2019数学八年级上册一次函数的应用

合集下载

八年级数学上册《一次函数的应用》优秀教学案例

八年级数学上册《一次函数的应用》优秀教学案例
在本章节的教学过程中,我将关注学生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展。通过设计有趣、富有挑战性的教学活动,激发学生的学习兴趣,引导他们在轻松愉快的氛围中掌握知识,培养能力,形成正确的价值观。同时,注重学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
三、教学策略
(一)情景创设
3.如果你需要在规定的时间内到家,如何调整自己的速度?
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生的疑问。讨论结束后,各小组汇报自己的讨论成果,共同分享学习心得。
(四)总结归纳
在总结归纳环节,我将与学生一起回顾本节课的主要内容,包括一次函数的定义、性质、图像以及在实际问题中的应用方法。通过师生互动,让学生巩固所学知识,形成知识体系。
在导入新课环节,我将利用多媒体展示一张“学生放学回家”的图片,并提出问题:“同学们,你们每天放学回家的时间一样吗?你们的速度是如何影响你们回家的时间的?”通过这个问题,引导学生思考速度、时间和距离之间的关系,从而自然地引入一次函数的应用。
接着,我会简要回顾一次函数的基本概念和性质,为学生接下来的学习做好铺垫。这样既巩固了学生的基础知识,又能激发他们对新课的兴趣。
(四)反思与评价
在教学过程中,我将注重学生的反思与评价,帮助他们总结经验,不断提高。在每个教学环节结束后,我会引导学生对自己的学习过程进行反思,思考自己在解决问题中遇到的困难和收获。此外,我还将组织学生进行互评,让他们学会欣赏他人的优点,发现自身的不足,从而实现共同进步。
四、教学内容与过程
(一)导入新课
5.知识与技能、过程与方法、情感态度与价值观的全面培养
本案例不仅关注学生知识与技能的掌握,还注重过程与方法、情感态度与价值观的培养。在教学过程中,我努力实现这三个维度的全面发展,使学生在获得数学知识的同时,形成正确的价值观和良好的学习习惯。

八年级数学辅导: 一次函数的应用

八年级数学辅导: 一次函数的应用

一次函数的应用【知识要点】一、一次函数的图象及其性质:1.一次函数的图象不过原点和两坐标轴相交,它是一条直线; 2.一次函数图象中:(1)当0>k 时,y 随x 的增大而增大; (2)当0<k 时,y 随x 的增大而减小;3.在一次函数b kx y +=中,若0>k 时k 的值越大,函数图象与x 轴正半 轴所成的锐角越大.二、一次函数图象与两坐标轴交点的求法1.与X 轴交点的求法,让0=y ,求x 的值; 2.与y 轴交点的求法,让0=x ,求y 的值;【经典例题】例1、 如图所示,1l 表示神风摩托车厂一天的销售收入与摩托车销售量的关系;2l 表示摩托车厂一天的销售成本与销售的关系.(1)写出销售收入与销售量之间的函数关系式; (2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时销售收入等于销售成本?(4)当一天的销售超过多少辆时工厂才能获利?(利润=收入-成本)例2、蜡烛点燃掉的长度和点燃的时间成正比,一只蜡烛点6分钟,剩下烛 长12cm ,如点燃16分钟,剩烛长7cm ,假设蜡烛点燃x 分钟,剩下烛长ycm ,求出y 和x 之间的函数关系式,画出图像,这支蜡烛燃完需要多少时间?例3、 某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超 过规定,则需要购买行李票,行李票费用y (元)是行李重量x (千克)的一 次函数,其图像如图所示求:(1)Y 与x 之间的函数关系式; (2)旅客可免费携带的行李的重量.(辆)例4、《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额。

此项税款按下表累加计算:(纳税款=应纳税所得额×对应的税率)按此规定解答下列问题: (1)、设甲的月工资、薪金所得为x 元(1300<x<2800),需缴的所得税款为y 元,试写出y 与x 的函数关系式。

2019—2020年北师大课标版八年级数学上册《一次函数的应用(3)》教案1(教案).doc

2019—2020年北师大课标版八年级数学上册《一次函数的应用(3)》教案1(教案).doc

《一次函数的应用(3)》教案教学内容北师大版数学八年级上册《一次函数的应用(3)》P93-9 4.教学目的1、进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.2、在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.3、在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4、在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用.教学难点从函数图象中正确读取信息,能够与实际问题联系起来. 教学过程一、情境引入一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?通过与上一课时相似的问题,回顾旧知,导入新知识.二、问题解决内容1:如图,1l反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图意填空:(1)当销售量为2吨时,销售收入=_______元, 销售成本=________元;(2)当销售量为6吨时,销售收入=________元, 销售成本=________元;(3)当销售量为_______时,销售收入等于销售成本; (4)当销售量________时,该公司赢利;当销售量________时,该公司亏损. (5)1l 对应的函数表达式是______________;2l 对应的函数表达式是_______________.内容2:深入探究例2我边防局接到情报,近海处有一海 岸公 海AB可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与时间之间的关系?解:观察图象,得当0=t时,B距海岸0nmile,即0=S,故1l表示B到海岸的距离与追赶时间之间的关系.(2)A,B哪个速度快?解:从0增加到10时,2l的纵坐标增加了2,而1l的纵坐标增加了5,即10min内,A行驶了2海里,B行驶了5nmile,所以B的速度快.(3)15min内B能否追上A?解:可以看出,当15t时,1l上对应点=在2l上对应点的下方.(4)如果一直追下去,那么B能否追上A?解:如图1l,2l相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)当A逃到离海岸2l海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?解:从图中可以看出,1l与2l交点P的纵坐标小于2l,这说明在A逃入公海前,我边防快艇B能够追上A.活动目的:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.说明:学生在教师的引导下,逐步形成了良好的识图能力.三、反馈练习内容:观察甲、乙两图,解答下列问题:1、填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.2、根据1中所填答案的图象填写下表:3、根据1中所填答案的图象求:(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围).(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?4、甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (时),y 甲、y 乙分别与x 之间的部分函数图象如图所示.(1)当06x ≤≤时,分别求y 甲、y 乙与x 之间的函数关系式. (2)如果甲、乙两班均保持前6h 的工作效率,通过计算说明,当8x =时,甲、乙两班植树的总量之和能否超过260棵.(3)如果6h 后,甲班保持前6h 的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当8x =时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.四、课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.通过列出关系式解决y问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.意图:引导学生自己小结运用一次函数解决实际问题的主要方法.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.五、作业布置习题4.7。

八年级上一次函数的应用

八年级上一次函数的应用

800
(23,750)
600
(40,400)
400
200
(60,0)
0
10
20
30
40
50 t/天
情境二:某种摩托车的油箱加满油后,油箱中的剩余
油量y(升)与摩托车行驶路程x(千米)之间的关系如图所
示:
10
8
(将摩(少(4231自托)千升))油一摩油动车米汽箱箱托箱报将?油中汽车最警自?的油每多,动剩可行可行报余供驶储驶警油摩油1多?0量托多0少千小车少千米于行升米消1驶?后升耗多时,多
由“形”定
练一练:某地长途汽车客运公司规定旅客可随身携 带一定质量的行李,如果超过规定,则需要购买行李 票,行李票费用y元与行李质量的关系如图:
(1)旅客最多可免费携 带多少千克行李?
30千克
⑵超过30千克后,每 千克需付多少元?
0.2元 30
议一议 一次函数y=0.5x+1与一元一次 方程0.5x+1=0有什么联系?
的信息;
2、数学思维:①数形结合,函数与方程的思想 ②利用函数图像解决简单的实际问题
知识回顾:
一次函数图象可获得哪些信息?
1、由一次函数的图象可确定k 和 b 的符号; 2、由一次函数的图象可估计函数的变化趋势; 3、可直接观察出:x与y 的对应值; 4、由一次函数的图象与y 轴的交点的坐标可确定b值,从 而由待定系数法确定一次函数的图象的解析式。
情境一:干旱造成的灾情
由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而
减少.干旱持续时间 t( 天)与蓄水量V(万米 )3 的关系如图所示,
V/万米3
1200 回答下列问题: (2(3()蓄1)按)干水照量旱这小持个于续规40100律万天,米,预3时蓄计,水持将量发续为生干多严旱重

北师大版八年级上册数学《.一次函数的应用》经典课件

北师大版八年级上册数学《.一次函数的应用》经典课件

让每一个生命都精彩绽放 北师大版八年级上册数学《.一次函数 的应用 》经典 课件
北师大版八年级上册数学《.一次函数 的应用 》经典 课件
01 小组大比拼
3.如图,直线l是一次函数y=kx+b的图象,填空:
(1)当x=30时,y=

y
(2)当y=30时,x=
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进行维权,按照传播下载次数进行十倍的索取赔偿!
(3,-9)是否在该函数的图象上?
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进行维权,按照传播下载次数进行十倍的索取赔偿!

y 3 2
1 O
-3 -2 -1 -1
123x
-2
-3
l
让每一个生命都精彩绽放 北师大版八年级上册数学《.一次函数 的应用 》经典 课件

从地面竖直向上抛射一个物体,在落地之前,物体 向上的速度v(m/s)是运动时间t(s)的一次函 数.经测量,该物体的初始速度(t=0时物体的速度) 为25m/s,2s后物体的速度为5m/s. (1)写出v、t之间的关系式. (2)经过多长时间后,物体将达到最高点?(此 时物体的速度为零)

闯关成功
北师大版八年级上册数学《.一次函数 的应用 》经典 课件
课堂 小结
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进行维权,按照传播下载次数进行十倍的索取赔偿!

让每一个生命都精彩绽放 北师大版八年级上册数学《.一次函数 的应用 》经典 课件

八年级数学上册《一次函数的应用》教案、教学设计

八年级数学上册《一次函数的应用》教案、教学设计
1.一次函数图像的特征,如斜率k、截距b对图像的影响。
2.如何根据实际问题抽象出一次函数模型。
3.一次函数在实际问题中的应用,如购物优惠、快递费用计算等。
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生疑问,引导他们深入思考。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础题:求解一次函数的解析式,分析图像特征等,以巩固学生对一次函数知识的掌握。
2.提高题:解决实际问题,如根据已知数据求解函数模型,进行数据预测等,培养学生的应用能力。
3.拓展题:设计具有一定难度的题目,如一次函数的图像变换、复合一次函数等,激发学生的思维。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的一次函数知识,强调以下几点:
1.一次函数的定义及其与一次方程的联系与区别。
3.探究题:布置一些需要学生观察、分析、探究的题目,培养学生的逻辑思维和创新能力。
例题:
探究一次函数图像的平移、压缩和伸展变换对斜率k和截距b的影响。
4.拓展题:提供一些难度较大的题目,供学有余力的学生挑战,激发他们的学习兴趣。
例题:
已知一次函数的图像经过点A(2, 4)和点B(4, 8),求该一次函数的解析式,并判断其图像与x轴、y轴的交点坐标。
3.教学过程中,设计不同层次的问题,引导学生逐步深入地探究一次函数的性质。例如,从斜率k的正负、截距b的值等方面,让学生观察图像变化,总结性质。
4.分组讨论与交流,培养学生的合作意识和团队精神。在小组内,学生可以互相解答疑惑,共同解决问题,提高解决问题的能力。
5.课后作业与拓展练习相结合,巩固学生对一次函数知识的掌握。布置一定数量的基础题,确保学生对一次函数的基本概念和性质有扎实的掌握;同时,设计一定难度的拓展题,激发学生的思维,提高他们的创新能力。

八年级数学上一次函数的应用

八年级数学上一次函数的应用

八年级数学上一次函数的应用﹤1﹥一次函数的面积问题1、根据条件,求出下列一次函数解析式:(1)直线经过点 (2,-1)和(3,2)两点; (2)经过点(0,5),且平行于直线12+=x y 。

2、在直角坐标系中,一次函数的图像与直线32-=x y 平行,且图像与两坐标轴围成的三角形面积等于4,求一次函数的解析式。

3、已知直线 31++-=m x y 与直线m x y 9732+-=交点A 在第四象限。

(1)求正整数m 的值; (2)求交点A 的坐标; (3)求这两条直线与x 轴所围成的三角形的面积4、已知正比例函数和一次函数的图像如图所示,其中交点A(3,4),且OA=21OB. 求:(1)正比例函数和一次函数解析式。

(2)△AOB 的面积。

5、直线1l :y=kx+b 过点B(-1,0)与y 轴交于点C,直线2l :y=mx+n 与1l 交于点P (2,5)且过点A(6,0),过点C 且与2l 平行的直线交X 轴于点D. (1)求直线CD 的函数解析式;(2)求四边形APCD 的面积。

xx(升)(小时)6014504540302010876543210y t ﹤2﹥利用函数图象获取所需信息解决实际问题:1、旅客乘车按规定可能随身携带一定质量的行李,如果超过规定,则需购买行李票.设行李票y (元)是行李质量x (千克)的一次函数,其图象如图14-2-6所示.求: (1)y 与x 之间的函数关系式; (2)旅客最多可以免费带行李的质量.2、张师傅驾车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题: (1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.3、某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

八年级一次函数的应用

八年级一次函数的应用

初 中 数 八 学 上
巩固练习 国家规定个人发表文章、出版图书获 ① 得稿费的纳税方法是:稿费不高于 800 元 ② 的不纳税;稿费高于 800 元但不高于 4 000 元的应缴纳超过 800 元的那一部分的 14% ③ 的税;稿费高于 4 000 元的应缴纳全部稿费 的 11% 的税. (1)当稿费收入高于 800元但不高于 为x元 4 000元时,写出应缴纳所得税 y(元)与稿费 收入 x(元)之间的函数关系式;小结:转化初 中 数 八 学 上
实际问题 解决 老师寄语:
数学问题 (一次函数)
数学来源于生活,生活中处处有数学, 让我们学会用数学的眼光看待生活.
初 中 数 八 学 上
试一试 说明:在现实生活中,两 个变量之间的数量关系并不完 全遵循同一个标准,在这样的 情况下,往往根据自变量不同 的取值范围,分别列出不同的 关系式. 解:①当 x 不超过 3 km时,y=7.0;
②当 x 超过 3 km时, x y=7.0 + 2.4 (x-3) 2.4 (x-3) 8.0 3
初 中 数 八 学 上
一辆汽车在普通公路上行驶 了 35 km 后驶入高速公路,然后 以 105 km/h 的速度匀速前进. 当车内里程表上显示本次出行已行驶了 175 km 、200 km 时,你能算出汽车在高速 公路上行驶了多长时间吗? 方法三 (函数的方法): 如果设行驶路程为 s (km),在高速公路 上的行驶时间为 t (h).你能写出 s 与 t 之间 的关系吗? s 105 t 35
初中数学八年级
上册
初 中 数 八 学 上
(苏科版)
第五章 第四节
一次函数的应用(1)
初 中 数 八 学 上
一辆汽车在普通公路上行驶 了 35 km 后驶入高速公路,然后 以 105 km/h 的速度匀速前进. 当车内里程表上显示本次出行已行驶了 175 km 、200 km 时,你能算出汽车在高速 公路上行驶了多长时间吗? 你有几种方法解决这个问题.

2019-2020学年八年级数学上册《一次函数的应用》教学设计 北师大版.doc

2019-2020学年八年级数学上册《一次函数的应用》教学设计 北师大版.doc

2019-2020学年八年级数学上册《一次函数的应用》教学设计北师大版课程分析:函数是中学数学的核心内容,而函数的应用又是重中之重。

函数的应用体现了数学来源于生活又应用于生活的道理,教师引导得当能够极大的激发学生学习数学的兴趣。

同时,运用所学的知识解决实际问题能够充分体现出学生分析问题、解决问题和综合运用知识的能力。

一次函数是最基本的函数学生易于理解和掌握,通过对一次函数的应用的探究,学生可以归纳出解决函数应用题的一般方法。

但是,函数是学生学习的难点,函数思想学生不易掌握;一次函数的应用是学生第一接触到函数应用问题,所以不在函数建模问题上过多涉及,而把设计的重点放在观察函数图像获取信息、体会方程与函数、数与形的关系这个层面上。

本节课的学习要用到前面所学的函数的基本知识以及一次函数的图像和性质,从而使旧知识得到巩固。

学情分析:这个班的学生比较活跃,课堂上发言积极。

而且学生已经学习过了函数的基本知识以及一次函数的图像和性质,大部分学生都能够根据解析式作出图像观察图像获得性质。

经管学生的总结能力较差,只要按照知识发现的实际背景,合理设问,学生还是能够发现规律的。

学习目标:1、观察图像获取信息;2、体会方程与函数、数与形的关系;3、运用函数图像解决简单的实际问题。

设计理念:根据课程改革的目标,实现以人的全面发展为本的教学观,并根据诱思探究学科教学论,改变传统教学过于注重传授知识的倾向,让学生在课堂上真正动起来,切实实现学生的主体地位。

但是函数应用问题涉及的知识面广、综合性强、灵活性大,对学生分析问题解决问题以及综合运用知识的能力要求比较高;一次函数的应用是学生第一接触到函数应用问题,解决函数应用题的方法还没有掌握,所以设计成创设情境激发情意:组织学生外出旅游,在旅游过程中遇到了很多问题,教师巧妙的设问环环相扣,引导学生利用所学的一次函数知识解决了一系列的问题;在这样一种全新的教学情意场中学生的积极性被充分调动起来,纷纷参与到旅游过程中各项决策中来,他们或者激烈争论各抒己见,或者低头沉思寻找解决问题的途径,学生也就真正成为课堂的主人。

北师大版八年级上册数学《一次函数的应用》教学课件

北师大版八年级上册数学《一次函数的应用》教学课件

.
l
3
2
1
O
x
-3 -2 -1
123
-1
-2 -3
让每一个生命都精彩绽放 北师大版八年级上册数学《4.4.一次 函数的 应用(1 )》课 件
北师大版八年级上册数学《4.4.一次 函数的 应用(1 )》课 件 北师大版八年级上册数学《4.4.一次 函数的 应用(1 )》课 件
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进行维权,按照传播下载次数进行十倍的索取赔偿!
北师大版八年级上册数学《4.4.一次 函数的 应用(1 )》课 件
思考:用
求一次函数表达式的步骤
(1)设:根据题意设函数的表达式为:y=kx+b.
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进行维权,按照传播下载次数进行十倍的索取赔偿!
北师大版八年级上册数学《4.4.一次 函数的 应用(1 )》课 件 北师大版八年级上册数学《4.4.一次 函数的 应用(1 )》课 件
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进行维权,按照传播下载次数进行十倍的索取赔偿!
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进行维权,按照传播下载次数进行十倍的索取赔偿!
第四章 一次函数
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责偿!

最新北师大版2018-2019学年八年级数学上册《一次函数的应用》1教学设计-优质课教案

最新北师大版2018-2019学年八年级数学上册《一次函数的应用》1教学设计-优质课教案

4 一次函数的应用第1课时一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【答案】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?【答案】(1)设v=kt;∵点(2,5)在图象上,∴5=2k,k=2.5,∴v=2.5t(2)当t=3时,v=2.5×3=7.5 m/s.师:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤,求函数表达式的步骤有:(1)设一次函数y=kx+b.(2)根据已知条件列出有关方程.(3)解方程.(4)把求出的值代回到表达式中即可.师:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?生:正比例函数需要1个;一次函数需要2个.【例3】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【答案】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A点坐标.(3)把图象上点的坐标代入,即可求出b的值,从而求出答案.【答案】(1)设y1的函数表达式为y=kx(x≥0).∵y1经过点(30,720),∴30k=720.∴k=24.∴y1的函数表达式为y1=24x(x≥0).(2)根据图象可知x=50,把x=50代入y1=24x得:y1=24×50=1200,∴A(50,1200)当销售量为50件时两种方案工资相同,都是1200元.(3)设y2的函数表达式为y2=ax+b(x≥0),经过点(30,960),(50,1200)∴,解得:,∴b=600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【答案】设月薪y(元),月销售额为x(元).方案甲:y=1500+x(x≥0)方案乙:y=750+x(x≥0)当y甲=y乙时,1500+x=750+x,解得x=7500.求得y甲=y乙=2250即销售额为7500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y关于x的函数图象.由图象可知:当0≤x<7500,y甲>y乙,x>7500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图1).图2中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【答案】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图3),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图3,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图3中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2n mile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。

初中八年级上册数学《一次函数的应用问题》名师课堂PPT课件

初中八年级上册数学《一次函数的应用问题》名师课堂PPT课件
列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行
驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与
x之间的函数关系.
1800 千米;两车______
4
(1)甲、乙两地相距______
小时后相遇;从乙地
12
到甲地,普通列车用了______
小时.
【思路点拨】
当x=0时,两车之间的距离为甲、乙两地之间的






由点的横坐标或纵坐标读出要求的值
理解一次函数关系式y=kx+b(k≠0)
中k、b的实际意义
关注特殊点的实际意义






【典型例题3】
A、B两地相距20千米,甲、乙两人都从A地去B地,图中射线1 和2 分别
表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.下列说法:
① 乙晚出发1小时
答:两车出发2.5小时或3.5小时,两车相距80千米.
【拓展延伸2】
有甲、乙两个圆柱体的蓄水池,将甲池中的水以一定的速度注入乙池,
甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象
如图所示,其中,甲蓄水池中水的深度y(米)与注水时间x(时)之间的
2
函数关系式为 = − x+2.结合图象回答下列问题:
k=-60,b=480 ,∴关系式为y=-60x+480(0≤x≤8)
【拓展延伸1】
甲车从A地出发匀速向B地行驶,同时乙车从B地出发匀速向A地行
驶,甲车行驶速度比乙车快,甲、乙两车距A地的路程y(千米)与行
驶时间x(小时)之间的关系如图所示,请结合图象回答下列问题:

八年级数学一次函数的应用教学课件

八年级数学一次函数的应用教学课件

三、归纳小结
一般地,当一次函数y=kx+b的函数值为0 时,相应的自变量的值就是方程kx+b=0的解. 从图象上看,一次函数y=kx+b的图象与x轴交 点的横坐标就是方程kx+b=0的解.
总结归纳
如何解答实际情景函数图象的信息? 1.理解横纵坐标分别表示的的实际意义; 2.分析已知条件,通过作x轴或y轴的垂线,在图象上找到对应的 点,由点的横坐标或者纵坐标的值读出要求的值;
2.若方程kx+b=0的解是x=5,则直线y=kx+b与x轴交点坐 标为(_5___,__0___).
归纳总结
一次函数与一元一次方程的关系
求一元一次方程 kx+b=0的解.
求一元一次方程 kx+b=0的解.
从“函数值”看
一次函数y= kx+b
中y=0时x的值.
从“函数图象”看
求直线y= kx+b 与 x 轴交点的横 坐标.
方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利 用待定系数法求出一次函数的关系式.
课堂小结
一次函数的应 用
单个一次函数图象 的应用
一次函数与一元一 次方程的关系
随堂练习
1.从一次函数的图象中获取信息,首先要看_______、_______所代表的意义,
其次要理解图象上特殊点的含义.
二、新课讲解
例 某种摩托车的油箱加满油后,油箱中的剩余油量y(L) 与摩托车行驶路程x(km)之间的关系如图所示.根据图
象回答下列问题:
(1)油箱最多可储油多少升? (2)一箱汽油可供摩托车行驶多少 千米? (3)摩托车每行驶100km消耗多少 升汽油? (4)油箱中的剩余油量小于1L时, 摩托车将自动报警.行驶多少千米后, 摩托车将自动报警?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学重点 教学难点
教 师引导学 生回顾 一 次函数图 象性质 一、情境引入 和 解析式的 确定方 前面我们已经学了一次函数的概念和图象性质及其如 法。 何确定解析式,那么如何利用一次函数知识解决相关问题 学生思考并回答。 呢? 二、探究新知 1、一个弹簧不挂重物时长为 12cm,挂上重物后伸长的长度 与所挂重物的质量成正比,如果挂上 1kg 的物体后,弹簧 伸长 2cm,求弹簧总长 y(单位:kg)变化的函数解析式。 2、 “黄金 1 号”玉米种子的价格为 5 元/千克,如果一次购 买 2 千克以上的种子,超过 2 千克部分的种子的价格打 8 折, (1)填出下表。 购 买 …… 种 子 0.5 1 1.5 2 2.5 3 3.5 4 数量/ 千克 付 款 …… 金额/ 元 (2)写出购买种子数量与付款金额之间的函数解析式,并 画出函数图象。 引导学生认真读题, 分析题中的数量关系 并抽象出函数解析 式。 教师让学生读题,明 确问题中的函数关系 有两个即在第一段时 间内是一次函数,在 第二段时间内是常数 函数,对于这种分段 函数问题,特别要注 意相应的自变量变化 范围。
20 o
100
200
x/分钟
(1)月通话为 100 分钟时,应缴话费______元。 (2)当 x≥100 时,求 y 与 x 之间的函数关系式。 (3)月通话为 280 分钟时,应缴话费多少元? 2、今年以来,广东大部分地区的电力紧缺,电力公司为鼓 励市民节约用电,采取按月用电量分段收费的办法,若某 户居民每月应缴电费 y(元)与用电量 x(度)的函数图象 是一条折线(如图所示) ,根据图象解下列问题: (1)分别写出 0≤x≤100 和 x≥100 时,y 与 x 的函数解 析式; (2)利用函数关系式,说明电力公司采取的收费标准; (3)若该用户某月用电 62 度,则应缴费多少元?若该用 户每月交费 105 元时,则该用户该月用了多少度电?
年级 教学媒体 教 学 目 标 过程 方法 情感 态度 知识 技能
八年级
课题
一次函数的应用 多 媒 体
课型
新授
能利用一次函数的性质及其图象解决简单的实际问题,发展学生的数学应用意识
能根据题目条件确定函数关系式,解决实际问题。 1、 体会解决问题方法的多样性,发展创新实践能力。 2、能把实际问题抽象成数学问题,运用数学知识于实际生活中。 简单多变量问题的解决 对数学建模的过程、思想、方法的领会,提升分析解决问题的能力。 教 学 过 程 设 计 教学程序及教学内容 师生行为 设计意图
为用函数解决实 际问题作铺垫。
培养学生建模的 思想。
进一步培养学生 抽象,建模的思 想。
2019-2020 学年
y y=4x+2 10 0 o 2 y=5x 学生讨论分析画出图 象师生共同写出解题 步骤
x
分析:付款金额 y 与种子价格有关,而种子价格又因购买 种子数量 x 不同而分成两种。当 0 x 2 时,种子价格为 5 元/千克, y 5 x ;当 x>2 时,超出的(x-2)千克打 8 折, 即按 4 元/千克计价,y 10 4( x 2) , 即 y 4x 2 。 因此, 写解析式与画图象都要分 0 x 2 和 x>2 两段处理。

一、例题引入: 二、小结



练习
一次函数的应用 例题分析 教 学 反 思医药研究所开发了一种新药,•在实验药效时发现, 如果成人按规定剂量服用,那么每毫升血液中含药量 y(ug) 随时间 x(h)•的变化情况如图所示. (1)当成人按规定剂量服药后_______h, 血液中含药量最高, 达每毫升______ug,接着逐步衰减; (2) 当成人按规定剂量服药后 5h ,血液中含药量为每毫升 ________ug; (3)求当 x≤2 时,y 与 x 之间的函数关系式; (4)求当 x≥2 时,y 与 x 之间的函数关系式; (5)若每毫升血液中含药 3ug 或 3ug 以上时, 治疗疾病有效, •求有效时间共有多长.
2019-2020 学年
四、小结归纳 1、学生谈本节课收获、结题步骤: 读题、审题,注意自变量取值范围,抽象出数学模型,利 用数学模型解决特殊问题 2、理解数形结合的思想。 五、作业设计 ) (一)教材习题 14.2 第 7,9,11,12 题。 (二)补充作业 1.一盘蚊香长 100cm,点燃时每小时缩短 10cm,小明在蚊 香点燃 5h 后将它熄灭,过了 2h,他再次点燃了蚊香.下列 四个图象中,大致能表示蚊香剩余长度 y(cm)与所经过时间 x(h)之间的函数关系的是( )
5x 综上, y (0 x 2) 4 x 2 ( x 2)
培养学生解决实 际问题的能力。
三、课堂训练 1、某移动分公司用分段计费的方法来计算话费,月通话时 本题是一道和话费有 进 一 步 培 养 学 生 间 x(分钟)与相应话费 y(元)之间的函数图象如图所示: 关的分段函数问题, 解 决 实 际 问 题 的 y/元 通过图象可观察到, 0 能力 到 100 分钟之间月话 y/元 费 y(元)是月通话时 x( 分钟 ) 的正比例函 数,当 x≥100 时,月 60 话费 y(元)是月通话 时的一次函数 40
相关文档
最新文档