《弧长计算》练习题
《弧长计算》练习题
《弧长计算》练习题一.选择题1.圆心角为120°,弧长为12π的扇形半径为〔〕A.6 B.9 C.18 D.362.圆的面积为π,那么60°的圆心角所对的弧长是〔〕A.B.C.D.3.一个扇形的圆心角为60°,它所对的弧长为2πcm,那么这个扇形的半径为〔〕A.6cm B.12cm C.2cm D.cm4.一个扇形的半径为8cm,弧长为cm,那么扇形的圆心角为〔〕A.60° B.120°C.150°D.180°5.在半径为1的⊙O中,弦AB=1,劣弧AB的长是〔〕A. B. C. D.6.一个扇形的圆心角为60°,弧长为2π厘米,那么这个扇形的半径为〔〕A.6厘米B.12厘米C.厘米 D.厘米7.扇形的弧长是2πcm,半径为12cm,那么这个扇形的圆心角是〔〕A.60°B.45° C.30° D.20°二.填空题8.圆心角为120°,半径为6cm的扇形的弧长是cm.9.在半径为18的圆中,120°的圆心角所对的弧长是.10.扇形的圆心角为60°,弧长等于,那么该扇形的半径是.11.扇形的圆心角为120°,弧长是4πcm,那么扇形的半径是cm.12.如图,在△ABC中,∠C=90°,∠A=30°,BC=1,将△ABC绕点B顺时针方向旋转,使点C落到AB的延长线上,那么点A所经过的线路长为.13.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为cm.14.如图,把直角三角形ABC的斜边AB放在定直线L上,按顺时针方向在L上转动两次使它转到三角形A″B″C″的位置,设BC=1,AC=,其中∠A=30°那么定点A运动到点A″的位置时,点A经过的路线长是.第12题图第13题图第14题图15.一块等边三角形的木板边长为1,将木板沿水平翻滚如下图,那么B点从开场到完毕所经过的路线长为.第15题图第16题图第17题图16.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,那么三个扇形弧长的和为.17.如图,△ABC是正三角形,曲线CDEF…叫做“正三角形的渐开线〞,其中弧CD、弧DE、弧EF的圆心依次按A、B、C…循环,它们依次相连接.假设AB=1,那么曲线CDEF的长是.三.解答题〔共3小题〕18.如图,OA、OB是⊙O的两条半径,以OA为直径的⊙O1交OB于点C,证明:的长=的长.28.:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比拟与的长.2016年11月18日卞相岳的弧长计算参考答案与试题解析一.选择题〔共9小题〕1.〔2015•〕如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,那么的长是〔〕A.πB.πC.πD.π【解答】解:因为⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,所以可得圆心角∠BOC=90°,所以的长==π,应选B.2.〔2014•〕圆心角为120°,弧长为12π的扇形半径为〔〕A.6 B.9 C.18 D.36【解答】解:设该扇形的半径是r.根据弧长的公式l=,得到:12π=,解得 r=18,应选:C.3.圆的面积为π,那么60°的圆心角所对的弧长是〔〕A. B. C. D.【解答】解:设圆的半径为r,∴π=πr2,∴r=,∴60°的圆心角所对的弧长是:==.应选B.4.一个扇形的圆心角为60°,它所对的弧长为2πcm,那么这个扇形的半径为〔〕A.6cm B.12cm C.2cm D.cm【解答】解:根据题意得:l=,那么r==6cm,应选A5.〔2014•〕一个扇形的半径为8cm,弧长为cm,那么扇形的圆心角为〔〕A.60° B.120°C.150°D.180°【解答】解:设扇形圆心角为n°,根据弧长公式可得:=,解得:n=120°,应选:B.6.⊙O的半径是1,△ABC接于圆O.假设∠B=34°,∠C=110°,那么弧BC的长为〔〕A. B.πC.πD.π【解答】解:由题意得,∠A=180°﹣∠B﹣∠C=180°﹣34°﹣110°=36°,那么∠BOC=2∠A=72°,那么弧BC的长==π.应选B.7.在半径为1的⊙O中,弦AB=1,劣弧AB的长是〔〕A. B. C. D.【解答】解:如图,∵OA=OB=AB=1,∴△OAB是等边三角形,∴∠O=60°,∴劣弧AB的长==,应选C.8.〔2015秋•高密市月考〕一个扇形的圆心角为60°,弧长为2π厘米,那么这个扇形的半径为〔〕A.6厘米B.12厘米C.厘米 D.厘米【解答】解:l=,由题意得,2π=,解得:R=6cm.应选A.9.〔2002•〕扇形的弧长是2πcm,半径为12cm,那么这个扇形的圆心角是〔〕A.60° B.45° C.30° D.20°【解答】解:设圆心角是n度,那么=2π,解得:n=30.应选C.二.填空题〔共16小题〕10.〔2013•模拟〕如图,在△ABC中,∠C=90°,∠A=30°,BC=1,将△ABC绕点B顺时针方向旋转,使点C落到AB的延长线上,那么点A所经过的线路长为.【解答】解:∵在△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,∠B=90°﹣30°=60°,∴旋转角是240度.长是:=.故答案是:.11.〔2004•〕如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为20πcm.【解答】解:=20πcm.12.〔1999•〕扇形的圆心角为150°,弧长为20π厘米,那么这个扇形的半径为24 厘米.【解答】解:根据弧长公式得:解得r=24cm.13.〔2012•〕如图,Rt△ABC的边BC位于直线l上,AC=,∠ACB=90°,∠A=30°.假设Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为〔4+〕π〔结果用含有π的式子表示〕【解答】解:∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC由现在的位置向右无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长,∴点A经过的路线长=×3+×2=〔4+〕π.故答案为:〔4+〕π.14.〔2002•〕在半径为9cm的圆中,60°的圆心角所对的弧长为3πcm.【解答】解:=3πcm.15.〔2015•磴口县校级模拟〕一块等边三角形的木板边长为1,将木板沿水平翻滚如下图,那么B点从开场到完毕所经过的路线长为π.【解答】解:∵△ABC是等边三角形,∴∠ACB=∠BAC=60°,∴两次旋转的角度都是180°﹣60°=120°,∴B点从开场到完毕所经过的路线长=2×=π.故答案为:π.16.〔2011秋•鄞州区期末〕如图,正方形ABCD,曲线DP1P2P3P4P5…叫做“正方形的渐开线〞,其中弧DP1,弧P1P2,弧P2P3,弧P3P4,弧P4P5…的圆心依次按点A,B,C,D,A循环,它们的弧长分别记为l1,l2,l3,l4,l5….当AB=1时,l2011等于.【解答】解:∵AB=1,∴该正边形的第一重渐开线长l1==,二重渐开线长l2==π,第三重渐开线长l3==,…第2011重渐开线长l2011==.故答案为:.17.〔2005•〕如图ABCD是各边长都大于2的四边形,分别以它的顶点为圆心,1为半径画弧〔弧的端点分别在四边形的相邻两边上〕,那么这4条弧长的和是2π或6π.【解答】解:四边形角和为360°,分两种情况考虑:〔i〕图中阴影刚好是完整的一个半径为1的圆的周长,那么阴影局部弧长为πd=2π;〔ii〕图中非阴影局部的弧长为三个圆周长,即弧长为3×2π=6π,综上,这4条弧长的和是2π或6π.故答案为:2π或6π18.〔2015•红河州一模〕要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,那么三个扇形弧长的和为2π.【解答】解:设△ABC的三个角的度数分别为α、β、γ,那么α+β+γ=180°,三个扇形的弧长和为++=2π,故答案为:2π.19.〔2013秋•福田区校级月考〕如图,把直角三角形ABC的斜边AB放在定直线L上,按顺时针方向在L上转动两次使它转到三角形A″B″C″的位置,设BC=1,AC=,其中∠A=30°那么定点A运动到点A″的位置时,点A经过的路线长是+.【解答】解:∵在Rt△ACB中,BC=1,AC=,∴由勾股定理得:AB=2,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,l=+=+.故答案为:+.20.〔2010春•萧山区期末〕如图,四边形ABCD是正方形,曲线DA1B1C1D1…叫做“正方形的渐开线〞,其中曲线DA1、A1B1、B1C1、C1D1、…的圆心依次按A、B、C、D循环,它们依次连接.取AB=1,那么曲线DA1B1…C2D2的长是18π.〔结果保存π〕【解答】解:曲线DA1B1…C2D2的长=++…+=〔1+2+…+8〕=×36=18π.故答案为:18π.21.如图,△ABC是正三角形,曲线CDEF…叫做“正三角形的渐开线〞,其中弧CD、弧DE、弧EF的圆心依次按A、B、C…循环,它们依次相连接.假设AB=1,那么曲线CDEF的长是4π.【解答】解:∵△ABC是正三角形,∴∠CAD=∠DBE=∠ECF=120°,又∵AB=1,∴AC=1,BD=2,CE=3,∴CD弧的长度==;DE弧的长度==;EF弧的长度==2π;所以曲线CDEF的长为++2π=4π.故答案为:4π.22.〔2015•〕圆心角为120°,半径为6cm的扇形的弧长是4πcm.【解答】解:由题意得,n=120°,R=6cm,故可得:l==4πcm.故答案为:4π.23.〔2016•校级一模〕在半径为18的圆中,120°的圆心角所对的弧长是12π.【解答】解:弧长是:=12π.故答案是:12π.24.〔2014•工业园区二模〕扇形的圆心角为60°,弧长等于,那么该扇形的半径是 1 .【解答】解:∵扇形弧长公式为:l=,∴=,解得:r=1;故答案为:1.25.〔2014•质检〕扇形的圆心角为120°,弧长是4πcm,那么扇形的半径是 6 cm.【解答】解:由扇形的弧长公式是l=,得4π=,解得:R=6cm.故答案为:6.三.解答题〔共3小题〕26.如图,⊙O1的半径O1A是⊙O2的直径,⊙O1的半径O1C交⊙O2于B,和的长度有什么关系?为什么?【解答】解:和的长度相等.理由如下:如图,连接BO2.∵∠AO2B=2∠AO1B,AO1=2AO2,∴的长度=π•AO1,的长度=•π•AO2,∴的长度=的长度.27.如图,OA、OB是⊙O的两条半径,以OA为直径的⊙O1交OB于点C,证明:=.【解答】证明:连接O1C,设∠AOB=θ,⊙O1的半径O1A=r,那么⊙O1的直径为2r,半径OA=2r,∴∠AO1C=2∠AOC=2θ〔同弧所对的圆心角等于2倍的圆周角〕,∵==,==,∴=.28.:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比拟与的长.【解答】解:如图:连接O2D,∵O1A:O2A=2:1,∴设O1A=2x,O2A=x;根据同弧所对的圆周角是圆心角的一半,∠1=2∠2,设∠2=y度,那么∠1=2y度,==;==;可见,与的长度相等.。
弧长扇形面积的计算
1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是.
2、一个扇形的圆心角为120°,面积为3πcm2,这个扇形的半径
是.
3、已知扇形的弧长为20cm,面积为16cm2,那么扇形的半径
为 .
4、扇形的半径是6cm,圆心角为10°,则这个扇形的面积是______ cm2.
5、扇形的面积是5πcm2 ,圆心角为72°,则这个扇形的半径是__ _ cm.
6、已知扇形的圆心角为120°,弧长等于半径为5cm的圆周长,则扇形
的面积为()
A.75 cm2
B.75πcm2
C.150cm2
D.150πcm2
7、如图所示,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()
A.12πm B.18πm
C.20πm D.24πm
8、如图3所示,OA=30B,则的长是的长的倍.
9、如图,两个同心圆被两条半径截得的的长为6πcm,的长为10πcm,又AC=12cm,求阴影部分ABDC的面积。
【中考冲刺】弧长的计算
【中考冲刺】弧长的计算【中考冲刺】弧长的计算一、选择题(共15小题)1.(2012•呼伦贝尔)如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,AB=,将△ABC绕顶点C顺时针旋转至△A′B′C′的位置,且A、C、B′三点在同一条直线上,则点A经过的路线的长度是()C D..D3.(2011•宜昌)按图1的方法把圆锥的侧面展开,得到图2,其半径0A=3,圆心角∠AOB=120°,则的长为()4.(2011•烟台)如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中,,,,,,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2011等于().C D.5.(2011•仙桃天门潜江江汉)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点.作△ABC的外接圆⊙O,则的长等于().C D.6.(2011•綦江县)如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()7.(2011•桂林)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为().C D.8.(2011•广州)如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为().C.10.如图转动一长为4cm,宽为3cm的长方形木板,在桌面上作无滑动的翻滚(顺时针方向),木板上的点A位置变化为A→A1→A2,其中第二次翻滚时被桌面上另一小木块挡住,且使木板与桌面成30°角,则A翻滚到A2时,共经过的路径长为()cm.11.(2012•漳州)如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是()13.(2010•荆州)△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆.如图,若的长为12cm,那么的长是()14.(2000•陕西)有一跑道如图所示(尺寸单位是m),若起跑点设在A处,一同学沿图中虚线跑3000m,估算终点在(计算精确到1m)()二、填空题(共15小题)(除非特别说明,请填准确值)16.(2012•广安)如图,Rt△ABC的边BC位于直线l上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为_________(结果用含有π的式子表示)17.(2012•长沙)在半径为1cm的圆中,圆心角为120°的扇形的弧长是_________cm.18.(2011•绍兴)一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为_________.19.(2011•保山)如图,⊙O的半径是2,∠ACB=30°,则的长是_________(结果保留π).20.(2011•重庆)在半径为的圆中,45°的圆心角所对的弧长等于_________.21.(2011•玉溪)如图,在小正方形的边长都为1的方格纸中,△ABO的顶点都在小正方形的顶点上,将△ABO绕点O顺时针方向旋转90°得到△A1B1O,则点A运动的路径长为_________.22.(2011•清远)已知扇形的圆心角为60°,半径为6,则扇形的弧长为_________(结果保留π)23.(2010•遵义)如图,已知正方形的边长为2cm,以对角的两个顶点为圆心,2cm长为半径画弧,则所得到的两条弧的长度之和为_________cm(结果保留π).24.(2010•肇庆)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是_________cm.25.(2010•梧州)120°的圆心角所对的弧长是12πcm,则此弧所在的圆的半径是_________cm.26.(2010•泰州)已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为_________cm(结果保留π).27.(2010•苏州)如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于_________.(结果保留根号及π).28.(2010•山西)图1是以AB为直径的半圆形纸片,AB=6cm,沿着垂直于AB的半径OC剪开,将扇形OAC沿AB方向平移至扇形O′A′C′,如图2,其中O′是OB的中点,O′C′交于点F.则的长为_________cm.29.(2010•清远)在半径是20cm的圆中,90°的圆心角所对的弧长为_________cm.(精确到0.1 cm)30.(2010•吉林)如图,为拧紧一个螺母,将扳手顺时针旋转60°,扳手上一点A转至点A′处,若OA长为25cm,则长为_________cm(结果保留π).【中考冲刺】弧长的计算参考答案与试题解析一、选择题(共15小题)1.(2012•呼伦贝尔)如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,AB=,将△ABC绕顶点C顺时针旋转至△A′B′C′的位置,且A、C、B′三点在同一条直线上,则点A经过的路线的长度是()C D.=.Dl==l=3.(2011•宜昌)按图1的方法把圆锥的侧面展开,得到图2,其半径0A=3,圆心角∠AOB=120°,则的长为()弧长的计算公式为==24.(2011•烟台)如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中,,,,,,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2011等于().C D.=====5.(2011•仙桃天门潜江江汉)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点.作△ABC的外接圆⊙O,则的长等于().C D.OA==∴.6.(2011•綦江县)如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()=27.(2011•桂林)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为().C D.a,C=C=aa a+++l=8.(2011•广州)如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为().C.,OA=,又根据平行线的性质得到∠OA=2BOA==,OB=OA=l=度,则=210.如图转动一长为4cm,宽为3cm的长方形木板,在桌面上作无滑动的翻滚(顺时针方向),木板上的点A位置变化为A→A1→A2,其中第二次翻滚时被桌面上另一小木块挡住,且使木板与桌面成30°角,则A翻滚到A2时,共经过的路径长为()cm..11.(2012•漳州)如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是()π×L==413.(2010•荆州)△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆.如图,若的长为12cm,那么的长是()又∵14.(2000•陕西)有一跑道如图所示(尺寸单位是m),若起跑点设在A处,一同学沿图中虚线跑3000m,估算终点在(计算精确到1m)()+2×=16L=二、填空题(共15小题)(除非特别说明,请填准确值)16.(2012•广安)如图,Rt△ABC的边BC位于直线l上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为(4+)π(结果用含有π的式子表示)AC=的长,个×))l=17.(2012•长沙)在半径为1cm的圆中,圆心角为120°的扇形的弧长是cm.即可求得扇形的弧长.L==故答案为:才能准确的解题.18.(2011•绍兴)一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为1.r=19.(2011•保山)如图,⊙O的半径是2,∠ACB=30°,则的长是(结果保留π).的长是=π故答案为:20.(2011•重庆)在半径为的圆中,45°的圆心角所对的弧长等于1.l==1l=21.(2011•玉溪)如图,在小正方形的边长都为1的方格纸中,△ABO的顶点都在小正方形的顶点上,将△ABO绕点O顺时针方向旋转90°得到△A1B1O,则点A运动的路径长为π.l===2;=故答案是:22.(2011•清远)已知扇形的圆心角为60°,半径为6,则扇形的弧长为2π(结果保留π)=.23.(2010•遵义)如图,已知正方形的边长为2cm,以对角的两个顶点为圆心,2cm长为半径画弧,则所得到的两条弧的长度之和为2πcm(结果保留π).,此题中每一条弧所对的圆心角是×=224.(2010•肇庆)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是6cm.l=25.(2010•梧州)120°的圆心角所对的弧长是12πcm,则此弧所在的圆的半径是18cm.l=R===1826.(2010•泰州)已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为10πcm(结果保留π).l==l=.27.(2010•苏州)如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于.(结果保留根号及π)...π28.(2010•山西)图1是以AB为直径的半圆形纸片,AB=6cm,沿着垂直于AB的半径OC剪开,将扇形OAC沿AB方向平移至扇形O′A′C′,如图2,其中O′是OB的中点,O′C′交于点F.则的长为πcm.OF∴=29.(2010•清远)在半径是20cm的圆中,90°的圆心角所对的弧长为31.4cm.(精确到0.1 cm)l=,直接求值即可.l=是解题的关键.30.(2010•吉林)如图,为拧紧一个螺母,将扳手顺时针旋转60°,扳手上一点A转至点A′处,若OA长为25cm,则长为cm(结果保留π).L=。
小学阶段图形弧长口算练习题
小学阶段图形弧长口算练习题在小学阶段,学习图形的知识是非常重要的。
其中,计算图形的弧长是一个基础的技能。
本文将为大家提供一些小学阶段图形弧长口算的练习题,帮助学生加强对图形弧长的计算能力。
1. 椭圆的弧长计算椭圆的弧长计算可以通过以下公式得到:L = π * (a + b)其中,a为椭圆的长半轴,b为椭圆的短半轴。
例题:某个椭圆的长半轴为12cm,短半轴为8cm,求其弧长。
解答:代入公式,L = π * (12 + 8) = 20π ≈ 62.83cm2. 圆的弧长计算圆的弧长计算可以通过以下公式得到:L = 2 * π * r其中,r为圆的半径。
例题:某个圆的半径为6cm,求其弧长。
解答:代入公式,L = 2 * π * 6 = 12π ≈ 37.7cm3. 扇形的弧长计算扇形的弧长计算可以通过以下公式得到:L = θ * π * r / 180°其中,θ为扇形的角度,r为扇形的半径。
例题:某个扇形的角度为60°,半径为10cm,求其弧长。
解答:代入公式,L = 60 * π * 10 / 180 = 10π / 3 ≈ 10.47cm4. 弓形的弧长计算弓形的弧长计算可以通过以下公式得到:L = θ * π * r / 180° + 2 * r * sin(θ / 2)其中,θ为弓形的角度,r为弓形的半径。
例题:某个弓形的角度为120°,半径为8cm,求其弧长。
解答:代入公式,L = 120 * π * 8 / 180 + 2 * 8 * sin(120 / 2) ≈30.99cm5. 直角三角形的弧长计算直角三角形的弧长计算需要分别计算直角边的弧长,并相加。
例题:某个直角三角形的两条直角边分别为6cm和8cm,求其弧长。
解答:根据勾股定理可得斜边长度为10cm。
而斜边是直角边的弧长,因此弧长为10cm。
通过以上的练习题,可以帮助小学阶段的学生巩固和提高图形弧长的口算能力。
2021年春中考数学一轮复习小专题突破:弧长的计算1(附答案)
2021年春中考数学一轮复习小专题突破:弧长的计算1(附答案)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1D.1﹣2.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣3.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S14.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π5.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π6.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.﹣B.﹣C.π﹣D.π﹣7.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.28.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm29.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.10.如图,⊙A,⊙B,⊙C的半径都是2cm,则图中三个扇形(即阴影部分)面积之和是()A.2πB.πC.D.6π11.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2D.2πm212.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π13.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣πB.4﹣πC.2﹣πD.π14.一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2πB.4πC.12πD.24π15.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.B.2C.D.116.如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.19.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.20.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.21.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.(结果保留π)22.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)23.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.24.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.25.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.26.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.27.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).28.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.29.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.30.用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为.31.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)32.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)33.如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.34.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.35.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.36.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE ⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.37.如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.38.如图,已知AB,CD为⊙O的直径,过点A作弦AE垂直于直径CD于F,点B恰好为的中点,连接BC,BE.(1)求证:AE=BC;(2)若AE=2,求⊙O的半径;(3)在(2)的条件下,求阴影部分的面积.39.如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.(1)∠BFG与∠BGF是否相等?为什么?(2)求由DG、GE和弧ED所围成图形的面积.(阴影部分)40.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DP A=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.41.如图,五个半径为2的圆,圆心分别是点A,B,C,D,E,则图中阴影部分的面积和是多少?42.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠CBD=30°,求图中阴影部分的面积.参考答案1.解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=2S扇形﹣S正方形=﹣1=.故选:A.2.解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积为:﹣×2×1=π﹣.故选:A.3.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC=,S弓形==,>>,∴S2<S1<S3.故选:B.4.解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==,故选:A.5.解:连接AC,∵四边形ABCD是菱形,∴AB=BC=6,∵∠B=60°,E为BC的中点,∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,∵∠B=60°,∴∠BCD=180°﹣∠B=120°,由勾股定理得:AE==3,∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,故选:A.6.解:连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=﹣×2×=﹣.故选:A.7.解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.8.解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选:B.9.解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.10.解:∵∠A+∠B+∠C=180°,∴阴影部分的面积==2π.故选:A.11.解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2),故选:A.12.解:作OD⊥BC,则BD=CD,连接OB,OC,∴OD是BC的垂直平分线,∵=,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,∵AD⊥BC,AB=AC,∴BD=CD,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.13.解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S阴影=S△ABC﹣S扇形CBD=×2×2﹣=2﹣π.故选:A.14.解:S==12π,故选:C.15.解:连接AE,OD、OE.∵AB是直径,∴∠AEB=90°,又∵∠BED=120°,∴∠AED=30°,∴∠AOD=2∠AED=60°.∵OA=OD∴△AOD是等边三角形,∴∠OAD=60°,∵点E为BC的中点,∠AEB=90°,∴AB=AC,∴△ABC是等边三角形,边长是4.△EDC是等边三角形,边长是2.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=S△EDC=×22=.故选:A.16.解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.17.解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.18.解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.19.解:连结OC,过C点作CF⊥OA于F,∵半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=1cm,OC=2cm,∠AOC=45°,∴CF=,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×=π﹣(cm2)三角形ODE的面积=OD×OE=(cm2),∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(π﹣)﹣=π+﹣(cm2).故图中阴影部分的面积为(π+﹣)cm2.故答案为:(π+﹣).20.解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=•π•=×π×=.故答案为:.21.解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO≌△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB==π,S扇形C′OC==,∴阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=π﹣=π;故答案为:π.22.解:过点O作OD⊥BC于点D,交于点E,连接OC,则点E是的中点,由折叠的性质可得点O为的中点,∴S弓形BO=S弓形CO,在Rt△BOD中,OD=DE=R=2,OB=R=4,∴∠OBD=30°,∴∠AOC=60°,∴S阴影=S扇形AOC==.故答案为:.23.解:连接DB′,BD.∵△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,DB′===,A′B′===2,∴S阴=﹣×1×1﹣×1×2=π﹣.故答案为π﹣.24.解:连接CD,∵CA=CB,∠ACB=90°,∴∠B=45°,∵点D为AB的中点,∴DC=AB=BD=1,CD⊥AB,∠DCA=45°,∴∠CDH=∠BDG,∠DCH=∠B,在△DCH和△DBG中,,∴△DCH≌△DBG(ASA),∴S四边形DGCH=S△BDC=S△ABC=AB•CD=×2×1=.∴S阴影=S扇形DEF﹣S△BDC=﹣=﹣.故答案为﹣.25.解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,),∴O′M=,OM=1,∵AO=2,∴AM=2﹣1=1,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=,故答案为:.26.解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.27.解:根据题意得,S阴影部分=S扇形BAD﹣S半圆BA,∵S扇形BAD==4πS半圆BA=•π•22=2π,∴S阴影部分=4π﹣2π=2π.故答案为2π.28.解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故答案为π﹣1.29.解:∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.30.解:如图,设的中点为P,连接OA,OP,AP,△OAP的面积是:×12=,扇形OAP的面积是:S扇形=,AP直线和AP弧面积:S弓形=﹣,阴影面积:3×2S弓形=π﹣.故答案为:π﹣.31.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.32.解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.33.解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵的长为,∴=,解得:R=2,∴AB=AD cos30°=2,∴BC=AB=,∴AC===3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故答案为:.34.解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.35.(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形BOC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为:.36.解:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE∥BC,又∵点O是AB中点,∴OE是△ABC的中位线,∴OE=BC=;(2)连接OC,则易得△COE≌△AFE,故阴影部分的面积=扇形FOC的面积,S扇形FOC==π.即可得阴影部分的面积为π.37.(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°.∴∠OCD=∠ACD﹣∠ACO=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠COB=2∠A=60°.∴S扇形BOC=,在Rt△OCD中,CD=OC,∴,∴,∴图中阴影部分的面积为.38.(1)证明:连接BD,∵AB,CD为⊙O的直径,∴∠CBD=∠AEB=90°,∵点B恰好为的中点,∴=,∴∠A=∠C,∵∠ABE=90°﹣∠A,∠CDB=90°﹣∠C,∴∠ABE=∠CDB,∴=,∴AE=BC;(2)解:∵过点A作弦AE垂直于直径CD于F,∴=,∵=,∴==,∴∠A=∠ABE,∴∠A=30°,在Rt△ABE中,cos∠A=,∴AB===4,∴⊙O的半径为2.(3)连接OE,∵∠A=30°,∴∠EOB=60°,∴△EOB是等边三角形,∵OB=OE=2,∴S△EOB=×2×=,∴S阴=S扇形﹣S△EOB=﹣=﹣.39.解:(1)∠BFG=∠BGF;理由如下:连OD,∵OD=OF(⊙O的半径),∴∠ODF=∠OFD;∵⊙O与AC相切于点D,∴OD⊥AC;又∵∠C=90°,即GC⊥AC,∴OD∥GC,∴∠BGF=∠ODF;又∵∠BFG=∠OFD,∴∠BFG=∠BGF.(2)连OE,∵⊙O与AC相切于点D、与BC相切于点E,∴DC=CE,OD⊥AC,OE⊥BC,∵∠C=90°,∴四边形ODCE为正方形,∵AO=BO=AB==3,∴OD=BC=×6=3,∵∠BFG=∠BGF,∴BG=BF=OB﹣OF=3﹣3;从而CG=CB+BG=3+3;∴S阴影=S△DCG﹣S正方形ODCE+S扇形ODE=S△DCG﹣(S正方形ODCE﹣S扇形ODE)=•3•(3+3)﹣(32﹣π•32)=.40.解:(1)连接OF,∵直径AB⊥DE,∴CE=DE=1.∵DE平分AO,∴CO=AO=OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x=.∴OE=2x=.即⊙O的半径为.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF==π.∵∠EOF=2∠D=90°,OE=OF=S Rt△OEF==.∴S阴影=S扇形OEF﹣S Rt△OEF=π﹣.41.解:由图可得,5个扇形的圆心角之和为:(5﹣2)×180°=540°,则五个阴影部分的面积之和==6π.42.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,又∵OC为半径,∴AE=ED,(2)解:连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∵AB=6,∴BD=3,AD=3,∵OA=OB,AE=ED,∴,∴S阴影=S扇形AOD﹣S△AOD=﹣=3π﹣.。
中考数学复习----《弧长的计算》知识点总结与专项练习题(含答案解析)
中考数学复习----《弧长的计算》知识点总结与专项练习题(含答案解析) 知识点总结1. 圆的周长计算公式:r C π2=2. 弧长计算公式:︒=180r n l π(弧长为l ,圆心角度数为n ,圆的半径为r ) 练习题1.(2022•丹东)如图,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC ,OC ,若AB =6,∠A =30°,则BC ⌒的长为( )A .6πB .2πC .πD .π【分析】先根据圆周角定理求出∠BOC =2∠A =60°,求出半径OB ,再根据弧长公式求出答案即可.【解答】解:∵直径AB =6,∴半径OB =3,∵圆周角∠A =30°,∴圆心角∠BOC =2∠A =60°,∴的长是=π,故选:D .2.(2022•广西)如图,在△ABC 中,CA =CB =4,∠BAC =α,将△ABC 绕点A 逆时针旋转2α,得到△AB ′C ′,连接B ′C 并延长交AB 于点D ,当B ′D ⊥AB 时,BB ′⌒的长是( )A .332πB .334πC .938πD .9310π 【分析】证明α=30°,根据已知可算出AD 的长度,根据弧长公式即可得出答案.【解答】解:∵CA =CB ,CD ⊥AB ,∴AD =DB =AB ′.∴∠AB ′D =30°,∴α=30°,∵AC =4,∴AD =AC •cos30°=4×=2,∴, ∴的长度l ==π. 故选:B .3.(2022•河北)某款“不倒翁”(图1)的主视图是图2,PA ,PB 分别与AMB ⌒所在圆相切于点A ,B .若该圆半径是9cm ,∠P =40°,则AMB ⌒的长是( )A .11πcmB .211π cmC .7πcmD .27π cm 【分析】根据题意,先找到圆心O ,然后根据PA ,PB 分别与所在圆相切于点A ,B .∠P =40°可以得到∠AOB 的度数,然后即可得到优弧AMB 对应的圆心角,再根据弧长公式计算即可.【解答】解:OA ⊥PA ,OB ⊥PB ,OA ,OB 交于点O ,如图,∴∠OAP =∠OBP =90°,∵∠P =40°,∴∠AOB =140°,∴优弧AMB 对应的圆心角为360°﹣140°=220°,∴优弧AMB 的长是:=11π(cm ),故选:A . 4.(2022•湖北)如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则AD ⌒的长为( )A .πB .34πC .35πD .2π【分析】连接CD ,根据∠ACB =90°,∠B =30°可以得到∠A 的度数,再根据AC =CD 以及∠A 的度数即可得到∠ACD 的度数,最后根据弧长公式求解即可.【解答】解:连接CD ,如图所示:∵∠ACB =90°,∠B =30°,AB =8,∴∠A =90°﹣30°=60°,AC ==4,由题意得:AC =CD ,∴△ACD 为等边三角形,∴∠ACD =60°,∴的长为:, 故选:B .5.(2022•甘肃)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(AB ⌒),点O 是这段弧所在圆的圆心,半径OA =90m ,圆心角∠AOB =80°,则这段弯路(AB ⌒)的长度为( )A .20πmB .30πmC .40πmD .50πm【分析】根据题目中的数据和弧长公式,可以计算出这段弯路()的长度. 【解答】解:∵半径OA =90m ,圆心角∠AOB =80°,∴这段弯路()的长度为:=40π(m ),故选:C . 6.(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为23m ,则改建后门洞的圆弧长是( )A .π35m B .π38m C .π310m D .(π35+2)m 【分析】先作出合适的辅助线,然后根据题意和图形,可以求得优弧所对的圆心角的度数和所在圆的半径,然后根据弧长公式计算即可.【解答】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,由题意可得,CD=2m,AD=2m,∠ADC=90°,∴tan∠DCA===,AC==4(m),∴∠ACD=60°,OA=OC=2m,∴∠ACB=30°,∴∠AOB=60°,∴优弧ADCB所对的圆心角为300°,∴改建后门洞的圆弧长是:=(m),故选:C.7.(2022•枣庄)在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C=90°,∠ABC=30°,AC=2,将直角三角尺绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,以此方法做下去……则B点通过一次旋转至B′所经过的路径长为.(结果保留π)【分析】由含30度直角三角形的性质求出AB,根据弧长公式即可求出结论.【解答】解:∵∠C=90°,∠ABC=30°,AC=2,∴AB=2AC=4,∠BAC=60°,由旋转的性质得,∠BAB′=∠BAC=60°,∴B点通过一次旋转至B′所经过的路径长为=,故答案为:.8.(2022•沈阳)如图,边长为4的正方形ABCD内接于⊙O,则AB⌒的长是(结果保留π).【分析】连接OA、OB,可证∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB.∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=42,解得:AO=2,∴的长==π,故答案为:π.9.(2022•大连)如图,正方形ABCD的边长是2,将对角线AC绕点A顺时针旋转∠CAD 的度数,点C旋转后的对应点为E,则弧CE的长是(结果保留π).【分析】先根据正方形的性质得到∠CAD=45°,AC=AB=×=2,然后利用弧长公式计算的长度.【解答】解:∵四边形ABCD为正方形,∴∠CAD=45°,AC=AB=×=2,∵对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,∴的长度为=π.故答案为:π.10.(2022•青海)如图,从一个腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,则此扇形的弧长为cm.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长.【解答】解:过O作OE⊥AB于E,当扇形的半径为OE时扇形OCD最大,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20πcm,故答案为:20π.11.(2022•广州)如图,在△ABC中,AB=AC,点O在边AC上,以O为圆心,4为半径的圆恰好过点C,且与边AB相切于点D,交BC于点E,则劣弧DE⌒的长是.(结果保留π)【分析】连接OD,OE,根据等腰三角形的性质和三角形内角和定理可得∠A=∠COE,再根据切线的性质和平角的定义可得∠DOE=90°,然后利用弧长公式进行计算即可解答.【解答】解:连接OD,OE,∵OC=OE,∴∠OCE=∠OEC,∵AB=AC,∴∠ABC=∠ACB,∵∠A+∠ABC+∠ACB=∠COE+∠OCE+∠OEC,∴∠A=∠COE,∵圆O与边AB相切于点D,∴∠ADO=90°,∴∠A+∠AOD=90°,∴∠COE+∠AOD=90°,∴∠DOE=180°﹣(∠COE+∠AOD)=90°,∴劣弧的长是=2π.故答案为:2π.。
初中数学扇形面积弧长计算练习题(附答案)
初中数学扇形面积弧长计算练习题一、单选题1.矩形ABCD中,5AB=,12AD=,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是( )A.25π2B.13πC.25πD.2522.一个扇形的弧长是10cm,面积是260cm,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°3.如图,在O的内接四边形ABCD中,135B∠=︒,若O的半径为4,则弧AC的长为( )A.4πB.2πC.πD.2π34.如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将ABC△绕着点A逆时针旋转得到AB C'△,则BB'的长为()A.πB.π2C.7πD.6π5.如图,正六边形ABCDEF内接于O,半径为4,则这个正六边形的边心距OM和BC的长分别为( )A.π2,3B.π2π3 D.4π36.如图,矩形ABCD 的边1,AB BE =平分ABC ∠交AD 于点E .若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A.π24-B.3π24-C.π28-D.3π28- 7.如图,AB 是O 的直径,CD 是弦,30,2BCD OA ∠==°,则阴影部分的面积是( )A.π3B.2π3C.πD.2π 8.如图.从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90︒的扇形,则此扇形的面积为( )A.2πm 2 2m C.2πm D.22πm9.如图,点,,A B C 在O 上,若45,2BAC OB ∠==则图中阴影部分的面积为( )A. π4-B. 2π13- C. π2- D. 2π23- 二、解答题10.如图,已知在Rt ABC △中,30,90B ACB ∠=︒∠=︒.延长CA 到,O 使AO AC =,以点O 为圆心,OA 为半径作O 交BA 的延长线于点,D 连接CD .(1)求证:CD 是O 的切线;(2)若4AB =,求图中阴影部分的面积.三、填空题11.一个扇形的弧长是11πcm ,半径是18cm ,则此扇形的圆心角是 度。
初中阶段图形扇形弧长口算题目集合
初中阶段图形扇形弧长口算题目集合扇形是初中阶段数学中的一个重要概念,通过求解扇形的弧长问题可以巩固和拓展学生对扇形的理解。
下面是一些初中阶段的图形扇形弧长口算题目,帮助学生提高扇形的计算能力。
题目1:已知一个扇形的半径为8 cm,中心角度为60°,求扇形的弧长。
解析:扇形的弧长可以通过计算扇形的半径乘以中心角度的一部分来求解。
根据已知信息,半径为8 cm,中心角度为60°,则弧长 = 8cm × (60° / 360°) = 8 cm × 1/6 = 4/3 cm。
题目2:一个扇形的半径为12 cm,弧长为3π cm,求扇形的中心角度。
解析:扇形的中心角度可以通过计算扇形的弧长除以半径的值来求解。
根据已知信息,半径为12 cm,弧长为3π cm,则中心角度= (3π cm) / (12 cm) = π/4 弧度。
题目3:一个扇形的半径为6 cm,弧长为10 cm,求扇形的中心角度。
解析:扇形的中心角度可以通过计算扇形的弧长除以半径的值来求解。
根据已知信息,半径为6 cm,弧长为10 cm,则中心角度 = (10 cm) / (6 cm) ≈ 1.67 弧度。
题目4:一个扇形的中心角为π/3 弧度,弧长为12 cm,求扇形的半径。
解析:扇形的半径可以通过计算扇形的弧长除以中心角度的值来求解。
根据已知信息,中心角度为π/3 弧度,弧长为12 cm,则半径 = (12 cm) / (π/3) ≈ 11.55 cm。
题目5:一个扇形的弧长为15 cm,中心角为135°,求扇形的半径。
解析:扇形的半径可以通过计算扇形的弧长除以中心角度的一部分来求解。
根据已知信息,弧长为15 cm,中心角度为135°,则半径 = (15 cm) / (135° / 360°) ≈ 12.59 cm。
题目6:一个扇形的弧长为2π cm,中心角为240°,求扇形的半径。
弧长以及扇形面积的计算-练习题 含答案知识分享
弧长以及扇形面积的计算副标题题号一二三总分得分一、选择题(本大题共3小题,共9.0分)1.如图,在中,,,以BC的中点O为圆心分别与AB,AC相切于D,E两点,则的长为A.B.C.D.【答案】B【解析】解:连接OE、OD,设半径为r,分别与AB,AC相切于D,E两点,,,是BC的中点,是中位线,,,同理可知:,,,由勾股定理可知,,故选:B.连接OE、OD,由切线的性质可知,,由于O是BC的中点,从而可知OD是中位线,所以可知,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.2.一个扇形的弧长是,面积是,则此扇形的圆心角的度数是A. B. C. D.【答案】B【解析】解:一个扇形的弧长是,面积是,,即,解得:,,解得:,故选B利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.3.的圆心角对的弧长是,则此弧所在圆的半径是A. 3B. 4C. 9D. 18【答案】C【解析】解:根据弧长的公式得到:解得.故选C.根据弧长的计算公式,将n及l的值代入即可得出半径r的值.此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难度一般.二、填空题(本大题共1小题,共3.0分)4.如图,已知等边的边长为6,以AB为直径的与边AC、BC分别交于D、E两点,则劣弧的长为______.【答案】【解析】解:连接OD、OE,如图所示:是等边三角形,,,,、是等边三角形,,,,的长;故答案为:.连接OD、OE,先证明、是等边三角形,得出,求出,再由弧长公式即可得出答案.本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.三、解答题(本大题共1小题,共8.0分)5.如图,AB为半圆O的直径,AC是的一条弦,D为的中点,作,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若,求阴影区域的面积结果保留根号和【答案】证明:连接OD,为的中点,,,,,,,,即,,为半圆O的切线;解:连接OC与CD,,,,又,,,,为等边三角形,,,,,,在中,,,在中,,,,,,由,是等边三角形,,,,故,.【解析】直接利用切线的判定方法结合圆心角定理分析得出,即可得出答案;直接利用得出,再利用,求出答案.此题主要考查了切线的判定与性质以及扇形面积求法等知识,得出是解题关键.。
弧长计算
如何计算圆上一段弧的长度呢?
下图中各圆心角所对的弧长分别 是圆周长的几分之几? ①圆心角是180°,占整个周角的_, 因此它所对的弧长是圆周长的____; ②圆心角是90 °,占整个周角的__, 图 23.3.2 因此它所对的弧长是圆周长的__; ③圆心角是45°,占整个周角的__, 因此它所对的弧长是圆周长的___;
若住宅区的平面示意图是四边形,其余条件不 变,则此绿化带的外周长为_________. 若住宅区的平面示意图是五边形ABCDE,其 余条件不变,则此绿化带的外周长为____. 若住宅区的平面示意图是不规则n边形,其余 条件不变,则此绿化带的外周长为____.(用 含n的代数式表示)。
A
B C
D
一个滑轮起重装置如图所示,滑轮的半径是10cm, 当重物上升10cm时,滑轮的一条半径OA绕轴心O 按逆时针方向旋转的角度约为(假设绳索与滑轮之 间没有滑动,π取3.14,结果精确到10) ( ). A.1150 B.600 C.570 D.290
如图,⊙O1,, ⊙O2内切点于A, ⊙O1 经过⊙O2 ⌒ 的圆心,半径O2B交⊙O1于点C. A、AB、AC是等弧 C、AB=AC B、 AB、AC长度相等 ⌒ ⌒ D、 AB、AC 的度数相等
⌒ ⌒
已知:如图,∠AOB=600,⊙O’与AB内切于 点E,AO、BO分别与⊙O`相切于C、D.
求证:AB的长=
⌒
1 2
⊙O`的周长.
如图,⊙O1的半径O1A是⊙O2的直径,⊙O1
⌒ ⌒ 的半径O C交⊙O 于点B.试说明:AB、AC
的长相等.
l 2
如图,正方形ABCD的边长为a,分别以A、D为 圆心,以a为半径作弧相交于点E,⊙Байду номын сангаас分别与 ⌒ ⌒ AE相外切,与EB内切,且与AB边相切,求⊙O的 周长.
弧长及扇形的面积(基础篇)(专项练习)
专题2.12 弧长及扇形的面积(基础篇)(专项练习)一、单选题1.已知扇形的半径为6,圆心角为20°,则扇形的面积为( )A .6πB .3πC .πD .2π2.如图,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC ,OC ,若AB =6,∠A =30°,则BC 的长为( )A .6πB .2πC .32πD .π 3.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .4.如果一弧长是其所在圆周长的118,那么这条弧长所对的圆心角为( ) A .15度 B .16度 C .20度 D .24度 5.如图是边长为1的正方形组成的网格,△ABC 的顶点都在格点上,将△ABC 绕点C 逆时针旋转60°,则顶点B 所经过的路径长为( )A B C .2π3 D 6.如图,Rt △ABC 中,∠ACB =90°,AC=BC=2,在以AB 的中点O 为坐标原点、AB 所在直线为x 轴建立的平面直角坐标系中,将△ABC 绕点B 顺时针旋转,使点A 旋转至y 轴正半轴上的A′处,则图中阴影部分面积为( )A .-2B .C .D .-27.如图,在扇形OAB 中,∠90AOB =︒,2OA =,则阴影部分的面积是( )A .2B .πC .2πD .π2-8.如图,正方形ABCD 中,分别以B ,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为( )A .221π4a a -B .221π2a a -C .2211π42a a -D .2211π22a a - 9.如图,在边长为6的正方形ABCD 中,以BC 为直径画半圆,则阴影部分的面积是( )A .9B .6C .3D .1210.如图,一扇形纸扇完全打开后,外侧两条竹条AB 、AC 的夹角为120°,AB 长为30cm ,AD =10cm ,贴纸部分的面积为( )A .8003πcm 2B .5003πcm 2C .800πcm 2D .500πcm 2二、填空题11.已知扇形的圆心角的度数是120˚,半径为9,则此扇形弧长是______.12.在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C =90°,∠ABC =30°,AC =2,将直角三角尺绕点A 逆时针旋转得到△AB ′C ′,使点C ′落在AB 边上,以此方法做下去……则B 点通过一次旋转至B ′所经过的路径长为 _____.(结果保留π)13.如图,A 与x 轴相切,与y 轴相交于点()0,1B ,()0,3C .(1)A 的半径r =______;(2)扇形BAC 的面积为______.14.如图,将△ABC 绕点C 顺时针旋转120°得到△A 'B 'C ,已知AC =3,BC =2,则AA '=__________;线段AB 扫过的图形(阴影部分)的面积为__________.15.如图.在矩形ABCD 中,AB =6,BC =4,以点B 为圆心,BC 的长度为半径画孤,交AB 于点E ;以点A 为圆心,AE 的长度为半径画弧,交AD 于点F .则图中阴影部分的面积为______.(结果保留π)16.如图,用一个半径为6 cm的定滑轮拉动重物上升,滑轮旋转了120︒,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了_________cm.(结果保留π)17.如图,线段AB与AC是⊙O的两条弦,且AB=AC,∠ABC=75°,BC=4,则图中阴影部分的面积是_____.18.如图,在矩形ABCD中,22==,将线段AB绕点A按逆时针方向旋转,使得AB BC点B落在边CD上的点B'处,线段AB扫过的面积为___________.三、解答题19.如图,点A,B,C在直径为2的⊙O上,∠BAC=45°.(1) 求弧BC的长度;(2) 求图中阴影部分的面积.(结果中保留π)l cm,弧CD的20.如图,在⊙O中,AB、CD是两条弦,⊙O的半径长为rcm,弧AB的长度为1长度为2l cm(温馨提醒:弧的度数相等,弧的长度相等,弧相等,有联系也有区别) 当1l=2l时,求证:AB=CD21.如图,△ABC中,∠C=90°.(1) 将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(不写画法,保留画图痕迹)(2) 若AB=10,BC=6,求在旋转过程中,点C运动的路径长.22.如图,一根5m长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域.23.如图Rt△ABC中,∠C=90°,AD平分∠BAC,AD交BC于点D,点E在AB上,以AE 为直径的⊙O经过点D.(1) 求证:直线BC是⊙O的切线.(2) 若AC=6,∠B=30°,求图中阴影部分的面积.24.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC 与⊙O 的位置关系,并说明理由;(2)若FCCE =1.求图中阴影部分的面积(结果保留π).参考答案1.D 【分析】根据扇形的面积公式2360n r S π=即可得. 解:扇形的半径为6,圆心角为20︒,∴扇形的面积为22062360ππ⨯=, 故选:D .【点拨】本题考查了扇形的面积,熟记公式是解题关键.2.D【分析】先根据圆周角定理求出∠BOC =2∠A =60°,求出半径OB ,再根据弧长公式求出答案即可.解:∵直径AB =6,∴半径OB =3,∵圆周角∠A =30°,∴圆心角∠BOC =2∠A =60°,∴BC 的长是603180π⨯=π, 故选:D .【点拨】本题考查了弧长公式和圆周角定理,能熟记弧长公式是解此题的关键,注意:半径为r ,圆心角为n °的弧的长度是180n r π. 3.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度.解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.4.C【分析】根据弧长公式和圆的周长公式的关系即可得出答案 解:∵一弧长是其所在圆周长的118, ∴1=2r 18018n r ππ⨯ ∴=20n∴这条弧长所对的圆心角为20故选:C 【点拨】本题考查了弧长的计算,掌握弧长公式180n r l π=是解题的关键. 5.B【分析】先根据勾股定理计算出BC B 所经过的路径为弧,根据旋转的性质得弧所对的圆心角为60°,然后根据弧长公式求解.解:BC所以顶点B 所经过的路径长=. 故选:B .【点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了弧长公式.6.C解:试题分析:阴影部分的面积等于扇形ABA′的面积+Rt △A′C′B 的面积-Rt △ABC 的面积-扇形BCC′的面积.考点:面积的计算.7.D【分析】利用阴影部分的面积等于扇形面积减去AOB 的面积即可求解.解:=AOB OAB S S S -阴影扇形213602n r AO OB π=- =29021223602π-⨯⨯ 2π=-故选D【点拨】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键. 8.B【分析】由图可知,树叶形图案的面积是两个圆心角为90°,且半径为a 的扇形的面积与正方形的面积的差,可据此求出树叶形图案的面积.解:树叶形图案的面积为:2222扇形正方形901223602ABCD a S S a a a ππ⨯-=⨯-=- . 故选:B .【点拨】本题利用了扇形的面积公式,正方形的面积公式求解,得出树叶形图案的面积等于扇形正方形2ABCD S S - 是解题的关键.9.A【分析】设AC 与半圆交于点E ,半圆的圆心为O ,连接BE ,OE ,证明BE =CE ,得到弓形BE 的面积=弓形CE 的面积,则11=6663=922ABE ABC BCE S S S S ==-⨯⨯-⨯⨯△△阴影. 解:设AC 与半圆交于点E ,半圆的圆心为O ,连接BE ,OE ,∵四边形ABCD 是正方形,∴∠OCE =45°,∵OE =OC ,∴∠OEC =∠OCE =45°,∴∠EOC =90°,∴OE 垂直平分BC ,∴BE =CE ,∴弓形BE 的面积=弓形CE 的面积,∴11=6663=922ABE ABC BCE S S S S ==-⨯⨯-⨯⨯△△阴影, 故选A .【点拨】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.10.A【分析】贴纸部分的面积为大扇形面积减去小扇形面积,根据扇形面积公式解答. 解:贴纸部分的面积为2212030120108003603603-=πππ⨯⨯(cm 2), 故选:A .【点拨】本题考查扇形的面积,是基础考点,掌握相关知识是解题关键.11.6π【分析】根据扇形的弧长公式计算即可.解:∵圆心角的度数是120˚,半径为9, ∴扇形的弧长为:12096180ππ⨯⨯=. 故答案为:6π. 【点拨】本题考查扇形的弧长公式,解题关键是熟练掌握弧长公式180n r l π⨯=. 12.43π 【分析】根据题意,点B 所经过的路径是圆弧,根据直角三角形30°角所对的边等于斜边的一半,易知AB =4,结合旋转的性质可知∠BAB ′=∠BAC =60°,,最后求出圆弧的长度即可.解:∵∠C =90°,∠ABC =30°,AC =2,∴AB =2AC =4,∠BAC =60°,由旋转的性质得,∠BAB ′=∠BAC =60°,∴B 点通过一次旋转至B ′所经过的路径长为60?441803ππ=, 故答案为:43π. 【点拨】本题主要考查了直角三角形30°角所对的边等于斜边的一半,旋转的性质,以及圆弧的求法,熟练地掌握相关内容是解题的关键.13. 2; 23π##23π【分析】作AF⊥BC,假设⊙A与x轴相切于E点,连接AE,做BD⊥AE,利用垂径定理的内容得出BF=CF,进而得出AD与半径的关系,从而得出△ABC为等边三角形,然后计算半径,再利用扇形面积公式求出即可.解:作AF⊥BC,假设⊙A与x轴相切于E点,连接AE,BD⊥AE,假设AE=x,图象与y轴相交于点B(0,1)、C(0,3),∴OB=DE=1,AD=x-1,∵AC=AB,AF⊥BC,∴BF=CF=1,∴AD=BF=1=x-1,解得:x=2,∴AB=BC=AC=2,△ABC为等边三角形,∴∠BAC=60°,∴扇形BAC的面积=26022=360ππ⨯⨯,故答案为:2;23π.【点拨】此题主要考查了等边三角形的判定方法以及扇形的面积求法等知识,利用已知得出BF=AD是解决问题的关键.14.2π53π##53π【分析】根据弧长公式可求得AA'的长;根据图形可以得出AB扫过的图形的面积=S扇形ACA′+S△ABC-S扇形BCB′-S△A′B′C,由旋转的性质就可以得出S△ABC=S△A′B′C就可以得出AB扫过的图形的面积=S扇形ACA′-S扇形BCB′求出其值即可.解:∵△ABC绕点C旋转120°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=120°.∴AA'的长为:1203180π⨯=2π;∵AB 扫过的图形的面积=S 扇形ACA ′+S △ABC -S 扇形BCB ′-S △A ′B ′C ,∴AB 扫过的图形的面积=S 扇形ACA ′-S 扇形BCB ′,∴AB 扫过的图形的面积= 221203120253603603πππ⋅⋅⋅-=. 故答案为:2π;53π. 【点拨】本题考查了旋转的性质的运用,全等三角形的性质的运用,弧长公式以及扇形的面积公式的运用,解答时根据旋转的性质求解是关键.15.245π-##-5π+24【分析】利用分割法求解即可.解:在矩形ABCD 中AB =6,BC =4,∴BE =BC =4,∴AE =AB -BE =6-4=2,∴S 阴=S 矩形ABCD -S 扇形AEF -S 扇形BEC =6×4-22902904360360ππ⨯⨯- =24-5π,故答案为:24-5π.【点拨】本题考查扇形的面积,矩形的面积,明确S 阴=S 矩形ABCD -S 扇形AEF -S 扇形BEC 是解题的关键.16.4π【分析】利用题意得到重物上升的高度为定滑轮中120°所对应的弧长,然后根据弧长公式计算即可.解:根据题意,重物的高度为12064180ππ⨯⨯=(cm ). 故答案为:4π. 【点拨】本题考查了弧长公式:180n R l π⋅⋅=(弧长为l ,圆心角度数为n ,圆的半径为R ). 17.883π+ 【分析】如图,连接OA ,OB ,OC ,延长AO 交BC 于点H .根据S 阴=S △ABC ﹣S △OBC +S 扇形OBC ,求解即可.解:如图,连接OA ,OB ,OC ,延长AO 交BC 于点H .∵AB =AC ,∴∠ABC =∠ACB =75°,∴∠BAC =30°,∴∠BOC =2∠BAC =60°,∵OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =4,∴OA =4,∵AB =AC ,∴AB AC =,∴AO ⊥BC ,∴BH =CH =2,∴OH =∴AH∴S △ABC 12=•BC •AH 12=⨯4×(S △OBC 142=⨯=S 扇形OBC 260483603ππ⋅== ∴S 阴=S △ABC ﹣S △OBC + S 扇形OBC =883π+. 故答案为:883π+. 【点拨】本题主要考查了垂径定理,求扇形面积,圆周角定理,等边三角形的判定和性质,根据题意得到S 阴=S △ABC ﹣S △OBC + S 扇形OBC 是解题的关键.18.π3##13π 【分析】由旋转的性质可得'2,AB AB ==由锐角三角函数可求'60,DAB ∠=︒从而得出'30,BAB ∠=︒由扇形面积公式即可求解.解:22,AB BC ==1,BC ∴=∵矩形ABCD 中,1,90,AD BC D DAB ∴==∠=∠=︒由旋转可知AB AB '=,∵22AB BC ==,∴'2,AB AB ==''1cos ,2AD DAB AB ∠== '60,DAB ∴∠=︒'30,BAB ∴∠=︒∴线段AB 扫过的面积2302.3603ππ︒⨯⨯==︒ 故答案为:.3π【点拨】本题主要考查了旋转的性质,矩形的性质,扇形面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解此题的关键.19.(1)2π(2)142π- 【分析】(1)连接OB ,OC .根据∠BOC =2∠A ,∠A =45°,可得∠BOC =90°,根据⊙O 的直径为2,可得OB =OC =1,即利用弧长公式即可求解答案;(2)根据∠BOC =90°,可知△BOC 是直角三角形,根据OB =OC =1,即可求出△BOC 的面积和扇形OBC 的面积,再根据S 阴=S 扇形OBC ﹣S △OBC 即可求解.解:(1)如图,连接OB ,OC .∵∠BOC =2∠A ,∠A =45°,∴∠BOC =90°,∵⊙O 的直径为2,∴OB =OC =1, ∴9023602BC ππ=⨯⨯=; (2)∵∠BOC =90°,∴△BOC 是直角三角形,∵⊙O 的直径为2,∴OB =OC =1,∴△BOC 的面积为11111222OBC S OB OC =⨯⨯=⨯⨯=△, ∵22909013603604OBC S r πππ=⨯=⨯⨯=扇形, 即S 阴=S 扇形OBC ﹣S △OBC =142π-. 【点拨】本题考查了圆周角定理、弧长公式、扇形面积公式等知识,掌握圆周角定理证明出∠BOC =90°是解答本题的关键. 20.见分析【分析】利用弧长公式得出圆心角相等,再利用圆心角,弧,弦之间的关系即可证明. 解:令∠AOB=α,∠COD=β.∵1l =2l∴12180180r r απβπ=∵AB 和CD 在同圆中,r 1=r 2∴α=β∴AB=CD【点拨】本题主要考查弧长公式及圆心角,弧,弦之间的关系,掌握圆心角,弧,弦之间的关系是解题的关键.21.(1)见分析(2)4π【分析】(1)根据要求作出图形即可;(2)根据勾股定理知AC =8,再根据弧长公式计算可得.(1)解:点C 绕点A 顺时针旋转90°得点C 1,点B 绕点A 顺时针旋转90°得点B 1,连结AB 1,B 1C 1,AC 1如图,△AB 1C 1为所画三角形;;(2)解:在ABC 中,∵∠C =90°,AB =10,BC =6,∴AC 8.∵ABC 绕点A 顺时针旋转90︒得到11AB C △,∴11890AC AC CAC ==∠=︒,.∴点C 运动的路径长为:9084180ππ⋅⋅=. 【点拨】本题主要考查作图-旋转变换,解题的关键是熟练掌握旋转变换的定义和性质及弧长公式.22.见分析【分析】根据题意画出两个扇形即可得到羊的活动区域.解:如图,以点O 为圆心,5m 长的绳子为半径画弧交草地左边界于点A ,交OD 的延长线于点B ,再以D 为圆心,DB 长为半径画弧交草地的右边界于点C ,则扇形AOB 和扇形BDC 部分即为羊的活动区域.【点拨】本题考查了作图﹣应用与设计作图、扇形面积,根据题意画扇形是解决本题的关键.23.(1)见分析(2)阴影部分的面积为163π 【分析】(1)连接OD ,由AD 平分∠BAC ,可知∠OAD =∠CAD ,易证∠ODA =∠OAD ,所以∠ODA =∠CAD ,所以OD ∥AD ,由于∠C =90°,所以∠ODB =90°,从而可证直线BC 是⊙O 的切线;(2)根据含30度角的直角三角形性质可求出AB 的长度,然后求出∠AOD 的度数,然后根据扇形的面积公式即可求出答案.(1)证明:连接OD ,∵AD 平分∠BAC ,∴∠OAD =∠CAD ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠ODA =∠CAD ,∴OD ∥AC ,∵∠C =90°,∴∠ODB =90°,∴OD ⊥BC ,∴直线BC 是⊙O 的切线;(2)解:由∠B =30°,∠C =90°,∠ODB =90°,得:AB =2AC =12,OB =2OD ,∠AOD =120°,∠DAC =30°,∵OA =OD ,∴OB =2OA ,∴OA =OD =4,由∠DAC =30°,得DC∴S 阴影=S 扇形OAD -S △OAD=21201443602π⨯-⨯⨯=163π 【点拨】本题考查圆的综合问题,涉及角平分线的性质,平行线的判定与性质,含30度角的直角三角形的性质,扇形面积公式等,需要学生灵活运用所学知识.24.(1)AC 与⊙O 的相切,理由见分析(2)3π【分析】(1)根据圆的半径相等以及CF CA =,等边对等角可得D OAD ∠=∠,CAF CFA ∠=∠,根据对顶角相等可得CFA OFD ∠=∠,结合已知OD ⊥BC ,进而根据等量代换可得90CAF OAF ∠+∠=︒,即可证明AC 与⊙O 的相切;(2)过A 作AM BC ⊥于M ,设==OA OE r ,在Rt CAO 中,根据勾股定理求得r ,进而证明30C ∠=︒,求得扇形AOB 的圆心角为120︒,进而根据含30度角的直角三角形的性质求得AM ,进而求得AOB 的面积,根据扇形面积减去AOB 的面积,即可求得阴影部分面积.解:(1)AC 与⊙O 的相切,理由如下,AO DO =,D OAD ∴∠=∠,CF CA =,CAF CFA ∴∠=∠,又CFA OFD ∠=∠,CAF OFD ∴∠=∠,OD ⊥BC ,90OFD ODF ∴∠+∠=︒,90CAF OAF ∴∠+∠=︒,OA AC ∴⊥,OA 是半径,AC ∴是O 的切线,∴ AC 与⊙O 的相切;(2)过A 作AM BC ⊥于M ,如图,设==OA OE r ,3,1FC CE ==,在Rt CAO 中,1AO r AC FC OC OE EC r ====+=+,222AO AC OC +=,()2221r r ∴+=+, 解得1r =,2OC OE EC ∴=+=,12AO OC ∴=, 30C ∴∠=︒,60AOC ∴∠=︒,180120AOB AOC ∴∠=-∠=︒,在Rt CAM 中,1122AM AC FC ===11122AOB S OB AM ∴=⋅⋅=⨯=△, S ∴扇形AOB 12013603ππ=⨯=,S ∴阴影部分AOB S S =-△扇形AOB 3π= 【点拨】本题考查了圆的切线的判定,求扇形面积,掌握切线的判定和扇形面积公式是解题的关键.。
中考数学复习《圆的弧长和图形面积的计算》练习题含答案
中考数学复习 圆的弧长和图形面积的计算一、选择题1.扇形的半径为30 cm ,圆心角为120°,此扇形的弧长是( A ) A .20π cm B .10π c m C .10 cm D .20 cm【解析】弧长=120π×30180=20π(cm),故选A.2.如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC 的长等于( A ) A.2π3 B.π3 C.23π3 D.3π3【解析】如图,连结OB ,OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为60π×2180=2π3.,第2题图) ,第3题图)3.如图,在Rt △ABC 中,AC =5 cm ,BC =12 cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( B )A .60π cm 2B .65π cm 2C .120π cm 2D .130π cm 2【解析】∵在Rt △ABC 中,AC =5 cm ,BC =12 cm ,∠ACB =90°,∴由勾股定理得AB=13 cm ,∴圆锥的底面周长=10π cm ,∴几何体的侧面积=12×10π ×13=65π (cm 2) .故选B.4.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连结OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .π B.32π C .2π D .3π【解析】根据圆内接四边形对角互补可得∠BCD +∠A =180°,由圆周角定理可得∠BOD =2∠A ,再由∠BOD =∠BCD 可得2∠A +∠A =180°,所以∠A =60°,即可得∠BOD =120°,所以BD ︵的长=120π×3180=2π;故选C.,第4题图) ,第5题图)5.用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为( A )A .π-332B .π-3 3 C.332 D .π-334【解析】如图,设AB 的中点P ,连结OA ,OP ,AP ,△OAP 的面积是:34×12=34,扇形OAP 的面积是:S 扇形=π6,AP 直线和AP 弧面积:S 弓形=π6-34,阴影面积:3×2S 弓形=π-332. 二、填空题6.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30 cm ,求则BC ︵的长为__20π_cm __.(结果保留π)【解析】根据弧长公式l =n πr 180可得:弧BC 的长=n πr 180=120×π×30180=20π (cm).7.120°的圆心角所对的弧长是6π,则此弧所在圆的半径是__9__.【解析】根据弧长的公式l =n πr 180,得到6π=120πr180,解得r =9.8.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为__25__.【解析】扇形ABD 的弧长DB ︵=BC +DC =10,扇形ABD 的半径为正方形的边长5,∴S扇形ABD =12×10×5=25.9.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为__π__.【解析】如图连结OE ,OF ,∵CD 是⊙O 的切线,∴OE ⊥CD ,∴∠OED =90°,∵四边形ABCD 是平行四边形,∠C =60°,∴∠A =∠C =60°,∠D =120°,∵OA =OF ,∴∠A =∠OF A =60°,∴∠DFO =120°,∴∠EOF =360°-∠D -∠DFO -∠DEO =30°,FE ︵的长=30π×6180=π.故答案为π.三、解答题10.如图,AB 切⊙O 于点B ,OA =2,∠OAB =30°,弦BC ∥OA .求劣弧BC 的长.(结果保留π)解:连结OC ,OB ,∵AB 为圆O 的切线,∴∠ABO =90°,在Rt △ABO 中,OA =2,∠OAB =30°,∴OB =1,∠AOB =60°,∵BC ∥OA ,∴∠OBC =∠AOB =60°,又OB=OC ,∴△BOC 为等边三角形,∴∠BOC =60°,∴劣弧BC 长为60π×1180=π311.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(-1,3),(-4,1),(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1,△A 2B 2C 2;(2)求出在这两次变换过程中,点A 经过点A 1到达A 2的路径总长.解:(1)如图,△A 1B 1C 1,△A 2B 2C 2即为所作(2)OA 1=42+42=42,点A 经过点A 1到达A 2的路径总长=52+12+90π×42180=26+22π12.如图,AB 与⊙O 相切于点C ,OA ,OB 分别交⊙O 于点D ,E ,CD ︵=CE ︵. (1)求证:OA =OB ;(2)已知AB =43,OA =4,求阴影部分的面积.解:(1)连结OC ,则OC ⊥AB.∵CD ︵=CE ︵,∴∠AOC =∠BOC.在△AOC 和△BOC 中, ⎩⎨⎧∠AOC =∠BOC ,OC =OC ,∠OCA =∠OCB =90°,∴△AOC ≌△BOC (ASA ),∴OA =OB(2)由(1)可得AC =BC =12AB =23,∴在Rt △AOC 中,OC =2,∴∠AOC =∠BOC =60°,∴S △BOC =12BC· OC =12×23×2=23,S 扇形EOC =60°×π×22360°=23π,∴S 阴影=S △BOC -S 扇形EOC =23-23π13.如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连结EF ,CG .(1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的,与线段CG 所围成的阴影部分的面积.解:(1)在正方形ABCD 中,AB =BC =AD =2,∠ABC =90°,∵△BEC 绕点B 逆时针旋转90°得到△ABF ,∴△ABF ≌△CBE ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =EC ,∴∠AFB +∠FAB =90°,∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,∴∠CFG =∠FAB =∠ECB ,∴EC ∥FG ,∵AF =EC ,AF =FG ,∴EC =FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG(2)∵AD =2,E 是AB 的中点,∴FB =BE =12AB =12×2=1,∴AF =AB 2+BF 2=22+12=5,由平行四边形的性质,△FEC ≌△CGF ,∴S △FEC =S △CGF ,∴S 阴影=S 扇形BAC+S △ABF +S △FGC -S 扇形FAG =90·π·22360+12×2×1+12×(1+2)×1-90π×(5)2360=52-π4。
弧长、扇形计算
弧长公式:
1、已知弧所对的圆心角为1500,半径是4,则弧长为________
2、半径为6的圆中,长为5π的弧所对的圆心角是________
3、一段长为2π的弧所对的圆心角是120°,则这段弧所在圆的半径是________
4、钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是_______
例1、制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)
扇形面积公式:
5、半径为3cm,圆心角为120°的扇形面积为________
6、一个扇形的圆心角是120°,它的面积为3πcm²,那么这个扇形的半径是________
7、已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是________cm²,扇形的圆心
角为________
8、如图所示,分别以n边形的顶点为圆心,以单位1为半径画圆,则
图中阴影部分的面积之和为个平方单位.
例2:如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积。
(精确到0.01cm)。
【精编版】数学中考专题训练——弧长的计算
中考专题训练——弧长的计算1.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求∠ACB的度数;(2)若BC=6,求的长.2.已知:如图,在⊙O中,弦AB与CD相交于点E,∠ACD=60°,给出下列信息:①∠ADC=50°;②AB是⊙O的直径;③∠CEB=100°.(1)请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论.你选择的条件是,结论是(只要填写序号).判断此命题是否正确,并说明理由;(2)在(1)的情况下,若AD=2,求的长度.3.如图,在7×7的正方形网格(每个小正方形的边长为1)中,一条圆弧经过A,B,C 三点.(1)在正方形网格中直接标出这条圆弧所在圆的圆心O;(2)求弧AC的长.4.如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°(1)求证:BD=CD;(2)若圆O的半径为3,求的长.5.如图,⊙O的直径为CD,AB是⊙O的弦,AB⊥CD,垂足为N,连接AC.(1)若ON=1,BN=.求长度;(2)若点E在AB上,且AC2=AE•AB,求证:∠CEB=2∠CAB.6.如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求的长.7.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.8.如图,点A、B、C在圆O上,AB为直径,且AB=4,AC=2.(1)求∠ABC的度数;(2)求弧AC的长度.9.如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧的长.10.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连接AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.11.如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O 上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=30.(1)求BE的长.(2)若BC=15,求的长.12.如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.(1)试说明△ABC∽△DBE;(2)当∠A=30°,AF=时,求⊙O中劣弧的长.13.如图,在3×3的正方形网格中,每个小正方形的边长都为1,O、A、B三点都在格点处,线段OA绕点O顺时针旋转至OB.(1)求线段OA的长;(2)画出旋转过程中点A经过的路径,且求出该路径的长.14.如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,﹣2),将△OAB绕点O 按逆时针方向旋转90°得到△OA′B′.(1)画出旋转后的△OA′B′,并求点B′的坐标;(2)求在旋转过程中,点A所经过的路径的长度.(结果保留π)15.如图,点A、B为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所成的角度约为60°,半径OC所在的直线与放置平面垂直,垂足为点E,DE=15cm,AD =14cm.(1)求底座CE的高;(2)求弧AC的长.16.如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长.17.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连接AE交⊙O于点F,连接BF并延长交CD于点G,OA=3.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,求劣弧的长.(结果保留π)18.如图,∠EAD是⊙O内接四边形ABCD的一个外角,且∠EAD=75°,DB=DC.(1)求∠BDC的度数.(2)若⊙O的半径为2,求的长.19.如图,在⊙O中,,∠APC=60°.(1)求证:△ABC是等边三角形;(2)若⊙O的半径为,∠BCP=40°,求的长.20.已知四边形ABCD内接于⊙O,过点A作⊙O的直径AE交BC于点F,已知AD∥BC,AF=AB.(1)求证:AE∥CD;(2)∠BAE=45°,CD=,求弧AC的长.参考答案:1.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求∠ACB的度数;(2)若BC=6,求的长.【分析】(1)根据圆周角定理得出∠ABC=∠APC=60°,∠BAC=∠BPC=60°,根据三角形内角和定理求出答案即可;(2)连结OB,OC,过点O作OD⊥BC于点D,根据圆周角定理求出∠BOC,求出∠BOD,解直角三角形求出OB,再根据弧长公式求出答案即可.【解答】解:(1)∵∠APC=∠CPB=60°,∴由圆周角定理得:∠ABC=∠APC=60°,∠BAC=∠BPC=60°,∴∠ACB=180°﹣∠ABC﹣∠BAC=60°;(2)连结OB,OC,过点O作OD⊥BC于点D,∵∠BAC=60°,∴∠BOC=2∠BAC=120°.∵OD⊥BC于点D,OB=OC,∴∠BOD=BOC=60°,BD=BC==3,∵Rt△BOD中,,∴,∴的长=.2.已知:如图,在⊙O中,弦AB与CD相交于点E,∠ACD=60°,给出下列信息:①∠ADC=50°;②AB是⊙O的直径;③∠CEB=100°.(1)请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论.你选择的条件是①②,结论是③(只要填写序号).判断此命题是否正确,并说明理由;(2)在(1)的情况下,若AD=2,求的长度.【分析】(1)选择条件为①②,结论为③,根据圆周角定理的推论:直径所得的圆周角为直角,直角三角形的性质以及三角形的内角和定理可求出答案;(2)求出弧AD所在圆的半径和相应的圆心角度数,利用弧长公式进行计算即可.【解答】解:(1)条件为①②,结论为③,结论正确,理由如下:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ADC=50°=∠ABC,∴∠BAC=90°﹣∠ABC=90°﹣50°=40°,∴∠CEB=∠BAC+∠ACD=40°+60°=100°;故答案为:①②,③(答案不唯一);(2)连接OC,BD、OD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABD=∠ACD=60°,AD=2,∴AB===4,∴OA=AB=2,又∵∠AOD=2∠ACD=2×60°=120°,∴的长度为=.3.如图,在7×7的正方形网格(每个小正方形的边长为1)中,一条圆弧经过A,B,C 三点.(1)在正方形网格中直接标出这条圆弧所在圆的圆心O;(2)求弧AC的长.【分析】(1)线段AB、线段BC的垂直平分线的交点即为圆心O;(2)根据勾股定理的逆定理得到∠AOC=90°,然后根据弧长公式即可得到结论.【解答】解:(1)如图,连接AB,BC作线段AB、线段BC的垂直平分线,两线的交于点O,则点O即为所示;(2)连接A,AO,OC,∵AC2=62+22=40,OA2+OC2=42+22+42+22=40,∴AC2=OA2+OC2,∴∠AOC=90°,在Rt△AOC中,∵OA=OC=2,∴的长==π,4.如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°(1)求证:BD=CD;(2)若圆O的半径为3,求的长.【分析】(1)根据圆内接四边形的性质求出∠C,根据等腰三角形的判定定理证明;(2)连接OB、OC,根据圆周角定理求出∠BOC,根据弧长公式计算即可.【解答】(1)证明:∵四边形ABCD内接于圆O,∴∠C=180°﹣∠BAD=75°,∵∠DBC=75°,∴∠DBC=∠C,∴DB=DC;(2)解:连接OB、OC,∵∠DBC=∠C=75°,∴∠BDC=30°,由圆周角定理得,∠BOC=2∠BDC=60°,∴的长==π.5.如图,⊙O的直径为CD,AB是⊙O的弦,AB⊥CD,垂足为N,连接AC.(1)若ON=1,BN=.求长度;(2)若点E在AB上,且AC2=AE•AB,求证:∠CEB=2∠CAB.【分析】(1)解Rt△OBN,得出OB=2,tan∠BON=,那么∠BON=60°,再利用弧长公式即可求出的长度;(2)连接BC.根据垂径定理的推论得出=,那么∠1=∠A.再证明△ACE∽△ABC,得出∠2=∠1,等量代换得到∠A=∠2,利用三角形外角的性质得出∠CEB=∠A+∠2=2∠A.【解答】解(1)解:∵AB⊥CD,垂足为N.∴∠BNO=90°在Rt△ABC中,∵ON=1,BN=,∴,,∴∠BON=60°,∴==;(2)证明:如图,连接BC∵CD是⊙O的直径,AB⊥CD,∴=,∴∠1=∠CAB∵AC2=AE•AB,且∠A=∠A,∴△ACE∽△ABC,∴∠1=∠2∴∠CAB=∠2∴∠CEB=∠CAB+∠2=2∠CAB.6.如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求的长.【分析】(1)根据圆周角定理证明即可;(2)连接CO,利用弧长公式解答即可.【解答】(1)证明:∵点O是圆心,OD⊥BC,∴,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴的长为:L=.7.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.【分析】(1)由矩形的性质得出∠B=∠C=90°,AB=DC,BC=AD,AD∥BC,得出∠EAD=∠AFB,由AAS证明△ADE≌△F AB,得出对应边相等即可;(2)连接DF,先证明△DCF≌△ABF,得出DF=AF,再证明△ADF是等边三角形,得出∠DAE=60°,∠ADE=30°,由AE=BF=1,根据三角函数得出DE,由弧长公式即可求出的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△F AB中,,∴△ADE≌△F AB(AAS),∴DE=AB;(2)连接DF,如图所示:在△DCF和△ABF中,,∴△DCF≌△ABF(SAS),∴DF=AF,∵AF=AD,∴DF=AF=AD,∴△ADF是等边三角形,∴∠DAE=60°,∵DE⊥AF,∴∠AED=90°,∴∠ADE=30°,∵△ADE≌△F AB,∴AE=BF=1,∴DE=AE=,∴的长=.8.如图,点A、B、C在圆O上,AB为直径,且AB=4,AC=2.(1)求∠ABC的度数;(2)求弧AC的长度.【分析】(1)根据圆周角定理得到∠C=90°,求得sin∠B==,于是得到结论;(2)根据圆周角定理得到∠AOC=60°,根据弧长公式即可得到结论.【解答】解:(1)∵AB为直径,∴∠C=90°,∵AB=4,AC=2,∴sin∠B==,∴∠ABC=30°;(2)连接OC,∵∠B=30°,∴∠AOC=60°,∴弧AC的长度==π.9.如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧的长.【分析】(1)先作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB的长,那么OB=OA=AB,又∠BOC=90°,将它们代入弧长公式计算即可.【解答】解:(1)如图,⊙O为所作;(2)∵在等腰直角△ABC中,∠ACB=90°,AC=1,∴AB=AC=,∵线段AB的垂直平分线交AB于O点,∴∠BOC=90°,OB=OA=AB=,∴劣弧的长=π.10.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连接AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.【分析】(1)由AB=CD,根据圆心角、弧、弦的关系定理得出=,即+=+,那么=,根据圆周角定理得到∠CDB=∠ABD,利用等角对等边得出EB=ED;(2)先求出∠CDB=∠ABD=45°,再根据圆周角定理得出∠AOB=90°.又AO=6,代入弧长公式计算即可求解.【解答】(1)证明:∵AB=CD,∴=,即+=+,∴=,∵、所对的圆周角分别为∠CDB,∠ABD,∴∠CDB=∠ABD,∴EB=ED;(2)解:∵AB⊥CD,∴∠CDB=∠ABD=45°,∴∠AOD=90°.∵AO=6,∴的长==3π.11.如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O 上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=30.(1)求BE的长.(2)若BC=15,求的长.【分析】(1)连接OE,过O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的长,进而求得EB的长.(2)连接OD,则在直角三角形ODQ中,可求得∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=30°,则得出的长度.【解答】解:(1)连接OE,过O作OF⊥BM于F,在Rt△OEF中,EF==15,BF=AO=30,∴BE=30﹣15.(2)连接OD,在直角三角形ODQ中,∵OD=30,OQ=30﹣15=15,∴∠ODQ=30°,∴∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,∵OE=30,EH=15,∴∠EOH=30°,∴∠DOE=90°,∴=π•60=15π.12.如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.(1)试说明△ABC∽△DBE;(2)当∠A=30°,AF=时,求⊙O中劣弧的长.【分析】(1)根据都是直角三角形,同弧所对的圆周角相等,可知这两个三角形三角相等,故相似.(2)根据30度的正弦值求出圆的半径,再根据连接OC,利用等腰三角形和三角形的内角和求出圆心角,即可求弧长.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°(1分)∵CD⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB(2分)又∵∠A=∠D,∴△ACB∽△DEB.(3分)(2)解:连接OC,则OC=OA,(4分)∴∠ACO=∠A=30°,∴∠AOC=120°(5分)∵OF⊥AC,∴∠AFO=90°(6分)在Rt△AFO中,cos30°==,∴AO=2(7分)∴AC弧的长为π•2=π.(9分)13.如图,在3×3的正方形网格中,每个小正方形的边长都为1,O、A、B三点都在格点处,线段OA绕点O顺时针旋转至OB.(1)求线段OA的长;(2)画出旋转过程中点A经过的路径,且求出该路径的长.【分析】(1)根据网格,根据勾股定理理可求出线段的长.(2)旋转过程中点A经过的路径是一段弧,根据弧长公式计算.【解答】解:(1)=;(3分)(2)路径长为.(3分)14.如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,﹣2),将△OAB绕点O 按逆时针方向旋转90°得到△OA′B′.(1)画出旋转后的△OA′B′,并求点B′的坐标;(2)求在旋转过程中,点A所经过的路径的长度.(结果保留π)【分析】(1)按要求画即可,其中旋转90度是关键.(2)根据弧长公式计算即可.【解答】解:(1)如图△OA′B′为所示,点B′的坐标为(2,3);(4分)(2)△OAB绕点O逆时针旋转90°后得△OA′B′,点A所经过的路径是圆心角为90°,半径为3的扇形OAA′的弧长,所以l=×(2π×3)=π.(7分)即点A所经过的路径的长度为π.(8分)15.如图,点A、B为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所成的角度约为60°,半径OC所在的直线与放置平面垂直,垂足为点E,DE=15cm,AD =14cm.(1)求底座CE的高;(2)求弧AC的长.【分析】根据直角三角形的性质及三角函数可求得OD,OE,OA的长,从而可得到CE 的长,根据弧长公式可求得弧AC的长.【解答】解:(1)∵DE=15cm,AD=14cm,∠ODE=60°∴OD=30cm,OE=15cm,OA=OC=30﹣14=16cm∴CE=OE﹣OC=(﹣16)cm.(4分)(2)∵∠DOE=30°,OC=16cm∴弧AC==cm.(4分)16.如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长.【分析】(1)根据垂径定理、圆周角定理以及圆心角、弦、弧、弦心距的关系可得四边形OMEN是正方形,进而得出ME=NE,从而得出△ABE是等腰直角三角形,求出∠ABD的度数;(2)利用(1)的结论,得出BN=AM,OM=NE,在Rt△AOM中,利用特殊锐角的三角函数值可求出AM、OM,进而得出BE即可;(3)利用圆周角定理和(1)的结论求出∠AOD=∠BOC=90°,利用等腰三角形的性质以及三角形内角和定理可求出∠AOB=150°,进而求出∠COD的度数,最后根据弧长的计算公式求出答案即可.【解答】解:(1)如图1,过点O作OM⊥AC,ON⊥BD,垂足分别为M、N,∵AC⊥BD,∴∠MEN=90°=∠ONE=∠OME,∴四边形OMEN是矩形,又∵AC=BD,OM⊥AC,ON⊥BD,∴OM=ON,AM=CM=BN=DN,∴四边形OMEN是正方形,∴ME=NE,∴ME+AM=NE+BN,即AE=BE,∴△ABE是等腰直角三角形,∴∠ABD=45°;(2)如图2,由(1)可得AM=BN,OM=NE,∠ABD=∠BAC=45°,∵∠OAB=15°,∴∠OAM=45°﹣15°=30°,在Rt△AOM中,∠OAM=30°,OA=2,∴OM=OA=1,AM=OA=,∴BE=BN+NE=+1;(3)如图2,连接OB、OC、OD,∵OA=OB,∠OAB=15°,∴∠AOB=180°﹣15°﹣15°=150°,∵∠ABD=∠BAC=45°,∴∠AOD=∠BOC=45°×2=90°,∴∠COD=360°﹣150°﹣90°﹣90°=30°,∴==.17.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连接AE交⊙O于点F,连接BF并延长交CD于点G,OA=3.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,求劣弧的长.(结果保留π)【分析】(1)根据ASA证明三角形全等即可.(2)连接OF,求出圆心角,利用弧长公式计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCG=90°,∵AB是直径,∴∠AFB=90°,∴∠BAE+∠ABF=90°,∠ABF+∠CBG=90°,∴∠BAE=∠CBG,在△ABE和△BCG中,,∴△ABE≌△BCG(ASA).(2)解:连接OF,∵∠ABE=90°,∠AEB=55°,∴∠BAE=90°﹣55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴的长==.18.如图,∠EAD是⊙O内接四边形ABCD的一个外角,且∠EAD=75°,DB=DC.(1)求∠BDC的度数.(2)若⊙O的半径为2,求的长.【分析】(1)根据圆内接四边形性质求出∠C,根据等腰三角形的性质和三角形内角和定理求出∠BDC即可;(2)连接OB、OC,根据圆周角定理求出∠BOC,再根据弧长公式求出答案即可.【解答】解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠C=180°,∵∠EAD+∠DAB=180°,∴∠C=∠EAD,∵∠EAD=75°,∴∠C=75°,∵DB=DC,∴∠DBC=∠C=75°,∴∠BDC=180°﹣∠C﹣∠DBC=30°;(2)连接OB、OC,∵∠BDC=30°,∴∠BOC=2∠BDC=60°(圆周角定理),∵⊙O的半径为2,∴的长是=.19.如图,在⊙O中,,∠APC=60°.(1)求证:△ABC是等边三角形;(2)若⊙O的半径为,∠BCP=40°,求的长.【分析】(1)利用等弧所对的圆周角相等去证明.6证明∠B,∠C都是60度那么这个三角形就是等边三角形.(2)由∠BCP=40°,可求出∠ACP的度数,从而求出弧所对的圆心角的度数,然后利用弧长公式进行计算.【解答】证明:(1)在⊙O中,∵,∴AB=AC.又∵∠B=∠APC=60°,∴△ABC是等边三角形.解:(2)如图,连接OA,OP,∵△ABC是等边三角形,∴∠BCA=60°,∴∠PCA=∠BCA﹣∠BCP=60°﹣40°=20°,∴∠POA=2∠PCA=40°,∴的长,=.∴的长为.20.已知四边形ABCD内接于⊙O,过点A作⊙O的直径AE交BC于点F,已知AD∥BC,AF=AB.(1)求证:AE∥CD;(2)∠BAE=45°,CD=,求弧AC的长.【分析】(1)根据平行线的性质得出∠ABC+∠D=180°,根据圆内接四边形的性质得出∠D+∠C=180°,求出∠ABC=∠C,根据等腰三角形的在得出∠B=∠AFB,求出∠AFB=∠C,再根据平行线的判定得出即可;(2)连接BE,根据等腰直角三角形的判定求出△ABE是等腰直角三角形,根据勾股定理求出AE,求出半径AO,根据等腰三角形的性质和三角形内角和定理求出圆周角∠B,求出所对的圆心角的度数,再根据弧长公式求出答案即可.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°,∵AD∥BC,∴∠D+∠C=180°,∴∠ABC=∠C,∵AF=AB,∴∠B=∠AFB,∴∠AFB=∠C,∴AE∥CD;(2)解:连接BE,∵AE是⊙O的直径,∴∠ABE=90°,∵∠BAE=45°,∴△ABE是等腰直角三角形,∵∠ABC=∠C,∴AB=CD=BE=,∴AE===2,即半径AO=1,∵∠BAE=45°,AB=AF,∴∠ABC=∠AFB=(180°﹣∠BAE)=67.5°,即所得的圆心角的度数为135°,∴的长为=π.。
七年级数学(上)弧长计算的练习题
七年级数学(上)弧长计算的练习题练题一1. 一个圆的半径为6厘米,求其周长和面积。
2. 一个扇形的半径为8厘米,弧长为12厘米,求该扇形的面积。
3. 在一个圆上,弧长为18厘米,半径为6厘米,请计算该弧对应的圆心角的度数。
4. 一个圆的直径为12厘米,求其周长和面积。
5. 一个扇形的半径为10厘米,面积为30平方厘米,求该扇形的圆心角的度数。
练题二1. 一个圆的半径为5cm,求其周长和面积。
2. 一个扇形的半径为7cm,弧长为10cm,求该扇形的面积。
3. 在一个圆上,弧长为15cm,半径为5cm,请计算该弧对应的圆心角的度数。
4. 一个圆的直径为8cm,求其周长和面积。
5. 一个扇形的半径为9cm,面积为45cm²,求该扇形的圆心角的度数。
练题三1. 一个圆的半径为4cm,求其周长和面积。
2. 一个扇形的半径为6cm,弧长为8cm,求该扇形的面积。
3. 在一个圆上,弧长为12cm,半径为4cm,请计算该弧对应的圆心角的度数。
4. 一个圆的直径为10cm,求其周长和面积。
5. 一个扇形的半径为8cm,面积为24cm²,求该扇形的圆心角的度数。
练题四1. 一个圆的半径为7cm,求其周长和面积。
2. 一个扇形的半径为9cm,弧长为14cm,求该扇形的面积。
3. 在一个圆上,弧长为21cm,半径为7cm,请计算该弧对应的圆心角的度数。
4. 一个圆的直径为6cm,求其周长和面积。
5. 一个扇形的半径为11cm,面积为77cm²,求该扇形的圆心角的度数。
练题五1. 一个圆的半径为3cm,求其周长和面积。
2. 一个扇形的半径为5cm,弧长为6cm,求该扇形的面积。
3. 在一个圆上,弧长为9cm,半径为3cm,请计算该弧对应的圆心角的度数。
4. 一个圆的直径为4cm,求其周长和面积。
5. 一个扇形的半径为6cm,面积为18cm²,求该扇形的圆心角的度数。
这份文档为《七年级数学(上)弧长计算的练习题》,共包含五组练习题,每组题目包括计算圆的周长和面积、扇形的面积以及圆弧对应的圆心角的度数。
24.4 弧长的计算
(
4、已知圆弧的半径为50厘米,圆心角为60°,
此圆弧的长度
πcm 50
3 ________________
;(结果保留π)
5、在弧长公式中,已知l,n或R的其中任意
两个量,能否求出第三个量?
课后巩固:
6.如下图,在小正方形的边长都为1的方格纸中,
△ ABO 的 顶 点 都 在 小 正 方 形 的 顶 点 上 , 将 △ △ ABO绕点O顺时针方向旋转90°得到 A1B1O,
24.4 弧长的计算
弧长公式: 图形
90°
60°
1° n°
弧长
l 90 2R 1 R
360
2
l 60 2R 1 R
360
3
l 1 2R R
360
180
l nR
180
知识点1:弧长的计算
△ 【例1】如右图,在Rt ABC中,∠B=90°,∠A= △ 30°,BC=2,将 ABC绕点C顺时针旋转 △ 120°至 A′B′C′的位置,则点A经过的路线
则点A运动的路径长为___5__π______.
生活中的实际问题:
7、制造弯形管道时,经常要先按中心线计算“ 展直长度”(图中虚线的长度),再下料,试计
算图所示管道的展直长度L。(单位:mm,结
果保留π)
8、如图,AB切⊙O于点B,OA= 2 3 ,AB=3
,弦BC∥OA,则劣弧BC的弧长为( A )
A.3 π
3
B.3 π
2
C.π
D.3π
2
C
B
O.
A
9、一块等边三角形的木板,边长为1,现将木板沿
水平线翻滚(如图),那么B点从开始至B2结束所走
初中数学——弧长的计算
初中数学——弧长的计算满分目标1.理解弧长公式的推导过程.2.会利用弧长公式进行简单计算.基础巩固练(难度等级★☆☆)1.在半径为R 的圆中,1°的圆心角所对的弧长l=________,n°的圆心角所对的弧长l=________.2.在半径为8cm 的圆中,72°的圆心角所对的弧长为________cm.3.若扇形的弧长是18πcm,该扇形的圆心角是120°,则扇形的半径为________cm.4.若扇形的弧长为3πcm,半径为12cm,则扇形的圆心角的度数是________.5.如图,一段公路的转弯处是一段圆弧,则的展直长度为().A.3πmB.6πmC.9πmD.12πm第5题图技能提升练(难度等级★★☆)6.一条弧所对的圆心角为135°,弧长等于半径为5cm 的圆的周长的3倍,求这条弧的半径.7.在平面直角坐标系中,点A 的坐标为(1,1),以点O 为旋转中心,将点A 逆时针旋转到y 轴上,求点A 经过的路径长.8.如图,⊙O 的半径为6cm,直线AB 是⊙O 的切线,切点为B,弦BC∥AO.若∠A=30°,求的长.第8题图9.制造弯形管道时,经常要先按中心线计算“展直长度”,再下料.如图是一段弯形管道,其中∠O=∠O′=90°,中心线的两条弧的半径都是1000mm,试求这段变形管道的展直长度(π取3.14).第9题图压轴满分练(难度等级★★★)10.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿弧ADA1—弧A1EA2—弧A2FA3—弧A3GB 路线爬行,乙虫沿弧ACB 路线爬行,则下列结论正确的是().A.甲先到B 点B.乙先到B点C.甲、乙同时到B点D.无法确定第10题图11.四边形ABCD 是正方形,曲线DA1B1C1D1…叫做“正方形的渐开线”,其中曲线DA1、A1B1、B1C1、C1D1、…的圆心依次按A、B、C、D 循环,它们依次连接.取AB=1,则曲线DA1B1…C2D2的长是________(结果保留π).第11题图。
弧长的计算
弧长的计算1.已知一条圆弧所在圆的半径为24,所对的圆心角为60°,则这条弧长为()A.4 B.4πC.8 D.8π【变式1】120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.18【变式2】已知一弧长为L的弧所对的圆心角为120°,那么它所对的弦长为()A.L B.L C.L D.L【变式3】如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为()A.()°B.()°C.()°D.()°【变式4】有一段弧的长度占它所在圆周长的,那么这段弧所对的圆心角是度.【变式5】如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为()A.πB.πC.πD.π2.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB. C.2πD.3π【变式1】如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A.πB.πC.πD.π【变式2】如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.πB.πC.2πD.2π【变式3】如图,半圆O的直径AB=4,P,Q是半圆O上的点,弦PQ的长为2,则与的长度之和为()A. B. C. D.π【变式4】已知:如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为()A.2πB.3πC.4πD.5π【变式5】边长为1的等边△ABC在直线l上,按如图所示的方式进行两次旋转,在两次旋转过程中,点C经过的路径长为()A.πB.πC.πD.π3.如图,以O为圆心的圆与直线y=﹣x+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.πB.πC.π D.π【变式1】如图,在平面直角坐标系中,放置半径为1的圆,与两坐标轴相切,若该圆向x轴正方向滚动2016圈后(滚动时在x轴上不滑动),则该圆的圆心坐标为()A.(4032π+1.0)B.(4032π+1.1)C.(4032π﹣1.0) D.(4032π﹣1.1)【变式2】.制造弯形管道时,经常要先按中心线计算“展直长度”,再下料.右图是一段弯形管道,其中∠O=∠O’=90°,中心线的两条弧的半径都是1000mm,这段变形管道的展直长度约为(取π3.14)()A.9280mm B.6280mm C.6140mm D.457mm【变式3】如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了()A.5πcm B.3πcm C.2πcm D.πcm【变式4】如图,△ABC是等腰直角三角形,且∠ACB=90°.曲线CDEF…叫做“等腰直角三角形的渐开线”,其中弧CD,弧DE,弧EF,…的圆心依次按A、B、C循环.如果AC=1,那么曲线CDEF的长度为()A.B.C.D.π【变式5】如图,若弧AB半径PA为18,圆心角为120°,半径为2的⊙O,从弧AB的一个端点A(切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙O自转的周数是()A.5周B.6周C.7周D.8周【变式6】图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD分别与圆弧相切于点A、B,线段AB=180m,∠ABD=150度.(1)画出圆弧的圆心O;(2)求A到B这段弧形公路的长.4.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.【变式1】.如图,在△ABC中,以BC为直径的⊙O交AB于M,弦MN∥AC且MN交BC于点E,ME=1,BM=2,BE=.(1)求证AC是⊙O的切线;(2)求弧NC的长度.【变式2】如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上的点,DC⊥AN,与AN交于点C,已知AC=15,⊙O的半径为30,求的长.【变式3】如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径,BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.若BC=6,∠BAC=50°,求弧ED,弧FD的长度之和(结果保留π).【变式4】.如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)【变式5】如图,△ABC中,∠C是直角,∠A=30°,BC=2,以点C为圆心,CB为半径画圆,交AC于点D,交AB于点E.(1)求的长度;(2)过点E作EF⊥BC交圆于F点,写出EF与AC的关系,并证明你写出的关系.【变式6】在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4).(1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标;(2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π).【课后练习】1.(海淀区期中)若扇形的圆心角为60°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.4π2.(西城区期末)若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°3.(通州区期末)如果弧长为6π的弧所对的圆心角为60°,那么这条弧所在的圆的半径是()A.18 B.12 C.36 D.64.(顺义区模拟)如图,小正方形方格的边长为1cm,则的长为cm.5.(门头沟期末)如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.若BC=1,AC=,则顶点A运动到点A″的位置时,点A两次运动所经过的路程.(计算结果不取近似值)6.(大兴区期末)如图所示,长为4cm,宽为3cm的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上点A位置变化为A→A1→A2,由A1翻滚到A2时被桌面上一小木块挡住,此时长方形木板的边A2C与桌面成30°角,则点A 翻滚到A2位置时所经过的路径总长度为cm.7.(门头沟区一模)如图,每个多边形的边长都大于2,分别以多边形的各顶点为圆心,1为半径画弧(弧的端点分别在多边形的相邻两边上),则第6个图形中所有弧的弧长的和是,第n个图形中所有弧的弧长的和是(n 为正整数).8.(清华附统练)如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.9.(海淀区期中)已知:如图,网格中每个小正方形的边长为1,△ABC是格点三角形.(1)画出△ABC绕A点逆时针旋转90°后图形△AB′C′;(2)旋转过程中,点C所经过的路线长为.10.(密云期末)如图,AB是⊙O的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E.(1)求OE的长;(2)求劣弧AC的长.(结果精确到0.1)11.(石景山期末)某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题.(1)写出判定扇形相似的一种方法:若,则两个扇形相似;(2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为;(3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.12.(昌平二模)如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《弧长计算》练习题一.选择题1.圆心角为120°,弧长为12π的扇形半径为()A.6 B.9 C.18 D.362.圆的面积为π,则60°的圆心角所对的弧长是()A.B.C.D.3.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A.6cm B.12cm C.2cm D.cm4.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A.60°B.120°C.150°D.180°5.在半径为1的⊙O中,弦AB=1,劣弧AB的长是()A. B.C.D.6.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为()A.6厘米B.12厘米C.厘米D.厘米7.已知扇形的弧长是2πcm,半径为12cm,则这个扇形的圆心角是()A.60°B.45°C.30°D.20°二.填空题8.圆心角为120°,半径为6cm的扇形的弧长是cm.9.在半径为18的圆中,120°的圆心角所对的弧长是.10.已知扇形的圆心角为60°,弧长等于,则该扇形的半径是.11.已知扇形的圆心角为120°,弧长是4πcm,则扇形的半径是cm.12.如图,在△ABC中,∠C=90°,∠A=30°,BC=1,将△ABC绕点B顺时针方向旋转,使点C落到AB的延长线上,那么点A所经过的线路长为.13.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为cm.14.如图,把直角三角形ABC的斜边AB放在定直线L上,按顺时针方向在L上转动两次使它转到三角形A″B″C″的位置,设BC=1,AC=,其中∠A=30°则定点A运动到点A″的位置时,点A经过的路线长是.第12题图第13题图第14题图15.一块等边三角形的木板边长为1,将木板沿水平翻滚如图所示,那么B点从开始到结束所经过的路线长为.第15题图第16题图第17题图16.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为.17.如图,△ABC是正三角形,曲线CDEF…叫做“正三角形的渐开线”,其中弧CD、弧DE、弧EF的圆心依次按A、B、C…循环,它们依次相连接.若AB=1,则曲线CDEF的长是.三.解答题(共3小题)18.如图,OA、OB是⊙O的两条半径,以OA为直径的⊙O1交OB于点C,证明:的长=的长.28.已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C 交半圆O2于D点.试比较与的长.2016年11月18日卞相岳的弧长计算参考答案与试题解析一.选择题(共9小题)1.(2015•葫芦岛)如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.π D.π【解答】解:因为⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,所以可得圆心角∠BOC=90°,所以的长==π,故选B.2.(2014•衡阳)圆心角为120°,弧长为12π的扇形半径为()A.6 B.9 C.18 D.36【解答】解:设该扇形的半径是r.根据弧长的公式l=,得到:12π=,解得r=18,故选:C.3.圆的面积为π,则60°的圆心角所对的弧长是()A.B.C.D.【解答】解:设圆的半径为r,∴π=πr2,∴r=,∴60°的圆心角所对的弧长是:==.故选B.4.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A.6cm B.12cm C.2cm D.cm【解答】解:根据题意得:l=,则r==6cm,故选A5.(2014•自贡)一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A.60°B.120°C.150°D.180°【解答】解:设扇形圆心角为n°,根据弧长公式可得:=,解得:n=120°,故选:B.6.已知⊙O的半径是1,△ABC内接于圆O.若∠B=34°,∠C=110°,则弧BC的长为()A.B.πC.πD.π【解答】解:由题意得,∠A=180°﹣∠B﹣∠C=180°﹣34°﹣110°=36°,则∠BOC=2∠A=72°,则弧BC的长==π.故选B.7.在半径为1的⊙O中,弦AB=1,劣弧AB的长是()A.B.C.D.【解答】解:如图,∵OA=OB=AB=1,∴△OAB是等边三角形,∴∠O=60°,∴劣弧AB的长==,故选C.8.(2015秋•高密市月考)一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为()A.6厘米B.12厘米C.厘米 D.厘米【解答】解:l=,由题意得,2π=,解得:R=6cm.故选A.9.(2002•温州)已知扇形的弧长是2πcm,半径为12cm,则这个扇形的圆心角是()A.60°B.45°C.30°D.20°【解答】解:设圆心角是n度,则=2π,解得:n=30.故选C.二.填空题(共16小题)10.(2013•上海模拟)如图,在△ABC中,∠C=90°,∠A=30°,BC=1,将△ABC绕点B 顺时针方向旋转,使点C落到AB的延长线上,那么点A所经过的线路长为.【解答】解:∵在△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,∠B=90°﹣30°=60°,∴旋转角是240度.长是:=.故答案是:.11.(2004•四川)如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为20πcm.【解答】解:=20πcm.12.(1999•湖南)已知扇形的圆心角为150°,弧长为20π厘米,则这个扇形的半径为24厘米.【解答】解:根据弧长公式得:解得r=24cm.13.(2012•广安)如图,Rt△ABC的边BC位于直线l上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为(4+)π(结果用含有π的式子表示)【解答】解:∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC由现在的位置向右无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长,∴点A经过的路线长=×3+×2=(4+)π.故答案为:(4+)π.14.(2002•长沙)在半径为9cm的圆中,60°的圆心角所对的弧长为3πcm.【解答】解:=3πcm.15.(2015•磴口县校级模拟)一块等边三角形的木板边长为1,将木板沿水平翻滚如图所示,那么B点从开始到结束所经过的路线长为π.【解答】解:∵△ABC是等边三角形,∴∠ACB=∠BAC=60°,∴两次旋转的角度都是180°﹣60°=120°,∴B点从开始到结束所经过的路线长=2×=π.故答案为:π.16.(2011秋•鄞州区期末)如图,正方形ABCD,曲线DP1P2P3P4P5…叫做“正方形的渐开线”,其中弧DP1,弧P1P2,弧P2P3,弧P3P4,弧P4P5…的圆心依次按点A,B,C,D,A循环,它们的弧长分别记为l1,l2,l3,l4,l5….当AB=1时,l2011等于.【解答】解:∵AB=1,∴该正边形的第一重渐开线长l1==,二重渐开线长l2==π,第三重渐开线长l3==,…第2011重渐开线长l2011==.故答案为:.17.(2005•嘉兴)如图ABCD是各边长都大于2的四边形,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在四边形的相邻两边上),则这4条弧长的和是2π或6π.【解答】解:四边形内角和为360°,分两种情况考虑:(i)图中阴影刚好是完整的一个半径为1的圆的周长,则阴影部分弧长为πd=2π;(ii)图中非阴影部分的弧长为三个圆周长,即弧长为3×2π=6π,综上,这4条弧长的和是2π或6π.故答案为:2π或6π18.(2015•红河州一模)要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为2π.【解答】解:设△ABC的三个内角的度数分别为α、β、γ,则α+β+γ=180°,三个扇形的弧长和为++=2π,故答案为:2π.19.(2013秋•福田区校级月考)如图,把直角三角形ABC的斜边AB放在定直线L上,按顺时针方向在L上转动两次使它转到三角形A″B″C″的位置,设BC=1,AC=,其中∠A=30°则定点A运动到点A″的位置时,点A经过的路线长是+.【解答】解:∵在Rt△ACB中,BC=1,AC=,∴由勾股定理得:AB=2,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,l=+=+.故答案为:+.20.(2010春•萧山区期末)如图,四边形ABCD是正方形,曲线DA1B1C1D1…叫做“正方形的渐开线”,其中曲线DA1、A1B1、B1C1、C1D1、…的圆心依次按A、B、C、D循环,它们依次连接.取AB=1,则曲线DA1B1…C2D2的长是18π.(结果保留π)【解答】解:曲线DA1B1…C2D2的长=++…+=(1+2+…+8)=×36=18π.故答案为:18π.21.如图,△ABC是正三角形,曲线CDEF…叫做“正三角形的渐开线”,其中弧CD、弧DE、弧EF的圆心依次按A、B、C…循环,它们依次相连接.若AB=1,则曲线CDEF的长是4π.【解答】解:∵△ABC是正三角形,∴∠CAD=∠DBE=∠ECF=120°,又∵AB=1,∴AC=1,BD=2,CE=3,∴CD弧的长度==;DE弧的长度==;EF弧的长度==2π;所以曲线CDEF的长为++2π=4π.故答案为:4π.22.(2015•西宁)圆心角为120°,半径为6cm的扇形的弧长是4πcm.【解答】解:由题意得,n=120°,R=6cm,故可得:l==4πcm.故答案为:4π.23.(2016•银川校级一模)在半径为18的圆中,120°的圆心角所对的弧长是12π.【解答】解:弧长是:=12π.故答案是:12π.24.(2014•工业园区二模)已知扇形的圆心角为60°,弧长等于,则该扇形的半径是1.【解答】解:∵扇形弧长公式为:l=,∴=,解得:r=1;故答案为:1.25.(2014•泉州质检)已知扇形的圆心角为120°,弧长是4πcm,则扇形的半径是6cm.【解答】解:由扇形的弧长公式是l=,得4π=,解得:R=6cm.故答案为:6.三.解答题(共3小题)26.如图,⊙O1的半径O1A是⊙O2的直径,⊙O1的半径O1C交⊙O2于B,和的长度有什么关系?为什么?【解答】解:和的长度相等.理由如下:如图,连接BO2.∵∠AO2B=2∠AO1B,AO1=2AO2,∴的长度=π•AO1,的长度=•π•AO2,∴的长度=的长度.27.如图,OA、OB是⊙O的两条半径,以OA为直径的⊙O1交OB于点C,证明:=.【解答】证明:连接O1C,设∠AOB=θ,⊙O1的半径O1A=r,则⊙O1的直径为2r,半径OA=2r,∴∠AO1C=2∠AOC=2θ(同弧所对的圆心角等于2倍的圆周角),∵==,==,∴=.28.已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C 交半圆O2于D点.试比较与的长.【解答】解:如图:连接O2D,∵O1A:O2A=2:1,∴设O1A=2x,O2A=x;根据同弧所对的圆周角是圆心角的一半,∠1=2∠2,设∠2=y度,则∠1=2y度,==;==;可见,与的长度相等.。