埃德镜第十一章光学116光的衍射1112双折射1111反射光和折射光的偏振1110光的偏振性马吕斯定律119衍射光栅118圆孔衍射光学仪器的分辨本领117单缝衍射第十一章光学122物质的微观模型统计规律性121平衡态理想气体物态方程热力学第零定律128分子平均碰撞次数和平均自由程126麦克斯韦气体分子速率分布律125能量均分定理理想气体内能124理想气体分子的平均平动动能与温度的关系123理想气体的压强公式第十二章气体动理论137熵熵增加原理136热力学第二定律的表述卡诺定理135循环过程卡诺循环133理想气体的四种典型过程摩尔热容132热力学第一定律内能131准静态过程功热量138热力学第二定律的统计意义第十三章热力学基础141伽利略变换式牛顿的绝对时空观146相对论性动量和能量144狭义相对论的时空观143狭义相对论和基本原理洛伦兹变换式142迈克尔孙莫雷实验第十四章相对论151黑体辐射普朗克能量子假设157不确定关系156德布罗意波实物粒子的二象性154氢原子的玻尔理论153康普顿效应152光电效应光的波粒二象性158量子力学简介第十五章量子物理
第十章 波动
10 - 1 机械波的几个概念 10 - 2 平面简谐波的波函数 10 - 3 波的能量 能流密度 10 - 4 惠更斯原理 波的衍射和干涉 10 - 5 驻波 10 - 6 多普勒效应 10 - 7 平面电磁波

大学物理课件-量子力学

大学物理课件-量子力学

二. 康普顿效应(1922—1923年)
1 、康普顿效应实验规律
X射线7.1nm I
=0o
S
石墨晶体
A1 A2
C
W
探测器
B
I
准直系统
散射角
=45o
I
波长变长的散射称为康普顿散射
=90o
I 0
波长不变的散射称为正常散射
=135o
波长的增加量 0与散射角 有关。而与 散射物质的性质无关,与入射光波长也无关。
赖曼系
取 n3
n=3
巴尔末系
n=2 n=1
第四节 粒子的波动性
德布罗意(1892-1960) : 法国人,原来从 事历史研究,受其 兄影响,改学物理 ,1924年获博士学 位,1929年获诺贝 尔物理奖。1932年 任巴黎大学物理教 授,1933年被选为 法国科学院院士。
第三节 玻尔的氢原子理论
一. 氢原子光谱的实验规律
H
连 续
H
H
H
3645.7A0 4101.2 4340.1 4860.7 (线系限)(紫色) (蓝色) (绿色)
H
6562.1 (红色)
谱线是线状分立的
巴尔末公式(1885年)
B
n2 n2
4
,
n 3,4,5,6,
B=3645.7A0
~ 1
c
n0
0
2h sin2 mec
2
康普顿波长
该式说明了与散射物质无关,与入射光波长也 无关。
康普顿散射进一步证实了光子论,证明了光子能 量、动量表示式的正确性,光确实具有波粒两象 性. 另外证明在光电相互作用的过程中严格遵守能 量、动量守恒定律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:
1

1 2
2 mvm2
mvm2 eVa
W
Va

h e
ν
W e
dVa h (恒量) dν e
2.设康普顿效应中入射X射线的波长λ=0.070nm,散 射的X射线与入射的X射线垂直,如图所示。求: (1)反冲电子的动能Ek
(2)反冲电子运动的方向与入射的X射线之间的夹角



3.发展 (1)原因: ①甲午战争以后列强激烈争夺在华铁路的 修。筑权 ②修路成为中国人 救的亡强图烈存愿望。 (2)成果:1909年 京建张成铁通路车;民国以后,各条商路修筑 权收归国有。 4.制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入 正轨。
二、水运与航空
1.水运 (1)1872年,

7.随着辐射黑体温度的升高,对应于最大单色幅出度的波
长将向
短波方向移动。
m

b T
粒子数反转 光放大
实现光放大 使激光的方向性好 使激光的单色性好
二、计算题
1.如图所示,在光电效应实验中,得出的一条实验曲线直
线AB。
(1)求证对不同材料的金属,AB 线的斜率相同;
(2)由图上数据求出普朗克常量h。
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“
”;此后十年间,航空事业获得较快发展。
大学物理下第15章量子物理
2.钾金属表面被蓝光照射时,有光电子逸出,若 增强蓝光的强度,则
(A) 单位时间内逸出的光电子数增加; (B) 逸出的光电子初动能增大; (C) 光电效应的红限频率增大; (D) 发射光电子所需的时间增长。
A
强度光子数光电子数
光电子初动能光子能量
红限频率是与金属性质有关的常数
2
E3 E1 12.09eV 103nm
122nm
n3
1
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
0.7 10-10

6.631034 9.11031 3108
(1
cos90o
)
0.724 10-10 m
解法二:
En

13.6 n2
eV
E2


13.6 22
eV

3.4eV
E1 13.6eV E3 1.51eV
E4 0.85eV
3
657nm
E4 E1 12.75eV
5.波长为300nm的光子,其波长不确定度Δλ/λ为十万分 之一,测量其位置的不确定量Δx不能小
于 2.39 10。3 m
h
h
p p

2
x p

x
h 2

h
4
x
2 4

4

300nm
4 110-5
2.39103 m
(A)12nm;
(B) 0.14nm;
(D) 4200nm。
eEs

1 2
mv2

1 2
mv02
(C)340nm;
B
v
2eEs m
v02
5.34 106 m s1


h mv

6.63 10 34 9.11031 5.34 106
1.36 10-10 m
C
E
筹办航空事宜

三、从驿传到邮政 1.邮政 (1)初办邮政: 1896年成立“大清邮政局”,此后又设 , 邮传邮正传式部脱离海关。 (2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国。邮联大会
2.电讯 (1)开端:1877年,福建巡抚在 架台设湾第一条电报线,成为中国自 办电报的开端。
光电效应没有时间延迟
3.要使处于基态的氢原子受激发后能发射赖曼系的最长波长 的谱线,至少应向基态氢原子提供的能量是 (A) 1.5eV; (B) 3.4eV; (C) 10.2eV; (D) 13.6eV。
h

E2

E1


13.6eV 22

(
13.6eV 12
)
10.2eV
C
4.一初速为6×105m.s-1的电子进入电场强度为E=400N.C-1 的均匀电场,朝着阳极方向加速行进。则电子在电场中经历 位移为s=20cm时的德布罗意波长为
(2)特点:进程曲折,发展缓慢,直到20世纪30年代情况才发生变 化。
3.交通通讯变化的影响 (1)新式交通促进了经济发展,改变了人们的通讯手段和 ,出行 方式转变了人们的思想观念。
(2)交通近代化使中国同世界的联系大大增强,使异地传输更为便 捷。
(3)促进了中国的经济与社会发展,也使人们的生活 多。姿多彩
[合作探究·提认知] 电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。 提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展; 政府及各阶层人士的提倡与推动。
[串点成面·握全局]
1.45eV
1 mv2 1.45eV v 7.14105 m/s 2
0.316m
p x mv x h
4
x h 0.316m
4mv
hc



13.6 n2

(
13.6 22
)
n4
E 13.6 (13.6) 12.76eV 42
(5a) 2
1
3 5a
cos 6
2

1
6
a 2a 2a
A
D
二、填空题
1.光子的波长为λ,则其能量E =
hc
,动量的大
h
h
小 p = ,质量m = c 。
E hν hc

m
E c2

h
c
Va 1.45V 7.14105 m/s
eVa

1 2
mv2

h
c

W
相关文档
最新文档