有效数字及差计算
有效数字数值修约及运算法则
![有效数字数值修约及运算法则](https://img.taocdn.com/s3/m/89622777cdbff121dd36a32d7375a417876fc149.png)
费休氏水分测定法(P225)
费休氏试液的标定应取3份以上,3次连续标 定结果应在±1%以内,以平均值作为费休 氏试液的滴定度
滴定液(P502)
标定工作应由初标者(配制者)和复标者在相同条 件下各作平行试验3份,除另有规定外,其相对平 均偏差应不得大于0.1%;
初标平均值与复标平均值的相对偏差也不得大于 0.1%;
注意事项
要根据取样的要求,选择相应的量具。 (1) “精密称定”系指称取重量应准确到所取
重量的0.1%,可根据称量选用分析天平或半微量 分析天平;“精密量取”应选用符合国家标准的移 液管;必要时应加校正值。 (2)“称定”(或“量取”)系指称取的重量 (或量取的容量)应准确至所取重量(或容量)的 百分之一。
比如5.28 报告中应该打印数据,应为5.3
有关物质结果的正确书写
超过1%,保留一位小数,比如1.2% 小于1%,保留小数点后两位,比如0.12%
最大杂质峰面积/对照溶液主峰面积 =0.20(0.20%)----百分之一对照
或者=0.20(0.10%)-----两百分之一对照
非水溶液滴定法(P176)
数值修约及其进舍规则
例1 修约间隔为0.1
拟修约数值
修约值
1.050
1.0
0.350
0.4
数值修约及其进舍规则
例2 修约间隔为1000(103)
拟修约数值
修约值
2500
2x103
5500
6x103
例3 将下列数字修约成两位有效位数
拟修约数值 修约值
0.0385
0.038
34500
偏差不得过0.5%,如提取洗涤等操作步骤繁复者, 相对偏差不得过1.0%。
实验中的误差和有效数字
![实验中的误差和有效数字](https://img.taocdn.com/s3/m/dc0efa50ed630b1c58eeb566.png)
【补偿训练】
(多选)用最小刻度为1mm的刻度尺测量的长度如下,
其中记录正确的是( )
A.3.10cm
B.3.1cm
C.3.100cm
D.0.31cm
【解析】选A、D。最小刻度为1mm的刻度尺测量的数据
若用cm作单位,小数点后面有两位,则A、D正确,B、
C错误。
【拓展例题】 不同物理量的有效数字 【典例】写出下列各测量量的有效数字位数。 (1)长度:3.142×103mm,有效数字位数______ (2)质量:0.0030kg,有效数字位数______ (3)时间:11.3s,有效数字位数______ (4)温度:104℃,有效数字位数______ (5)电压:14V,有效数字位数______
【典例示范】
用毫米刻度尺测量一物体的直径,下列数据中正确的是
()
A.21.4cm
B.21.420cm
C.21cm
D.21.42cm
【解析】选D。毫米刻度尺最小刻度是1mm,若用cm作
单位小数点后面应有两位,四位有效数字,则D正确,
A、B、C错误。
【素养训练】 1.甲、乙两位同学用两只刻度尺测同一物体长度,甲测量后记录数 据是16mm,乙测量后记录数据是16.0mm,下面说法正确的是( ) A.甲用的刻度尺最小刻度为厘米 B.甲用的刻度尺最小刻度为毫米 C.乙用的刻度尺最小刻度为分米 D.乙用的刻度尺最小刻度为厘米
【补偿训练】 关于误差和错误下列说法中正确的是( ) A.选择更精密的仪器,可以消除误差 B.改进实验方法,认真操作,可以消除误差 C.多次测量,反复求平均值,总能够消除误差 D.误差不能消除,只能努力减小,而错误可以消除或改正
【解析】选D。误差只能减小,不能消除,则A、B、C错误;错 误可以避免和消除,则D正确。
有效数字和误差1
![有效数字和误差1](https://img.taocdn.com/s3/m/24aea91d10a6f524ccbf854f.png)
常见的误差有系统误差和偶然误差
1.系统误差 . 系统误差是由某些必然的或经常的原因造 成的。 成的。 根据误差的来源可分为:方法误差、 根据误差的来源可分为:方法误差、仪器 误差、试剂误差、操作误差等。 误差、试剂误差、操作误差等。 系统误差常用做空白试验或对照实验的方 法消除。 法消除。
ቤተ መጻሕፍቲ ባይዱ
在不加试样的情况下, 在不加试样的情况下,按照样品分析步骤 空白试验, 和条件进行分析试验称为空白试验 和条件进行分析试验称为空白试验,所得结果 称为空白值。 称为空白值。 空白值 从试样测定结果中扣除空白值,便可以消 从试样测定结果中扣除空白值, 除因试剂、 除因试剂、蒸馏水及实验仪器等因素引起的系 统误差。 统误差。
(三)偏差与精密度 精密度指多次重复测定的结果相互接近的程度, 精密度指多次重复测定的结果相互接近的程度, 指多次重复测定的结果相互接近的程度 是保证准确度的前提。 是保证准确度的前提。 偏差是指各次测定的结果和平均值之间的差值。 偏差是指各次测定的结果和平均值之间的差值。 是指各次测定的结果和平均值之间的差值 偏差越小,精密度越高。 偏差越小,精密度越高。
在计算中常会遇到下列两种情况: 在计算中常会遇到下列两种情况: 1、化学计量关系中的分数和倍数,这些数不是 、化学计量关系中的分数和倍数, 测量所得, 测量所得,它们的有效数字位数可视为无限多位 2、关于pH、pK和lgK等对数值,其有效数字的 、关于 、 和 等对数值, 等对数值 位数仅取决于小数部分的位数, 位数仅取决于小数部分的位数,因为整数部分只 与该真数中的10的方次有关 与该真数中的 的方次有关
11.23
cm 11 12
在确定有效数字位数时, 在确定有效数字位数时,特别需要指出的是 数字“ 来表示实际测量结果时 来表示实际测量结果时, 数字“0”来表示实际测量结果时,它便是有效 数字 例如:分析天平称得的物体质量为 例如:分析天平称得的物体质量为7.1560g 滴定时滴定管读数为20.05mL 滴定时滴定管读数为 这两个数值中的“ 都是有效数字 这两个数值中的“0”都是有效数字 中的“ 只起到定位作用 只起到定位作用, 在0.006g中的“0”只起到定位作用,不是 中的 有效数字
有效数字的规则
![有效数字的规则](https://img.taocdn.com/s3/m/894ea49b011ca300a7c39075.png)
§1.4有效数字及其运算规则一、有效数字的一般概念1.有效数字任何一个物理量,其测量结果必然存在误差。
因此,表示一个物理量测量结果的数字取值是有限的。
我们把测量结果中可靠的几位数字,加上可疑的一位数字,统称为测量结果的有效数字。
例如,2.78的有效数字是三位,2.7是可靠数字,尾位“8”是可疑数字。
这一位数字虽然是可疑的,但它在一定程度上反映了客观实际,因此它也是有效的。
2.确定测量结果有效数字的基本方法(1)仪器的正确测读仪器正确测读的原则是:读出有效数字中可靠数部分是由被测量的大小与所用仪器的最小分度来决定。
可疑数字由介于两个最小分度之间的数值进行估读,估读取数一位(这一位是有误差的)。
例如,用分度值为1mm的米尺测量一物体的长度,物体的一端正好与米尺零刻度线对齐,另一端如图1-1。
此时物体长度的测量值应记为L=83.87cm。
其中,83.8是可靠数,尾数“7”是可疑数,有效数字为四位。
(2)对于标明误差的仪器,应根据仪器的误差来确定测量值中可疑数所以用该电压表测量时,其电压值只需读到小数点后第一位。
如某测量值为12.3V,若读出:12.32V,则尾数“2”无意义,因为它前面一位“3”本身就是可疑数字。
(3)测量结果的有效数字由误差确定。
不论是直接测量还是间接测量,其结果的误差一般只取一位。
测量结果有效数字的最后一位与误差所在的一位对齐。
如L=(83.87±0.02)cm是正确的,而L=(83.868±0.02)cm和L=(83.9±0.02)cm 都是错误的。
3.关于“0”的问题有效数字的位数与十进制的单位变换无关。
末位“0”和数字中间的“0”均属于有效数字。
如23. 20cm;10.2V等,其中出现的“0”都是有效数字。
小数点前面出现的“0”和它之后紧接着的“0”都不是有效数字。
如0.25cm或0.045kg中的“0”都不是有效数字,这两个数值都只有两位有效数字。
有效数字与运算规则(2014.05.12)
![有效数字与运算规则(2014.05.12)](https://img.taocdn.com/s3/m/1d6662abdd88d0d233d46ac9.png)
有效数据定义、运算及其修约规则一、有效数据1.1有效数字定义有效数字是指实际能测量到的数值,在该数值中只有最后一位是可疑数字,其余的均为可靠数字。
1.2实际意义有效数字能反映出测量时的准确程度。
例如,用最小刻度为0.1cm的直尺量出某物体的长度为11.23cm,显然这个数值的前3位数是准确的,而最后一位数字就不是那么可靠,如测得物体的长度可能是11.24cm,亦可能是11.22cm,测量的结果有±0.01cm的误差。
我们把这个数值的前面3位可靠数字和最后一位可疑数字称为有效数字。
这个数值就是四位有效数字。
在确定有效数字位数时,特别需要指出的是数字“0”来表示实际测量结果时,它便是有效数字。
例如,分析天平称得的物体质量为7.1560g,滴定时滴定管读数为20.05mL,这两个数值中的“0”都是有效数字。
在0.006g中的“0”只起到定位作用,不是有效数字。
(1)容量器皿;滴定管;移液管;容量瓶;4位有效数字(2)分析天平(万分之一)取4位有效数字(3)标准溶液的浓度,用4位有效数字表示:0.1000 mol/L(4)pH 4.34 ,小数点后的数字位数为有效数字位数对数值,lg X =2.38;lg(2.4´102)1.3有效数字中"0"的意义"0"在有效数字中有两种意义:一种是作为数字定值,另一种是有效数字.例如在分析天平上称量物质,得到如下质量:以上数据中“0”所起的作用是不同的。
“0”是有效数字:10.0780,6位有效数字。
1.2056中,5位有效数字。
“0”作为数字定值:0.2044中,小数前面的“0”是定值用的,不是有效数字;0.0120中,“1”前面的两个“0”都是定值用的,而在末尾的“0”是有效数字,所以它有3位有效数字。
称量精确至0.0002g;15000m 和10000g很难肯定其中的0 是否是有效数字还是数字定值,写为1.5×104m,则表示有效数字是二位;如果把它写为1.50×104m则表示有效数字是三位。
有效数字及其与误差的关系
![有效数字及其与误差的关系](https://img.taocdn.com/s3/m/d18c2a35e53a580217fcfe43.png)
另一种情况,例如x 0.1524, x* 0.154,这时x*的误差
是 (x) 0.0016,其绝对值超过了0.000(5 1 103,即第三位
2 小数的半个单位),但却没有超过0.00(5 1 102,即第二位
2 小数的半个单位),即0.0005 x x* 0.005。
显然x*虽有三位小数,其中1 1,2 5都是准确数 字,而第三位小数3 4就不再是准确数字了,我们就称
1 10mn,又因为 x* 2
1 10m1,其相对误
差有:
* r
(
x)
(x)
x*
1 10mn1
21
故相对误差限为: 1 10n1。 21
上式表达了有效数字与相对误差之间的关系,由此
可见,有效数字的位数反映了近似值的相对精确度。
上述关系的逆也是成立的,即当用x* 0.12 n 10m 表
§3 有效数字及其与误差的关系
一、有效数字
例如:对无穷小数或着循环小数,可用四舍五入的办法来取其
近似值
3.1415926
若按四舍五入取四位小数,则可得其近似值3.1416 若取五位小数则得到其近似值为3.14159 这种近似值取法的特点是误差限为其末位的半个单位。
3.1416 0.002 1 104 3.14159 0.000008 1 105
正整数,m 是整数。 若x*的绝对误差限为:e x* x 1 10mn,则称 2
x*为具有n位有效数字,或称它精确到10mn,其中每一个
数字1,2 ,
都是
n
x*的有效数字。
3.1416 五位有效数字,精确到0.0001
203和0.0203都是具有三位有效数字的有效数. 0.0203和0.020300: 其中0.0203具有三位有效数字,精确到0.0001, 0.020300具有五位有效数字,精确到0.000001. 可见,两者的精确程度大不相同,后者比前者精确.注: 有效数字尾部的零不可随意省去,以免损失精度.
有效数字(分析)
![有效数字(分析)](https://img.taocdn.com/s3/m/fb3d7ac776eeaeaad1f330d1.png)
甲:0.042%,0.041%;乙:0.04099%,0.04201%。
问哪一份报告是合理的,为什么?
答::甲的报告合理。因为在称样时取了两位有效
数字,所以计算结果应和称样时相同,都取两位 有效数字。
3 数据的记录和计算规则
1、记录测定结果时,只应保留一位可疑数字。在 分析化学中几个重要物理量的测量误差一般为 (视仪器的精度而定) :
习题:用加热挥发法测定BaCl2· 2H2O中结晶水的质 量分数时,使用万分之一的分析天平称样0.5000g,
问测定结果应以几位有效数字报出?
答::应以四位有效数字报出。
H
2O
2 18.02 0.5000 100% 244.3
习题:两位分析者同时测定某一试样中硫的质量 分数,称取试样均为3.5g,分别报告结果如下:
10.23500--------10.24 250.65000-------250.6 18.085002--------18.09
4、有效数字的计算规则
1. 加减法
几个数据相加或减时,有效数字位数的保留 ,应以小数点后位数最少的数据为准,其他的数 据均修约到这一位。
0.0121 25.64 1.05782
(3)在实际分析工作中一般按下列原则进行。 含量(质量分数)/% >10% 1~10 % 3位 <1%
结果报告的位数
4位
2位
(4)分析中的各类误差通常取1~2位有效数字。
习题:如果分析天平的称量误差为±0.2mg,拟分别称 取试样0.10000g和1.0000g左右,称量的相对误差各为 多少?这些结果说明了什么问题? 解:因分析天平的称量误差为±0.2mg。故读数的绝对 误差E=±0.0002g
有效数字及其运算规则
![有效数字及其运算规则](https://img.taocdn.com/s3/m/aa76c34ce518964bcf847c93.png)
有效数字及其运算规则一、有效数字的含义及位数为了得到准确的分析结果,不仅要准确地测量,而且还要正确地记录和运算,即记录的数字不仅表示数量的大小,而且要正确的反映测量的精确程度。
如某物重0.5180g 、其中0.518 是准确的,“0 ”位可疑,即其有上下一个单位的误差,也就是说此物重的绝对误差为二.有效数字的运算规则:1 .和或差的有效数字:几个数相加减时,和或差的有效数字的保留,应以小数点后位数最少的数据为根据,即决定于绝对误差最大的那个数据。
例如:0.0121+25.64+1.05782 =26.70992应依25.64 为依据,即:原式=26.71小数点后位数的多少反映了测量绝对误差的大小,如小数后有1 位,它的绝对误差为±0.1 ,而小数点有 2 位时,绝对误差为±0.01 。
可见,小数点具有相同位数的数字,其绝对误差的大小也相同。
而且,绝对误差的大小仅与小数部分有关,而与有效数字位数无关。
所以,在加减运算中,原始数据的绝对误差,决定了计算结果的绝对误差大小,计算结果的绝对误差必然受到绝对误差最大的那个原始数据的制约而与之处在同一水平上。
2 .乘除法几个数相乘、除时,其积或商的有效数字应与参加运算的数字中,有效数字位数最少的那个数字相同。
即:所得结果的位数取决于相对误差最大的那个数字。
商应与0.0325 在同一水平上,即取3 位。
又如:3.001×2.1= 6.3有效数字的位数的多少反映了测量相对误差的大小。
如 2 位有效数字1.0 和9.9 它们的都是±0.1 ,相对误差分别为±10% 和±1%, 即:两位有效数字的相对误差总在±1% ~10%叁位有效数字的相对误差总在±0.1 ~1%肆位有效数字的相对误差总在±0.01 ~±0.1% 之间。
可见,相同有效数字位数的数字,其相对误差E r,处在同一水平上:而且E r的大小,仅与有效数字位数有关,而与小数点位数无关。
第五节 有效数字及其运算规则
![第五节 有效数字及其运算规则](https://img.taocdn.com/s3/m/b9e44c71f46527d3240ce008.png)
5. 常数 等非测量所得数据以及 常数π,e等非测量所得数据以及 视为无限多位有效数字。 视为无限多位有效数字。
5、2,1/2等, , 等
6. pH、pM、pK等对数值,有效数字位数仅取 等对数值, 、 、 等对数值 决于小数部分数字的位数 小数部分数字的位数。 决于小数部分数字的位数。 应为两位有效数值。 如:pH=12.68,应为两位有效数值。 应为两位有效数值 pH=12.68 即[H+]=2.1×10-13 两位不是四位 × 7. 有效数字单位变化时,不能改变有效数字的 有效数字单位变化时, 位数。 位数。 20.00mL→ →0.02000L →
4位 位 2位 位 4位 位 2位 位
总绝对误差取决于绝对误差大的
(二)乘除法运算
数值相乘除时,结果保留位数应与有效数 数值相乘除时,结果保留位数应与有效数 字位数最少者相同。(相对误差最大 最少者相同。(相对误差最大), 字位数最少者相同。(相对误差最大), (0.0142×24.43×305.84)/28.7= × ×
第五节
有效数字及其运算规则
一、有效数字(significant figure) 有效数字
概念:分析工作中实际上能测量到的数字。 概念:分析工作中实际上能测量到的数字。 实际上能测量到的数字 包括:除最后一位为可疑数字, 包括:除最后一位为可疑数字,其余的数字 都是准确的。 都是准确的。 可理解为:在可疑数字的位数上有± 个单位 可理解为:在可疑数字的位数上有±1个单位 的误差。 的误差。 如:分析天平称量:1.21 23 (g)(万分之一) 分析天平称量: (万分之一) 滴定管读数: 滴定管读数:23.26 (mL)
数字修约规则和实例
修约规则 顺口溜) (顺口溜) 实 修约前数字 例 修约后数字 (要求保留小数点后一位 要求保留小数点后一位) 要求保留小数点后一位
有效数字及运算法则
![有效数字及运算法则](https://img.taocdn.com/s3/m/009a379cb52acfc789ebc9ff.png)
有效数字的位数
测量值本身的大小、仪器的准确度
米尺 L=2.52cm (三位有效数字)
20分度游标卡尺 L=2.525cm (四位有效数字)
螺旋测微计 L=2.5153cm
(可五修改位有效数字)
6
4.不确定度的表达
N N (单位)
σ取一个有效数字, σ决定N的有效位
a 10.0 0.1cm 2
N 0.96 0.0可3修cm改
18
运算规则:结果的有效数字与其底或被开
方数的有效数字位数相同。
如: 1002=100102
100=10.0
49 = 7.0
4.02=16
正确
49 = 7
4.02=16.0 错误
可修改
19
(1)对数函数 lgx的尾数与x的位数相同
例 7 lg 100 = 2.000
等中的0均有效。
注意:不能在数字的末尾随便加“0”或减 “0”
数学上:2.85 2.850 2.8500
物理上:2.85 2.850 2.8500
可修改
3
②.小数点前面的“0”和紧接小 数点后面的“0”不算作有效数 字如:0.0123dm、0.123cm、0.00123m
均是3位有效数字。
b 20.02 0.01cm
可修改
7
5.相对误差的表达
E N 100% N
0.05 E1 1.20 100% 4.2%
2位有效数
0.008 E2 10.100 100% 0.08%
1位有效数
可修改
8
三、直接测量有效数字的确定 ——如何读数
读数的一般规则: 读至仪器误差所在的位置
(1)用米尺测长度
有效数字及误差分析
![有效数字及误差分析](https://img.taocdn.com/s3/m/fa8a16d97f1922791688e897.png)
有效数字及误差分析一、有效数字在进行实验时,仪表指针往往停留在两条刻度线之间,这时就需要凭目力和经验来估计读数,估计出来的最后一位数字称为“欠准数字”。
实验数据或实验结果处理用几位数字来表示,是一件很重要的事情,在超过有效位数的数字上花费大量时间是没有必要的。
另外,计算结果中也并非保留的位数愈多准确度就愈高,因为小数点的位置与所用单位的大小有关,准确度的高低取决于实际测量的准确度。
例如:用100mA的电流表测量电流,如果电流表的指针停留在50mA和51mA之间,读数为50.4mA,则最末一位数字“4”是估计读出的,它可能被读为50.3mA,也可能被读为50.5mA,因此该读数的最后一位“4”被称为“欠准数字”,那么它的有效数字应该是三位。
实验时一般可估计到最小刻度的十分位,也就是说实验数据应保留一位欠准数字。
另外,50.4mA与0.0504A的准确度是完全相同的。
二、有效数字的正确表示(1)记录测量结果时,除最后一位数字外,前面的各位数字都必须是准确的。
(2)关于数字“0”要特别注意,它只有在数字之间和数字末尾才算作有效数字。
例如,50.4和0.0504都是三位有效数字。
(3)对于较大或较小的数字,必须用10的幂次前面的数字代表有效数字。
例如15000Ω这种写法,后面三个“0”无法知道是否为有效数字,为了明确表示有效数字的位数起见,写成1.5×l04Ω表示有二位有效数字;1.50×l04Ω就表示有三位有效数字;1.500×l04Ω就表示有四位有效数字。
同理,50.4mA应记为0.0 504A或5.04×l04 A,它表示有三位有效数字。
(4)表示常数的数字可以认为它的有效数字的位数为无限制。
(5)表示误差时,一般情况下只取一位有效数字,最多取二位有效数字。
例如,±2%、±2.5%。
三、有效数字的舍入规则为了保证各数据有相同的有效数字位数,表示测量结果时对多余的位数需要舍入。
有效数字及运算法则
![有效数字及运算法则](https://img.taocdn.com/s3/m/fb673d7e5acfa1c7aa00cc2e.png)
测量值本身的大小、仪器的准确度
米尺 L=2.52cm (三位有效数字)
20分度游标卡尺 L=2.525cm (四位有效数字)
螺旋测微计 L=2.5153cm (五位有效数字)
4.不确定度的表达
N N (单位)
σ取一个有效数字, σ决定N的有效位
a 10.0 0.1cm2 b 20.02 0.01cm
100.0035=1.00809611.008
四、间接测量量有效数字的确定 ——有效数字的运算法则
1.加减法 2.乘除法 3.乘方与开方 4.函数运算
5.自然数与常量
①自然数不是测量值,不存在误差, 故有效数字是无穷位。
如在D=2R中,2不是一位有效数字,而是无穷位
②常数、e等的位数可与参加运算的 量中有效数字位数最少的位数相同 或多取一位。
例 9 L=2R 其中R=2.3510-2m
就应取3.14(或3.142)
即L=23.1422.3510-2=0.148(m)
综合运算举例
50.00 ( 18.30 16.3 ) ( 103 3.0 ) ( 1.00 + 0.001 )
=
50.00 2.0 100 1.00
=
1.0102 100
= 1.0
10.02 lg100.0 35 27.3211 27.31 = 100 2.0000 35
0.01 = 2104 35 = 2104
试用有效数字计算结果: (1)123.98 - 40.456 + 7.8 = 171.0 (2) lg10.00 = 1.0000 (3)789.30 × 50 ÷ 0.100 = 3.9×103 (4)1.002 = 1.00
有效数字的计算方法
![有效数字的计算方法](https://img.taocdn.com/s3/m/ec019f97f021dd36a32d7375a417866fb84ac01c.png)
有效数字的计算方法
有效数字是在数学领域中一个偏重实用的概念,用于说明一个数字的实际有效性。
它在不同科学领域中都有所应用,特别是在计算机软件的开发和计算中,更为频繁。
有效数字是一个数字的可信度多少的表示,其实会根据数字的取值范围和精度
来计算出来。
例如,一个数字精度有八位,那么如果它可以使用0-8来表示,也就是8位有效数字,如果取值范围只有0-7,那么只有7位有效数字。
计算有效数字最常用的方法就是采用相对误差和绝对误差计算。
在开发软件和
计算中,由于采取精度损失或机器误差,最后结果可能和实际数值有差异,那么为了能够衡量结果的真实性,就需要采用相对误差与绝对误差计算法来计算有效数字。
我们可以计算以下公式:
相对误差=|(实际结果-预期结果)/实际结果|
绝对误差=|实际结果-预期结果|
如果相对误差小于某一个给定的数值E,且绝对误差也小于某一个给定的数值D,那么我们可以说结果具有指定的有效数字。
总而言之,有效数字是一个实用的概念,在数学计算中尤为重要。
通过计算数
字的取值范围和精度或使用相对误差与绝对误差计算法,可以实现一个具有某一特定有效数字的完美数值。
这也是许多计算机软件在开发过程中必须考虑的重要因素。
有效数字加减运算法则
![有效数字加减运算法则](https://img.taocdn.com/s3/m/08f5084ef4335a8102d276a20029bd64793e6253.png)
有效数字加减运算法则物理实验中经常要记录很多测量数据,这些数据应当是能反映出被测量实际大小的全部数字,即有效数字。
但是在实验观测、读数、运算与最后得出的结果中。
哪些是能反映被测量实际大小的数字应予以保留,哪些不应当保留,这就与有效数字加减运算法则有关。
前面已经指出,测量不可能得到被测量的真实值,只能是近似值。
实验数据的记录反映了近似值的大小,并且在某种程度上表明了误差。
因此,有效数字是对测量结果的一种准确表示,它应当是有意义的数码,而不允许无意义的数字存在。
如果把测量结果写成54.2817±0.05(cm)是错误的,由不确定度0.05(cm)可以得知,数据的第二位小数0.08 已不可靠,把它后面的数字也写出来没有多大意义,正确的写法应当是:54.28±0.05(cm)。
测量结果的正确表示,对初学者来说是一个难点,必须加以重视,多次强调,才能逐步形成正确表示测量结果的良好习惯。
一、有效数字的概念任何一个物理量,其测量的结果既然都或多或少的有误差,那么一个物理量的数值就不应当无止境的写下去,写多了没有实际意义,写少了有不能比较真实的表达物理量。
因此,一个物理量的数值和数学上的某一个数就有着不同的意义,这就引入了一个有效数字的概念。
若用最小分度值为1mm的米尺测量物体的长度,读数值为5.63cm。
其中5和6这两个数字是从米尺的刻度上准确读出的,可以认为是准确的,叫做可靠数字。
末尾数字3是在米尺最小分度值的下一位上估计出来的,是不准确的,叫做欠准数。
虽然是欠准可疑,但不是无中生有,而是有根有据有意义的,显然有一位欠准数字,就使测量值更接近真实值,更能反映客观实际。
因此,测量值应当保留到这一位是合理的,即使估计数是0,也不能舍去。
测量结果应当而且也只能保留一位欠准数字,故测量数据的有效数字定义为几位可靠数字加上一位欠准数字称为有效数字,有效数字数字的个数叫做有效数字的位数,如上述的5.63cm称为三位有效数字。
检测结果有效数字及其运算
![检测结果有效数字及其运算](https://img.taocdn.com/s3/m/572ad293f46527d3250ce0a8.png)
检测结果有效数字及其运算有效数字及其有效数字的保留1 .有效数字的定义我们把通过直读获得的准确数字叫做可靠数字;把通过估读得到的那部分数字叫做存疑数字。
把测量结果中能够反映被测量大小的带有一位存疑数字的全部数字叫有效数字。
有效数字指,保留末一位不准确数字,其余数字均为准确数字。
有效数字的最后一位数值是可疑值。
如:0.2014为四位有效数字,最末一位数值4是可疑值,而不是有效数值。
再如: 1g、1.000g其所表明的量值虽然都是1,但其准确度是不同的,其分别表示为准确到整数位、准确到小数点后第三位数值。
因此有效数值不但表明了数值的大小,同时反映了测量结果的准确度。
2 .有效数字的保留由于有效数字最末一位是可疑值,而不是准确值。
因此,计算过程中,计算的结果应比标准极限或技术指标规定的位数要求多保留一位,最后的报出值应与标准对定的位数相一致。
如:在标准的极限数值(或技术指标)的表示中,××≧95 表明结果要求保留到整数位。
因此,计算结果一定要保留到小数点后一位,最后再修约到整数位,如计算结果为94.6报出结果为95(-);因为94.6结果的0.6为可疑值,要想保留到整数位结果为准确值,计算结果必须要多保留一位。
如,分析天平的分辨率为0.1mg(即我们常说的万分之一天平),如果我们称取的量是10.4320g,则实际的称取结果结果为10.4320±0.0002g(万分之一的天平误差)。
如GB/T 601-2016《化学试剂标准滴定溶液的制备》,要求报出结果取4位有效数字,因此在标定计算结果中,应保留5位有效数字,最后再修约到4位有效数字(如果直接保留到4位有效数字,实际上是保留了三位有效数字,因最后一位是可疑值,则由标准溶液的浓度的不准确,会引进系统误差。
“0” 在数字中的作用“0”作为一个特殊的数字,在数值的不同的位置,有着不同的作用,只有明确了“0”在数字中的作用,才能更好的掌握有效数字及其加减乘除的运算规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有效数字及误差计算一、测量所谓测量,就是被测量的物理量和选为标准的同类量(即,单位)进行比较,确定出它是标准量的多少倍。
如:测量一本书的长度,将书与米尺进行比较,书的长度是米尺的18.85%,则书的长度为0.1885m 。
测量结果的数值大小和选择的单位密切相关。
同样一个量,测量时选择的单位越小,测量结果数值就越大,所以任何测量结果都必须标明单位.如273.15K ,3.0×108m/s 等等。
二、测量分类根据获得数据的方法不同,测量可分为直接测量和间接测量两类。
1.直接测量直接测量:使用量具或仪表等标准量具经过比较可直接读数获取数据。
相应测得量称为直接测量量。
如:米尺测量长度、温度计测量温度、天平测量质量等等。
2.间接测量间接测量:不能直接测量出结果,而必须先直接测量与它有关的一些物理量,然后利用函数关系而获取被测量数据的测量.相应的测得量就是间接测量量。
如:物质的密度3/a m =ρ、物体运动的速度t S v /=、物体的体积等等。
三、有效数字测量的结果因所用单位不同而不同,但在某一单位(量具)下,表示该测量值的数值位数不应随意取位,而是要用有确定意义的表示法。
图1用毫米尺测量工件的长度如图1是用毫米尺测量一段工件长度的示意图。
此工件的长度介于13mm 和14mm 之间,其右端点超过13mm 刻度线处,估计为6/10格,即工件的长度为13.6mm 。
从获得结果看,前两位13是直接读出,称为可靠数字,而最末一位0.6mm 则是从尺上最小刻度间估计出来的,称为可疑数字(尽管可疑,但还是有一定根据,是有意义的)。
定义:由几位可靠数字加上一位可疑数字在内的读数,称为有效数字。
如上读数13.6mm 共有三位有效数字,这里的第三位数“6”已是估计出来的,因此,用这种规格的尺子不可能测量到以毫米为单位小数点后第2位。
注:1、有效数字的多少,表示了测量所能达到的准确程度,这与所用的测量工具有关。
2、当被测物理量和测量仪器选定后,测量值的有效数字位数就可以确定了。
3、仪器的读数规则测量就要从仪器上读数,读数包括仪器指示的全部有意义的数字和能够估读出来的数字。
在测量中,有一些仪器读数是需要估读的,如米尺、螺旋测微计、指针式电表等等。
估读时,首先根据最小分格大小、指针的粗细等具体情况确定把最小分格分成几分来估读,通常读到格值的1/10,1/5或1/2。
4、有效位数的认定(1)数字中无零的情况和数字间有零的情况:全部给出的数均为有效数。
如:56.14mm ,50.007mm 有效位数分别为四位、五位。
(2)对于小数末尾的零:有小数点时,小数点后面的零全部为有效数字。
如:50.140mm ,2.204500的有效位数分别为五位、七位。
(3)对于第一位非零数字左边的零:第一位非零数字左边的零称为无效位零。
如:0.05mm ,0.00155m 有效位数分别为一位、三位。
(4)科学计数法:计量单位的不同选择可改变量值的数值,但决不应改变数值的有效位。
因此,在变换单位时,为了正确表达出有效位数,实验中常采用科学计数法(10的幂次方)。
如:km 1030.4m 1030.4m 1030.4cm 30.4542--⨯=μ⨯=⨯=注:大单位转换小单位或小单位转换大单位时,原数的有效位不变。
四、有效数字的运算规则0.数值的舍入修约规则(1)确定需要保留的有效数字和位数。
(2)舍入后面多余的数字。
原则-“四舍六入五凑偶”。
如→ 2.7173→7.691→3.142 → 4.510注:测量结果的不确定度的有效数字,“只进不舍”。
如某测量不确定度的计算结果为0.32,结果表示中取0.4(结果表示式中的不确定度取1位有效数)。
1.加减法运算和差运算的结果,其小数点以后的位数和参与运算各量中小数点位数最少的相同。
如:(354.4) (514)2.乘除法运算乘除运算结果的有效位数一般和参与乘除运算各量中有效位最少者的位数相同。
如683125854251029.8341.0243203=÷⨯=⨯注:(1)乘法:若两因子的最高位的积大于或等于10,其结果就要多保留一位有效数字。
如:9.35962.4323.8=⨯ (2)除法:若被除数有效数字的位数小于(等于)除数的有效数字位数,并且它的最高位的数小于除数的最高位的数,其结果的有效数字位数应比被除数少1位。
如53.0136712=÷ 在以上四则运算中,确定计算结果的有效数取位的原则,概括为:可靠数与可靠数运算的结果仍为可靠数;可靠数与可疑数运算的结果为可疑数;可疑数与可疑数运算的结果仍为可疑数。
运算进位的数字是可靠数字。
3.乘方、开方运算此类运算规则和乘法运算法则相同。
如:114.18256.42=)( 37.739.542/1=)(4.三角函数、对数、指数运算(1)对数函数:对数运算结果的有效数字,其小数点后面部分的位数与真数的位数相同。
如:33753.17.56lg = 若真数的第一位数大于5,运算结果的有效数字可以多取1位。
如:438312.078.6lg = (2)指数函数:指数运算结果的有效数字位数与指数的小数点后的位数相同(包括小数点后的0)。
如:177827925.6==x x e,由于6.25的小数点后只有2位,则625.6108.1⨯==x x e, 而当x=0.0000924,小数点后有7位,则000092.10000924.0==x xe 。
对于x 10的有效数字取法与x e 的取法相同。
(3)三角函数:三角函数运算结果的有效位数通常是由角度的有效位数决定的。
通过改变角度值的末位的1个单位,由函数值的变化来决定三角函数值的有效数字取位。
如:3918581.058.35sin =,而8109581.059.35sin = ,两结果在小数点后第四位产生差别,即5818.058.35sin =5.非测量常量的有效位数是无限的(1)自然数是准确的,运算中不考虑它们的位数(或者说有效位数无限)。
(2)运算中无理常数(如,e ,2等)的位数:* 若是手工计算,此类常数有效位比参加运算的各分量中有效位最少者多取一位。
* 若是计算器,可以直接利用计算器相应的“键”。
五、 测量误差的基本概念测量的目的是为了得到测量结果,但在许多场合下仅给出测量结果往往还不充分。
任何测量都存在缺陷,所有的测量结果都会或多或少地偏离被测量的真值,因此在给出测量结果的同时,还必须同时指出所给测量结果的可靠程度。
在各种测量领域,经常采用诸如测量误差、测量准确度和测量不确定度等术语来表示测量结果质量的好坏。
附:真值,是指在一定条件下,任何物理量的大小都是客观存在的,不以人的意志为转移的客观量值。
1.测量误差的定义测量误差常常简称为误差():测量值(x)减去被测量的真值(a)。
注:(1)由于真值不能确定,实际上用的是约定真值。
严格意义上的误差也无法得到,因而得到的只是误差的估计值。
(2)误差只有通过测量才能得到。
通过误差分析所得到的测量结果的所谓“误差”,实际上并不是真正的误差,而是被测量不能确定的范围。
测量误差的大小反映了测量结果的准确程度。
测量误差可以用绝对误差、相对误差、百分误差表示。
绝对误差=测量量值-真值附:最佳值,是指测量结果中的报告值。
如直接多次测量中的平均值。
2.系统误差和随机误差误差可以分为系统误差和随机误差两类。
系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。
计量师计算方法:(系统误差=误差=测量值-标称值)有点晕????注:(1)由于真值不确定,则能确定的只是系统误差估计值。
(2)对测量仪器而言,其系统误差也称为测量仪器的偏差。
(3)在重复性条件下得到的不同测量结果应该具有相同的系统误差。
(4)系统误差可以通过对测量结果进行修正而消除。
随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。
注:(1)随机误差等于误差减去系统误差。
测量结果为无限多次测量结果的平均值,根据随机误差的性质(对称性、抵偿性)可知,随机误差为零。
只存在系统误差。
实际测量只能进行有限次数,测量结果中随机误差和系统误差分量都存在。
在重复性条件下得到的不同测量结果具有不同的随机误差,但有相同的系统误差。
根据定义,误差、系统误差和随机误差均表示两个量值之差,因此随机误差和系统误差也都应该具有确定的符号,同样也不应当以“±”号的形式出现。
由于随机误差和系统误差都是对应于无限多次测量的理想概念,而实际上无法进行无限多次测量,只能用有限次测量的结果作为无限多次测量结果的估计值,因此可以确定的只是随机误差和系统误差的估计值。
附:随机误差的性质,单峰性、对称性、有界性、抵偿性。
3.随机误差的处理根据随机误差的分布特征,可知:(1)在多次测量时,正负随机误差常可以大致相消,因而用多次测量的算术平均值表示测量结果可以减少随机误差的影响;(2)测量值的分散程度直接体现随机误差的大小,测量值越分散,测量的随机误差就越大,因此必须对测量的随机误差做出估计才能表示出测量的精密度。
对随机误差估计的方法有多种,科学实验中,常用标准偏差来估计测量的随机误差。
▲ 残差、偏差和误差设a 为被测量真值,m 为总体平均值(无限多次测量结果的平均值),x 为测量平均值(有限次测量的平均值),i x 为单次测量值。
① 残差i x ∆:单次测量值i x 与测量平均值x 之差。
x x x i i -=∆② 偏差mi x ∆:单次测量值i x 与总体平均值m 之差。
m x x i mi -=∆③ 误差ε:单次测量值i x 与真值a 之差。
a x x i i -=∆0▲ σ、x S 和x S① (总体标准偏差): nm x n i i n ∑=∞→-12)(lim =σ 注:σ不是测量值中任何一个具体测量值的随机误差;的大小只说明,在一定条件下等精度测量列随机误差的概率分布情况; ② x S (单次测量值的标准偏差,有限次测量时):贝塞尔公式 1)(12--∑=n x x S n i ix =注:x S 是从有限次测量中计算出来的对总体标准偏差的最佳估计值,称为实验标准误差。
③ x S (算术平均值的标准误差):)1()(12--∑=n n x x S n i i x ==n S x注:● 算术平均值的标准偏差,表征同一被测量量的各个测量列算术平均值分散度,可作为算术平均值不可靠性的评定标准。
● 算术平均值对单次测量的随机误差有一定的抵消,因而更接近真值,它们的随机误差分布离散就会小得多。
附:多次测量的最佳值为算术平均值设在一组测量值中,n 次测量的值分别为:x 1、x 2、x 3、…、x n ,由统计原理可知,其真值的最佳值x 0是能使各次测量值与该值之差的平方和为最小的那个值。